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1. Introduction

Ever since their introduction in 1995 in [25], the chromatic symmetric functions have been
this mysterious object combining the misleading simplicity of graphs with the powerful tools of
symmetric functions. Graph colorings present some of the hardest problems in combinatorics,' and
nice formulas there qualify as miracles rather than general rules. It is thus even more appealing
that the chromatic symmetric functions, and their g-generalizations, are a source of beautiful
results and striking conjectures.? The chromatic symmetric functions have found significant connec-
tions beyond combinatorics — to Hessenberg varieties [24], diagonal harmonics,CM, and Macdonald
polynomials [2,17].

In this paper we bring to light such an unusually nice combinatorial formula, relating the g-
rook theory which comes from generalizations of permutations and their inversions, and chromatic
symmetric functions for Dyck paths of bounce two, aka abelian case. We give an elementary proof
of the strikingly elegant identity of Guay-Paquet (Theorem 1.3) which expresses the chromatic
symmetric function for an arbitrary path given by partition A in terms of the chromatic symmetric
functions for rectangles with coefficients the very combinatorial g-hit numbers. Along the way
we establish numerous new identities for g-hit and g-rook numbers, give an elementary proof
of Theorem 1.2, and pose many conjectures stemming from our findings. Our ultimate goal is to
understand the chromatic symmetric functions with more relations and connections, which could
lead not only to a proof of the e-positivity Conjecture 1.1, but also to a combinatorial interpretation
of these coefficients. The technique of symmetry-breaking used in our proof of Theorem 1.3 could
be extended beyond the abelian case as long as there is a suitable conjectured expression for the
coefficients in the e-basis.

1.1. Definitions and main results

Let G be a graph with vertices {vq, v, ..., vy} that are totally ordered vi < vy < -+ < vp.
In [25], Stanley defined the chromatic symmetric function (CSF) Xs(X) of G as

#e1(1) #1712
XG(X)Z Z X< = Z X1K ()XZK ()...’

k:V—P, proper k:V—P, proper

where P = {1, 2, 3, ...}, X = (X1, X2, .. .), and the sum is over the proper colorings of the vertices
of G.

Stanley and Stembridge [26] conjectured that the chromatic symmetric functions expand with
positive coefficients in the basis {e, } of elementary symmetric functions for the graphs coming from
Dyck paths in the following way. Given a Dyck path d from (0, 0) to (n, n), let G(d) be the graph
with vertices {1...n} and edges (i, j), i < jif and only if the cell (i, j) is below the path d (see Fig. 1).
These are also the incomparability graphs of unit interval orders or graphs obtained from Hessenberg
sequences.

Shareshian-Wachs [24] introduced a quasisymmetric version of Xg(Xx) defined by

Xex,q)= Y = qWx,
k:V—P, proper

where asc(x ) is the number of edges {v;, v} of G with i < j and «(v;) < k(v)).

1 Informally, but also formally as an NP-complete problem.
2 Most notably the e-positivity Conjecture 1.1 of Stembridge-Stanley [26], refined further by Shareshian-Wachs [24].
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O
Fig. 1. The Dyck path d = n’enenee? associated to the partition A = (2,1) C 2 x 3 and the corresponding graph

G(A). Each cell below the path d corresponds to an edge of the graph. An example of a proper coloring would be
k(1) =2,k(2) = 3,k(3) = 1, k(4) = 2, x(5) = 3 which has asc(x) = 4.

2

For the graphs G(d) coming from Dyck paths, the quasisymmetric function Xga)(X, q) is actually
symmetric and Shareshian-Wachs gave a refinement of the Stanley-Stembridge conjecture for this
Catalan family of graphs.

Conjecture 1.1 (Stanley-Stembridge, Shareshian-Wachs). Let d be a Dyck path. Then the coefficients
of Xcwa)(X, q) in the elementary basis are in N[q].

This conjecture has been verified independently and by different techniques by Cho-Huh [7],
Harada-Precup [ 18], and Abreu-Nigro [ 1] for the case of so-called abelian Dyck paths (corresponding
to abelian Hessenberg varieties), which are defined as Dyck paths d of from (0, 0) to (m +n, m+n)
of the form n™w(A)e™ where w(}) is the encoding in north (n) and east (e) steps of the partition
A C n x m (see Fig. 4(a)). We denote the associated graph by G(A) and the chromatic symmetric
function by Xy(X, q) :== Xcu(X, q).

The symmetric functions X, (X, q) corresponding to abelian Dyck paths are deeply related to the
g-rook theory of Garsia—Remmel [11] as we illustrate with the next two identities that use the
following notation

n [n]k
[l = [)in = 1]+ [n = k+1], [n]! = [n],, [k] =T
where [x] = (1 —¢*)/(1 - q).

We define q-hit numbers of rectangular boards of size n x m that we denote as H; ™)) by
a change of basis Eq. (2.1) mvolvmg the Garsia—Remmel q-rook numbers. These g-hit numbers are
polynomials in q, satisfying Z H’” "(A) = [m],, and at ¢ = 1 give the number of placements
of n non-attacking rooks in an n x m board (n < m) with ] rooks in the board of A. We show
that these g-hit numbers H™"(1) are symmetric polynomlals in N[q] and are realized by a statistic
defined by Dworkin [8] (see Theorem 2.9). In the case of a square board m = n, these g-hit numbers
Hi'(2) = Hj" "(1) are up to a power of q equal to the Garsia-Remmel g-hit numbers (Proposition B.1)
Wthh are symmetric unimodal polynomials in N[q] realized by different statistics by Haglund and
Dworkin (see [16]).

Abreu-Nigro gave an expansion of X; (X, q) in the elementary basis in terms of g-hit numbers of
square boards. This result is a g-analogue of a special case of a result of Stanley-Stembridge [26,
Thm. 4.3].

Theorem 1.2 (Abreu-Nigro [1]). Let A be partition inside an n x m board with £(A) = k < \q. Then
k=1
X%, q) = [KIH ) - empn-ir+ ) @ Ul Im +n = 201 H"" 771G - e
j=0

Our first main result is an elementary proof of an unpublished identity of Guay-Paquet.>*
In Section 4 that expands X; (X, q) in terms of chromatic symmetric functions for rectangular shape
with coefficients given by the g-hit numbers of rectangular boards defined above.

3 Private communication [12].
4 This identity was independently found by Lee and Soh [20, Thm. 24] after this article was posted.
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This result appears as a g-analogue of a special case of [13, Prop. 4.1 (iv)].

Theorem 1.3 (Guay-Paquet [12]). Let A be partition inside an n x m board (n < m). Then

n

1
X(x.q) = T D HM) - Xi(x, ).

j=0

Our second result is a direct elementary proof of Theorem 1.2 following from Theorem 1.3 and
using our third result which is the definition and properties of the g-hit numbers H}**(1), including
a deletion-contraction relation, that we derive in Sections Section 3 and in Appendix A.

1.2. Old and new methods

The original proofs of the two statements above use a linear relation satisfied by X4)(X, q) called
the modular relation [1,3,13]. Our proof of Theorem 1.3 uses a simple inductive approach on both the
size m+n of the graph and the number M of variables (see Lemma 4.3). Our approach ignores/breaks
the symmetry of the chromatic symmetric function by splitting the function as a polynomial in
Xk, whose coefficients are polynomials in X1, ..., X,_1. The ultimate identities are derived from
identities of the coefficients; the g-hit numbers. Such an approach could work in a more general
setting if the coefficients in the expansion have some recursive combinatorial structure. Moreover,
following the recursion it could be extended to a bijection, similar to RSK. The bottlenecks in this
approach are the necessary new g-hit identities, which we derive after extensive use of generating
functions.” The derivation of Theorem 1.2 follows from other g-hit identities, which can be proven
also using deletion-contraction on g-hit and g-rook numbers. Note that deletion-contraction on the
classical CSFs itself is not directly applicable due to the inhomogeneity of the relation.

Along the way we prove new g-hit identities (Section 3 and the Appendix) and unravel a mystery
on different combinatorial statistics leading to different kinds of g-hit numbers (see Section 7.1 and
the Appendix) that have been mixed up in the literature. In particular, we establish new relations
of g-rook numbers and g-hit numbers (Lemmas 3.3, 3.4, 3.5, and 5.5) that develop further the g-rook
theory of rectangular boards [21].

As a Corollary to the fact that Theorems 1.2 and 1.3 are in essence linear relation between
chromatic symmetric functions, we establish that the same linear relation holds of the unicellular
LLT polynomials, see Section 6.1.

1.3. Organization

In Sections 2 and 3 we give the definitions of g-hit numbers and prove the necessary identities
used later on. Our elementary proof of Theorem 1.3 is in Section 4, and the proof of Theorem 1.2 is
in Section 5. In Section 6 we discuss variations on these problems, expansions in other bases like
CSFs for staircase shapes, applications to LLT polynomials, and some conjectures.

In Appendix A, B, and E we present the Garsia-Remmel g-hit numbers and their relation to the g-
hit numbers appearing in Theorems 1.2,1.3, and the deletion-contraction relations for each variant.
Appendix C, D have the proofs of Theorem 2.9 and the symmetry of the g-hit numbers, respectively.

2. Background on g-rook theory

For the rest of the paper, we assume m and n are non-negative integers with m > n.

5A fully combinatorial/bijective proof would be highly desirable and could completely unravel the combinatorics for
CSFs in the abelian case. See Section 7.
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2.1. g-rook numbers

Rook placements are a generalizations of permutation diagrams, and their g-analogues keep track
of the number of inversions. We now summarize important definitions and properties used later in
relation to the chromatic symmetric functions. In the Appendix we include the proofs and further
properties.

Definition 2.1 (g-rook Numbers [11]). Given a partition A = (A1, A2, ..., A¢) the Garsia-Remmel
g-rook numbers are defined as

A) = Z qinv(p)’
p

where the sum is over all placements p of k non-attacking rooks on X and inv(p) is the number of
cells of A that are not occupied by a rook or directly west or north of a rook (see Fig. 3(a)).

Proposition 2.2 (Garsia-Remmel [11]). Given a partition A = (A1, ..., A¢) we have that

4 14
F62) =) Rl = [ JIx+demipr =i+ 11,

k=0 i=1

in particular Ry(A) = ]_[f:][Xg,f+1 —i+1].
2.2. q-Hit numbers

The g-hit numbers are defined in terms of the g-rook numbers by a change of basis. Let (a; q), =
]_[:‘ o(1—aq i) denote the g-Pochhammer symbol.

Definition 2.3 ([21, Def. 3.1, Prop. 3.5]).
For X inside an n x m board, we define the g-hit polynomial of A by

n

. A i
P(x; 1) = ) HM(O = q n],ZR )[m = il(=1)Yq" @D (x; q), (2.1)

i=0

where the coefficients H}"'"(A) are the g-hit numbers associated to A. Equivalently, we have that for
every k

( _lM n ] . .o
H"(3) = " = 2= R [m—zr['(](—nl*kqm’(z), (22)
i=k
and
_eIm—nl i
_ AlAl-mE U m,n
R(A) =g [m—k]!gHi ) [k]q]' (2.3)

Notation 2.4. For square boards with n = m, we denote the g-hit number by H}"(A).

Remark 2.5. For the case n = m, Garsia-Remmel defined g-hit numbers ﬁ,’j(k) by the relation

n

Xn:ﬁi” X—ZR in—i J] x—d". (2.4)
i=0

k=n—i+1

One can show that the Garsia-Remmel g-hit numbers and our g-hit numbers differ by a power of
q (see Proposition B.1).
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A A\e Ae

Fig. 2. Example of the deletion and contraction of the board of a partition X.

m m m

[TTe [TTe

(A) (B) (©) (D)

Fig. 3. Example of the statistics of (A) a g-rook number and (B) a g-hit number. (C)(D) Examples of the cases of g-hit
numbers of a rectangle (m — 1) € n x m for Proposition 2.17.

The g-hit numbers satisfy the following deletion-contraction relation that is proved in Ap-
pendix E. Given a shape A and a corner cell e in A, A\ e denotes the shape obtained after deleting the
cell e in A, and X /e denotes the shape obtained after deleting in A the row and column containing
e. See Fig. 2 for an example.

Lemma 2.6. We have the following deletion-contraction relation:
Hjm,n(/\) _ Hjm,n()\\e) 4 gM/el=IrH+m=1 (H]T’lql’”*l()\/e) _ qHﬁ”*””(A/e)).

Guay-Paquet [12] defined the rectangular g-hit numbers using a statistic similar to Dworkin’s
statistic [8] for the Garsia-Remmel g-hit numbers and we present this definition next, illustrated
in Fig. 3(b).

Definition 2.7 (Statistic for the g-hit Numbers). Let A be a partition inside an n x m board. Given a
placement p of n non-attacking rooks on an n x m board, with exactly j rooks inside A, let stat(p)
be the number of cells ¢ in the board such that:

(i) there is no rook in c,

(ii) there is no rook above c on the same column, and either,
(iii) if ¢ is in A then the rook on the same row of c is in A and to the right of ¢ or
(iv) if c is not in A then the rook on same row of c is either in A or to the right of c.

Remark 2.8. Intuitively, this statistic stat(p) counts the number of remaining cells in the n x m
board after: wrapping this board on a vertical cylinder and each rook of p cancels the cells south
in its column and the cells east in its row until the border of A.

Theorem 2.9. Let )\ be a partition inside an n x m board and j = 0, ..., n then
H}ﬂ,n()\') — Z qstat(p)’ (2.5)
p
where the sum is over all placements p of n non-attacking rooks on an n x m board, with exactly j rooks
inside .

The proof for Theorem 2.9 is given in Appendix C.
6
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Remark 2.10. Note that the Garsia-Remmel g-hit numbers have a very similar description in [16]
(attributed to Dworkin) using a different attacking rule for the rooks. Our proof of Theorem 2.9
in Appendix A follows by reducing to the case of the Garsia—-Remmel g-hit numbers. See also
Section 7.1 for more details.

Moreover, for each partition A, the statistic stat(-) is Mahonian.

Corollary 2.11. Let A be a partition inside an n x m board, then

n

> _HM(1) = [mln.

j=0

Proof. Set k = 0 in (2.3) and since Ry(1) = ¢'*!, we obtain

n

D HM() = g HRy()mly = [ml,. O

j=0

Example 2.12. Consider the partition A = (6, 3, 3, 1) inside a 6 x 8 board. In Figs. 3(a) and 3(b),
we present an example of a placement p of two rooks on A with inv(p) = 7 and an example of a
placement p’ of six rooks on the 6 x 8 board with two hits on A and stat(p’) = 13, respectively.

We finish this section with some results for g-hit numbers. The next two results show the
relation between the g-hit numbers when we change the dimensions of the board.

Lemma 2.13. Let A be a partition inside an n x m board. Then

m,n _ 1 m,m
HMM0) = o H ),

Proof. Since Ri(A)=0fori=n+1,..., m then (2.2) becomes,

(]) A X
1-1jm~”(k)— ! 2 ZR(A [m—l]'[}( 1) Hgm- G — LH?’W(A). O

[m [m—n]!"/
Lemma 2.14. Let )\ be a partition inside an (n — 1) x m board. Then
H™(A) = [m+1—n]H™"'(0).

Proof. We apply (2.2) to Hjm*”()\)
and use the fact R,(1) = 0 since A C (n — 1) x m to obtain

) Al n—1
Hjm,”()h) =[m+1-— n] ot 1]l 4 ZR )[m —i]! |:] (— )1+]qmz )

= [m+1—n1H]-’”" ",
where we used (2.1) again for Hﬁ‘””(k) to obtain the desired formula. O

Finally, we give formulas for g-rook numbers and g-hit numbers of rectangular shapes.

Proposition 2.15.

Ri(a?) = g0 [k Dl (26)
[k]!



L. Colmenarejo, A.-H. Morales and G. Panova European Journal of Combinatorics 107 (2023) 103595

Proof. The result follows from the recurrence Ry(a?) = [b] Re—1((a — 1)*~1) + q’Ri((a — 1)?) or from
the fact that up to a power of g and (q— 1), this is the number of rank k matrices of size a x b over
a finite field with g elements [15, Thm. 1], formulas for which can be found in [22, Sec. 1.7]. O

Proposition 2.16.
; i o IN = ml g [l
Hi ) = g m N ) (27)

Proof. We compute the g-hit number directly using the statistic in (2.5). We claim that
Hy (') = Ri(m") - Ri_i((N — mY) - Ry (N — j)"7).

To show this, let us denote by B the N x N board. Then there are j — k rows occupied by rooks right
of the shape m’. These rooks cancel the respective rows from the m¥ shape. The overall contribution
to the g-hit number from the k rooks on the remaining shape m* is Ri(m*) = [m],. The overall
contribution to the g-hit number from the j — k rooks placed to the right of the shape m is
Ri—k((N — m)). The j rooks placed on the first j rows of the board B cancel as many columns in
the shape NV consisting of the last N — j rows of the board B.

By Proposition 2.2, the overall contribution to the g-hit number from placing the remaining N —j
rooks in the remaining shape (N —j)¥ 7 is Ry_j((N —j)¥ ) = [N —j]!. This proves the claim and the
result follows by using the formula in (2.6) for Ry(a?). O

Proposition 2.17.

g“flm —kl[m — 11,1 1 =k,
H"((m — 1)) = { [kI[m — 1],y r=k-—1,
0 otherwise.

Proof. Since every row of the n x m board has a rook and the last column has at most one rook
then the rooks can only “hit" the shape (m — 1)} r = k or r = k — 1 times.

When r = k, the first k cells of the last column are not cancelled in any rook placement so they
contribute to stat(-). The contribution to the g-hit number from the k rooks placed on the shape
(m — 1)* is Re((m — 1)%). These rooks cancel k columns in the shape of the last n — k rows. Then
the contribution to the g-hit number of placing n — k rooks on the remaining shape (m — k)" is
Ru_r((m — k)"~%). See Fig. 3(c). Thus,

H"((m=1)%) = ¢*Re((m—1)%)-Ro—ie((m—Kk)" ) = ¢*[m— 11k [m—Kkl—i = ¢ [m—KkI[m—1],_1.

When r = k — 1, there is a rook on one of the first k cells of the mth column which cancels all
the cells of its corresponding row i = 1, ..., k and the cells below the rook in its column. This rook
contributes i — 1 to the statistic (the cells above the rook in the mth column). There contribution
to the g-hit number from the k — 1 rooks placed on the remaining shape (m — 1)*~! (without row
i) is R_1((m — 1)*=1). The k rooks on the first k rows cancel the cells of their columns in the shape
of the last n — k rows. Then the contribution to the g-hit number of placing n — k rooks on the
remaining shape (m—k)" ¥ is R,_i((m—k)"~%). See Fig. 3(d). Summing over alli = 1, ..., k we obtain
that

H((m=1)) = [KIR—1((m— 1)) Ryt (m—k)"*) = [K][m—1]ica[m =Kl = [K][m—1],—1. O
3. New g-rook and g-hit identities

The proofs of Theorems 1.2 and 1.3 rely on many new identities between g-hit numbers, and
their equivalent g-rook versions. While the g-hit and g-rook identities are independent of the
chromatic symmetric function theory, we first prove them using elementary combinatorial methods
and univariate generating functions.



L. Colmenarejo, A.-H. Morales and G. Panova European Journal of Combinatorics 107 (2023) 103595
For brevity, we will denote by 1 /¢ j the partition obtained from A by removing its jth column, by

A/ i the partition obtained by removing its ith row, and by A/(i, j) the partition obtained from A by

removing its jth column and its ith row. Moreover, we denote ¢ = £()) and the conjugate partition

of A by A\'.

3.1. Identities on g-rook numbers

The following g-rook identities can be proven directly using the generating function identity in
Proposition 2.2 of Garsia—-Remmel. We start with a simple algebraic identity.

Lemma 3.1. Given a partition . = (A1, ..., A¢),

A )”J/'
F(x —1; 1) X+ —1—-£041]
M ————— =[x— L+ A —§ A1f|| .
T F(x; 1) =t = K T XA -+t

Proof. We use induction on £¢()) and apply Proposition 2.2. For £(1) = 1, we have

[x]

A
N Y A i et SRl R, B WY

F(x; 1) x+am] [X + Aq]

Next, expanding the RHS of the above identity and doing standard manipulations gives

A )‘J{
_ _ i [X+)»t—1—€+t]_
=4l qu U Kti—C+t]

_ [x+ 11— 4] [x+A —1—£€4+¢t]
=g — | [x+ A — (£ —1)] g
O e | ; 1_[ X+ A — €+ (]

By induction hypothe51s the parenthetical on the RHS above is ¢*2[x]F(x — 1; A)/F(x %) where
A =(A2,...,Ag). Using Ay = A1 for the reindexing, we obtain the result. O

Next, we ﬁnd the following g-analogue of the derivative of F(x; A).

Lemma 3.2. We have the following formula for the g-analogue of the derivative of F(x; \):

DF(x; ) := Y [KIR(A[Xle—t = q“*(IIF(x — 15 ) — [x — £IF(x; 1),
k=0

Proof. Following the notation of Proposition 2.2,

¢ 4
F(x:2) = ) R(MDXeie = [ [IX+ Aeir = i+ 11,

k=0 i=1
Note that

(Xlo—k — [x — g =[x — 1]e—k—1 (

_ [X]Z k 7 ¢
X
Apply this identity to each term in the following difference

1—q*—1+ q"“") _ Xl 970" — )
1—g¢q [x] 1—g¢q

([€1 — [k1).

F(x;2) = F(x = 1:3) ZRk []‘ g e — k),

9
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so that

[XI(F(x; 1) — F(x = 1: 1)) = ¢ "[€JF(x; ) — ¢ 'DF(x; &),
where DF(x; ) := Zﬁzo[k]Rk(k)[x],_k. This gives an equation for DF(x; A) which we solve as

DF(x; ) = —q"([x] =" “[€DF(x; A)+q " [XIF(x—15 1) = ¢ ([XIF(x—1; &)~ [x—L1F(x; 1)),
giving us the desired formula. O

The following result shows the relationship between g-rook numbers for partitions obtained
from deleting a column of A.

Lemma 3.3. For all i fixed,

2 a" RO/ = R(OIm 1] = Ria(R)(q" — ¢" ).
J

Proof. Multiplying on both sides by [x],_;, the above claim is equivalent to the generating function
identity:

D dmIFG A ) =Y (ROImM — i1 = Ria (@™ — g™ )Xl
J

i

= > R (Im = i1Xle—i — (¢" — ¢ )[Xl—i41)

=Y R(Ke—ilm +x — €] — q"[x]x — 1o

=[m+x—£]F(x; 1) — q"[x]F(x — 1; ),
where we use the observation that

. l_m—i_ m __ m—il_x—(+i
M — iXleoi — (@ — " DKleiys = Kl =@ =)A= a 7

1—¢q
1— qm—i _ qm + qm—i + qm+x—€+i _ qm+x—£
= [X]¢—i - = [X]e—ilx + m — €] = ¢" [X]e—is1-
We have that

' ¢ ' X—14xr—0+1i]
F(x; /) = Ai—1—0+i Ai—L+i]=Fx; A d
(X 2/ J) n[x+z +z]‘];£l[x+l +i] = F(x ),H P

— =\ =

J

Using Lemma 3.1 and that A/¢j = A forj > A4,

m A )

o . _ » [x—14+ A1 —£+1]
q"IF(x; A/ ) =FO A) [ Im— Al + g™y gt .
jzzl l ; ll:! X+x —£€+1]

Fix—1; A
=F(x; M) [ [m =] 4" [x — €+ 2] — g™ 1" )
F(x; A)
=F(x; M[x — €+ A1 +m— 2] — q"[XIF(x — 1; 1),
which is what we wanted to show and completes the proof. O

We also have the following relationship between g-rook numbers obtained from removing a
single row from A.

10
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Lemma 3.4. For all fixed k,
n
D a7 R 1) = [IRW(A) — [KIR().
i=1
Proof. First of all notice that we can replace n with £ since fori > ¢, A/"i = X, A; = 0 and

[n] — Z; o1 q'~"' = [£]. Multiplying by [yl¢—x = [¥1[y — 1l(¢—1)-k on both sides and summing over
all k, the 1dent1ty is equivalent to

l'y]Zq' S R i)y — ek = [n]ZRk(A)Ly]@ k—Z[k]Rk WVl

i=1 k
Thus, the identity is then equivalent to the generating function 1dent1ty

4
1> g " HFy = 1,2/70)

= [£]F(y; ) — DF(y; A) = [€]F(y, A) + q [y — £1F(y, A) — ¢" Y [YIF(y — 1, A).
We have that fori < ¢

Fly —1,/"0)
-1
=[[y-1+0/-=1+1i
j=1

i—1

=[Jy-1+x5-e+1+] ]_[[y—1+x —(=1)4j—1]

=1 j=i+1
1 e A— 0
- LA TR
= T+h—C+il 1y =144 0]

and so we reach the following equivalent identity

¢ y—Ll+Hi—14A; L
1y WL 8 k1,2

1+A,—€+1] l_[ y—1+21—4]
= ¢ "[eJF(y. M) + [y — e]F(y, A) — YIF(y — 1, 4).
We can rewrite it as

—b+ithl—ly—1—C+itrlr +A—LE+]]
[y]z —1+xr—£+1] Ew—l+kj—2+j]

= qy TIF(y. 1) + [y — €IF(y, A) — [YIF(y — 1, 1),
which reduces again to

Fy—1,2)

L i

~ y+x—C+i 1 W+a—C+]]
[YIF(y Lk); EW—HM—HJ] E[y—wx,-—eﬂ]

= IF(y, A) — YIF(y — 1, &).

After canceling the terms in the telescoping sum on the LHS, the identity reduces to

4 .
[y+Aj—€+]]
Fly—1,A — — 1) —[yIF(y, A Fly—1,A
YIFy —1,2) El'y—l—i-)»j—ﬂ—i-]] YIF(y, )+ VIF(y — 1,2)

11
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= WI(Fy. A) - Fiy = 1,4)) — WIF(y, M) + VIF(y — 1, 1) = 0,

which completes the proof. O

Lemma 3.5. We have the following identity for q-rook numbers:

Z q T THR(A/(1, ) = qlk + 1Rk 1(A).

(i,j)er

Proof. Translating this identity into generating functions, we have that it is equivalent to

Z D @R )Xk = Zq[k+ 1R 1 (M)Xle—k1 = Zq[t]R Xl

k=0 (i,j)er

which can be rewritten, with the help of Lemma 3.2, in terms of the F function as
> qTE( A/(0. ) = qDF(x: &) = —q" M x — £1F (e A) + g XIF(x — 1:4). (31)
(i.)er

Now, we notice that if u = A/(i, j)

-1
F(x; A/(1, ) ]_[[x+ut—£+1+t]

t=1
i1 -1
=[Jx+r—-1—e+14+a0][x+rm—1-L+1+1]
t=1 t=i
-1
< [+ 2 — £+ 141

t=x}
i

A
Loox+A—1—£+t
= F(x; A)Hfﬁ{_[ ‘ I

[T.Lx+ 2 — €+ t]
Note that ¢*~ 1=ttt = [x 4 A; — £ +i] — [x + A; — £ + i — 1], so we can rewrite this as

a7 (x; A/(3, )

M
- ToX+A—1—C+t
=q IR A (X A — Ll — X+ A — i — 1])Hf—’“,[ d ]

[TL0x+ A — €+t
. ! A—1—C41] o lx+r—1—0+¢]
— g tIHIR(y A [x + A _ ¢
i o) [T S v =

t=it+1
Fixing j and summing over all possible i = 1...A; we get telescoping cancellations and so

/

J
iy .. _ i [xX+A—1—£€41¢]
qHFG A/ ) = Y g T IR ) [ 1 -
mzx:x XJ: E [x+ A — £+ t]

Substituting this into the LHS of (3.1), the needed identity transforms to the equivalent

A
J
. +A—1—041]
§ I+ e=2p (. ), 1—||[X ! = gDF(x; X
4 (:2) o1 XA — L+t 9DF(x; 1)

12
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_ q(7x+1 (IXIF(x — 1; 1) — [x — £]F(x; 1)),

which is equivalent to

’

Flx — S X+ A —1—L4¢]
[x] F(x; x) - EHZq 1:! X+Ar —L4+1t]

This last identity simplifies as

e FX—154) _ i TT X+ A —1—€+1]
q [x]iF( P LA Zq ]_[ P v

and is equivalent to the formula in Lemma 3.1, which completes the proof. O
3.2. g-Hit identities

We now translate the above rook identities into g-hit identities using the relationship from
Definition 2.3. Let

G™"(x; A) ZH,T"(A)q .
k=0

Then we have the following equivalences in terms of the generating functions
G™(x; 1) Z Z q(Z) " () [m— l]' (_l)i+k mi—(é) xk (3.2)
i " g :

i=0 k=0

—IA ! (i . ! k 1
= " n].ZR [m—i]!qm'—<z><—1)'2q(z> [,’(](—qx)"

k=

n

=2
— q n]’ ZR [m—l]' mi— (2)( 1)1 1_[(1 X+k
k=

Lemma 3.6. For every X inside an n x m board and for every k

m

D a T TIEIT ) = Im = nlHGog™
j=1
Proof. The collection of identities for k = 0, ..., n is equivalent to the following generating function
identities
n m . ,
>3
k=0 j=1

n m
= [m—n] Y H"0)g" g Y g G 6 ) = ¢'m — mG™(x — 1: ).

Using (3.2) and expanding in the g*-polynomial basis (¢*; q)x = '_10(1 — ¢t fori=0,...,n,
the G-identity is equivalent to the following rook identity for every i:
q |AH»A’ ( i—1
m+n—j A c mi—i— ) i X4k
_ Ri(A m—1—i]! 2 1—
; T—— n],Z DI g™ G (= )H( g+

13
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—lAl n
=q"[m— q T - ZR )Im —i]lq m:—(z)( 1)1 1_[(-1 q 1+k)

k=

which simplifies as

i—1
qu jZR()»/C )[m—1—i]lg™ (z)( 1)t l_[( )
k=0
= ZR,-(A) [m— i]!qm"*(é)*i(_niqi l_[(1 _ qx71+k)'
i=0

Notice that
d(@ @) = (@ — 7N Qe = (¢ — 1@ @)1 + (¢ Q)i
and so the RHS above expands in the (¢*; q); basis as:
. i i+1 . .
ZRim [m — iltg™ (= 1)((q" — 1@ @1 + (@' a))
= > (1@ i (R Im = ilig™ ) = Ry G Im — i = 11g™ D1 — 1)
i=0

Therefore, this is equivalent to the following g-rook identity for every i:

m .
S g IR m — 1 - i]gm (5

j=1
= (ROIm = it %) — Ry fm — i = g™ (D(g*1 — ).

Simplifying last expression, we obtain
m
qu_JRi()\/cj) = R,»(A)[m — i] _ Ri+1()‘-)(qm _ qm—x—l)’

which is exactly Lemma 3.3. O

Lemma 3.7. Let k <n < m be fixed, and A C n x m. We have the following g-hit identity:

[m—n+11) g HM 071 = HE" (g In — kI + HEL 0k + 11,
i=1

Proof. Multiplying both sides by (q*)* and summing over all k, the identity becomes equivalent to
the following generating function identity:

n—1
[m—n—i—l]Zq’ G A/ ) = Y HM O k]+ZH,§”+’; Mk + 119
i=1 k=0

To prove the above identity, we will use the following difference operator and its properties:

F(x+1)—F
AF(x) := M, AqY = [pl(g* )P,

a(q—1)
AG @ = —[P)q Q-1 = — 7[19]1(‘1_’:)".

14
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Notice also that g¢[n — k] = [n] — [k] and [k + 1]g* = Aq"“‘“) Therefore, we have

iH,T’“(A ) — k] = ZH A [n] - ZH (M)Ik1g™*
k=0

= [n]G’“ "X A)—q AG’"”(x, A)

and
Z "Mk + 11g% = AG™"(x; 1)
Thus, the generating function identity is equivalent to

n
[m—n+11) g™ (x 2/" i) = [MG™"(x; ) — ¢* AG™"(x; ) + AG™"(x; 1),
i=1
Using the formula

q—\M n

(1 - q)AC™"(x; 1) = =S TR(Im — kg™ (=1 (1 - g, g s,
nj: =0 —_—

[m —n]

(@%@
we can express the generating function identity in terms of g-rook numbers generating function as:

i— —[Al+4i - T mk—(3 g
[m_n+1]Zq ] > R/ Dim = k™ (1 o
_|x| mk— (% “(¢*
=[n ][m !;Rk(x)[m—k]zq O ax
T S g otm — kg O17-(g% )
[m —n]! 7~ ‘ ' -

For each k, the coefficients at (¢*; q), coincide, after canceling common factors, and reducing then
to the g-rook identities from Lemma 3.4

Z g MR A/ 1) = [NIRe(X) — [KIRk(X). O

i=1
Lemma 3.8. We have the following identity

g Y g IO, 1)) = Tk H ).
(i.j)er

Proof. We show that this result follows from Lemma 3.5. By (2.2),
Ty
magyy _ t _ ek gme— (L)
k+ 1H (1) = [k+1][ 2o Rim =1 [k +1]( HEgn=G
t=k+1
(k+1) A - 1

= [ ! Z[f + 1Ry 1(AM)[m — ¢ — 1]||: i|( )r +kqm[ e (t +1)

where we reindexed the sum w1th t’ = t — 1. Next, we apply Lemma 3.5 and exchange sums to
obtain

k+1) 1Al "
[k—l—l]H,H_l(A ]‘ Z qm JHxZRt (G, ))m — ¢ _1]||: ]( )t+k mt'+m—("31)
(ij)er
15
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m-+n

m,J.rl 3

(A) (B)

Fig. 4. (A) an abelian Dyck path A inside an n x m board. (B) Top: the paths for A = (2, 1), and for the rectangles 3°, 3!, 32
inside a 2 x 3 board. (B) Bottom: the six placements of 2 rooks in 2 x 3 divided by how many rooks “hit” (2, 1) (in
gray) and the associated statistic to each rook placement.

(2)_ '
i+m—j-2. 4 — |A/(L, J) Ik/lJ (.
=g Y dmIE ZRf A/l])[m—t—ll'[]( 1) g 1=()

(i,j)er

=q > q*“‘f‘*jH,z"*’”*(A/(i,j»,

(i.)er

where we also used that [1/(i, /)| = [A] — i — A} + 1 and (2.2) for H{' """'(1/(i.j)). O
4. The Guay-Paquet g-hit identity

In this section we give our main result, a proof of Theorem 1.3 using the g-rook theory identities
from Section 3. We start by giving an example of this elegant identity.

Example 4.1. For A = (2, 1) inside a 2 x 3 board, looking at Fig. 4(b), we see that Hg’z(k) =q°=1,
H;?(A) = 29 + 2¢%, H,*(A) = ¢*. One can verify that

Xa1(x, q) = [3][2] (Xs0(x, q) + (2¢° + 2q)X31(x, ) + ¢°X52(X, ) .

Remark 4.2. By Lemma 2.13, the identity in Theorem 1.3 can be rewritten as

n

1
Xi(%,q) = —= > H"(A) - Xyi(X, ). (4.1)

ml! <

Our main self-contained proof is an inductive argument, where the induction is applied both
on the size m 4 n of the graph, and also on the number of variables in the symmetric polynomials.
Namely, we consider the chromatic symmetric functions in variables x1, . . ., Xy and each monomial
appearing as a particular assignment of the variables (i.e. colors) to the vertices. That is, the
vertices 1,...,N = m 4+ n are colored {1,..., M}. For simplicity, we denote by Xf’(M) the
chromatic symmetric polynomial X¢)(X1, - . ., Xu; q) where the graph G()) has N vertices. We will
use induction on both M and n, m when necessary, driven by the following recursion.

Recall that A/(i, j) is the partition obtained by removing the ith row and the jth column from
A. Moreover, we denote by X/i the partitions obtained by removing from A the ith column, for
i=1,...,morthe(m+n—i+ 1)throw,fori=m+1,...,m+n.

16
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Lemma 4.3. For A C n x m we have the following recursion
m+n
X)er—n(M) ZX;M—"(M _ ]) + Xy Z qm+n7i7)»§X)I:r;-ii—n—l(M _ -l)
i=1
+ XM Z q: 1+(m+n—j— A)X)T}?;j Z(M— 1)'
(i,j)er

Proof. In the abelian case, i.e. when A C n x m, the graph G()) consists of a clique with vertices
{1,...,m}, a clique with vertices {m + 1, ..., m+ n} and a bipartite graph in between with edges
(i, m+j) for each (i, j) in A (the complement of A in n x m). Therefore, a coloring of this graph has
at most two vertices of the same color. If the colors used are in {1, ..., M}, there are three cases
for the appearances of color M:

1. No vertex is colored M, this term contributes X"~ '(M — 1) to X]"*"(M).

2. Only one vertex is colored M. Suppose this vertex is in column j (from left) and row i = N —j
(from top to bottom). It creates ascents with all vertices above it but not in A, giving N —j — A]f
ascents. Deleting this vertex corresponds to deleting its row and column (only one would be
a row/column of A) and we get a graph on N — 1 vertices with shape A /j (deleting either row
N —j from A, or column j from A). The remaining vertices and their ascents are not affected
by this, so all their possible colorings contribute

N
N—j—1} _
XM Zq XM - ).

3. Two vertices are colored M. Suppose that the lower one is in column j and the higher one
is in row i (counting from the top), necessarily with (i, j) € A. The lower vertex contributes
N—j— Ajf ascents with the “visible” vertices above it. The higher vertex contributes i — 1
ascents, the number of vertices above it, giving a total of N — j — kj( +i— 1 ascents. We can
remove these two vertices, by removing row i and column j from A and decreasing N by 2.
Again, the remaining vertices and their ascents are not affected, so these terms contribute

2 N—j—2+i—1 +n—2
Xy X AM 1), O
(i.J)

For rectangular shapes A = (m*), Lemma 4.3 simplifies to give the following recursive expansion.

Lemma 4.4.

X™E(M) = X (M — 1)+xM( K mIXIM — 1)+ KX (M - 1)

mk

¢ [n — KIX"" (M — 1)) + X g RImIX™ 2 (M - 1),

Proof. This follows by carefully applying Lemma 4.3 to the shape A = m*. If i € [1, m] then
Ai=(m—1) andN—l—)J_m—i-n—l—k Ifie[m+1, m+n—l<] then it is not a row or
column of A and we have A/i = m* withm +n—i—0ascents. Ifi e [m4+n—k+1,m+ n] then
+/i =m*"! and there are m + n — i ascents. For (i, j) € A we always have 1/(i,j) = (m — 1)*"! and
the ascents are m +n —j — k+ i — 1. Summing over the row/column indices in the given intervals
we get the desired ascent statistics as the given g-integers. O

Proof of Theorem 1.3. Translating Theorem 1.3 into chromatic symmetric polynomials, we want
to prove that for every M we have

n

D HM) - XD (M), (42)

j=0

1
[m],

X};,H_n(M) —

17
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If M < m then both X]"*"(M) = 0 and X'"+”(M) = 0 since there is no proper coloring of the
lower complete graph on m vertices. Otherwnse ifM=1thenm=1andson=1andifA =0
then XZ( ) # 0 with X,0(1) = 0 and H1 (@) = 0, and the identity i 15 satisfied. If A = (1) then
X2(1) =2, [m], = [1}; = 1, Hy''((1)) = 0 and H{"'((1)) = 1 with m' = (1), and the identity is
agam trivially satisfied. This completes the initial cond1t10ns for the recursion in Lemma 4.3.

We will prove identity (4.2) by induction on M. As the argument above shows, the identity is
trivially satisfied for M = 1. Suppose that (4.2) is true for M — 1, every m > n, and every shape
A C m". Naturally, if M < m then both sides become trivially 0.

The rest of the proof is as follows. We apply Lemma 4.4 to each term X,,;(M) appearing in the
RHS of (4.2). We also apply Lemma 4.3 to the LHS of (4.2), and the inductive hypothesis to X (M —1)
for all appearing terms, where » means any value < m + n.

Applying Lemma 4.4 to each term Xm,(M) appearing in the RHS in (4.2), we obtain

n

1
D HM0) - X ) =

[mla =5

Z”L” ") (XM = 1)+ x (@ TmIxm I — 1)

[m]n
HIIXE M = 1)+ 6D — KX (M = 1)) + " ImIX 2 (M = 1)

We now apply Lemma 4.3 to the LHS in (4.2). We split the sum in the linear xy term into
je€[1,m],when A/j = A/¢j C (m—1)x n (removing column j), and theni = m+n+1—j € [1, n],
where A = 0and m+n—j— A =i—1and A/i C (n — 1) x m. We then apply the inductive
hypothesis to each X} (M — 1) appearing with the corresponding rectangular frame, obtaining

XM = XM - 1)

m+n
+XMqu+n —j— Axm+n 1 _ 1)+X2M Z ql 1+(m+n—j— A X)r:%r}) 2(M _ .1)
j (i.j)er
1 me1 qm+n—j—AJfH;<n—1,n()\/c )
= HM M )X™M — 1)+ x = XMl — 1
[m]n; TRIXTM — 1) Mij T meiM - 1)
S 6 HET )
+x = Xm (M - 1)
w2 [mln_1 mt
i—1+(m+n—j—1))  ym—1,n—1 :
Y > ijerd I'Hy, (M(LJ))X,H > — 1)
' [ — Tl (-1 |
Applying Lemmas 3.6, 3.7 and 3.8 to the sums of g-hit numbers above, we get that
¢"*m — nlH;""(3)
Xm+n H Xm+n -1 +x k Xm+n 1 M —1
A [m]n Z ) M Z [m— 1], (m—1)k ( )

Y q*[n — KIH™ (M) + [k + 1]H,<+l(x)

m+n—1 _
[m—n+ 1][ml,_4 X (M=)

k

¢ Mk + 1IHE )
2 k+1 m+n—2
X X M —1).
+ Xu Z [m — 1]p_1 (m—1)k ( )

k

Simplifying the factors [37"__1“]]" = [[’”nz]” [m—n+1][mly—q = [m], and [m—1],_; = [[r"nl]”,and grouping

the terms with H;""(1), we can rewrite the above identity as

m-+n
XA

1 m,n m+n n— m
M) = [mln ;Hk (A) x <ka+( = 1) +xuq k[m]X oy (M = 1)

+xm(q [ — KX (M = 1)+ KX (M = 1)) + xy g™ RIImIX7 2 (M~ 1))

18
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1
= T 2 HETOX T ),

k

where we recognized the sum in the parentheses as the RHS of the recursion for rectangular CSF,
namely Lemma 4.4. This completes the induction. O

5. The Abreu-Nigro expansion in the elementary basis

In this section we show that Guay-Paquet’s identity (Theorem 1.3) is equivalent to Abreu-Nigro’s
identity (Theorem 1.2). We start by giving a proof of Abreu-Nigro’s identity for rectangular shapes.

Lemma 5.1 (Abreu—Nigro’s formula for rectangles).
k=1

Xok(X, q) = [KI'HI 5 (mb) - emyn_icx + Z q [rl'im+n—2r]H™ "1 (m*) - epyinr .
r=0
In order to prove this case of the Abreu-Nigro identity we need the following result.

Lemma 5.2 (Guay-Paquet formula for rectangles). For the shape (m — 1)¥ C n x m we have that,

[MIX 1 = GIm — KIX e + [K1X 1.

Corollary 5.3.

k
m—1 _ m k—j - —(k+j)(k—j+1)/2 )
|: k ]ka—Z[j](_l)( q R /X(mfl}"

j=0

Proof of Lemma 5.2. By Theorem 1.3 for the shape A = (m — 1)¥ ¢ n x m and the formula for the
g-hit numbers H™"((m — 1)¥) from Proposition 2.17 we obtain

1
Xmo1y = ——q"Im — 11[m — KlniXpe + ﬁ[k][m = 1g-1lm — kln—iXpe-1,

]n n

which simplifies to

[MIX 1y = ¢°Im — KXok + [KIXpr. O
Proof of Lemma 5.1. We use induction on m and k. For the base case, note that X0 = [m +
nllemin = Hy"(m°)emn. Now, by Lemma 5.2 we have that

q“Im — KlXe = ([mIX gy — [KIX 1) -

Next, we use the induction hypothesis on X, ;) and X;x-1 and we simplify our expression, so we
want to prove that

k—1
g tm — k]([lc]!H,:”+""‘(mk) eminkk+ P q [r]L[m+n — 2r] H T (mk) em,,,r)
r=0
= (] ((KEHEE5(0m = 1) - eman-ik
k—1
+ Z qr [T]' [m +n— 21”] H;n+n—r—l((m - ])k) : em+n—r,r)
r=0
- [k] ([k - 1]!H;<ﬂj;nik+](mk_l) * Cm4n—k+1,k—1
k—2
=3 Il m A = 20 HT (k) emﬂ,r,r). (5.1)
r=0
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|| ) ) ) ||

Fig. 5. Placements of 3 rooks in 3 x 3 that “hit" (2, 1) (in gray) once and twice and the associated statistic to each rook
placement.

We do so by looking at the coefficient of e;,_,_, for 0 < r < k. For r = k, we have that
q“m — k1 [kIH K (m*) = [m] [kIH ¥ (m = 1)4),

which follows from (2.7) using routine simplifications.
For r = k — 1, we have that

q“Im — k1g*~" [k — 1]'[m + n — 2k + 2] H* " *(m")
= [m] g [k — 1] [m +n — 2k + 2] H K ((m — 1)) — [k] [k — 1)HM 4 m*E1). (5.2)
Using (2.7), we obtain that (5.2) is equivalent to
glm—kljn—kl=m—k+1][n—k+ 1] —[m+n—2k+1]. (5.3)
For 0 <r < k — 2, we have that
g [m —klq" [r]'[m +n — 2r] H™ "= 1(m*)
= [m]q" [r]t{m +n = 2r]H 1 (m = 1))

— [K1q" [r]'[m +n — 2r| H™ == k=T, (5.4)
Using (2.7), we obtain that (5.4) is equivalent to
qk’r[m—k][n—k] =m-rln—r]—-[m+n—-r—k]lk—r], (5.5)

which is straightforward to verify by expanding both sides. Note that (5.3) is a particular case of (5.5)
by takingr =k —1. O

We are now ready to prove that the Guay-Paquet’s identity and Abreu-Nigro’s follow from
each other. As a corollary, we obtain a new proof of the latter. The following example illustrates
Abreu-Nigro’s result.

Example 54. For A = (2,1) inside a 2 x 3 board, we have that for k = 2, H}(A) = ¢?,
H3(1) = 2¢* + 2q (see Fig. 5), and Hj(A) = ¢* + 3¢* + 3q + 1. Therefore,
X2,1(%, @) = € (14q)es 2(X)+a(14+9+6%)(2¢° +2q)ea 1 (X)+(1+0+4°+0° N(@*+30°+3g+1)es(x).

Proof of Theorem 1.2.
Applying Lemma 5.1 to the RHS of the formula in Theorem 1.3, we obtain that

n

ﬁzfﬁm’"(/\) Xi(X, q) = ] ZHM (UVHW_JW) e'"“*“)

j=0
n Jj=1

o P OI(d = 2 H ) - ).
m j=0 r=0
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Now, switching the summation order, we have that

n

1
= D HMG) - Xp(x.q) = Zemn g (T (MO (2)

[ml, 4=

+Zem+n i (q Z [Pt Dm -+ n = 20 P (mhH]™ ()

n j=r+1

Thus, we need to show that for r = k = £()),

n
[m]n H;{Tl+n—k()\‘) — Hl:n+n_k(mk)H;(n’n()\.) + qk Z [m +n— Zk] len+n—k—1(rnj)1_1jm,n(k)
Jj=k+1
— lenJrnfk(mk)Hm,n()h)

k

since H""(x) = 0 forj=k+1,...,n. We also need to show that for r < k = £(2.),
[ml, ¢ [m+n— 2r]H™"""(3) = H " (m")H" ()
n
+n—r—1 i\pym.n
+4q Z [m+n—2r]HM" " (m’)Hj (A).
j=r+1

After using (2.7), these two relations are equivalent to the following identities relating g-hit
numbers of A in square boards and rectangular boards. Thus, the Abreu-Nigro expansion for X; (X, q)
follows now from Lemma 5.5, which completes the proof. O

Lemma 5.5. Let A be a partition inside an n x m board and k = £(}), then

[73: z’f] HE ) = 470 m o+ n = 2K MO0, (5.6)

and for 0 <r < k, we have

[?:r} HIM 1) = 0D m = 28 — 1), B

n Z -1 [ } m+n—r—j- ”m”H}"‘”(A). (5.7)

j=r+1 [I’l a r]

Proof. The first relation follows from a simple combinatorial observation together with Lemma 2.13.
For k = £(A), we see that the k rooks on the first k rows on the board have to be all inside A, and
all the cells outside A in these first rows will be empty. Thus

HY(0) = HEP ()@ N IN — KL
Similarly, by the proof of Lemma C.1 we have

m+n—2k]

m,n k A k(m—*1)
H{"(0) = M (g [ Lk

Substituting these formulas in each side of (5.6) we get the desired identity.

For the second relation, we switch gears and use a deletion—contraction relation of g-hit numbers
(Lemma 2.6). The idea is to use induction of the size of A, the deletion-contraction relation for g-hit
numbers, and deduce the identity by matching coefficients at each g-hit number.

Remark 5.6. An alternative proof appears in Appendix F, where the g-hits are expressed in terms
of g-rooks and matching coefficients at each g-rook reduces to g-binomial identities.
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Let us start with the RHS of (5.7). Denote by

BI"(1) = q“"*” [m+n—2r =1, H""()

(n—1—j) [m+n_r_]_1]mr m,n
¢y a[] ).

j=r+1 [n - I’]

If we apply the deletion—contraction relation in Lemma 2.6 to the g-hit numbers, we have that
B (M) =q" "V m+n —2r — 1], H(A\e)
+ qr(nfrfl) [m +n—2r— 1]m - q|x/e|7\)»|+r+m71Hmf11,n—1(}L/e)
. r,
_ qr(nfrfn [m +n—2r— 1]m7r71 qlk/elf\ll+r+mH;1171,n71()\/e)

" - )
Sy il m+n—r—j—1lh mn
+ q' =1 H™"(\\e)
j:rZ+1 "] [n—r] '
n -
Sfifm+n—r—j—1
+ Y g [ I et 1
j=r+1 - - n= r]
" [j1im+n—r—j—1]
doar ] [n—r] ML g MG ), (58)
j=r+1 -

m—

For the LHS of (5.7), we denote C[*"(A) := [n _

rr] H™m=r=1(1). Then by Corollary E.2,
) = [',’fjf } HI TG

m-—r _ S e e
4 [n B r] q\k/e\ [A[+r+m+n—r—2 (H:njn r Z(A/e) _ qH:n+n r Z(A/e)) )
That is, we have the following deletion-contraction relation for the C’s:

[m—r]
Nm =l

Now, we want to compare the two expressions in (5.8) and (5.9). By inductive hypothesis,

C™(0) = C™M(1\e) + g/el-Irmen=2 (Cr”:l’””(x/a —q—— " “‘(A/e) (5.9)
cm(x\e) = q“”’r’” [m+n—2r — 1y, H™"(A\e)

r(n—1— [m+n_r_ 1]m—r m,n m,n
N Zq( u)H H™"(\e) = BM(3\e).

j=r+1 [Tl - I’]

These terms appear both in (5.8) and in (5.9), and so they cancel. We have left to show that
m-—r
gH/el=-ll+mn—2 (Cﬁ"ﬂ‘”%k/e) - q[[m — n]] CI””'"W@)
— qr(n—r—l) [m 4+n—2r— ”m qlk/e| |A|+r4+m— le 1,n— 1()\/6)
_ qr(n—r—l) [m +n—2r— 1]m7r7 q|k/e| \K|+r+mH;11 l n— 1()\/6)

m+n—r—j—1 .
n Z g 1—1)[ ] [m+ ]mfrq\)»/e\—\M+]+m—1erE;l,n—1(k/e)
Jj=r+1 [n - I’]
_ Z qr(n 1 ])[ ] m+n—r—j—1],_ rq\k/e\ \A\+]+mHm 1,n— 1()»/6)
j=r+1 [n— r]
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This last equation simplify to the following identity:

[m ] m—1,n
[m n]C (?»/6))

_qr(n r) 1[m+n_2r_ ]]m _ 1<Hm 1.n— ](A/e) Hm—l,n—l()h/e))

N Z g1 [i] [m +n _[nr__rj]_ Un—r (Hj’fﬂ”‘](x/e) - qum‘l'”‘l(A/e)), (5.10)
j=r+1

qan (Cm 1,n— I(A/e)—q

In order to show (5.10), we apply first the inductive hypothesis in the C’s together with the relation
in Lemma 2.14 to obtain their expansion in terms of g-hit numbers of the form I~I]T”_1’”_l(k/e):

qn—ZC;ﬂ_—]l,n I(A/e) (r 1)(n—r—1)+n— 2[m+n_2r ]]m e 1Hm 1,n— ]()»/6)

n—1 i
) i m+n—r—j—2
O [r i J [m + e rf] bnr H" M0 e),

j=r

it [lz ”]cm (3 /e) = ““‘"1”"‘1—[[;1 — ;]] [m+n—2r —2],_,_, H'"""(3/e)
. r(n—1—j)4+n—1 ] [m — T] [m +n—r _j - Z]m—r—l m—1,n
P P e

Finally, we compare the coefficients in (5.10). For H;":]]’"_l()\/e), we have
LHS = g Vn=r=D4n=2 iy 4 — 2r —1],,_,_; = RHS.

For H™~1"=1(} /e), we have

LHS = g~ Dn=2-r)+n-2 r JIm4+n—r—r—2_,
r—1 n—r]

— g m — ] [m 40— 2r = 2], 5,
r+1]m+n—2r—2],.,
r [n—r]

)

RHS = _qr(n—r) [m 4+n—2r— ]]mfrfl + qr(n—Z—r)+r |:

which simplifies to the relation [m +n —2r — 1] = ¢* "' [m — r] 4+ [n — r — 1]. This last relation
is a straightforward verification by expanding both sides.
For I-Ijmf]'"fl()»/e), withr+1<j<n-—1,

LHS = glr—Dn-2-jr4n-2 [ j } [m+n—r—j—2ln,

r—1 [n_r]
qr(n 1—j)+n—1 J [m_ ][m+n_r_j_2]m—r—1’
[n—r]
RHS = g2 |1 11 mtn—r—j—2ln, _ g1 [ mtn—r=j=1n,
r [n—r] r [n—r]

which simplifies to the relation [m+n—r —j— 1] = ¢"7~'[m — r]4[n —j — 1]. This last relation
is a straightforward verification by expanding both sides. O
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6. Variations and applications
6.1. Theorems 1.2 and 1.3 In terms of unicellular LLT polynomials

Chromatic symmetric functions of Dyck paths are related to unicellular LLT polynomials [19] that
can be defined as follows. For a Dyck path d, let G(d) be the associated graph and denote

Lg%, @)= Y q¢"“x",
k:V(G(d)—P

where the sum is over all vertex colorings « of G(d) and asc(«) is the same as in the definition of
Xs(x, q).

The function LLT¢qg)(X, q) is actually symmetric (see [2, Sec. 3.1]) and the symmetric functions
Xeay(X, q) and LLT4(x, q) are related via a plethystic substitution discovered independently by
Carlsson-Mellit [5, Prop. 3.4] and Guay-Paquet [14, Lemma 172]:

LLTga)(X, q) = (q — 1)"Xga)[x/(q — 1), q1,

where n is the size of the Dyck path. As a consequence of this connection, any linear relation in one
family implies the same relation in the other one. Since Theorems 1.2 and 1.3 yield a linear relation
among certain chromatic symmetric functions, we immediately obtain the same relations for the
corresponding unicellular LLT polynomials.

Corollary 6.1. Let A be partition inside an n x m board with £(1) = k < Ay. Then

1 _
mH;{’H” k()t) : LLTK(m+n—k,k)(xv q)

[m+n—2j] -
+ qu [m+n—j]! H TN - LT gmin—j (%, 9).

LLTgi)(X, q) =

where K(a, b) is the dzs;omt union of complete graphs on vertices {1,...,a}and {a+1,...,a+ b}.
Proof. Since Xk(qp) (X, q) = [al![b]'eq, then Theorem 1.2 yields a linear relation among X¢)(X, q),
Xk(m+n,00X, q), . . ., Xxn4n—k k)(X, q). The result then follows from the fact that every linear relation
among a set of chromatic symmetric functions of Dyck paths has a corresponding relation among
unicellular LLT polynomials [2, Prop. 55]. O

Corollary 6.2. Let A be a partition inside an n x m (n < m) board. Then

LLTg (X, q) =

D THM() - LT g (X, q).

[m]n s

Proof. Theorem 1.3 yields a linear relation among X, (X, q), X,0(X, q), - . . , Xmn(X, q). The result then
follows by the same fact as in the proof above. O

6.2. The staircase basis

Let V™" = spang,{X; | A inside an n x m board}. Consider the set of chromatic symmetric
functions given by rectangular shapes R™" := {Xm,(x, q)}j:O' This set is actually a basis for V™",
Corollary 6.3. The set R™" forms a basis for the Q(q)-vector space V™",

To prove this result we need the following result.
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2 2 2 2

3 3 3 3

Fig. 6. Left: the path for A = 3 inside a 2 x 3 board. Right: the three staircase paths 8y, 81,8, for m =3 and n = 2.

Proposition 6.4. Let A be a partition inside the n x m board and let k = £(1) < \q
X(%, q) = [KIH 5 ()5 50 yman-2k(X)
k—1

k—1
+ Z52i1m+n72i(x)<[k]!HlT+n7k()x) + ) qlilim+n— Zj]Hj’””*“(x)). (6.1)

i=0 =

Proof. This expansion follows by combining expressing the elementary symmetric functions in the
Schur basis en_jj = Y %_, Syin-2 in Theorem 1.2. O

Proof of Corollary 6.3. By Theorem 1.3 we have that R™" span V™",

By Theorem 1.2 the leading term X,,;(X, q) in the e-basis is I~Ijm+"_j(m")em+n,j,j. Since j < m we

can certainly place j rooks on n¥ and see that HijH‘ (m) # 0. Note that the full formula is given
in Proposition 2.16. Thus the transition matrix between R™" and the ey 1,_;;'s is upper triangular
with nonzero diagonal entries, so they are linearly independent and form a basis. O

Guay-Paquet considered another basis for the space V™", This basis is called the staircase basis
since it is indexed by the staircase partitions, which are partitions inside an n x m board of the form
§=0.j—1,....1),forj=0,...,n(seeFig. 6). Let S™" := {X;(x, q)}j',qzo.

Proposition 6.5 ([12]). The set S™" forms a basis for the Q(q)-vector space V™",

Proof. We look at the expansion in Theorem 1.2 for §;. In this case, Hjm”_j((Sj) # 0 because we
can place j rooks on the main diagonal of §; and place m + n — 2j remaining rooks outside §;
(for instance, in the main diagonal of the square board). Therefore, the leading term of Xs(x, q)

is H;"‘Ln*j(éj)emm_j_j # 0. That is, S™™s transfer matrix with the V™" basis given by {emin_j;} is
upper triangular with nonzero diagonal and hence is also a basis. O

Since the coefficients of X; (x, q) in the R™" basis involve g-hit numbers, we also want to study
the coefficients appearing in the decomposition of X; (X, q) in this new basis S™". That is, we want
to understand the coefficients a}”‘"(k, q) in the expression

X%, ) =Y @™, q) - X5(%, q). (6.2)
j=0

Calculations suggest that up to a sign and a power of g, these coefficients are in N[q].

Conjecture 6.6. Let ) be a partition inside an n x m board (n < m) and j be fixed, then a*"(1, q) is
a Laurent polynomial in q whose coefficients are integers of the same sign.

Example 6.7. For A = 3 inside a 2 x 3 board, we have

°X3(X, q) = —(q + DXo(X, @) + (¢* 4+ g + DX1(X, q) + 0 - X21(X, q).
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A possible approach to Conjecture 6.6 is looking at the change of bases between the rectangular
basis R™" and the staircase basis S™". Let us start showing that the coefficients of the change of
bases determine a;""(%, q).

Proposition 6.8. a""(). Z L q).
[m]n —0

Proof. This follows from basic linear algebra. By Theorem 1.3 and (6.2), we have that

n

1
X%, q) = —— > HP(0) - Xyi(X, Q)

(ml, =

1< n
~ mly DUHTTO) D (m, )X (x. )
" k=0 j=0

Next, we exchange the order of summation to obtain

n

1 m,n m,n K
A(x.q) = ZXs X Q) ZHk’(k)a,»’(m’,q).
j=0

n

The result then follows by extracting the coefficient of Xs;(x, q) on both sides above. O
This means that in order to prove Conjecture 6.6 it suffices to verify it for a}“’”(m", Q).

Remark 6.9. We have the following (n + 1) x (n + 1) matrix and its inverse

— ] il
A= @0 0)ogy e M= AT = e (B0,

Moreover, the g-hit numbers Hf’”(&n) are the g-Eulerian polynomials defined by

Apir(g) =y ¢,

webn
exc(w)=j

where stat is inv or maj indices (see [4,23]). Also, one can check that the specialization

n,n a0
I-Ij (51171’)|q 1 Aﬂ]?

where the A . are the r-excedence numbers that count the number of permutations in &, with j
r- excendences {i| w(i)>i+r} (see[9,10]).

Note that the coefficients a}”’"()h, q) add up to one.

n
Proposition 6.10. Let A be a partition inside an n x m (n < m) board. Then Z a}”’”()», q) =1
j=0

Proof. By Proposition 6.8 and Corollary 2.11 it is enough to show the result for the a]'-“’"(m", q).
That is, to show that the columns of the matrix .A from Remark 6.9 add up to one. This follows
from basic linear algebra since the columns of the inverse matrix A~' = % also add up to one by
Corollary 2.11. O
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6.3. Theorem 1.3 In terms of g-rook numbers

Theorem 1.3 expresses X, (X, q) as a linear combination of the functions X,,(x, q) where the
coefficients are normalized g-hit numbers. Since the latter are defined in (2.2) in terms of g-rook

numbers it is natural to give an expression for X; (X, q) involving g-rook numbers R;(1).

Definition 6.11. For non-negative integers m, n, and i, with m > n and 0 < i < n, define

YM(x, q) =) (—1)" "[ ]q(z)xmk(x Q).

k=0

Corollary 6.12. Let )\ be a partition inside an n x m board (n < m). Then
Xx Q)= Z[m i)1gm-@IR(2) - Y™ (x, q).

Proof. We use (2.2) in Theorem 1.3 and change the order to summation to obtain:

g®-h & ; e
- —1)itkgmi-QR,
“ [m]" kX(; —n]! ;;[m 4 H( D77 R(AX (%, q)
1 i i T )
= W IZO: [m — l]'q (2) ‘MR,()\‘) . (g(_l) k [k} q(2)Xm,((x7 q)) .

The result follows by noting that the sum in parenthesis on the RHS is exactly Yi(x,q). O
The following example shows that the Yi’"'"(x, q) are not m-positive.

Example 6.13. For m = 3,n =2 and i = 1, we have that
Y72 (X, @) = X31(X, 4) — Xso(X, q).
Expanding in the m-basis, we have that

Y22, q) = (—q'"° — 4¢° — 9¢° — 14q” — 12¢° — 2¢° + 11¢* + 16¢° + 11¢° + 4q) my 11,11
+ (¢°+3¢° +5¢" + 5¢° + 3¢° + @) ma.1.1.1.

However, in the e-basis we have that

= (q°+3¢° +5q¢* +5¢° + 3¢° + q) 41
+ (4" —4¢° — 9¢° — 14" — 17¢° — 17¢° — 14¢* — 9¢° — 4¢*> — q) es.

Indeed, it appears that the expansion of the Y,.m"” in the elementary basis yields palindromic
polynomials with all positive or all negative coefficients.

Conjecture 6.14. Consider the functions Yi(X, q) expanded in the e-basis

i
Q=) al@enin kk-
k=0

Then (—1)*c,(q) € N[q] and are palindromic.
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7. Final remarks
7.1. A tale of two variants of q-hit numbers

To our surprise, the g-hit numbers appearing in Theorems 1.2 and 1.3 are not exactly the Garsia-
Remmel g-hit numbers denoted by H]-"(A) but instead, they are off by a power of q (see Proposi-
tion B.1). Thus, these two variants of g-hit numbers satisfy different versions of deletion-contraction
(see Appendix E).

While working on this project, we have encountered two different variants of Dworkin’s statistic
for the Garsia-Remmel g-hit numbers Hi(A) for A C n x n. In [8, Sec. 7, Fig. 3] Dworkin gives
a statistic with a rule that is the transpose of the statistic in Definition 2.7. However, this statistic
actually yields our g-hit numbers Hf()») (this can be seen from the change of basis to g-rook numbers
and because the latter stay invariant under conjugation) and not the Garsia-Remmel g-hit numbers
H;‘(A) as claimed in [8]. In [16, Fig. 5], Haglund and Remmel give a statistic similar to Dworkin
that they attribute to him (see Definition A.2) that does yield the Garsia—-Remmel g-hit numbers.
The authors in [16] give a weight-preserving bijection between their version of Dworkin’s statistic
and Haglund’s statistic for H;‘(A) from [15] thus proving the validity of their version of Dworkin’s
statistic.

See Appendices A and B for more details on the Garsia—-Remmel g-hit numbers and their relation
to our g-hit numbers. And see Appendix C for a proof of Theorem 2.9 which shows the statistic in
Definition 2.7 that yields the g-hit numbers HJ, ,(1).

For a recent g-analogue of hit numbers for general boards, not just Ferrers boards, see [21].

7.2. A conjectured deletion-contraction relation for g-hit numbers

We use the deletion-contraction of g-hit numbers (Lemma 2.6) in our proof of Theorem 1.2. It
appears that the g-hit numbers satisfy a similar deletion-contraction relation with simpler powers
of q. For more details in another deletion-contraction relation of g-hit numbers see Appendix E.

Conjecture 7.1. Let )\ be a partition inside an n x m board and e be an outer corner of . Then we
have the following recursion: I-Ijm’"(@) = [m], 8j0 and

qH"™"(3) = H™"(\e) + q"H]™{ V" (3 /o) — H' T (1 e).
7.3. Combinatorial proof of Theorem 1.3

Guay-Paquet’s proof of Theorem 1.3 sketched in [12] is based on the idea of dual basis from
linear algebra. He shows that the vector space V™", together with the basis R™", has a dual vector
space Vy;, , = spangg (P(x; A)/[m], |  C n x m) with dual basis {x' | i = 0,...,n}. Now, the
dual basis coefficients are given by the normalized g-hit numbers H;""(1)/[m], as shown (up to
normalization) in (2.1).

In contrast, our proof of Theorem 1.3 uses g-rook theory, it would be interesting to find a bijective
proof of this result relating colorings with rook placements.

Specifically, we can rewrite the identity as

[M1nX (%, @) = ) H"O)Xe(X, ).
k=0

Matching monomials in x, powers of g, and interpreting [m], = H(',”‘"(IZ)) we are looking for a
bijection ¢, for every v = (2,...,2,1,...) as follows.
From:

Pairs of a rook placement Py""(#) of n rooks on n x m board with inv(P) inversions and a proper
coloring (X, v) of G, of type v and asc(x) total ascents.

Into:

28



L. Colmenarejo, A.-H. Morales and G. Panova European Journal of Combinatorics 107 (2023) 103595

Triples k, P,T‘”(A), «(m*, v) consisting of an integer k € [0, n], a rook placement on n x m with
exactly k rooks inside A, and a proper coloring of G, of type v,

such that

asc(ic(m*, v)) + inv(P"") = asc(x) + inv(P).
7.4. Combinatorial proof of Theorem 1.2

There are other rules for the elementary basis expansion of X; (X, g). In particular, Cho-Huh [7]
give an expansion in terms of P-tableaux of shape 2/1™"~% such that there is no s > j+2 such that
(aiq,a51) € Aforallie {£+1,...,s— 1} (see [24, Sec. 6] for details on P-tableaux). We denote
such set of P-tableaux by 77((m + n — j, j)). Let

ij,n(q) — Z quG(A)(T)'

TeT'(m+n—j.j)

For the definitions of P-tableau and invg(T) see [24, Sec. 6].
It would be interesting to find a weight-preserving bijection that shows that

_ JuH ) ifj = €(),

J

For instance, for the case j = £()), we need to establish a weight-preserving bijection between
the rook placements with j rooks inside A, together with some labeling of the ones inside A to
account for [j]!, and 7'((m 4+ n — j, j)).

7.5. Extending Theorems 1.2 and 1.3 to bicolored graphs

Both Theorem 1.2 and Theorem 1.3 are g-analogues of a special cases of respective results by
Stanley-Stembridge [26, Thm. 4.3] and by Guay-Paquet [13, Prop. 4.1 (iv)] for bicolored graphs. It
would be interesting to find a g-analogue of these more general results for bicolored graphs G.
However, for such graphs G the function Xs(x, g) may not be symmetric.

7.6. Beyond the abelian case

We have studied the chromatic symmetric function X¢g)(X, q) for Dyck paths d of bounce two,
aka the abelian case [18]. Recently Cho-Hong [6] verified Conjecture 1.1 when g = 1 for Dyck paths
of bounce three. Their expansion is in terms of certain P-tableaux. For these Dyck paths, it would
be interesting to find an e-expansion involving g-rook theory or extending Theorem 1.3.
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Appendix

In this appendix we give more details on the two variants of the statistic on the Garsia-Remmel
g-hit numbers, their relation, and their deletion-contraction relations.
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Fig. 7. (A) For the same rook placement p, examples of (A) the statistic statp(p) for the Garsia-Remmel g-hit numbers, and
(B) of the statistic stat(p) for our g-hit numbers. Note how the empty cells in the calculation of one statistic correspond
to the double crossings in the other. Moreover in each placement stat(p)— cross(p) = j-m—|A|. (C) Illustration of bijection
between rook placement counted in Hjm"”(k) and rook placements counted in HJT"’"(A) and Rp,_,((m —n)™ "), respectively.

Appendix A. Garsia-Remmel g-hit numbers and Dworkin’s statistic

We start by defining the original version of the g-hit numbers given by Garsia—-Remmel that is
different than our g-hit numbers. Recall that m > n.

Definition A.1 ([11]). For A inside an n x n board, we define the Garsia-Remmel g-hit polynomial of
A by

n

SOHMOX =Y R —ilt ] (x—d". (A1)
i=0 i=0

k=n—i+1

Garsia and Remmel [11, Theorem 2.1] showed that ﬁ[‘(k) = ﬁi"’“(k) is a polynomial with
nonnegative coefficients and Dworkin [8] and Haglund [15] gave different statistics realizing these
g-hit numbers. We focus on Dworkin’s statistic (as presented in [16], see Section 7.1) since it is very
similar to the statistic in Definition 2.7.

Definition A.2 (Dworkin’s Statistic for the q-hit Numbers [16]). Let A be a partition inside an n x m
board. Given a placement p of n non-attacking rooks on an n x n board, with exactly j inside A, let
statp(p) be the number of cells c in the n x m board such that

(i) there is no rook in c,

(ii) there is no rook below c on the same column, and either,
(iii) if c is in A then the rook on the same row of c is either outside X\ or else to the left of c; or
(iv) if c is not in A then the rook on same row of c is not in A and to the left of c.

Example A.3. Consider the partition A = (4, 3, 2, 2) inside a 6 x 6 board. In Fig. 7(a), we present
a rook placement p of six rooks on the 6 x 6 board with three hits on A where statp(p) = 4.

Theorem A.4 (Dworkin [8,16]). Let A be a partition inside an n x n board and j = 0, ..., n then

I’:I'jn()\) — Z qstatD(p),
p

where the sum is over all placements p of n non-attacking rooks on an n x n board with exactly j rooks
inside X.

Appendix B. Relation between g-hit numbers H;'(1) and fIJF’(A)

The next result shows that our g-hit numbers and the Garsia-Remmel g-hit numbers are off by a
power of q. We show this from the respective definitions of each g-hit numbers from the generating
polynomials of g-rook numbers. We will ultimately show Theorem 2.9 by showing that for a rook
placement p, the statistics stat(p) and statp(p) are off by the same power (see Lemma C.2).
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Proposition B.1.
H"(1) = g™ HM (), (B.1)

Proof. We compare (2.1) and (A.1). Substituting xg~™ and multiplying by g*! in (2.1), rewriting the
factor q"""(é) = qzi:o M=k and rewriting the q—Pochhammer symbol we have

Z (MgH (xq ™y = ZR im — i1}(— ]_[qm" —xq"q")
_ZR [m—l]’l_[x—q

which is the RHS of (A.1) for m = n. Comparing coefficients at ¥ we obtain the desired identity. O
Appendix C. Proof of Theorem 2.9

Let Hm "(A) be the sum in the RHS of (2.5). The next result is an analogue of Lemma 2.13 for
Hm H(A)

Lemma C.1. Let A be a partition inside an n x m board. Then

Tym.n _ 1 Tym,m
M) = o A0,

Proof. We claim that
H""(1) = H™"(0) - Ru—a((m — n)""). (c.1)

The result then follows since by Proposition 2.2, Ry,_,((m — n)™ ") = [m — n]!. This g-factorial
corresponds to the g**'-weighted enumeration of rook placements in a (m — n) x (m —n) board. Let
p be a rook placement on an m x m board with j rooks inside A C m x n and p’ be the placement
obtained by restricting p to the top m rows. Then the bottom m — n rows contain m — n rooks
outside A and after removing the n columns occupied by rooks from the top n column we obtain
a placement p” of m — n rooks on an (m — n) x (m — n) board. This gives a bijection p — (p’, p”)
between the rook placements on the LHS and pairs of rook placements from the RHS of (C.1). See
Fig. 7(c) Moreover, the bijection is weight-preserving. That is

stat(p) = stat(p’) + stat(p”) = stat(p’) + inv(p”),

where inv(p”) is the statistic of the g-rook numbers. This weight-preserving bijection gives the
desired result. 0O

The next lemma shows that for a fixed rook placement the statistics stat(-) and statp(-) are
related.

Lemma C.2. Let A be a partition inside an m x m board. Given a placement p of m non-attacking rooks
on an m x m board with j rooks inside A then

stat(p) — statp(p) =j - m — |A[.
Example C.3. Consider the partition A = (4, 3, 2, 2) inside a 6 x 6 board. Fig. 7(b) illustrates an

example of a placement p of six rooks on the 6 x 6 board with j = 3 hits on A with stat(p) = 11.
Fig. 7(a) illustrates for the same rook placement p that statp(p) = 4. Note that

stat(p) — statp(p) =7 =3-6 — |A|.
31



L. Colmenarejo, A.-H. Morales and G. Panova European Journal of Combinatorics 107 (2023) 103595

The proof of Lemma C.2 is postponed to the end of the section. We now use this lemma to
complete the proof of our main result of this appendix.

Proof of Theorem 2.9. By Lemma C.2 we have that
Tym,m _ A |A—jmpym,m
A0 = " ImHT ).

Next, by comparing this identity with Proposition B.1 we conclude that H}”’m(k) = ﬁ;ﬂ’m(k). Finally,

-~

combining this with both Lemmas 2.13 and C.1 we conclude that H;""(1) = H;""() as desired. O

The rest of the section is devoted to the proof of Lemma C.2. We need the following definition.

Definition C.4 (Crossing Statistic for the g-hit Numbers). Let A be a partition inside an m x m board.
Given a placements p of m non-attacking rooks on an n x m board, with exactly j rooks inside A,
let cross(p) be the number of cells ¢ in the m x m board such that

(i) there is no rook in c,
(ii) there is a rook on the same column and below c,
(ii) if ¢ is in A then there is a rook on the same row in A to the right of c,
(iii) if c is not in A then either there is a rook on the same row in A or a rook on the same row
to the right of c.

In other words, cross(p) is the number of cells that have double crossings after the rook cancellations
used to obtain stat(p). See Remark 2.8 and Fig. 7(b).

Example C.5. For the rook placement p in Example C.3 and Fig. 7(b) we have that stat(p) = 11
and cross(p) = 4.

First observe that for a rook placement p on the m x m board we have that statp(p) = cross(p),
since the rays in stat and statp are complementary to each other and the crossings in one directly
correspond to the empty boxes in the other. Therefore Lemma C.2 follows from the next lemma.

Lemma C.6. Let )\ be a partition inside an m x m Given a placement p of m non-attacking rooks on an
m x m board with j rooks inside A then

stat(p) — cross(p) =j-m — |A|. (C2)

Proof. We proceed by induction on |A| for A C m x m. When 1 = {J we only have rook placements
for j = 0, and then it is clear that,

stat(p) = statp(p) = cross(p) = inv(w),

the number of inversions of the permutation w corresponding to the rook diagram. Thus the identity
(C.2) is verified.

Suppose the identity (C.2) holds for all [A\| < N and then for anyj =0, ..., m. Let v be a partition
of N+ 1and v = A +e, where e is a corner cell. Let p be a rook configuration with j rooks in v, and
let p’ be the same rook configuration on A (so there are j or j— 1 rooks in A). Note that cell e cannot

be empty since there is a rook in its row, which is either in v, and hence the rook’s “arm" crosses
e or is outside in which case the wrap-around also crosses e. We now consider several cases:

Case 1. Cell e has a rook and hence the horizontal arm stops at e as the border of v. Thus there are
no crossings in the row of e. Suppose there are k empty boxes in the row of e, then there
are also m — k — 1 vertical crossings in this row. Now consider p’ as a configuration with
j — 1 rooks in A. The rook in e is outside A and this time the entire row is crossed, so all
empty cells have now a horizontal line and all vertically crossed cells have now a double
crossing. Thus

stat(p’)—cross(p’) = stat(p)—k—(cross(p)+m—k—1) = stat(p)—cross(p)—m++1.
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By induction we have
stat(p’) — cross(p’) = m(j — 1) — |A| =jm — |v| —m + 1,

and matching sides we obtain the desired identity in this case.

Case 2. The rook in the row of e is to the left of e. Then either e is a double crossing or is only a
horizontal crossing. Then in the rook placement p’ there is no horizontal line crossing e. If
e was a double crossing in p, then it is neither a double crossing nor empty cell in p’, and if
e was not a double crossing in p then it became an empty cell in p’. In both cases we have

stat(p’) — cross(p’) = stat(p) — cross(p) + 1.
Since the number of rooks inside A is still j then we have
stat(p) — cross(p) = stat(p’) —cross(p’) —1=j - m—|A| —1=j-m— |v|.

This gives the desired identity in this case.

Case 3. The rook in the row of e is to right of e, so outside v. Then again there is a horizontal line
crossing e, so e is either a double crossing in p or neither a double crossing nor an empty
cell in p. In both cases when we remove e from v we either turn the double crossing on e
in p to a not a double crossing in p’ or from not a double crossing in e to an empty cell in
p’. Thus, again

stat(p’) — cross(p’) = stat(p) — cross(p) + 1.
Since the number of rooks inside A is still j then we have

stat(p) — cross(p) = stat(p’) — cross(p’) —1=j-m—|A| = 1=j-m—|v|.
This gives the desired identity in this case.

This completes the proof. O

Appendix D. Symmetry of g-hit numbers of rectangular boards

Since the Garsia-Remmel g-hit numbers are symmetric polynomials in N[q] [8,11,15], then so
are H™"(2.).

Corollary D.1. The g-hit numbers HJ-'"’”(A) are symmetric polynomials in N[q].

Proof. By Theorem 2.9 we have that H}“'"(A) are in N[q]. By Lemma 2.13 and Proposition B.1 we
have that

1 .
H™(\) = ——glim=2gmy.
[ (4) [m_n]!q "(2)

Now [m — n]! is a symmetric polynomial in N[q] and so are the Garsia-Remmel g-hit numbers
H;"(A) [15, Sec. 5]. Therefore, the result follows. O

Appendix E. Deletion-contraction for g-hit numbers

In this section we give a proof of the deletion-contraction relations for the g-hit numbers Hj’"‘”(k)
and H}"’"(A).

Lemma E.1 ([8, Thm. 6.11]). Let A be a partition inside an n x m board and e be an outer corner of A.
Then we have the following recursion:
H™(0) = gH™"(0\e) + H" "1 /e) — q"H" " (a/e),  H™"(2) = [m], 8.
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Proof. This follows from the deletion-contraction relation for g-rook numbers [8, Thm. 6.10]
Ri(A) = q-Ri(A\e) + Ri—1(r/e),  Ri(@)=éio,

which follows directly from considering if a placement p of i rooks in A has or not a rook in cell e.
Substituting this rook recursion in (2.2), we obtain

g® -1 &

H0) = o 2 Z(q -Ri(M\e) + Ri1(2/€)) [m — ] [,’{] (—1)+gn=G)
) [A\el
]‘ ZR a\e)[m — |: ]( l)H—k mi— (2)
q(z> &

[m—n]! 4 ZR, 1(A/e) [m—l]'[ ]( 1)*gm= @,

Manipulating the last expression from g-rook numbers into g-hit numbers, we obtain the following
recurrence

H™(0) = H™"(A\e) + qm+k717\k\+\k/e\Hl;rlfll,n71()L/e) _ qk+m7\M+M/e|H’£n71,n—l()L/e)
Now, we use (B.1) to translate this recursion into the recursion for the H's:
g HH" ()
— qkmf\/\\elﬁ"{","()\\e) + q(k%)(m%)flk/e\qm+k717|A|+Ik/e\jf1"<ﬂ:l1v”*1(A/e)
_ qk(m—1)—\k/e\qk+m—|k|+|x/e|H’r<n71,n71()\/el

which simplifies to the desired recursion. O

Proof of Lemma 2.6. Combining together (B.1) and Lemma E.1, we obtain
qHIHM(0) = g\ MG )
+ q\f\/e\*U*U(mﬁ)H]Pl;L”*]()\/e) _ q\l/e\*j(mﬂHmﬁj’n*l-ﬂﬁ()\/e).
Noticing that |A\e| + 1 = |A| and simplifying the expression we obtain that
Hjm»”(v) — Hjm‘"(k\e) 4 q\/\/EI*IAHHm—liji;Ln%(A/e) _ q\k/e\*lMJerHjm*Lﬂq()\/e)
_ Hjm.n(k\e)+qu/e|f|x\+j+m71 (I_iji;l,n—l()h/e) _ qumq,nfl(k/e))' 0o

The previous deletion-contraction relation specializes to square boards as follows.
Corollary E2. HN(A) = HN(M\e) 4 g"/e= V=1 [HN1 (1 fe) — gHY (1 /e)].

Conjecture E.3. Let A be a partition inside an n x m board and e be an outer corner of A, then we
have: P(x; @) = [m],, and

P(x; A) = qP(x; A\e) + (xq™ — 1)P(x; A/e).
Appendix F. Another proof of Lemma 5.5

In this section we include the proof of (5.7) using g-binomials.

Proof (Proof of (5.7) in Lemma 5.5). We use Eq. (2.2) to rewrite both the LHS and RHS in terms of
g-rook numbers R;()). By g-manipulations, we have that (5.7) is equivalent to

i
man—r—i—1] _ . ne 3 man—r—j—T1|{i—rf 07
|: n—r—1 ]_q ¢ n—j—1 j—r|f D) D
j=r
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Now, to prove this g-binomial identity, we consider the following g-binomial identities:

i—r—1 i—r

by li—T1
1‘[(1—q"t)=2q<2>[ ) }(—1)’%",
k=0 k=0
mrtog S m—r+k—1
- _ - =k
,!]0 (1—gk) g[ k ]
We have that
i—r—1 m—r—1 1
[Ta-d@ [[ —=5= =
Pl g (1—a%q°0)
< gnlior ~[m—r+k—1
or - j—r a(—r)4j—1 - - bk ¢k
Zq(z)[j_r}(—l)’ U [ ] ]q t
j—r=0 k=0

Taking the coefficient at t""~! at the RHS we get

o j—r | — — — ] — . . . . .
§aen [1=r] [t g e

j—r=0

i , . .
_ Z(_l)j—r i—rfIm—r+n—j—1 q(2)+bn-i-a-n),
- i-r n—j

Setting a = b = r — i and denoting by [t‘]@P the coefficient of t¢ at P, we have that

m—i+n—r—1 _[t,,,,,l]@mﬁl 1
n—r—1 B (1—g*t)

k=0
i—-r—1 m—r—1 1
=" Me [Ta-d@ ) [ —x
0 g (1—4a%(g™'t)
i—r . .
_pen—r—1 Gi—r||m—-r+n—j—T| ¢ in_j-1)m—j-1,_qy-r (r—i—r)g—r
=t ]ZqZ[j_r n—j—1 q " (=1)Y"q t

j—r=0

i
Ny | m e = 10 =i r—iXn—i—1)
2V [f—r][ n—j—1 }‘“ ’

as desired. O
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