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a b s t r a c t

The chromatic symmetric function (CSF) of Dyck paths of Stan-
ley and its Shareshian–Wachs q-analogue have important con-
nections to Hessenberg varieties, diagonal harmonics and LLT
polynomials. In the, so called, abelian case they are also curi-
ously related to placements of non-attacking rooks by results of
Stanley and Stembridge (1993) and Guay-Paquet (2013). For the
q-analogue, these results have been generalized by Abreu and
Nigro (2021) and Guay-Paquet (private communication), using
q-hit numbers. Among our main results is a new proof of Guay-
Paquet’s elegant identity expressing the q-CSFs in a CSF basis
with q-hit coefficients. We further show its equivalence to the
Abreu–Nigro identity expanding the q-CSF in the elementary
symmetric functions. In the course of our work we establish that
the q-hit numbers in these expansions differ from the originally
assumed Garsia–Remmel q-hit numbers by certain powers of q.
We prove new identities for these q-hit numbers, and establish
connections between the three different variants.
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. Introduction

Ever since their introduction in 1995 in [25], the chromatic symmetric functions have been
his mysterious object combining the misleading simplicity of graphs with the powerful tools of
ymmetric functions. Graph colorings present some of the hardest problems in combinatorics,1 and
ice formulas there qualify as miracles rather than general rules. It is thus even more appealing
hat the chromatic symmetric functions, and their q-generalizations, are a source of beautiful
esults and striking conjectures.2 The chromatic symmetric functions have found significant connec-
ions beyond combinatorics — to Hessenberg varieties [24], diagonal harmonics,CM, and Macdonald
olynomials [2,17].
In this paper we bring to light such an unusually nice combinatorial formula, relating the q-

ook theory which comes from generalizations of permutations and their inversions, and chromatic
ymmetric functions for Dyck paths of bounce two, aka abelian case. We give an elementary proof
f the strikingly elegant identity of Guay-Paquet (Theorem 1.3) which expresses the chromatic
ymmetric function for an arbitrary path given by partition λ in terms of the chromatic symmetric
unctions for rectangles with coefficients the very combinatorial q-hit numbers. Along the way
e establish numerous new identities for q-hit and q-rook numbers, give an elementary proof
f Theorem 1.2, and pose many conjectures stemming from our findings. Our ultimate goal is to
nderstand the chromatic symmetric functions with more relations and connections, which could
ead not only to a proof of the e-positivity Conjecture 1.1, but also to a combinatorial interpretation
f these coefficients. The technique of symmetry-breaking used in our proof of Theorem 1.3 could
e extended beyond the abelian case as long as there is a suitable conjectured expression for the
oefficients in the e-basis.

.1. Definitions and main results

Let G be a graph with vertices {v1, v2, . . . , vn} that are totally ordered v1 < v2 < · · · < vn.
n [25], Stanley defined the chromatic symmetric function (CSF) XG(x) of G as

XG(x) =
∑

κ:V→P, proper

xκ
=

∑
κ:V→P, proper

x#κ−1(1)
1 x#κ−1(2)

2 · · · ,

where P = {1, 2, 3, . . .}, x = (x1, x2, . . .), and the sum is over the proper colorings of the vertices
of G.

Stanley and Stembridge [26] conjectured that the chromatic symmetric functions expand with
positive coefficients in the basis {eµ} of elementary symmetric functions for the graphs coming from
yck paths in the following way. Given a Dyck path d from (0, 0) to (n, n), let G(d) be the graph

with vertices {1 . . . n} and edges (i, j), i < j if and only if the cell (i, j) is below the path d (see Fig. 1).
These are also the incomparability graphs of unit interval orders or graphs obtained from Hessenberg
sequences.

Shareshian–Wachs [24] introduced a quasisymmetric version of XG(x) defined by

XG(x, q) =
∑

κ:V→P, proper

qasc(κ)xκ ,

where asc(κ) is the number of edges {vi, vj} of G with i < j and κ(vi) < κ(vj).

1 Informally, but also formally as an NP-complete problem.
2 Most notably the e-positivity Conjecture 1.1 of Stembridge–Stanley [26], refined further by Shareshian–Wachs [24].
2
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Fig. 1. The Dyck path d = n3enenee2 associated to the partition λ = (2, 1) ⊂ 2 × 3 and the corresponding graph
(λ). Each cell below the path d corresponds to an edge of the graph. An example of a proper coloring would be
(1) = 2, κ(2) = 3, κ(3) = 1, κ(4) = 2, κ(5) = 3 which has asc(κ) = 4.

For the graphs G(d) coming from Dyck paths, the quasisymmetric function XG(d)(x, q) is actually
ymmetric and Shareshian–Wachs gave a refinement of the Stanley–Stembridge conjecture for this
atalan family of graphs.

onjecture 1.1 (Stanley–Stembridge, Shareshian–Wachs). Let d be a Dyck path. Then the coefficients
f XG(d)(x, q) in the elementary basis are in N[q].

This conjecture has been verified independently and by different techniques by Cho–Huh [7],
arada–Precup [18], and Abreu–Nigro [1] for the case of so-called abelian Dyck paths (corresponding
o abelian Hessenberg varieties), which are defined as Dyck paths d of from (0, 0) to (m+ n,m+ n)
f the form nmw(λ)en where w(λ) is the encoding in north (n) and east (e) steps of the partition
⊂ n × m (see Fig. 4(a)). We denote the associated graph by G(λ) and the chromatic symmetric

unction by Xλ(x, q) := XG(λ)(x, q).
The symmetric functions Xλ(x, q) corresponding to abelian Dyck paths are deeply related to the

-rook theory of Garsia–Remmel [11] as we illustrate with the next two identities that use the
ollowing notation

[n]k = [n][n− 1] · · · [n− k+ 1], [n]! = [n]n,
[
n
k

]
=

[n]k
[k]!

,

here [x] = (1− qx)/(1− q).
We define q-hit numbers of rectangular boards of size n × m that we denote as Hm,n

j (λ) by
change of basis Eq. (2.1) involving the Garsia–Remmel q-rook numbers. These q-hit numbers are

polynomials in q, satisfying
∑n

j=0 H
m,n
j (λ) = [m]n, and at q = 1 give the number of placements

of n non-attacking rooks in an n × m board (n ≤ m) with j rooks in the board of λ. We show
that these q-hit numbers Hm,n

j (λ) are symmetric polynomials in N[q] and are realized by a statistic
defined by Dworkin [8] (see Theorem 2.9). In the case of a square board m = n, these q-hit numbers
Hn

j (λ) := Hn,n
j (λ) are up to a power of q equal to the Garsia–Remmel q-hit numbers (Proposition B.1)

which are symmetric unimodal polynomials in N[q] realized by different statistics by Haglund and
Dworkin (see [16]).

Abreu–Nigro gave an expansion of Xλ(x, q) in the elementary basis in terms of q-hit numbers of
square boards. This result is a q-analogue of a special case of a result of Stanley–Stembridge [26,
Thm. 4.3].

Theorem 1.2 (Abreu–Nigro [1]). Let λ be partition inside an n×m board with ℓ(λ) = k ≤ λ1. Then

Xλ(x, q) = [k]!Hm+n−k
k (λ) · em+n−k,k +

k−1∑
j=0

qj [j]! [m+ n− 2j]Hm+n−j−1
j (λ) · em+n−j,j.

Our first main result is an elementary proof of an unpublished identity of Guay-Paquet.3 ,4
In Section 4 that expands Xλ(x, q) in terms of chromatic symmetric functions for rectangular shape
with coefficients given by the q-hit numbers of rectangular boards defined above.

3 Private communication [12].
4 This identity was independently found by Lee and Soh [20, Thm. 24] after this article was posted.
3
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This result appears as a q-analogue of a special case of [13, Prop. 4.1 (iv)].

heorem 1.3 (Guay-Paquet [12]). Let λ be partition inside an n×m board (n ≤ m). Then

Xλ(x, q) =
1

[m]n

n∑
j=0

Hm,n
j (λ) · Xmj (x, q).

Our second result is a direct elementary proof of Theorem 1.2 following from Theorem 1.3 and
using our third result which is the definition and properties of the q-hit numbers H∗,∗

∗
(λ), including

a deletion–contraction relation, that we derive in Sections Section 3 and in Appendix A.

1.2. Old and new methods

The original proofs of the two statements above use a linear relation satisfied by XG(d)(x, q) called
the modular relation [1,3,13]. Our proof of Theorem 1.3 uses a simple inductive approach on both the
izem+n of the graph and the numberM of variables (see Lemma 4.3). Our approach ignores/breaks
he symmetry of the chromatic symmetric function by splitting the function as a polynomial in
k, whose coefficients are polynomials in x1, . . . , xk−1. The ultimate identities are derived from
dentities of the coefficients; the q-hit numbers. Such an approach could work in a more general
etting if the coefficients in the expansion have some recursive combinatorial structure. Moreover,
ollowing the recursion it could be extended to a bijection, similar to RSK. The bottlenecks in this
pproach are the necessary new q-hit identities, which we derive after extensive use of generating
unctions.5 The derivation of Theorem 1.2 follows from other q-hit identities, which can be proven
lso using deletion–contraction on q-hit and q-rook numbers. Note that deletion–contraction on the
lassical CSFs itself is not directly applicable due to the inhomogeneity of the relation.
Along the way we prove new q-hit identities (Section 3 and the Appendix) and unravel a mystery

n different combinatorial statistics leading to different kinds of q-hit numbers (see Section 7.1 and
he Appendix) that have been mixed up in the literature. In particular, we establish new relations
f q-rook numbers and q-hit numbers (Lemmas 3.3, 3.4, 3.5, and 5.5) that develop further the q-rook

theory of rectangular boards [21].
As a Corollary to the fact that Theorems 1.2 and 1.3 are in essence linear relation between

chromatic symmetric functions, we establish that the same linear relation holds of the unicellular
LLT polynomials, see Section 6.1.

1.3. Organization

In Sections 2 and 3 we give the definitions of q-hit numbers and prove the necessary identities
used later on. Our elementary proof of Theorem 1.3 is in Section 4, and the proof of Theorem 1.2 is
in Section 5. In Section 6 we discuss variations on these problems, expansions in other bases like
CSFs for staircase shapes, applications to LLT polynomials, and some conjectures.

In Appendix A, B, and E we present the Garsia–Remmel q-hit numbers and their relation to the q-
hit numbers appearing in Theorems 1.2,1.3, and the deletion–contraction relations for each variant.
Appendix C, D have the proofs of Theorem 2.9 and the symmetry of the q-hit numbers, respectively.

2. Background on q-rook theory

For the rest of the paper, we assume m and n are non-negative integers with m ≥ n.

5 A fully combinatorial/bijective proof would be highly desirable and could completely unravel the combinatorics for
CSFs in the abelian case. See Section 7.
4
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.1. q-rook numbers

Rook placements are a generalizations of permutation diagrams, and their q-analogues keep track
f the number of inversions. We now summarize important definitions and properties used later in
elation to the chromatic symmetric functions. In the Appendix we include the proofs and further
roperties.

efinition 2.1 (q-rook Numbers [11]). Given a partition λ = (λ1, λ2, . . . , λℓ) the Garsia–Remmel
-rook numbers are defined as

Rk(λ) =
∑
p

qinv(p),

where the sum is over all placements p of k non-attacking rooks on λ and inv(p) is the number of
cells of λ that are not occupied by a rook or directly west or north of a rook (see Fig. 3(a)).

Proposition 2.2 (Garsia–Remmel [11]). Given a partition λ = (λ1, . . . , λℓ) we have that

F (x; λ) :=
ℓ∑

k=0

Rk(λ)[x]ℓ−k =

ℓ∏
i=1

[x+ λℓ−i+1 − i+ 1],

in particular Rℓ(λ) =
∏ℓ

i=1[λℓ−i+1 − i+ 1].

2.2. q-Hit numbers

The q-hit numbers are defined in terms of the q-rook numbers by a change of basis. Let (a; q)k =∏k−1
i=0 (1− aqi) denote the q-Pochhammer symbol.

Definition 2.3 ([21, Def. 3.1, Prop. 3.5]).
For λ inside an n×m board, we define the q-hit polynomial of λ by

P(x; λ) =
n∑

i=0

Hm,n
i (λ)xi :=

q−|λ|

[m− n]!

n∑
i=0

Ri(λ) [m− i]!(−1)iqmi−( i
2)(x; q)i, (2.1)

where the coefficients Hm,n
i (λ) are the q-hit numbers associated to λ. Equivalently, we have that for

every k

Hm,n
k (λ) =

q(
k
2)−|λ|

[m− n]!

n∑
i=k

Ri(λ) [m− i]!
[
i
k

]
(−1)i+kqmi−( i

2), (2.2)

and

Rk(λ) = q|λ|−mk [m− n]!
[m− k]!

n∑
i=k

Hm,n
i (λ)

[
i
k

]
q−1

. (2.3)

Notation 2.4. For square boards with n = m, we denote the q-hit number by Hm
j (λ).

Remark 2.5. For the case n = m, Garsia–Remmel defined q-hit numbers H̃n
k (λ) by the relation

n∑
i=0

H̃n
i (λ)x

i
=

n∑
i=0

Ri(λ)[n− i]!
n∏

k=n−i+1

(x− qk). (2.4)

One can show that the Garsia–Remmel q-hit numbers and our q-hit numbers differ by a power of
q (see Proposition B.1).
5
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Fig. 2. Example of the deletion and contraction of the board of a partition λ.

Fig. 3. Example of the statistics of (A) a q-rook number and (B) a q-hit number. (C)(D) Examples of the cases of q-hit
umbers of a rectangle (m− 1)k ⊂ n×m for Proposition 2.17.

The q-hit numbers satisfy the following deletion–contraction relation that is proved in Ap-
endix E. Given a shape λ and a corner cell e in λ, λ\e denotes the shape obtained after deleting the
ell e in λ, and λ/e denotes the shape obtained after deleting in λ the row and column containing
. See Fig. 2 for an example.

emma 2.6. We have the following deletion–contraction relation:

Hm,n
j (λ) = Hm,n

j (λ\e)+ q|λ/e|−|λ|+j+m−1
(
Hm−1,n−1

j−1 (λ/e)− qHm−1,n−1
j (λ/e)

)
.

Guay-Paquet [12] defined the rectangular q-hit numbers using a statistic similar to Dworkin’s
tatistic [8] for the Garsia–Remmel q-hit numbers and we present this definition next, illustrated
n Fig. 3(b).

efinition 2.7 (Statistic for the q-hit Numbers). Let λ be a partition inside an n × m board. Given a
lacement p of n non-attacking rooks on an n × m board, with exactly j rooks inside λ, let stat(p)
e the number of cells c in the board such that:

(i) there is no rook in c ,
(ii) there is no rook above c on the same column, and either,
(iii) if c is in λ then the rook on the same row of c is in λ and to the right of c or
(iv) if c is not in λ then the rook on same row of c is either in λ or to the right of c .

emark 2.8. Intuitively, this statistic stat(p) counts the number of remaining cells in the n × m
oard after: wrapping this board on a vertical cylinder and each rook of p cancels the cells south
n its column and the cells east in its row until the border of λ.

heorem 2.9. Let λ be a partition inside an n×m board and j = 0, . . . , n then

Hm,n
j (λ) =

∑
p

qstat(p), (2.5)

here the sum is over all placements p of n non-attacking rooks on an n×m board, with exactly j rooks
nside λ.

The proof for Theorem 2.9 is given in Appendix C.
6
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emark 2.10. Note that the Garsia–Remmel q-hit numbers have a very similar description in [16]
attributed to Dworkin) using a different attacking rule for the rooks. Our proof of Theorem 2.9
n Appendix A follows by reducing to the case of the Garsia–Remmel q-hit numbers. See also
Section 7.1 for more details.

Moreover, for each partition λ, the statistic stat(·) is Mahonian.

Corollary 2.11. Let λ be a partition inside an n×m board, then
n∑

j=0

Hm,n
j (λ) = [m]n.

Proof. Set k = 0 in (2.3) and since R0(λ) = q|λ|, we obtain
n∑

j=0

Hm,n
j (λ) = q−|λ|R0(λ)[m]n = [m]n. □

Example 2.12. Consider the partition λ = (6, 3, 3, 1) inside a 6 × 8 board. In Figs. 3(a) and 3(b),
we present an example of a placement p of two rooks on λ with inv(p) = 7 and an example of a
placement p′ of six rooks on the 6 × 8 board with two hits on λ and stat(p′) = 13, respectively.

We finish this section with some results for q-hit numbers. The next two results show the
relation between the q-hit numbers when we change the dimensions of the board.

Lemma 2.13. Let λ be a partition inside an n×m board. Then

Hm,n
j (λ) =

1
[m− n]!

Hm,m
j (λ).

Proof. Since Ri(λ) = 0 for i = n+ 1, . . . ,m then (2.2) becomes,

Hm,n
j (λ) =

q(
j
2)−|λ|

[m− n]!

m∑
i=j

Ri(λ) [m− i]!
[
i
j

]
(−1)i+jqmi−( i

2) =
1

[m− n]!
Hm,m

j (λ). □

emma 2.14. Let λ be a partition inside an (n− 1)×m board. Then

Hm,n
j (λ) = [m+ 1− n]Hm,n−1

j (λ).

roof. We apply (2.2) to Hm,n
j (λ)

and use the fact Rn(λ) = 0 since λ ⊂ (n− 1)×m to obtain

Hm,n
j (λ) = [m+ 1− n]

q(
j
2)−|λ|

[m− n+ 1]!

n−1∑
i=j

Ri(λ) [m− i]!
[
i
j

]
(−1)i+jqmi−( i

2)

= [m+ 1− n]Hm,n−1
j (λ),

where we used (2.1) again for Hm,n−1
j (λ) to obtain the desired formula. □

Finally, we give formulas for q-rook numbers and q-hit numbers of rectangular shapes.

Proposition 2.15.

Rk(ab) = q(a−k)(b−k) [a]k [b]k . (2.6)

[k]!

7
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roof. The result follows from the recurrence Rk(ab) = [b] Rk−1((a− 1)b−1)+ qbRk((a− 1)b) or from
he fact that up to a power of q and (q−1)k, this is the number of rank k matrices of size a×b over
finite field with q elements [15, Thm. 1], formulas for which can be found in [22, Sec. 1.7]. □

roposition 2.16.

HN
k (m

j) = q(N−j−m+k)k [m]k [N − j]!
[N −m]j−k [j]j−k

[j− k]!
. (2.7)

Proof. We compute the q-hit number directly using the statistic in (2.5). We claim that

HN
k (m

j) = Rk(mk) · Rj−k((N −m)j) · RN−j((N − j)N−j).

o show this, let us denote by B the N×N board. Then there are j− k rows occupied by rooks right
of the shape mj. These rooks cancel the respective rows from the mj shape. The overall contribution
to the q-hit number from the k rooks on the remaining shape mk is Rk(mk) = [m]k. The overall
contribution to the q-hit number from the j − k rooks placed to the right of the shape mj is
Rj−k((N − m)j). The j rooks placed on the first j rows of the board B cancel as many columns in
the shape NN−j consisting of the last N − j rows of the board B.

By Proposition 2.2, the overall contribution to the q-hit number from placing the remaining N− j
rooks in the remaining shape (N− j)N−j is RN−j((N− j)N−j) = [N− j]!. This proves the claim and the
result follows by using the formula in (2.6) for Rk(ab). □

roposition 2.17.

Hm,n
r ((m− 1)k) =

⎧⎨⎩
qk[m− k][m− 1]n−1 r = k,
[k][m− 1]n−1 r = k− 1,
0 otherwise.

roof. Since every row of the n × m board has a rook and the last column has at most one rook
hen the rooks can only ‘‘hit" the shape (m− 1)k r = k or r = k− 1 times.

When r = k, the first k cells of the last column are not cancelled in any rook placement so they
ontribute to stat(·). The contribution to the q-hit number from the k rooks placed on the shape
m − 1)k is Rk((m − 1)k). These rooks cancel k columns in the shape of the last n − k rows. Then
he contribution to the q-hit number of placing n − k rooks on the remaining shape (m − k)n−k is
n−k((m− k)n−k). See Fig. 3(c). Thus,

Hm,n
k ((m−1)k) = qkRk((m−1)k)·Rn−k((m−k)n−k) = qk[m−1]k[m−k]n−k = qk[m−k][m−1]n−1.

When r = k− 1, there is a rook on one of the first k cells of the mth column which cancels all
he cells of its corresponding row i = 1, . . . , k and the cells below the rook in its column. This rook
ontributes i − 1 to the statistic (the cells above the rook in the mth column). There contribution
o the q-hit number from the k− 1 rooks placed on the remaining shape (m− 1)k−1 (without row
) is Rk−1((m− 1)k−1). The k rooks on the first k rows cancel the cells of their columns in the shape
f the last n − k rows. Then the contribution to the q-hit number of placing n − k rooks on the
emaining shape (m−k)n−k is Rn−k((m−k)n−k). See Fig. 3(d). Summing over all i = 1, . . . , kwe obtain
hat

Hm,n
k−1((m−1)k) = [k]Rk−1((m−1)k−1)·Rn−k((m−k)n−k) = [k][m−1]k−1[m−k]n−k = [k][m−1]n−1. □

. New q-rook and q-hit identities

The proofs of Theorems 1.2 and 1.3 rely on many new identities between q-hit numbers, and
heir equivalent q-rook versions. While the q-hit and q-rook identities are independent of the
hromatic symmetric function theory, we first prove them using elementary combinatorial methods
nd univariate generating functions.
8
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For brevity, we will denote by λ/c j the partition obtained from λ by removing its jth column, by
λ/r i the partition obtained by removing its ith row, and by λ/(i, j) the partition obtained from λ by
emoving its jth column and its ith row. Moreover, we denote ℓ = ℓ(λ) and the conjugate partition
of λ by λ′.

3.1. Identities on q-rook numbers

The following q-rook identities can be proven directly using the generating function identity in
Proposition 2.2 of Garsia–Remmel. We start with a simple algebraic identity.

Lemma 3.1. Given a partition λ = (λ1, . . . , λℓ),

qλ1 [x]
F (x− 1; λ)
F (x; λ)

= [x− ℓ + λ1] −

λ1∑
j=1

qλ1−j

λ′j∏
t=1

[x+ λt − 1− ℓ + t]
[x+ λt − ℓ + t]

.

roof. We use induction on ℓ(λ) and apply Proposition 2.2. For ℓ(λ) = 1, we have

[x]
F (x− 1; λ)
F (x; λ)

= [x− 1] +
λ1∑
j=1

q−j
− q−j [x+ λ1 − 1]

[x+ λ1]
= q−λ1

[x+ λ1 − 1]
[x+ λ1]

([x+ λ1] − [λ1]).

ext, expanding the RHS of the above identity and doing standard manipulations gives

[x− ℓ + λ1] −

λ1∑
j=1

qλ1−j

λ′j∏
t=1

[x+ λt − 1− ℓ + t]
[x+ λt − ℓ + t]

=

= qλ1−λ2
[x+ λ1 − ℓ]

[x+ λ1 − ℓ + 1]

⎛⎝[x+ λ2 − (ℓ − 1)] −
λ2∑
j=1

qλ2−j

λ′j∏
t=2

[x+ λt − 1− ℓ + t]
[x+ λt − ℓ + t]

⎞⎠ .

y induction hypothesis the parenthetical on the RHS above is qλ2 [x]F (x − 1; λ̃)/F (x; λ̃) where
˜ = (λ2, . . . , λℓ). Using λ̃t = λt+1 for the reindexing, we obtain the result. □

Next, we find the following q-analogue of the derivative of F (x; λ).

emma 3.2. We have the following formula for the q-analogue of the derivative of F (x; λ):

DF (x; λ) :=
ℓ∑

k=0

[k]Rk(λ)[x]ℓ−k = qℓ−x([x]F (x− 1; λ)− [x− ℓ]F (x; λ)).

roof. Following the notation of Proposition 2.2,

F (x; λ) :=
ℓ∑

k=0

Rk(λ)[x]ℓ−k =

ℓ∏
i=1

[x+ λℓ−i+1 − i+ 1].

ote that

[x]ℓ−k − [x− 1]ℓ−k = [x− 1]ℓ−k−1

(
1− qx − 1+ qx−ℓ+k

1− q

)
=

[x]ℓ−k

[x]
qx−ℓ(qk − qℓ)

1− q

=
[x]ℓ−k

[x]
qx−ℓ([ℓ] − [k]).

Apply this identity to each term in the following difference

F (x; λ)− F (x− 1; λ) =
ℓ∑

Rk(λ)
[x]ℓ−k

[x]
qx−ℓ([ℓ] − [k]),
k=0

9
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o that

[x](F (x; λ)− F (x− 1; λ)) = qx−ℓ
[ℓ]F (x; λ)− qx−ℓDF (x; λ),

here DF (x; λ) :=
∑ℓ

k=0[k]Rk(λ)[x]l−k. This gives an equation for DF (x; λ) which we solve as

DF (x; λ) = −qℓ−x([x]−qx−ℓ
[ℓ])F (x; λ)+qℓ−x

[x]F (x−1; λ) = qℓ−x([x]F (x−1; λ)−[x−ℓ]F (x; λ)),

giving us the desired formula. □

The following result shows the relationship between q-rook numbers for partitions obtained
from deleting a column of λ.

Lemma 3.3. For all i fixed,∑
j

qm−jRi(λ/c j) = Ri(λ)[m− i] − Ri+1(λ)(qm − qm−i−1).

Proof. Multiplying on both sides by [x]ℓ−i, the above claim is equivalent to the generating function
identity:∑

j

qm−jF (x; λ/c j) =
∑

i

(Ri(λ)[m− i] − Ri+1(λ)(qm − qm−i−1))[x]ℓ−i

=

∑
i

Ri(λ)
(
[m− i][x]ℓ−i − (qm − qm−i)[x]ℓ−i+1

)
=

∑
i

Ri(λ)[x]ℓ−i[m+ x− ℓ] − qm[x][x− 1]ℓ−i

= [m+ x− ℓ]F (x; λ)− qm[x]F (x− 1; λ),

where we use the observation that

[m− i][x]ℓ−i − (qm − qm−i)[x]ℓ−i+1 = [x]ℓ−i
(1− qm−i)− (qm − qm−i)(1− qx−ℓ+i)

1− q

= [x]ℓ−i
1− qm−i

− qm + qm−i
+ qm+x−ℓ+i

− qm+x−ℓ

1− q
= [x]ℓ−i[x+m− ℓ] − qm[x]ℓ−i+1.

We have that

F (x; λ/c j) =

λ′j∏
i=1

[x+ λi − 1− ℓ + i]
ℓ∏

i=λ′j+1

[x+ λi − ℓ + i] = F (x; λ)

λ′j∏
i=1

[x− 1+ λi − ℓ + i]
[x+ λi − ℓ + i]

.

Using Lemma 3.1 and that λ/c j = λ for j > λ1,

m∑
j=1

qm−jF (x; λ/c j) = F (x; λ)

⎛⎝[m− λ1] + qm−λ1
∑

j

qλ1−j

λ′j∏
i=1

[x− 1+ λi − ℓ + i]
[x+ λi − ℓ + i]

⎞⎠
= F (x; λ)

(
[m− λ1] + qm−λ1 [x− ℓ + λ1] − qm−λ1qλ1 [x]

F (x− 1; λ)
F (x; λ)

)
= F (x; λ)[x− ℓ + λ1 +m− λ1] − qm[x]F (x− 1; λ),

which is what we wanted to show and completes the proof. □

We also have the following relationship between q-rook numbers obtained from removing a
single row from λ.
10
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emma 3.4. For all fixed k,
n∑

i=1

qi−1+λiRk(λ/r i) = [n]Rk(λ)− [k]Rk(λ).

roof. First of all, notice that we can replace n with ℓ since for i > ℓ, λ/r i = λ, λi = 0 and
n] −

∑n
i=ℓ+1 q

i−1
= [ℓ]. Multiplying by [y]ℓ−k = [y][y− 1](ℓ−1)−k on both sides and summing over

ll k, the identity is equivalent to

[y]
ℓ∑

i=1

qi−1+λi
∑
k

Rk(λ/r i)[y− 1](ℓ−1)−k = [n]
∑
k

Rk(λ)[y]ℓ−k −
∑
k

[k]Rk(λ)[y]ℓ−k.

Thus, the identity is then equivalent to the generating function identity

[y]
ℓ∑

i=1

qi−1+λiF (y− 1, λ/r i)

= [ℓ]F (y; λ)− DF (y; λ) = [ℓ]F (y, λ)+ q−y+ℓ
[y− ℓ]F (y, λ)− qℓ−y

[y]F (y− 1, λ).

We have that for i ≤ ℓ

F (y− 1, λ/r i)

=

ℓ−1∏
j=1

[y− 1+ (λ/r i)j − (ℓ − 1)+ i]

=

i−1∏
j=1

[y− 1+ λj − ℓ + 1+ j]
ℓ∏

j=i+1

[y− 1+ λj − (ℓ − 1)+ j− 1]

=
1

[y− 1+ λi − ℓ + i]

i−1∏
j=1

[y+ λj − ℓ]

[y− 1+ λj − ℓ]
F (y− 1, λ),

and so we reach the following equivalent identity

[y]
ℓ∑

i=1

qy−ℓ+i−1+λi

[y− 1+ λi − ℓ + i]

i−1∏
j=1

[y+ λj − ℓ]

[y− 1+ λj − ℓ]
F (y− 1, λ)

= qy−ℓ
[ℓ]F (y, λ)+ [y− ℓ]F (y, λ)− [y]F (y− 1, λ).

We can rewrite it as

[y]
ℓ∑

i=1

[y− ℓ + i+ λi] − [y− 1− ℓ + i+ λi]

[y− 1+ λi − ℓ + i]

i−1∏
j=1

[y+ λj − ℓ + j]
[y− 1+ λj − ℓ + j]

F (y− 1, λ)

= qy−ℓ
[ℓ]F (y, λ)+ [y− ℓ]F (y, λ)− [y]F (y− 1, λ),

hich reduces again to

[y]F (y− 1, λ)
ℓ∑

i=1

⎛⎝ i∏
j=1

[y+ λj − ℓ + j]
[y− 1+ λj − ℓ + j]

−

i−1∏
j=1

[y+ λj − ℓ + j]
[y− 1+ λj − ℓ + j]

⎞⎠
= [y]F (y, λ)− [y]F (y− 1, λ).

After canceling the terms in the telescoping sum on the LHS, the identity reduces to

[y]F (y− 1, λ)

⎛⎝ ℓ∏ [y+ λj − ℓ + j]
[y− 1+ λj − ℓ + j]

− 1

⎞⎠− [y]F (y, λ)+ [y]F (y− 1, λ)

j=1

11
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= [y](F (y, λ)− F (y− 1, λ))− [y]F (y, λ)+ [y]F (y− 1, λ) = 0,

hich completes the proof. □

Lemma 3.5. We have the following identity for q-rook numbers:∑
(i,j)∈λ

qi−j+λiRk(λ/(i, j)) = q[k+ 1]Rk+1(λ).

roof. Translating this identity into generating functions, we have that it is equivalent to
ℓ−1∑
k=0

∑
(i,j)∈λ

qi−j+λiRk(λ/(i, j))[x]ℓ−1−k =

ℓ−1∑
k=0

q[k+ 1]Rk+1(λ)[x]ℓ−k−1 =

ℓ∑
t=0

q[t]Rt (λ)[x]ℓ−t ,

which can be rewritten, with the help of Lemma 3.2, in terms of the F function as∑
(i,j)∈λ

qi−j+λiF (x; λ/(i, j)) = qDF (x; λ) = −qℓ−x+1
[x− ℓ]F (x; λ)+ q1+ℓ−x

[x]F (x− 1; λ). (3.1)

Now, we notice that if µ = λ/(i, j)

F (x; λ/(i, j)) =
ℓ−1∏
t=1

[x+ µt − ℓ + 1+ t]

=

i−1∏
t=1

[x+ λt − 1− ℓ + 1+ t]

λ′j−1∏
t=i

[x+ λt+1 − 1− ℓ + 1+ t]

×

ℓ−1∏
t=λ′j

[x+ λt+1 − ℓ + 1+ t]

= F (x; λ)

∏λ′j
t=i+1[x+ λt − 1− ℓ + t]∏λ′j

t=i[x+ λt − ℓ + t]
.

Note that qx−1−ℓ+i+λi = [x+ λi − ℓ + i] − [x+ λi − ℓ + i− 1], so we can rewrite this as

qi−j+λiF (x; λ/(i, j))

= q−x+1+ℓ−jF (x; λ)([x+ λi − ℓ + i] − [x+ λi − ℓ + i− 1])

∏λ′j
t=i+1[x+ λt − 1− ℓ + t]∏λ′j

t=i[x+ λt − ℓ + t]

= q−x+1+ℓ−jF (x; λ)

⎛⎝ λ′j∏
t=i+1

[x+ λt − 1− ℓ + t]
[x+ λt − ℓ + t]

−

λ′j∏
t=i

[x+ λt − 1− ℓ + t]
[x+ λt − ℓ + t]

⎞⎠ .

ixing j and summing over all possible i = 1 . . . λ′

j we get telescoping cancellations and so

∑
(i,j)∈λ

qi−j+λiF (x; λ/(i, j)) =
∑

j

q−x+1+ℓ−jF (x; λ)

⎛⎝1−

λ′j∏
t=1

[x+ λt − 1− ℓ + t]
[x+ λt − ℓ + t]

⎞⎠ .

ubstituting this into the LHS of (3.1), the needed identity transforms to the equivalent

∑
q1−j+ℓ−xF (x; λ)

⎛⎝1−

λ′j∏ [x+ λt − 1− ℓ + t]
[x+ λt − ℓ + t]

⎞⎠ = qDF (x; λ)

j t=1

12
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= qℓ−x+1 ([x]F (x− 1; λ)− [x− ℓ]F (x; λ)) ,

hich is equivalent to

[x]
F (x− 1; λ)
F (x; λ)

= [x− ℓ] +

λ1∑
j=1

q−j
− q−j

λ′j∏
t=1

[x+ λt − 1− ℓ + t]
[x+ λt − ℓ + t]

.

his last identity simplifies as

qλ1 [x]
F (x− 1; λ)
F (x; λ)

= [x− ℓ + λ1] −

λ1∑
j=1

qλ1−j

λ′j∏
t=1

[x+ λt − 1− ℓ + t]
[x+ λt − ℓ + t]

,

nd is equivalent to the formula in Lemma 3.1, which completes the proof. □

.2. q-Hit identities

We now translate the above rook identities into q-hit identities using the relationship from
efinition 2.3. Let

Gm,n(x; λ) =
n∑

k=0

Hm,n
k (λ)(qx)k.

hen we have the following equivalences in terms of the generating functions

Gm,n(x; λ) :=
n∑

i=0

i∑
k=0

q(
k
2)−|λ|

[m− n]!
Ri(λ) [m− i]!

[
i
k

]
(−1)i+kqmi−( i

2)qxk (3.2)

=
q−|λ|

[m− n]!

n∑
i=0

Ri(λ) [m− i]!qmi−( i
2)(−1)i

i∑
k=0

q(
k
2)
[
i
k

]
(−qx)k

=
q−|λ|

[m− n]!

n∑
i=0

Ri(λ) [m− i]!qmi−( i
2)(−1)i

i−1∏
k=0

(1− qx+k).

emma 3.6. For every λ inside an n×m board and for every k
m∑
j=1

qm+n−j−λ′jHm−1,n
k (λ/c j) = [m− n]Hm,n

k (λ)qn−k.

roof. The collection of identities for k = 0, . . . , n is equivalent to the following generating function
dentities

n∑
k=0

m∑
j=1

qm+n−j−λ′jHm−1,n
k (λ/c j)qxk

= [m− n]
n∑

k=0

Hm,n
k (λ)qn−kqxk

m∑
j=1

qm+n−j−λ′jGm−1,n(x; λ/c j) = qn[m− n]Gm,n(x− 1; λ).

Using (3.2) and expanding in the qx-polynomial basis (qx; q)k =
∏i−1

k=0(1− qx+k) for i = 0, . . . , n,
he G-identity is equivalent to the following rook identity for every i:

m∑
qm+n−j−λ′j

q−|λ|+λ′j

[m− 1− n]!

n∑
Ri(λ/c j) [m− 1− i]!qmi−i−( i

2)(−1)i
i−1∏

(1− qx+k)

j=1 i=0 k=0

13
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= qn[m− n]
q−|λ|

[m− n]!

n∑
i=0

Ri(λ) [m− i]!qmi−( i
2)(−1)i

i−1∏
k=0

(1− qx−1+k),

hich simplifies as
m∑
j=1

qm−j
n∑

i=0

Ri(λ/c j) [m− 1− i]!qmi−i−( i
2)(−1)i

i−1∏
k=0

(1− qx+k)

=

n∑
i=0

Ri(λ) [m− i]!qmi−( i
2)−i(−1)iqi

i−1∏
k=0

(1− qx−1+k).

otice that

qi(qx−1
; q)i = (qi − qx+i−1)(qx; q)i−1 = (qi − 1)(qx; q)i−1 + (qx; q)i,

nd so the RHS above expands in the (qx; q)i basis as:
n∑

i=0

Ri(λ) [m− i]!qmi−(i+1
2 )(−1)i((qi − 1)(qx; q)i−1 + (qx; q)i)

=

n∑
i=0

(−1)i(qx; q)i
(
Ri(λ) [m− i]!qmi−(i+1

2 ) − Ri+1(λ) [m− i− 1]!qmi+m−(i+2
2 )(qi+1

− 1)
)

.

Therefore, this is equivalent to the following q-rook identity for every i:
m∑
j=1

qm−jRi(λ/c j) [m− 1− i]!qmi−(i+1
2 )

=

(
Ri(λ) [m− i]!qmi−(i+1

2 ) − Ri+1(λ) [m− i− 1]!qmi+m−(i+2
2 )(qi+1

− 1)
)

.

implifying last expression, we obtain
m∑
j=1

qm−jRi(λ/c j) = Ri(λ)[m− i] − Ri+1(λ)(qm − qm−i−1),

hich is exactly Lemma 3.3. □

emma 3.7. Let k ≤ n ≤ m be fixed, and λ ⊂ n×m. We have the following q-hit identity:

[m− n+ 1]
n∑

i=1

qi−1Hm,n−1
k (λ/r i) = Hm,n

k (λ)qk[n− k] + Hm,n
k+1(λ)[k+ 1].

roof. Multiplying both sides by (qx)k and summing over all k, the identity becomes equivalent to
he following generating function identity:

[m− n+ 1]
n∑

i=1

qi−1Gm,n−1(x; λ/r i) =
n−1∑
k=0

Hm,n
k (λ)(qx+1)k[n− k] +

n−1∑
k=0

Hm,n
k+1(λ)[k+ 1]qxk.

o prove the above identity, we will use the following difference operator and its properties:

∆F (x) :=
F (x+ 1)− F (x)

qx(q− 1)
, ∆(qx)p = [p](qx)p−1,

∆(qx, q)p = −[p](qx+1, q)p−1 = −
[p](qx; q)p

1− x
.

14
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otice also that qk[n− k] = [n] − [k] and [k+ 1]qxk = ∆qx(k+1). Therefore, we have
n−1∑
k=0

Hm,n
k (λ)

(
qx+1)k

[n− k] =
n−1∑
k=0

Hm,n
k (λ)qxk[n] −

n−1∑
k=0

Hm,n
k (λ)[k]qxk

= [n]Gm,n(x; λ)− qx∆Gm,n(x; λ)

and
n−1∑
k=0

Hm,n
k+1(λ)[k+ 1]qxk = ∆Gm,n(x; λ).

Thus, the generating function identity is equivalent to

[m− n+ 1]
n∑

i=1

qi−1Gm,n−1(x; λ/r i) = [n]Gm,n(x; λ)− qx∆Gm,n(x; λ)+ ∆Gm,n(x; λ).

sing the formula

(1− qx)∆Gm,n(x; λ) =
q−|λ|

[m− n]!

n∑
k=0

[k]Rk(λ)[m− k]!qmk−(k2)(−1)k−1 (1− qx)(qx+1, q)k−1  
(qx;q)k

,

e can express the generating function identity in terms of q-rook numbers generating function as:

[m− n+ 1]
n∑

i=1

qi−1 q−|λ|+λi

[m− n+ 1]!

n∑
k=0

Rk(λ/r i)[m− k]!qmk−(k2)(−1)k(qx, q)k

= [n]
q−|λ|

[m− n]!

∑
k

Rk(λ)[m− k]!qmk−(k2)(−1)k(qx, q)k

+
q−|λ|

[m− n]!

n∑
k=0

[k]Rk(λ)[m− k]!qmk−(k2)(−1)k−1(qx; q)k.

For each k, the coefficients at (qx; q)k coincide, after canceling common factors, and reducing then
to the q-rook identities from Lemma 3.4

n∑
i=1

qi−1+λiRk(λ/r i) = [n]Rk(λ)− [k]Rk(λ). □

Lemma 3.8. We have the following identity

qk
∑
(i,j)∈λ

qi+(m−j−λ′j)Hm−1,n−1
k (λ/(i, j)) = [k+ 1]Hm,n

k+1(λ).

Proof. We show that this result follows from Lemma 3.5. By (2.2),

[k+ 1]Hm,n
k+1(λ) = [k+ 1]

q(
k+1
2 )−|λ|

[m− n]!

n∑
t=k+1

Rt (λ)[m− t]!
[

t
k+ 1

]
(−1)t+k+1qmt−(t2)

=
q(

k+1
2 )−|λ|

[m− n]!

n−1∑
t ′=k

[t ′ + 1]Rt ′+1(λ)[m− t ′ − 1]!
[
t ′
k

]
(−1)t

′
+kqmt ′+m−(t

′
+1
2 ),

where we reindexed the sum with t ′ = t − 1. Next, we apply Lemma 3.5 and exchange sums to
obtain

[k+ 1]Hm,n
k+1(λ) =

q(
k+1
2 )−|λ|

[m− n]!

∑
qm−j+λi

n−1∑
Rt ′ (λ/(i, j))[m− t ′ − 1]!

[
t ′
k

]
(−1)t

′
+kqmt ′+m−(t

′
+1
2 )
(i,j)∈λ t ′=k

15
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i
g

Fig. 4. (A) an abelian Dyck path λ inside an n×m board. (B) Top: the paths for λ = (2, 1), and for the rectangles 30, 31, 32

nside a 2 × 3 board. (B) Bottom: the six placements of 2 rooks in 2 × 3 divided by how many rooks ‘‘hit’’ (2, 1) (in
ray) and the associated statistic to each rook placement.

= qk
∑
(i,j)∈λ

qi+m−j−λ′j
q(

k
2) − |λ/(i, j)|
[m− n]!

n−1∑
t ′=k

Rt ′ (λ/(i, j))[m− t ′ − 1]!
[
t ′
k

]
(−1)t

′
+kq(m−1)t ′−(t

′

2)

= qk
∑
(i,j)∈λ

qi+m−j−λ′jHm−1,n−1
k (λ/(i, j)),

where we also used that |λ/(i, j)| = |λ| − λi − λ′

j + 1 and (2.2) for Hm−1,n−1
k (λ/(i, j)). □

4. The Guay-Paquet q-hit identity

In this section we give our main result, a proof of Theorem 1.3 using the q-rook theory identities
from Section 3. We start by giving an example of this elegant identity.

Example 4.1. For λ = (2, 1) inside a 2× 3 board, looking at Fig. 4(b), we see that H3,2
0 (λ) = q0 = 1,

H3,2
1 (λ) = 2q+ 2q2, H3,2

2 (λ) = q3. One can verify that

X21(x, q) =
1

[3][2]

(
X30 (x, q)+ (2q2 + 2q)X31 (x, q)+ q3X32 (x, q)

)
.

Remark 4.2. By Lemma 2.13, the identity in Theorem 1.3 can be rewritten as

Xλ(x, q) =
1

[m]!

n∑
j=0

Hm
j (λ) · Xmj (x, q). (4.1)

Our main self-contained proof is an inductive argument, where the induction is applied both
on the size m+ n of the graph, and also on the number of variables in the symmetric polynomials.
Namely, we consider the chromatic symmetric functions in variables x1, . . . , xM and each monomial
appearing as a particular assignment of the variables (i.e. colors) to the vertices. That is, the
vertices 1, . . . ,N = m + n are colored {1, . . . ,M}. For simplicity, we denote by XN

λ (M) the
chromatic symmetric polynomial XG(λ)(x1, . . . , xM; q) where the graph G(λ) has N vertices. We will
use induction on both M and n, m when necessary, driven by the following recursion.

Recall that λ/(i, j) is the partition obtained by removing the ith row and the jth column from
λ. Moreover, we denote by λ/i the partitions obtained by removing from λ the ith column, for

i = 1, . . . ,m, or the (m+ n− i+ 1)th row, for i = m+ 1, . . . ,m+ n.

16
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emma 4.3. For λ ⊂ n×m we have the following recursion

Xm+n
λ (M) =Xm+n

λ (M − 1)+ xM
m+n∑
i=1

qm+n−i−λ′iXm+n−1
λ/i (M − 1)

+ x2M
∑
(i,j)∈λ

qi−1+(m+n−j−λ′j)Xm+n−2
λ/(i,j) (M − 1).

Proof. In the abelian case, i.e. when λ ⊂ n × m, the graph G(λ) consists of a clique with vertices
{1, . . . ,m}, a clique with vertices {m+ 1, . . . ,m+ n} and a bipartite graph in between with edges
(i,m+ j) for each (i, j) in λ (the complement of λ in n×m). Therefore, a coloring of this graph has
t most two vertices of the same color. If the colors used are in {1, . . . ,M}, there are three cases
or the appearances of color M:

1. No vertex is colored M , this term contributes Xm+n−1
λ (M − 1) to Xm+n

λ (M).
2. Only one vertex is colored M . Suppose this vertex is in column j (from left) and row i = N− j

(from top to bottom). It creates ascents with all vertices above it but not in λ, giving N− j−λ′

j
ascents. Deleting this vertex corresponds to deleting its row and column (only one would be
a row/column of λ) and we get a graph on N−1 vertices with shape λ/j (deleting either row
N − j from λ, or column j from λ). The remaining vertices and their ascents are not affected
by this, so all their possible colorings contribute

xM
N∑
j=1

qN−j−λ′jXm+n−1
λ/j (M − 1).

3. Two vertices are colored M . Suppose that the lower one is in column j and the higher one
is in row i (counting from the top), necessarily with (i, j) ∈ λ. The lower vertex contributes
N − j − λ′

j ascents with the ‘‘visible’’ vertices above it. The higher vertex contributes i − 1
ascents, the number of vertices above it, giving a total of N − j− λ′

j + i− 1 ascents. We can
remove these two vertices, by removing row i and column j from λ and decreasing N by 2.
Again, the remaining vertices and their ascents are not affected, so these terms contribute

x2M
∑
(i,j)

qN−j−λ′j+i−1Xm+n−2
λ/(i,j) (M − 1). □

For rectangular shapes λ = (mk), Lemma 4.3 simplifies to give the following recursive expansion.

emma 4.4.

Xm+n
mk (M) = Xm+n

mk (M − 1)+ xM
(
qn−k

[m]Xm+n−1
(m−1)k

(M − 1)+ [k]Xm+n−1
mk−1 (M − 1)

+qk[n− k]Xm+n−1
mk (M − 1)

)
+ x2Mqn−k

[k][m]Xm+n−2
(m−1)k−1 (M − 1).

roof. This follows by carefully applying Lemma 4.3 to the shape λ = mk. If i ∈ [1,m] then
/i = (m − 1)k and N − i − λ′

i = m + n − i − k. If i ∈ [m + 1,m + n − k], then it is not a row or
olumn of λ and we have λ/i = mk with m+ n− i− 0 ascents. If i ∈ [m+ n− k+ 1,m+ n] then
/i = mk−1 and there are m+ n− i ascents. For (i, j) ∈ λ we always have λ/(i, j) = (m− 1)k−1 and
he ascents are m+ n− j− k+ i− 1. Summing over the row/column indices in the given intervals
e get the desired ascent statistics as the given q-integers. □

roof of Theorem 1.3. Translating Theorem 1.3 into chromatic symmetric polynomials, we want
o prove that for every M we have

Xm+n
λ (M) =

1
[m]n

n∑
Hm,n

j (λ) · Xm+n
mj (M). (4.2)
j=0

17
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f M < m then both Xm+n
λ (M) = 0 and Xm+n

mj (M) = 0 since there is no proper coloring of the
ower complete graph on m vertices. Otherwise, if M = 1 then m = 1 and so n = 1 and if λ = ∅

then X2
λ (M) ̸= 0 with Xm0 (1) = 0 and H1,1

1 (∅) = 0, and the identity is satisfied. If λ = (1) then
X2
(1)(1) = x21, [m]n = [1]1 = 1, H1,1

0 ((1)) = 0 and H1,1
1 ((1)) = 1 with m1

= (1), and the identity is
again trivially satisfied. This completes the initial conditions for the recursion in Lemma 4.3.

We will prove identity (4.2) by induction on M . As the argument above shows, the identity is
trivially satisfied for M = 1. Suppose that (4.2) is true for M − 1, every m ≥ n, and every shape
λ ⊂ mn. Naturally, if M < m then both sides become trivially 0.

The rest of the proof is as follows. We apply Lemma 4.4 to each term Xmj (M) appearing in the
RHS of (4.2). We also apply Lemma 4.3 to the LHS of (4.2), and the inductive hypothesis to X⋆

µ(M−1)
for all appearing terms, where ⋆ means any value ≤ m+ n.

Applying Lemma 4.4 to each term Xmj (M) appearing in the RHS in (4.2), we obtain

1
[m]n

n∑
j=0

Hm,n
j (λ) · Xm+n

mj (M) =
1

[m]n

∑
k

Hm,n
k (λ)

(
Xm+n
mk (M − 1)+ xM

(
qn−k

[m]Xm+n−1
(m−1)k

(M − 1)

+[k]Xm+n−1
mk−1 (M − 1)+ qk[n− k]Xm+n−1

mk (M − 1)
)
+ x2Mqn−k

[k][m]Xm+n−2
(m−1)k−1 (M − 1)

)
.

We now apply Lemma 4.3 to the LHS in (4.2). We split the sum in the linear xM term into
∈ [1,m], when λ/j = λ/c j ⊂ (m−1)×n (removing column j), and then i = m+n+1− j ∈ [1, n],

where λ′

j = 0 and m + n − j − λ′

j = i − 1 and λ/i ⊂ (n − 1) × m. We then apply the inductive
hypothesis to each X⋆

µ(M − 1) appearing with the corresponding rectangular frame, obtaining

Xm+n
λ (M) = Xm+n

λ (M − 1)

+ xM
m+n∑
j=1

qm+n−j−λ′jXm+n−1
λ/j (M − 1)+ x2M

∑
(i,j)∈λ

qi−1+(m+n−j−λ′j)Xm+n−2
λ/(i,j) (M − 1)

=
1

[m]n

∑
k

Hm,n
k (λ)Xm+n

mk (M − 1)+ xM
∑
k

∑m
j=1 q

m+n−j−λ′jHm−1,n
k (λ/c j)

[m− 1]n
Xm+n−1
(m−1)k

(M − 1)

+ xM
∑
k

∑n
i=1 q

i−1Hm,n−1
k (λ/i)

[m]n−1
Xm+n−1
mk (M − 1)

+ x2M
∑
k

∑
(i,j)∈λ q

i−1+(m+n−j−λ′j)Hm−1,n−1
k (λ/(i, j))

[m− 1]n−1
Xm+n−2
(m−1)k

(M − 1).

Applying Lemmas 3.6, 3.7 and 3.8 to the sums of q-hit numbers above, we get that

Xm+n
λ (M) =

1
[m]n

∑
k

Hm,n
k (λ)Xm+n

mk (M − 1)+ xM
∑
k

qn−k
[m− n]Hm,n

k (λ)
[m− 1]n

Xm+n−1
(m−1)k

(M − 1)

+ xM
∑
k

qk[n− k]Hm,n
k (λ)+ [k+ 1]Hm,n

k+1(λ)
[m− n+ 1][m]n−1

Xm+n−1
mk (M − 1)

+ x2M
∑
k

qn−1−k
[k+ 1]Hm,n

k+1(λ)
[m− 1]n−1

Xm+n−2
(m−1)k

(M − 1).

Simplifying the factors [m−1]n
[m−n] =

[m]n
[m]

, [m−n+1][m]n−1 = [m]n and [m−1]n−1 =
[m]n
[m]

, and grouping
he terms with Hm,n

k (λ), we can rewrite the above identity as

Xm+n
λ (M) =

1
[m]n

∑
k

Hm,n
k (λ)×

(
Xm+n
mk (M − 1)+ xMqn−k

[m]Xm+n−1
(m−1)k

(M − 1)

+ x (qk[n− k]Xm+n−1(M − 1)+ [k]Xm+n−1(M − 1))+ x2 qn−k
[k][m]Xm+n−2 (M − 1)

)

M mk mk−1 M (m−1)k−1

18
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=
1

[m]n

∑
k

Hm,n
k (λ)Xm+n

mk (M),

where we recognized the sum in the parentheses as the RHS of the recursion for rectangular CSF,
namely Lemma 4.4. This completes the induction. □

5. The Abreu–Nigro expansion in the elementary basis

In this section we show that Guay-Paquet’s identity (Theorem 1.3) is equivalent to Abreu–Nigro’s
identity (Theorem 1.2). We start by giving a proof of Abreu–Nigro’s identity for rectangular shapes.

Lemma 5.1 (Abreu–Nigro’s formula for rectangles).

Xmk (x, q) = [k]!Hm+n−k
k (mk) · em+n−k,k +

k−1∑
r=0

qr [r]! [m+ n− 2r]Hm+n−r−1
r (mk) · em+n−r,r .

In order to prove this case of the Abreu–Nigro identity we need the following result.

Lemma 5.2 (Guay-Paquet formula for rectangles). For the shape (m− 1)k ⊂ n×m we have that,

[m]X(m−1)k = qk[m− k]Xmk + [k]Xmk−1 .

Corollary 5.3.[
m− 1

k

]
Xmk =

k∑
j=0

[
m
j

]
(−1)k−jq−(k+j)(k−j+1)/2X(m−1)j .

Proof of Lemma 5.2. By Theorem 1.3 for the shape λ = (m− 1)k ⊂ n×m and the formula for the
q-hit numbers Hm,n

r ((m− 1)k) from Proposition 2.17 we obtain

X(m−1)k =
1

[m]n
qk[m− 1]k[m− k]n−kXmk +

1
[m]n

[k][m− 1]k−1[m− k]n−kXmk−1 ,

hich simplifies to

[m]X(m−1)k = qk[m− k]Xmk + [k]Xmk−1 . □

roof of Lemma 5.1. We use induction on m and k. For the base case, note that Xm0 = [m +

]!em+n = Hm+n
0 (m0)em+n. Now, by Lemma 5.2 we have that

qk[m− k]Xmk =
(
[m]X(m−1)k − [k]Xmk−1

)
.

ext, we use the induction hypothesis on X(m−1)k and Xmk−1 and we simplify our expression, so we
ant to prove that

qk[m− k]
(
[k]!Hm+n−k

k (mk) · em+n−k,k +

k−1∑
r=0

qr [r]! [m+ n− 2r]Hm+n−r−1
r (mk) · em+n−r,r

)
= [m]

(
[k]!Hm+n−k

k ((m− 1)k) · em+n−k,k

+

k−1∑
r=0

qr [r]! [m+ n− 2r]Hm+n−r−1
r ((m− 1)k) · em+n−r,r

)
− [k]

(
[k− 1]!Hm+n−k+1

k−1 (mk−1) · em+n−k+1,k−1

−

k−2∑
qr [r]! [m+ n− 2r]Hm+n−r−1

r (mk−1) · em+n−r,r

)
. (5.1)
r=0
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Fig. 5. Placements of 3 rooks in 3 × 3 that ‘‘hit" (2, 1) (in gray) once and twice and the associated statistic to each rook
lacement.

We do so by looking at the coefficient of em−n−r,r for 0 ≤ r ≤ k. For r = k, we have that

qk[m− k] [k]!Hm+n−k
k (mk) = [m] [k]!Hm+n−k

k ((m− 1)k),

hich follows from (2.7) using routine simplifications.
For r = k− 1, we have that

qk[m− k]qk−1 [k− 1]! [m+ n− 2k+ 2]Hm+n−k
k−1 (mk)

= [m] qk−1 [k− 1]! [m+ n− 2k+ 2]Hm+n−k
k−1 ((m− 1)k)− [k] [k− 1]!Hm+n−k+1

k−1 (mk−1). (5.2)

Using (2.7), we obtain that (5.2) is equivalent to

q [m− k] [n− k] = [m− k+ 1] [n− k+ 1]− [m+ n− 2k+ 1] . (5.3)

For 0 ≤ r ≤ k− 2, we have that

qk [m− k] qr [r]! [m+ n− 2r]Hm+n−r−1
r (mk)

= [m] qr [r]! [m+ n− 2r]Hm+n−r−1
r ((m− 1)k)

− [k] qr [r]! [m+ n− 2r]Hm+n−r−1
r (mk−1). (5.4)

sing (2.7), we obtain that (5.4) is equivalent to

qk−r [m− k] [n− k] = [m− r] [n− r]− [m+ n− r − k] [k− r] , (5.5)

hich is straightforward to verify by expanding both sides. Note that (5.3) is a particular case of (5.5)
y taking r = k− 1. □

We are now ready to prove that the Guay-Paquet’s identity and Abreu–Nigro’s follow from
ach other. As a corollary, we obtain a new proof of the latter. The following example illustrates
breu–Nigro’s result.

xample 5.4. For λ = (2, 1) inside a 2 × 3 board, we have that for k = 2, H3
2 (λ) = q3,

3
1 (λ) = 2q2 + 2q (see Fig. 5), and H4

0 (λ) = q3 + 3q2 + 3q+ 1. Therefore,

X2,1(x, q) = q3(1+q)e3,2(x)+q(1+q+q2)(2q2+2q)e4,1(x)+(1+q+q2+q3)(q3+3q2+3q+1)e5(x).

roof of Theorem 1.2.
Applying Lemma 5.1 to the RHS of the formula in Theorem 1.3, we obtain that

1
[m]n

n∑
j=0

Hm,n
j (λ) · Xmj (x, q) =

1
[m]n

n∑
j=0

Hm,n
j (λ)

(
[j]!Hm+n−j

j (mj) · em+n−j,j

)

+
1

[m]n

n∑
Hm,n

j (λ)
(
qr

j−1∑
[r]! [m+ n− 2r]Hm+n−r−1

r (mj) · em+n−r,r

)
.

j=0 r=0
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ow, switching the summation order, we have that

1
[m]n

n∑
j=0

Hm,n
j (λ) · Xmj (x, q) =

n∑
r=0

em+n−r,r
1

[m]n
[r]!Hm+n−r

r (mr )Hm,n
r (λ)

+

n−1∑
r=0

em+n−r,r
1

[m]n

(
qr

n∑
j=r+1

[r]! [m+ n− 2r]Hm+n−r−1
r (mj)Hm,n

j (λ)
)
.

hus, we need to show that for r = k = ℓ(λ),

[m]n H
m+n−k
k (λ) = Hm+n−k

k (mk)Hm,n
k (λ)+ qk

n∑
j=k+1

[m+ n− 2k]Hm+n−k−1
k (mj)Hm,n

j (λ)

= Hm+n−k
k (mk)Hm,n

k (λ),

ince Hm,n
j (λ) = 0 for j = k+ 1, . . . , n. We also need to show that for r < k = ℓ(λ),

[m]n q
r [m+ n− 2r]Hm+n−r−1

r (λ) = Hm+n−r
r (mr )Hm,n

r (λ)

+ qr
n∑

j=r+1

[m+ n− 2r]Hm+n−r−1
r (mj)Hm,n

j (λ).

fter using (2.7), these two relations are equivalent to the following identities relating q-hit
umbers of λ in square boards and rectangular boards. Thus, the Abreu–Nigro expansion for Xλ(x, q)
ollows now from Lemma 5.5, which completes the proof. □

emma 5.5. Let λ be a partition inside an n×m board and k = ℓ(λ), then[
m− k
n− k

]
Hm+n−k

k (λ) = qk(n−k) [m+ n− 2k]m−k H
m,n
k (λ), (5.6)

and for 0 ≤ r < k, we have[
m− r
n− r

]
Hm+n−r−1

r (λ) = qr(n−r−1) [m+ n− 2r − 1]m−r−1 H
m,n
r (λ)

+

n∑
j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j− 1]m−r

[n− r]
Hm,n

j (λ). (5.7)

roof. The first relation follows from a simple combinatorial observation together with Lemma 2.13.
or k = ℓ(λ), we see that the k rooks on the first k rows on the board have to be all inside λ, and

all the cells outside λ in these first rows will be empty. Thus

HN
k (λ) = Hk,λ1

k (λ)qk(N−λ1)[N − k]!.

Similarly, by the proof of Lemma C.1 we have

Hm,n
k (λ) = Hk,λ1

k (λ)qk(m−λ1)
[
m+ n− 2k

n− k

]
.

Substituting these formulas in each side of (5.6) we get the desired identity.
For the second relation, we switch gears and use a deletion–contraction relation of q-hit numbers

Lemma 2.6). The idea is to use induction of the size of λ, the deletion–contraction relation for q-hit
umbers, and deduce the identity by matching coefficients at each q-hit number.

emark 5.6. An alternative proof appears in Appendix F, where the q-hits are expressed in terms

f q-rooks and matching coefficients at each q-rook reduces to q-binomial identities.

21



L. Colmenarejo, A.H. Morales and G. Panova European Journal of Combinatorics 107 (2023) 103595

I

T

N

T

Let us start with the RHS of (5.7). Denote by

Bm,n
r (λ) := qr(n−r−1) [m+ n− 2r − 1]m−r−1 H

m,n
r (λ)

+

n∑
j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j− 1]m−r

[n− r]
Hm,n

j (λ).

f we apply the deletion–contraction relation in Lemma 2.6 to the q-hit numbers, we have that

Bm,n
r (λ) = qr(n−r−1) [m+ n− 2r − 1]m−r−1 H

m,n
r (λ\e)

+ qr(n−r−1) [m+ n− 2r − 1]m−r−1 q
|λ/e|−|λ|+r+m−1Hm−1,n−1

r−1 (λ/e)

− qr(n−r−1) [m+ n− 2r − 1]m−r−1 q
|λ/e|−|λ|+r+mHm−1,n−1

r (λ/e)

+

n∑
j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j− 1]m−r

[n− r]
Hm,n

j (λ\e)

+

n∑
j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j− 1]m−r

[n− r]
q|λ/e|−|λ|+j+m−1Hm−1,n−1

j−1 (λ/e)

−

n∑
j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j− 1]m−r

[n− r]
q|λ/e|−|λ|+j+mHm−1,n−1

j (λ/e). (5.8)

For the LHS of (5.7), we denote Cm,n
r (λ) :=

[
m− r
n− r

]
Hm+n−r−1

r (λ). Then by Corollary E.2,

Cm,n
r (λ) =

[
m− r
n− r

]
Hm+n−r−1

r (λ\e)

+

[
m− r
n− r

]
q|λ/e|−|λ|+r+m+n−r−2 (Hm+n−r−2

r−1 (λ/e)− qHm+n−r−2
r (λ/e)

)
.

hat is, we have the following deletion–contraction relation for the C ’s:

Cm,n
r (λ) = Cm,n

r (λ\e)+ q|λ/e|−|λ|+m+n−2
(
Cm−1,n−1
r−1 (λ/e)− q

[m− r]
[m− n]

Cm−1,n
r (λ/e)

)
. (5.9)

ow, we want to compare the two expressions in (5.8) and (5.9). By inductive hypothesis,

Cm,n
r (λ\e) = qr(n−r−1) [m+ n− 2r − 1]m−r−1 H

m,n
r (λ\e)

+

n∑
j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j− 1]m−r

[n− r]
Hm,n

j (λ\e) = Bm,n
r (λ\e).

hese terms appear both in (5.8) and in (5.9), and so they cancel. We have left to show that

q|λ/e|−|λ|+m+n−2
(
Cm−1,n−1
r−1 (λ/e)− q

[m− r]
[m− n]

Cm−1,n
r (λ/e)

)
= qr(n−r−1) [m+ n− 2r − 1]m−r−1 q

|λ/e|−|λ|+r+m−1Hm−1,n−1
r−1 (λ/e)

− qr(n−r−1) [m+ n− 2r − 1]m−r−1 q
|λ/e|−|λ|+r+mHm−1,n−1

r (λ/e)

+

n∑
j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j− 1]m−r

[n− r]
q|λ/e|−|λ|+j+m−1Hm−1,n−1

j−1 (λ/e)

−

n∑
qr(n−1−j)

[
j
r

]
[m+ n− r − j− 1]m−r

[n− r]
q|λ/e|−|λ|+j+mHm−1,n−1

j (λ/e).

j=r+1
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his last equation simplify to the following identity:

qn−2
(
Cm−1,n−1
r−1 (λ/e)− q

[m− r]
[m− n]

Cm−1,n
r (λ/e)

)
= qr(n−r)−1 [m+ n− 2r − 1]m−r−1

(
Hm−1,n−1

r−1 (λ/e)− qHm−1,n−1
r (λ/e)

)
+

n∑
j=r+1

qr(n−1−j)+j−1
[
j
r

]
[m+ n− r − j− 1]m−r

[n− r]

(
Hm−1,n−1

j−1 (λ/e)− qHm−1,n−1
j (λ/e)

)
, (5.10)

n order to show (5.10), we apply first the inductive hypothesis in the C ’s together with the relation
n Lemma 2.14 to obtain their expansion in terms of q-hit numbers of the form Hm−1,n−1

j (λ/e):

qn−2Cm−1,n−1
r−1 (λ/e) = q(r−1)(n−r−1)+n−2 [m+ n− 2r − 1]m−r−1 H

m−1,n−1
r−1 (λ/e)

+

n−1∑
j=r

q(r−1)(n−2−j)+n−2
[

j
r − 1

]
[m+ n− r − j− 2]m−r

[n− r]
Hm−1,n−1

j (λ/e),

qn−1 [m− r]
[m− n]

Cm−1,n
r (λ/e) = qr(n−r−1)+n−1 [m− r]

[m− n]
[m+ n− 2r − 2]m−r−2 H

m−1,n
r (λ/e)

+

n∑
j=r+1

qr(n−1−j)+n−1
[
j
r

]
[m− r]
[m− n]

[m+ n− r − j− 2]m−r−1

[n− r]
Hm−1,n

j (λ/e).

Finally, we compare the coefficients in (5.10). For Hm−1,n−1
r−1 (λ/e), we have

LHS = q(r−1)(n−r−1)+n−2 [m+ n− 2r − 1]m−r−1 = RHS.

For Hm−1,n−1
r (λ/e), we have

LHS = q(r−1)(n−2−r)+n−2
[

r
r − 1

]
[m+ n− r − r − 2]m−r

[n− r]
− qr(n−r−1)+n−1 [m− r] [m+ n− 2r − 2]m−r−2 ,

RHS = −qr(n−r) [m+ n− 2r − 1]m−r−1 + qr(n−2−r)+r
[
r + 1
r

]
[m+ n− 2r − 2]m−r

[n− r]
,

hich simplifies to the relation [m+ n− 2r − 1] = qn−r−1 [m− r]+ [n− r − 1]. This last relation
s a straightforward verification by expanding both sides.

For Hm−1,n−1
j (λ/e), with r + 1 ≤ j ≤ n− 1,

LHS = q(r−1)(n−2−j)+n−2
[

j
r − 1

]
[m+ n− r − j− 2]m−r

[n− r]

− qr(n−1−j)+n−1
[
j
r

]
[m− r]

[m+ n− r − j− 2]m−r−1

[n− r]
,

RHS = qr(n−2−j)+j
[
j+ 1
r

]
[m+ n− r − j− 2]m−r

[n− r]
− qr(n−1−j)+j

[
j
r

]
[m+ n− r − j− 1]m−r

[n− r]
,

hich simplifies to the relation [m+ n− r − j− 1] = qn−j−1 [m− r]+ [n− j− 1]. This last relation
s a straightforward verification by expanding both sides. □
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. Variations and applications

.1. Theorems 1.2 and 1.3 In terms of unicellular LLT polynomials

Chromatic symmetric functions of Dyck paths are related to unicellular LLT polynomials [19] that
can be defined as follows. For a Dyck path d, let G(d) be the associated graph and denote

LLTG(d)(x, q) :=
∑

κ:V (G(d))→P

qasc(κ)xκ ,

where the sum is over all vertex colorings κ of G(d) and asc(κ) is the same as in the definition of
XG(x, q).

The function LLTG(d)(x, q) is actually symmetric (see [2, Sec. 3.1]) and the symmetric functions
XG(d)(x, q) and LLTd(x, q) are related via a plethystic substitution discovered independently by
Carlsson–Mellit [5, Prop. 3.4] and Guay-Paquet [14, Lemma 172]:

LLTG(d)(x, q) = (q− 1)nXG(d)[x/(q− 1), q],

where n is the size of the Dyck path. As a consequence of this connection, any linear relation in one
family implies the same relation in the other one. Since Theorems 1.2 and 1.3 yield a linear relation
among certain chromatic symmetric functions, we immediately obtain the same relations for the
corresponding unicellular LLT polynomials.

Corollary 6.1. Let λ be partition inside an n×m board with ℓ(λ) = k ≤ λ1. Then

LLTG(λ)(x, q) =
1

[m+ n− k]!
Hm+n−k

k (λ) · LLTK (m+n−k,k)(x, q)

+

k−1∑
j=0

qj
[m+ n− 2j]
[m+ n− j]!

Hm+n−j−1
j (λ) · LLTK (m+n−j,j)(x, q),

here K (a, b) is the disjoint union of complete graphs on vertices {1, . . . , a} and {a+ 1, . . . , a+ b}.

roof. Since XK (a,b)(x, q) = [a]![b]!ea,b, then Theorem 1.2 yields a linear relation among XG(λ)(x, q),
K (m+n,0)(x, q), . . . , XK (m+n−k,k)(x, q). The result then follows from the fact that every linear relation
mong a set of chromatic symmetric functions of Dyck paths has a corresponding relation among
nicellular LLT polynomials [2, Prop. 55]. □

orollary 6.2. Let λ be a partition inside an n×m (n ≤ m) board. Then

LLTG(λ)(x, q) =
1

[m]n

n∑
j=0

Hm,n
j (λ) · LLTG(mj)(x, q).

Proof. Theorem 1.3 yields a linear relation among Xλ(x, q), Xm0 (x, q), . . . , Xmn (x, q). The result then
follows by the same fact as in the proof above. □

6.2. The staircase basis

Let Vm,n
:= spanQ(q){Xλ | λ inside an n × m board}. Consider the set of chromatic symmetric

functions given by rectangular shapes Rm,n
:=
{
Xmj (x, q)

}n
j=0. This set is actually a basis for Vm,n.

orollary 6.3. The set Rm,n forms a basis for the Q(q)-vector space Vm,n.

To prove this result we need the following result.
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Fig. 6. Left: the path for λ = 3 inside a 2 × 3 board. Right: the three staircase paths δ0, δ1, δ2 for m = 3 and n = 2.

Proposition 6.4. Let λ be a partition inside the n×m board and let k = ℓ(λ) ≤ λ1

Xλ(x, q) = [k]!Hm+n−k
k (λ)s2k1m+n−2k (x)

+

k−1∑
i=0

s2i1m+n−2i (x)
(
[k]!Hm+n−k

k (λ)+
k−1∑
j≥i

qj[j]![m+ n− 2j]Hm+n−j−1
j (λ)

)
. (6.1)

roof. This expansion follows by combining expressing the elementary symmetric functions in the
chur basis en−j,j =

∑j
i=0 s2i1n−2i in Theorem 1.2. □

roof of Corollary 6.3. By Theorem 1.3 we have that Rm,n span Vm,n.
By Theorem 1.2 the leading term Xmj (x, q) in the e-basis is Hm+n−j

j (mj)em+n−j,j. Since j ≤ m we
an certainly place j rooks on mj and see that Hm+n−j

j (mj) ̸= 0. Note that the full formula is given
n Proposition 2.16. Thus the transition matrix between Rm,n and the em+n−j,j’s is upper triangular
ith nonzero diagonal entries, so they are linearly independent and form a basis. □

Guay-Paquet considered another basis for the space Vm,n. This basis is called the staircase basis
ince it is indexed by the staircase partitions, which are partitions inside an n×m board of the form

δj = (j, j− 1, . . . , 1), for j = 0, . . . , n (see Fig. 6). Let Sm,n
:=
{
Xδj (x, q)

}n
j=0

.

Proposition 6.5 ([12]). The set Sm,n forms a basis for the Q(q)-vector space Vm,n.

Proof. We look at the expansion in Theorem 1.2 for δj. In this case, Hm+n−j
j (δj) ̸= 0 because we

can place j rooks on the main diagonal of δj and place m + n − 2j remaining rooks outside δj
(for instance, in the main diagonal of the square board). Therefore, the leading term of Xδj (x, q)
is Hm+n−j

j (δj)em+n−j,j ̸= 0. That is, Sm,n’s transfer matrix with the Vm,n basis given by {em+n−j,j} is
upper triangular with nonzero diagonal and hence is also a basis. □

Since the coefficients of Xλ(x, q) in the Rm,n basis involve q-hit numbers, we also want to study
the coefficients appearing in the decomposition of Xλ(x, q) in this new basis Sm,n. That is, we want
to understand the coefficients am,n

j (λ, q) in the expression

Xλ(x, q) =
n∑

j=0

am,n
j (λ, q) · Xδj (x, q). (6.2)

Calculations suggest that up to a sign and a power of q, these coefficients are in N[q].

Conjecture 6.6. Let λ be a partition inside an n×m board (n ≤ m) and j be fixed, then am,n
j (λ, q) is

a Laurent polynomial in q whose coefficients are integers of the same sign.

Example 6.7. For λ = 3 inside a 2 × 3 board, we have

q2X3(x, q) = −(q+ 1)X∅(x, q)+ (q2 + q+ 1)X1(x, q)+ 0 · X21(x, q).
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A possible approach to Conjecture 6.6 is looking at the change of bases between the rectangular
asis Rm,n and the staircase basis Sm,n. Let us start showing that the coefficients of the change of
ases determine am,n

j (λ, q).

roposition 6.8. am,n
j (λ, q) =

1
[m]n

n∑
i=0

Hm,n
i (λ)am,n

j (mi, q).

Proof. This follows from basic linear algebra. By Theorem 1.3 and (6.2), we have that

Xλ(x, q) =
1

[m]n

n∑
k=0

Hm,n
k (λ) · Xmk (x, q)

=
1

[m]n

n∑
k=0

Hm,n
k (λ)

n∑
j=0

am,n
j (mk, q)Xδj (x, q).

Next, we exchange the order of summation to obtain

Xλ(x, q) =
n∑

j=0

Xδj (x, q)
1

[m]n

n∑
k=0

Hm,n
k (λ)am,n

j (mk, q).

The result then follows by extracting the coefficient of Xδj (x, q) on both sides above. □

This means that in order to prove Conjecture 6.6 it suffices to verify it for am,n
j (mk, q).

Remark 6.9. We have the following (n+ 1)× (n+ 1) matrix and its inverse

A :=
(
am,n
j (mk, q)

)
0≤j,k≤n

, H := A−1
=

1
[m]n

(
Hm,n

j (δk)
)
0≤j,k≤n

.

oreover, the q-hit numbers Hn,n
j (δn) are the q-Eulerian polynomials defined by

An,j+1(q) :=
∑
w∈Sn

exc(w)=j

qstat(w),

where stat is inv or maj indices (see [4,23]). Also, one can check that the specialization

Hn,n
j (δn−r )

⏐⏐
q=1

= A(r)
n,j,

where the A(r)
n,j are the r-excedence numbers that count the number of permutations in Sn with j

r-excendences {i | w(i) ≥ i+ r} (see [9,10]).

Note that the coefficients am,n
j (λ, q) add up to one.

Proposition 6.10. Let λ be a partition inside an n×m (n ≤ m) board. Then
n∑

j=0

am,n
j (λ, q) = 1.

Proof. By Proposition 6.8 and Corollary 2.11 it is enough to show the result for the am,n
j (mk, q).

That is, to show that the columns of the matrix A from Remark 6.9 add up to one. This follows
from basic linear algebra since the columns of the inverse matrix A−1

= H also add up to one by
Corollary 2.11. □
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.3. Theorem 1.3 In terms of q-rook numbers

Theorem 1.3 expresses Xλ(x, q) as a linear combination of the functions Xmj (x, q) where the
coefficients are normalized q-hit numbers. Since the latter are defined in (2.2) in terms of q-rook
numbers it is natural to give an expression for Xλ(x, q) involving q-rook numbers Ri(λ).

efinition 6.11. For non-negative integers m, n, and i, with m ≥ n and 0 ≤ i ≤ n, define

Ym,n
i (x, q) :=

i∑
k=0

(−1)i−k
[
i
k

]
q(

k
2)Xmk (x, q).

orollary 6.12. Let λ be a partition inside an n×m board (n ≤ m). Then

Xλ(x, q) =
1

[m]!

n∑
i=0

[m− i]!qmi−( i
2)−|λ|Ri(λ) · Y

m,n
i (x, q).

Proof. We use (2.2) in Theorem 1.3 and change the order to summation to obtain:

Xλ(x, q) =
1

[m]n

n∑
k=0

q(
k
2)−|λ|

[m− n]!

n∑
i=k

[m− i]!
[
i
k

]
(−1)i+kqmi−( i

2)Ri(λ)Xmk (x, q)

=
1

[m]!

n∑
i=0

[m− i]!qmi−( i
2)−|λ|Ri(λ) ·

(
i∑

k=0

(−1)i−k
[
i
k

]
q(

k
2)Xmk (x, q)

)
.

The result follows by noting that the sum in parenthesis on the RHS is exactly Yi(x, q). □

The following example shows that the Ym,n
i (x, q) are not m-positive.

Example 6.13. For m = 3, n = 2 and i = 1, we have that

Y 3,2
1 (x, q) = X31 (x, q)− X30 (x, q).

Expanding in the m-basis, we have that

Y 3,2
1 (x, q) =

(
−q10 − 4q9 − 9q8 − 14q7 − 12q6 − 2q5 + 11q4 + 16q3 + 11q2 + 4q

)
m1,1,1,1,1

+
(
q6 + 3q5 + 5q4 + 5q3 + 3q2 + q

)
m2,1,1,1.

However, in the e-basis we have that

=
(
q6 + 3q5 + 5q4 + 5q3 + 3q2 + q

)
e4,1

+
(
−q10 − 4q9 − 9q8 − 14q7 − 17q6 − 17q5 − 14q4 − 9q3 − 4q2 − q

)
e5.

Indeed, it appears that the expansion of the Ym,n
i in the elementary basis yields palindromic

olynomials with all positive or all negative coefficients.

onjecture 6.14. Consider the functions Yi(x, q) expanded in the e-basis

Yi(x, q) =
i∑

k=0

ck(q)em+n−k,k.

hen (−1)i−kc (q) ∈ N[q] and are palindromic.
k
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. Final remarks

.1. A tale of two variants of q-hit numbers

To our surprise, the q-hit numbers appearing in Theorems 1.2 and 1.3 are not exactly the Garsia–
emmel q-hit numbers denoted by H̃n

j (λ) but instead, they are off by a power of q (see Proposi-
ion B.1). Thus, these two variants of q-hit numbers satisfy different versions of deletion–contraction
see Appendix E).

While working on this project, we have encountered two different variants of Dworkin’s statistic
or the Garsia–Remmel q-hit numbers H̃ j

n(λ) for λ ⊂ n × n. In [8, Sec. 7, Fig. 3] Dworkin gives
statistic with a rule that is the transpose of the statistic in Definition 2.7. However, this statistic
ctually yields our q-hit numbers Hn

j (λ) (this can be seen from the change of basis to q-rook numbers
nd because the latter stay invariant under conjugation) and not the Garsia–Remmel q-hit numbers
n
j (λ) as claimed in [8]. In [16, Fig. 5], Haglund and Remmel give a statistic similar to Dworkin
hat they attribute to him (see Definition A.2) that does yield the Garsia–Remmel q-hit numbers.
he authors in [16] give a weight-preserving bijection between their version of Dworkin’s statistic
nd Haglund’s statistic for H̃n

j (λ) from [15] thus proving the validity of their version of Dworkin’s
tatistic.
See Appendices A and B for more details on the Garsia–Remmel q-hit numbers and their relation

o our q-hit numbers. And see Appendix C for a proof of Theorem 2.9 which shows the statistic in
Definition 2.7 that yields the q-hit numbers H j

m,n(λ).
For a recent q-analogue of hit numbers for general boards, not just Ferrers boards, see [21].

.2. A conjectured deletion–contraction relation for q-hit numbers

We use the deletion–contraction of q-hit numbers (Lemma 2.6) in our proof of Theorem 1.2. It
ppears that the q-hit numbers satisfy a similar deletion–contraction relation with simpler powers
f q. For more details in another deletion–contraction relation of q-hit numbers see Appendix E.

onjecture 7.1. Let λ be a partition inside an n × m board and e be an outer corner of λ. Then we
ave the following recursion: Hm,n

j (∅) = [m]n δj,0 and

qHm,n
j (λ) = Hm,n

j (λ\e)+ qmHm−1,n−1
j−1 (λ/e)− Hm−1,n−1

j (λ/e).

.3. Combinatorial proof of Theorem 1.3

Guay-Paquet’s proof of Theorem 1.3 sketched in [12] is based on the idea of dual basis from
inear algebra. He shows that the vector space Vm,n, together with the basis Rm,n, has a dual vector
pace V ∗

m,n := spanQ(q)
(
P(x; λ)/[m]n | λ ⊂ n × m

)
with dual basis {xi | i = 0, . . . , n}. Now, the

ual basis coefficients are given by the normalized q-hit numbers Hm,n
i (λ)/[m]n as shown (up to

ormalization) in (2.1).
In contrast, our proof of Theorem 1.3 uses q-rook theory, it would be interesting to find a bijective

roof of this result relating colorings with rook placements.
Specifically, we can rewrite the identity as

[m]nXλ(x, q) =
n∑

k=0

Hm,n
k (λ)Xmk (x, q).

Matching monomials in x, powers of q, and interpreting [m]n = Hm,n
0 (∅) we are looking for a

ijection ϕν for every ν = (2, . . . , 2, 1, . . .) as follows.

From:
Pairs of a rook placement Pm,n

0 (∅) of n rooks on n×m board with inv(P) inversions and a proper
coloring κ(λ, ν) of Gλ of type ν and asc(κ) total ascents.
Into:

28
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Triples k, Pm,n
k (λ), κ(mk, ν) consisting of an integer k ∈ [0, n], a rook placement on n × m with

xactly k rooks inside λ, and a proper coloring of Gmk of type ν,

uch that

asc(κ(mk, ν))+ inv(Pm,n
k ) = asc(κ)+ inv(P).

.4. Combinatorial proof of Theorem 1.2

There are other rules for the elementary basis expansion of Xλ(x, q). In particular, Cho–Huh [7]
ive an expansion in terms of P-tableaux of shape 2j1m+n−2j such that there is no s ≥ j+2 such that
ai,1, as,1) ∈ λ for all i ∈ {ℓ + 1, . . . , s − 1} (see [24, Sec. 6] for details on P-tableaux). We denote
uch set of P-tableaux by T ′((m+ n− j, j)). Let

cm,n
j (q) :=

∑
T∈T ′(m+n−j,j)

qinvG(λ)(T ).

or the definitions of P-tableau and invG(T ) see [24, Sec. 6].
It would be interesting to find a weight-preserving bijection that shows that

cm,n
j (q) =

{
[j]!Hm+n−j

j (λ) if j = ℓ(λ),
qj[j]![m+ n− 2j]Hm+n−j−1

j (λ) if j < ℓ(λ).

For instance, for the case j = ℓ(λ), we need to establish a weight-preserving bijection between
he rook placements with j rooks inside λ, together with some labeling of the ones inside λ to
ccount for [j]!, and T ′((m+ n− j, j)).

.5. Extending Theorems 1.2 and 1.3 to bicolored graphs

Both Theorem 1.2 and Theorem 1.3 are q-analogues of a special cases of respective results by
tanley–Stembridge [26, Thm. 4.3] and by Guay-Paquet [13, Prop. 4.1 (iv)] for bicolored graphs. It
ould be interesting to find a q-analogue of these more general results for bicolored graphs G.
owever, for such graphs G the function XG(x, q) may not be symmetric.

.6. Beyond the abelian case

We have studied the chromatic symmetric function XG(d)(x, q) for Dyck paths d of bounce two,
ka the abelian case [18]. Recently Cho–Hong [6] verified Conjecture 1.1 when q = 1 for Dyck paths
f bounce three. Their expansion is in terms of certain P-tableaux. For these Dyck paths, it would
e interesting to find an e-expansion involving q-rook theory or extending Theorem 1.3.
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ppendix

In this appendix we give more details on the two variants of the statistic on the Garsia–Remmel
-hit numbers, their relation, and their deletion–contraction relations.
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Fig. 7. (A) For the same rook placement p, examples of (A) the statistic statD(p) for the Garsia–Remmel q-hit numbers, and
B) of the statistic stat(p) for our q-hit numbers. Note how the empty cells in the calculation of one statistic correspond
o the double crossings in the other. Moreover in each placement stat(p)−cross(p) = j ·m−|λ|. (C) Illustration of bijection
etween rook placement counted in Hm,m

j (λ) and rook placements counted in Hm,n
j (λ) and Rm−n((m−n)m−n), respectively.

ppendix A. Garsia-Remmel q-hit numbers and Dworkin’s statistic

We start by defining the original version of the q-hit numbers given by Garsia–Remmel that is
ifferent than our q-hit numbers. Recall that m ≥ n.

efinition A.1 ([11]). For λ inside an n×n board, we define the Garsia–Remmel q-hit polynomial of
by

n∑
i=0

H̃n,n
i (λ)xi :=

n∑
i=0

Ri(λ) [n− i]!
n∏

k=n−i+1

(x− qk). (A.1)

Garsia and Remmel [11, Theorem 2.1] showed that H̃n
i (λ) := H̃n,n

i (λ) is a polynomial with
onnegative coefficients and Dworkin [8] and Haglund [15] gave different statistics realizing these
-hit numbers. We focus on Dworkin’s statistic (as presented in [16], see Section 7.1) since it is very
imilar to the statistic in Definition 2.7.

efinition A.2 (Dworkin’s Statistic for the q-hit Numbers [16]). Let λ be a partition inside an n × m
oard. Given a placement p of n non-attacking rooks on an n× n board, with exactly j inside λ, let
tatD(p) be the number of cells c in the n×m board such that

(i) there is no rook in c ,
(ii) there is no rook below c on the same column, and either,
(iii) if c is in λ then the rook on the same row of c is either outside λ or else to the left of c; or
(iv) if c is not in λ then the rook on same row of c is not in λ and to the left of c.

xample A.3. Consider the partition λ = (4, 3, 2, 2) inside a 6 × 6 board. In Fig. 7(a), we present
rook placement p of six rooks on the 6 × 6 board with three hits on λ where statD(p) = 4.

heorem A.4 (Dworkin [8,16]). Let λ be a partition inside an n× n board and j = 0, . . . , n then

H̃n
j (λ) =

∑
p

qstatD(p),

here the sum is over all placements p of n non-attacking rooks on an n× n board with exactly j rooks
nside λ.

ppendix B. Relation between q-hit numbers Hn
j (λ) and H̃n

j (λ)

The next result shows that our q-hit numbers and the Garsia–Remmel q-hit numbers are off by a
ower of q. We show this from the respective definitions of each q-hit numbers from the generating
olynomials of q-rook numbers. We will ultimately show Theorem 2.9 by showing that for a rook
lacement p, the statistics stat(p) and stat (p) are off by the same power (see Lemma C.2).
D
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roposition B.1.

H̃m
j (λ) := q|λ|−jmHm

j (λ). (B.1)

roof. We compare (2.1) and (A.1). Substituting xq−m and multiplying by q|λ| in (2.1), rewriting the
actor qmi−( i

2) = q
∑i−1

k=0 m−k and rewriting the q-Pochhammer symbol we have
m∑
j=0

Hm
j (λ)q|λ|(xq−m)j =

m∑
i=0

Ri(λ)[m− i]!(−1)i
i−1∏
k=0

qm−k(1− xq−mqk)

=

m∑
i=0

Ri(λ)[m− i]!
i−1∏
k=0

(x− qm−k),

hich is the RHS of (A.1) for m = n. Comparing coefficients at xj we obtain the desired identity. □

ppendix C. Proof of Theorem 2.9

Let Ĥm,n
j (λ) be the sum in the RHS of (2.5). The next result is an analogue of Lemma 2.13 for

m,n
j (λ).

emma C.1. Let λ be a partition inside an n×m board. Then

Ĥm,n
j (λ) =

1
[m− n]!

Ĥm,m
j (λ).

Proof. We claim that

Ĥm,n
j (λ) = Ĥm,n

j (λ) · Rm−n((m− n)m−n). (C.1)

he result then follows since by Proposition 2.2, Rm−n((m − n)m−n) = [m − n]!. This q-factorial
orresponds to the qstat-weighted enumeration of rook placements in a (m−n)× (m−n) board. Let
be a rook placement on an m×m board with j rooks inside λ ⊂ m× n and p′ be the placement
btained by restricting p to the top m rows. Then the bottom m − n rows contain m − n rooks
utside λ and after removing the n columns occupied by rooks from the top n column we obtain
placement p′′ of m − n rooks on an (m − n) × (m − n) board. This gives a bijection p ↦→ (p′, p′′)
etween the rook placements on the LHS and pairs of rook placements from the RHS of (C.1). See
ig. 7(c) Moreover, the bijection is weight-preserving. That is

stat(p) = stat(p′)+ stat(p′′) = stat(p′)+ inv(p′′),

here inv(p′′) is the statistic of the q-rook numbers. This weight-preserving bijection gives the
esired result. □

The next lemma shows that for a fixed rook placement the statistics stat(·) and statD(·) are
elated.

emma C.2. Let λ be a partition inside an m×m board. Given a placement p of m non-attacking rooks
n an m×m board with j rooks inside λ then

stat(p)− statD(p) = j ·m− |λ|.

xample C.3. Consider the partition λ = (4, 3, 2, 2) inside a 6 × 6 board. Fig. 7(b) illustrates an
xample of a placement p of six rooks on the 6 × 6 board with j = 3 hits on λ with stat(p) = 11.
ig. 7(a) illustrates for the same rook placement p that statD(p) = 4. Note that

stat(p)− stat (p) = 7 = 3 · 6− |λ|.
D
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The proof of Lemma C.2 is postponed to the end of the section. We now use this lemma to
omplete the proof of our main result of this appendix.

roof of Theorem 2.9. By Lemma C.2 we have that

H̃m,m
j (λ) = q|λ|−jmĤm,m

j (λ).

ext, by comparing this identity with Proposition B.1 we conclude that Hm,m
j (λ) = Ĥm,m

j (λ). Finally,
ombining this with both Lemmas 2.13 and C.1 we conclude that Hm,n

j (λ) = Ĥm,n
j (λ) as desired. □

The rest of the section is devoted to the proof of Lemma C.2. We need the following definition.

efinition C.4 (Crossing Statistic for the q-hit Numbers). Let λ be a partition inside an m×m board.
iven a placements p of m non-attacking rooks on an n × m board, with exactly j rooks inside λ,
et cross(p) be the number of cells c in the m×m board such that

(i) there is no rook in c ,
(ii) there is a rook on the same column and below c ,
(ii) if c is in λ then there is a rook on the same row in λ to the right of c ,
(iii) if c is not in λ then either there is a rook on the same row in λ or a rook on the same row

to the right of c.

n other words, cross(p) is the number of cells that have double crossings after the rook cancellations
sed to obtain stat(p). See Remark 2.8 and Fig. 7(b).

xample C.5. For the rook placement p in Example C.3 and Fig. 7(b) we have that stat(p) = 11
nd cross(p) = 4.

First observe that for a rook placement p on the m×m board we have that statD(p) = cross(p),
ince the rays in stat and statD are complementary to each other and the crossings in one directly
orrespond to the empty boxes in the other. Therefore Lemma C.2 follows from the next lemma.

emma C.6. Let λ be a partition inside an m×m Given a placement p of m non-attacking rooks on an
×m board with j rooks inside λ then

stat(p)− cross(p) = j ·m− |λ|. (C.2)

roof. We proceed by induction on |λ| for λ ⊂ m×m. When λ = ∅ we only have rook placements
or j = 0, and then it is clear that,

stat(p) = statD(p) = cross(p) = inv(w),

he number of inversions of the permutation w corresponding to the rook diagram. Thus the identity
C.2) is verified.

Suppose the identity (C.2) holds for all |λ| ≤ N and then for any j = 0, . . . ,m. Let ν be a partition
f N + 1 and ν = λ+ e, where e is a corner cell. Let p be a rook configuration with j rooks in ν, and
et p′ be the same rook configuration on λ (so there are j or j−1 rooks in λ). Note that cell e cannot
e empty since there is a rook in its row, which is either in ν, and hence the rook’s ‘‘arm" crosses
or is outside in which case the wrap-around also crosses e. We now consider several cases:

Case 1. Cell e has a rook and hence the horizontal arm stops at e as the border of ν. Thus there are
no crossings in the row of e. Suppose there are k empty boxes in the row of e, then there
are also m − k − 1 vertical crossings in this row. Now consider p′ as a configuration with
j − 1 rooks in λ. The rook in e is outside λ and this time the entire row is crossed, so all
empty cells have now a horizontal line and all vertically crossed cells have now a double
crossing. Thus

stat(p′)−cross(p′) = stat(p)−k−(cross(p)+m−k−1) = stat(p)−cross(p)−m+1.
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By induction we have

stat(p′)− cross(p′) = m(j− 1)− |λ| = jṁ− |ν| −m+ 1,

and matching sides we obtain the desired identity in this case.
Case 2. The rook in the row of e is to the left of e. Then either e is a double crossing or is only a

horizontal crossing. Then in the rook placement p′ there is no horizontal line crossing e. If
e was a double crossing in p, then it is neither a double crossing nor empty cell in p′, and if
e was not a double crossing in p then it became an empty cell in p′. In both cases we have

stat(p′)− cross(p′) = stat(p)− cross(p)+ 1.

Since the number of rooks inside λ is still j then we have

stat(p)− cross(p) = stat(p′)− cross(p′)− 1 = j ·m− |λ| − 1 = j ·m− |ν|.

This gives the desired identity in this case.
Case 3. The rook in the row of e is to right of e, so outside ν. Then again there is a horizontal line

crossing e, so e is either a double crossing in p or neither a double crossing nor an empty
cell in p. In both cases when we remove e from ν we either turn the double crossing on e
in p to a not a double crossing in p′ or from not a double crossing in e to an empty cell in
p′. Thus, again

stat(p′)− cross(p′) = stat(p)− cross(p)+ 1.

Since the number of rooks inside λ is still j then we have

stat(p)− cross(p) = stat(p′)− cross(p′)− 1 = j ·m− |λ| − 1 = j ·m− |ν|.

This gives the desired identity in this case.

This completes the proof. □

Appendix D. Symmetry of q-hit numbers of rectangular boards

Since the Garsia–Remmel q-hit numbers are symmetric polynomials in N[q] [8,11,15], then so
are Hm,n

j (λ).

Corollary D.1. The q-hit numbers Hm,n
j (λ) are symmetric polynomials in N[q].

Proof. By Theorem 2.9 we have that Hm,n
j (λ) are in N[q]. By Lemma 2.13 and Proposition B.1 we

have that

Hm,n
j (λ) =

1
[m− n]!

q|jm−λ|H̃m
j (λ).

ow [m − n]! is a symmetric polynomial in N[q] and so are the Garsia–Remmel q-hit numbers
m
j (λ) [15, Sec. 5]. Therefore, the result follows. □

ppendix E. Deletion–contraction for q-hit numbers

In this section we give a proof of the deletion–contraction relations for the q-hit numbers Hm,n
j (λ)

nd H̃m,n
j (λ).

emma E.1 ([8, Thm. 6.11]). Let λ be a partition inside an n×m board and e be an outer corner of λ.
hen we have the following recursion:

H̃m,n(λ) = qH̃m,n(λ\e)+ H̃m−1,n−1(λ/e)− qmH̃m−1,n−1(λ/e), H̃m,n(∅) = [m] δ .
j j j−1 j j n j,0
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roof. This follows from the deletion–contraction relation for q-rook numbers [8, Thm. 6.10]

Ri(λ) = q · Ri(λ\e)+ Ri−1(λ/e), Ri(∅) = δi,0,

which follows directly from considering if a placement p of i rooks in λ has or not a rook in cell e.
Substituting this rook recursion in (2.2), we obtain

Hm,n
k (λ) =

q(
k
2)−|λ|

[m− n]!

n∑
i=k

(q · Ri(λ\e)+ Ri−1(λ/e)) [m− i]!
[
i
k

]
(−1)i+kqmi−( i

2)

=
q(

k
2)−|λ\e|

[m− n]!

n∑
i=k

Ri(λ\e) [m− i]!
[
i
k

]
(−1)i+kqmi−( i

2)

+
q(

k
2)−|λ|

[m− n]!

n∑
i=k

Ri−1(λ/e) [m− i]!
[
i
k

]
(−1)i+kqmi−( i

2).

anipulating the last expression from q-rook numbers into q-hit numbers, we obtain the following
ecurrence

Hm,n
k (λ) = Hm,n

k (λ\e)+ qm+k−1−|λ|+|λ/e|Hm−1,n−1
k−1 (λ/e)− qk+m−|λ|+|λ/e|Hm−1,n−1

k (λ/e)

Now, we use (B.1) to translate this recursion into the recursion for the H̃ ’s:

qkm−|λ|H̃m,n
k (λ)

= qkm−|λ\e|H̃m,n
k (λ\e)+ q(k−1)(m−1)−|λ/e|qm+k−1−|λ|+|λ/e|H̃m−1,n−1

k−1 (λ/e)

− qk(m−1)−|λ/e|qk+m−|λ|+|λ/e|Hm−1,n−1
k (λ/e),

hich simplifies to the desired recursion. □

roof of Lemma 2.6. Combining together (B.1) and Lemma E.1, we obtain

q|λ|−jmHm,n
j (ν) = q|λ\e|−jm+1Hm,n

j (λ\e)

+ q|λ/e|−(j−1)(m−1)Hm−1,n−1
j−1 (λ/e)− q|λ/e|−j(m−1)+mH̃m−1,n−1

j (λ/e).

Noticing that |λ\e| + 1 = |λ| and simplifying the expression we obtain that

Hm,n
j (ν) = Hm,n

j (λ\e)+ q|λ/e|−|λ|+j+m−1Hm−1,n−1
j−1 (λ/e)− q|λ/e|−|λ|+j+mHm−1,n−1

j (λ/e)

= Hm,n
j (λ\e)+ q|λ/e|−|λ|+j+m−1

(
Hm−1,n−1

j−1 (λ/e)− qHm−1,n−1
j (λ/e)

)
. □ □

The previous deletion–contraction relation specializes to square boards as follows.

Corollary E.2. HN
j (λ) = HN

j (λ\e)+ q|λ/e|−|λ|+j+N−1
[
HN−1

j−1 (λ/e)− qHN−1
j (λ/e)

]
.

Conjecture E.3. Let λ be a partition inside an n × m board and e be an outer corner of λ, then we
have: P(x;∅) = [m]n, and

P(x; λ) = qP(x; λ\e)+ (xqm − 1)P(x; λ/e).

Appendix F. Another proof of Lemma 5.5

In this section we include the proof of (5.7) using q-binomials.

Proof (Proof of (5.7) in Lemma 5.5). We use Eq. (2.2) to rewrite both the LHS and RHS in terms of
-rook numbers Ri(λ). By q-manipulations, we have that (5.7) is equivalent to[

m+ n− r − i− 1
n− r − 1

]
= q(n−r−1)(r−i)

·

⎛⎝ i∑[
m+ n− r − j− 1

n− j− 1

][
i− r
j− r

]
(−1)j−rq(

j−r
2 )

⎞⎠ . (F.1)

j=r
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ow, to prove this q-binomial identity, we consider the following q-binomial identities:
i−r−1∏
k=0

(1− qkt) =
i−r∑
k=0

q(
k
2)
[
i− r
k

]
(−1)ktk,

m−r−1∏
k=0

1
(1− qkt)

=

∞∑
k=0

[
m− r + k− 1

k

]
tk.

e have that
i−r−1∏
k=0

(1− qk(qat))
m−r−1∏
k=0

1
(1− qk(qbt))

=⎛⎝ i−r∑
j−r=0

q(
j−r
2 )
[
i− r
j− r

]
(−1)j−rqa(j−r)t j−r

⎞⎠ ·

(
∞∑
k=0

[
m− r + k− 1

k

]
qbktk

)
.

aking the coefficient at tn−r−1 at the RHS we get
i−r∑

j−r=0

q(
j−r
2 )
[
i− r
j− r

][
m− r + n− j− 1

n− j− 1

]
qb(n−j−1)tn−j−1(−1)j−rqa(j−r)t j−r ,

=

i∑
j=r

(−1)j−r
[
i− r
j− r

][
m− r + n− j− 1

n− j

]
q(

j−r
2 )+b(n−j−1)+a(j−r).

etting a = b = r − i and denoting by [tℓ]@P the coefficient of tℓ at P , we have that[
m− i+ n− r − 1

n− r − 1

]
= [tn−r−1

]@
m−i−1∏
k=0

1
(1− qkt)

= [tn−r−1
]@

i−r−1∏
k=0

(1− qk(qr−it))
m−r−1∏
k=0

1
(1− qk(qr−it))

= [tn−r−1
]

i−r∑
j−r=0

q(
j
2)
[
i− r
j− r

][
m− r + n− j− 1

n− j− 1

]
q(r−i)(n−j−1)tn−j−1(−1)j−rq(r−i)(j−r)t j−r

=

i∑
j=r

(−1)j−r
[
i− r
j− r

][
m− r + n− j− 1

n− j− 1

]
q(

j−r
2 )+(r−i)(j−r)+(r−i)(n−j−1),

as desired. □
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