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We resolve two open problems on Kronecker coefficients 
g(λ, μ, ν) of the symmetric group. First, we prove that for 
partitions λ, μ, ν with fixed Durfee square size, the Kronecker 
coefficients grow at most polynomially. Second, we show 
that the maximal Kronecker coefficients g(λ, λ, λ) for self-
conjugate partitions λ grow superexponentially. We also give 
applications to explicit special cases.
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1. Introduction

1.1. Foreword

How do you approach a massive open problem with countless cases to consider? You 
start from the beginning, of course, trying to resolve either the most natural, the most 
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interesting or the simplest yet out of reach special cases. For example, when looking at the 
billions and billions of stars contemplating the immense challenge of celestial cartography, 
you start with the closest (Alpha Centauri and Barnard’s Star), the brightest (Sirius and 
Canopus), or the most useful (Polaris aka North Star), but not with the galaxy far, far 
away.

The same principle applies to the Kronecker coefficients g(λ, μ, ν). Introduced by 
Murnaghan in 1938, they remain among the great mysteries of Algebraic Combinatorics. 
In part due to the fact that they lack a combinatorial interpretation, even the most basic 
questions present seemingly insurmountable challenges, while even the simplest examples 
are already hard to compute. Yet, this should not prevent us from pursuing both.

In our previous paper [24], we briefly surveyed the dispiriting state of art on Kro-
necker bounds, and identified two promising problems which are both interesting, simple 
looking, yet not immediately approachable with the tools previously used:

(1) give upper bounds for g(λ, μ, ν), where λ, μ, ν have a small Durfee square,
(2) give lower bounds for the maximal g(λ, λ, λ), where λ is symmetric: λ = λ′.

We largely resolve both problems, getting estimates up to a constant in the leading 
terms of the asymptotics. For the small Durfee square problem (1), we employ symmetric 
functions technology and obtain new estimates on the Littlewood–Richardson coefficients
which are of independent interest. For the fully symmetric Kronecker problem (2), we 
use a combinatorial argument based on the monotonicity property. We then use this 
argument to derive the first nontrivial lower bounds in several explicit examples.

1.2. Small Durfee square problem

For a partition λ � n, denote by �(λ) the length of λ, i.e. the number of rows in 
the Young diagram λ. Denote by d(λ) the Durfee square size, i.e. the size of the largest 
square which fits λ. Clearly, d(λ) ≤ �(λ).

The Kronecker coefficients g(λ, μ, ν) ∈ N are defined as the structure constants in the 
ring of characters of Sn:

χμ · χν =
∑
λ�n

g(λ, μ, ν)χλ , where μ, ν � n

and χα denotes the character of the irreducible representation (Specht module) indexed 
by the partition α. Note that g(λ, μ, ν) are symmetric with respect to permutations of 
three partitions.

It is known that g(λ, μ, ν) ≤ min
{

fλ, fμ, fν
}

, where fα := χα(1) is the dimension of 
the Specht module, see [26], but there are no other general bounds. On the other hand, 
for partitions with few rows, we have the following general upper bound:

Theorem 1.1 ([24]). Let λ, μ, ν � n, such that �(λ) = �, �(μ) = m, and �(ν) = r. Then:

g(λ, μ, ν) ≤
(

1 + �mr

n

)n(
1 + n

�mr

)�mr

.
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In particular, we have:

Corollary 1.2 (see §2.5). Let λ, μ, ν � n, such that �(λ), �(μ), �(ν) ≤ k. Then:

g(λ, μ, ν) ≤ nk3
. (1.1)

In other words, for partitions with fixed number of rows, the Kronecker coefficients 
are bounded polynomially.1 Recently, we conjectured that the same holds for partitions 
with fixed Durfee square size.

Conjecture 1.3 ([24, Rem. 5.10]). Fix k ≥ 1 and let λ, μ, ν � n, such that d(λ), d(μ), d(ν)
≤ k. Then g(λ, μ, ν) ≤ nc for some constant c = c(k) > 0.

The contingency arrays estimates we used in the proof of Theorem 1.1 are inapplicable 
in this case. Using symmetric functions techniques, here we prove the conjecture with 
an explicit constant c(k).

Theorem 1.4. Let n, k ≥ 1, and let λ, μ, ν � n, such that d(λ), d(μ), d(ν) ≤ k. Then:

g(λ, μ, ν) ≤ 1
k8k228k3 n4k3+13k2+31k. (1.2)

Note that the upper bound (1.2) is slightly weaker than the upper bound in (1.1), but 
only by constant 4 is the leading term. In fact, Corollary 1.2 is crucial for the proof of 
Theorem 1.4.

To appreciate the power of the theorem, compare it with the previous bounds. For 
example, when λ = (m + 1, 1m) is a hook of size n = 2m + 1, so d(λ) = 1, the dimension 
bound is exponential:

g(λ, λ, λ) ≤ fλ =
(2m

m

)
= Θ

(
2n/

√
n

)
.

By contrast, Theorem 1.4 gives a polynomial upper bound: g(λ, λ, λ) ≤ n40. In fact, it 
is known that g(λ, λ, λ) = 1 in this special case, see e.g. [29,32].

Similarly, in [24, Prop. 5.9], we used contingency tables and an ad hoc orbit counting 
argument to give a weakly exponential upper bound for the case when ν is a hook and 
λ, μ are double hooks, i.e. d(λ), d(μ) ≤ 2:

g(λ, μ, ν) ≤ n450p(n)400 = eΘ(
√

n),

where λ, μ, ν � n and p(n) is the number of partitions of n. By contrast, Theorem 1.4
gives a polynomial upper bound: g(λ, μ, ν) ≤ n146/296.2

1 Let us mention [22] which appeared after the first version of this paper, and improves some of our 
constants from [23,24] in some special cases of partitions with bounded number of rows.

2 The constant 146 is likely very far from optimal, and we make no effort to improve it as we are mostly 
interested in the asymptotic estimates.
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In the opposite direction, let us show that the bound in (1.1) is tight up to the lower 
order terms in the following strong sense. Let

A(n, k) := max
{

g(λ, μ, ν) : λ, μ, ν � n and �(λ), �(μ), �(ν) ≤ k
}

.

Theorem 1.5. For all k ≥ 1, there is a constant Ck > 0, such that

A(n, k) ≥ Cknk3−3k2−3k+3 for all n ≥ 1. (1.3)

In other words, the theorem says that for all n, there exist partitions λ, μ, ν � n, such 
that �(λ), �(μ), �(ν) ≤ k and we have g(λ, μ, ν) ≥ right-hand side of (1.3). In particular, 
the theorem implies that the upper bound (1.2) is tight up to a constant 4 in the leading 
term, cf. §6.6.

1.3. Symmetric Kronecker problem3

Let

K(n) := max
{

g(λ, μ, ν) : λ, μ, ν � n
}

denote the maximal Kronecker coefficient. It was shown by Stanley [35, slide 44, item 
(d)], that4

K(n) =
√

n! e−O(
√

n). (1.4)

Later,5 it was shown in [26] that the maximum can only occur when all three partitions 
have Vershik–Kerov–Logan–Shepp shape, and their limit curve is of course self-conjugate, 
see e.g. [31]. It is thus natural to ask whether the following maximal Kronecker coefficients 
for the symmetric and fully symmetric problem have the same asymptotics as K(n):

Ks(n) := max
{

g(λ, λ, λ) : λ � n
}

, and

Kfs(n) := max
{

g(λ, λ, λ) : λ � n, λ = λ′}.

Clearly, Kfs(n) ≤ Ks(n) ≤ K(n).
We showed in [24, §6.3], that Ks(n) = eΩ(n2/3) using an explicit construction and 

the asymptotics of plane partitions.6 Although no nontrivial lower bound was known for 
Kfs(n), we (somewhat audaciously) stated:

3 Here “symmetric” refers to the problem, not the coefficient. The symmetric Kronecker coefficients are 
defined in [7], and not studied in this paper.

4 Here and throughout the paper we use f = ge−O(nα) to mean that there is a universal constant c > 0
such that f ≥ ge−cnα

for all n ≥ 1. The notation f = g − O(nα) is defined analogously.
5 Formula (1.4) is stated in [35] in a different, slightly weaker form: log K(n) ∼ 1

2 n log n. However, the 
one-sentence proof Stanley gives in fact implies (1.4) as stated. We expound on the connection in [26, §3.2].

6 The statement of Theorem 1.3 in [24] has an error: we prove the lower bound for Ks(n), not Kfs(n) as 
claimed in the theorem.
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Conjecture 1.6 ([24, Conj. 6.7]).

log Kfs(n) = 1
2n log n − O(n).

Here we give a surprisingly simple proof of a superexponential lower bound, resolving 
the problem up to a constant factor in the logarithm.

Theorem 1.7. For all ε > 0, we have:

log Kfs(n) ≥ 1
(16 + ε) n log n − O(n).

1.4. Explicit constructions

A key problem we identified in [24] is an explicit construction of partitions λ, μ, ν � n

with large g(λ, μ, ν). Here by explicit construction we mean an algorithm which outputs 
the triple (λ, μ, ν) in poly(n) time. As we mentioned above, in [24, §6.2] we gave an 
explicit construction of λ � n, such that �(λ) = Θ(n1/3) and g(λ, λ, λ) = eΩ(n2/3).

In the symmetric case of Kronecker coefficients g(λ, λ, λ) with λ = λ′, until now very 
little was known. It was shown in [5], that g(λ, λ, λ) ≥ 1 for all λ = λ′. In connection 
with the Saxl conjecture, the staircase shape ρk = (k − 1, . . . , 2, 1) �

(
k
2
)

is especially 
important, see [14,16,25]. Unfortunately, the best lower and upper bounds in this case 
remain

1 ≤ g
(
ρk, ρk, ρk

)
≤ fρk =

√
n! e−O(n). (1.5)

While we conjecture the asymptotics on the right is the correct estimate, we are 
nowhere close to proving this claim (cf. §6.8). However, we are able to obtain lower 
bounds for the other two shapes considered in [25] in connection with the Saxl conjecture.

Theorem 1.8. Let r ≥ 1, k = 22r+1, n = k2 and let δk := (kk) � n be the square shape. 
Then:

g
(
δk, δk, δk

)
≥ eΩ(n1/4).

Similarly, let r ≥ 1, k = 22r − 1, n = 3k2 + 1, and let

τk :=
(
3k − 1, 3k − 3, . . . , k + 3, (k + 1)2, (k − 1)2, . . . , 22, 12)

� n

be the caret shape. Then:

g
(
τk, τk, τk

)
≥ eΩ(n1/4).
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Although both lower bounds are rather weak compared to what we believe to be the 
correct asymptotics (see §6.7), these are the first nontrivial bounds we obtain in this 
case. Note that they are weaker than the bound g(λ, λ, λ) ≥ eΩ(n2/3) from our earlier 
explicit construction.

1.5. Structure of the paper

We start with a brief Section 2 with definitions and some background. In the next 
Section 3 we give estimates for the Kostka and Littlewood–Richardson coefficients. We 
then proceed to obtain bounds on the Kronecker coefficients and prove Theorems 1.4
and 1.5 in Section 4. We then prove Theorem 1.7 and give explicit constructions (Theo-
rem 1.8) in Section 5. In Section 6, we conclude with final remarks, conjectures and open 
problems.

2. Definitions and basic results

We assume the reader is familiar with the notation and standard results in the liter-
ature, see e.g. [17] and [34, §7]. In this section we recall several useful basic results to 
help the reader navigate through the paper.

2.1. Partitions

Let λ = (λ1, λ2, . . . , λ�) be a partition of size n := |λ| = λ1 + λ2 + . . . + λ�, where 
λ1 ≥ λ2 ≥ . . . ≥ λ� ≥ 1. We write λ � n in this case. As in the introduction, let �(λ) := �

be the length of λ, and let d(λ) = max{k : λk ≥ k} denote the Durfee square size.
Denote by p(n) the number of partitions λ � n. Let λ′ denote the conjugate partition

of λ. Let λ + μ denote the sum of partitions: (λ1 + μ1, λ2 + μ2, . . .). Similarly, let λ ∪ μ

denote the union of partitions defined as λ ∪μ := (λ′ +μ′)′. We write μ ⊆ λ if μi ≤ λi for 
all i ≥ 1. The skew shape λ/μ is the difference of two straight shapes (Young diagrams).

We use (ab) = (a, . . . , a), b times, to denote the rectangular shape, and ρ� = (� −
1, . . . , 2, 1) denotes the staircase shape. Other special partitions include the hooks shape
(k, 1n−k) and the two-row shape (n − k, k).

2.2. Basic inequalities

Throughout the paper we will use several basic inequalities allowing us to reach the 
polynomial bounds. By AM–GM we will refer to the Arithmetic vs Geometric mean 
inequality

∑m
i=1 xi

m
≥

(
m∏

xi

)1/m
i=1
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for nonnegative real numbers xi. In particular, applying this with xi = N + 1 − i gives

k!
(

N

k

)
=

k∏
i=1

(N + 1 − i) ≤
(∑k

I=1 N + 1 − i

k

)k

=
(

N − k − 1
2

)k

(2.1)

We will also use the fact that 
(
1 + x

n

)n is an increasing sequence in n with limit ex.
We will also use the log-concavity of binomial coefficients, namely

(
x

k

)2

≥
(

x − 1
k

)(
x + 1

k

)
≥ · · · ≥

(
x − r

k

)(
x + r

k

)
. (2.2)

2.3. Partition inequalities

We draw partitions as Young diagrams in the English notation. For example, we use

for λ = (4, 3, 1). We will use several bounds on the number of partitions which can be 
easily seen from this graphical representation.

The Young diagram of a partition can be determined by its boundary, which is a 
North-East monotone lattice path. If the partition has length k and at most n boxes, 
then, after removing its first column, it fits in an k × (n −k) rectangle and we can bound 
it by the number of lattice paths as

#{λ � n : �(λ) = k} ≤
(

n

k

)
. (2.3)

If λ � n and �(λ) ≤ k, then the number of partitions can be bounded by the (unsorted) 
number of weak compositions of n into k parts, given by 

(
n+k−1

k−1
)

and so

#{λ � n : �(λ) ≤ k} ≤
(

n + k − 1
k − 1

)
= O(nk−1), (2.4)

where the last equality holds when k is fixed and n → ∞.
For a partition γ ⊂ λ with �(λ) = k and λ � n, then γ can be viewed as a lattice path 

inside the k × (n − k + 1) rectangle bounding λ. This gives:

#{γ : γ ⊆ λ} ≤
(

n − k + 1
k

)
.

For λ � n and d(λ) ≤ k, we have then:

#{γ : γ ⊆ λ} ≤ (n/2)2k. (2.5)
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This follows by considering γ as a NE lattice path from the lower left corner of λ at 
(0, −�(λ)), through a point on the diagonal (i, −i) with i ∈ [1, k], to (λ1, 0). For �(λ) = �, 
then λ1 ≤ n + 1 − �, and the total lattice path count gives

k∑
i=1

(
�

i

)(
n + 1 − �

i

)
≤

k∑
i=1

(
�n/2


i

)(
�n/2�

i

)
≤

k∑
i=1

(n/2)2i

(i!)2 ≤ (n/2)2k.

Here the first inequality follows from (2.2), and the last inequality is easily seen by 
induction on k.

2.4. Kronecker coefficients

Recall an equivalent definition of Kronecker coefficients:

g(λ, μ, ν) = 1
n!

∑
σ∈Sn

χλ(σ)χμ(σ)χν(σ).

From here it is easy to see both the symmetry and the conjugation properties:

g(λ, μ, ν) = g(μ, λ, ν) = g(λ, ν, μ) = . . . and g(λ, μ, ν) = g(λ′, μ′, ν). (2.6)

We will use the following lesser known monotonicity property, which is an extension of 
the semigroup property, see [11].

Theorem 2.1 ([18]). Suppose α, β, γ � m, such that g(α, β, γ) > 0. Then for all λ, μ, ν �
m, we have g(λ + α, μ + β, ν + γ) ≥ g(λ, μ, ν).

2.5. Dimension bound

As in the introduction, denote fλ = χλ(1), which is also the number of Standard 
Young Tableaux of shape λ. We make frequent use of the dimension bound g(λ, μ, ν) ≤
fλ ≤

√
n!, see e.g. [26]. For example, we have:

Proof of Corollary 1.2. If k3 ≥ n, then the result follows from the dimension bound: 
g(λ, μ, ν) ≤ n! ≤ nk3 . If k3 ≤ n and k ≥ 2, it follows from (1.1), that

g(λ, μ, ν) ≤
(

1 + k3

n

)n (
1 + n

k3

)k3

≤ nk3
.

The last inequality is a consequence of the fact that if 2e ≤ a ≤ b then

(
1 + a

b

)b
(

1 + b

a

)a

≤ ea

(
1 + b

a

)a

≤ ba.

Finally, if k = 1, then all three partitions are hooks, and the result follows from [32]. �
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2.6. Symmetric functions

Recall the homogeneous symmetric functions hλ, elementary symmetric functions eλ, 
monomial symmetric functions mλ and Schur functions sλ. The Kostka numbers can be 
defined as

hα =
∑
λ�n

Kλ,αsλ for all α � n. (2.7)

More generally, for skew shapes λ/μ we have skew Kostka numbers

sμ · hα =
∑

λ�|μ|+|α|
Kλ/μ,αsλ.

The Kronecker coefficients can be equivalently defined as follows:

sλ[xy] :=
∑

μ,ν�n

g(λ, μ, ν)sμ(x)sν(y) for all λ � n, (2.8)

where [xy] := (x1y1, x1y2, . . . , xiyj , . . .) denote all pairwise products of variables. The 
last identity can be written as the tripple Cauchy identity given by

∑
λ,μ,ν

g(λ, μ, ν)sλ(x)sμ(y)sν(z) =
∏
i,j,k

1
1 − xiyjzk

. (2.9)

We will also need Littlewood’s identity [15]:

sλ ∗ (sαsβ) =
∑

θ�|α|,η�|β|
cλ

θη

(
sα ∗ sθ

)(
sβ ∗ sη

)
(2.10)

where cλ
μν denote the Littlewood–Richardson coefficients, and “∗” denotes the Kronecker 

product of symmetric functions:

sμ · sν =
∑

λ�|μ|+|ν|
cλ

μνsλ and sμ ∗ sν =
∑
λ�n

g(λ, μ, ν)sλ , for all μ, ν � n.

3. Bounds on Kostka numbers and Littlewood–Richardson coefficients

In this section, we obtain bounds on the Littlewood–Richardson coefficients in terms 
of Durfee square size of partitions. We begin with the skew Kostka numbers:

Lemma 3.1. Let λ/μ be a skew shape, |λ/μ| = m, and let α � m. Suppose d(λ) ≤ k and 
�(α) ≤ r. Then:

Kλ/μ,α ≤ 22r

(
m + k

)r(k−1)

.

r 2
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Proof. Recall the Pieri rule for sμ · ha. We have:

Kλ/μ,α = #
{

μ ⊂ λ(1) ⊂ . . . ⊂ λ(r) = λ
}

,

where the set has sequences of partitions λ(1), . . . , λ(r), such that λ(i)/λ(i−1) is a hori-
zontal strip of size αi, which can be zero if �(α) < r. Such a strip can have at most k
rows of total size k, which are below the diagonal in our English notation, and then at 
most k rows of total size at most αi. The first number is bounded by 2k and the second 
number is bounded by the number of weak compositions of αi into k parts, i.e. 

(
αi+k−1

k−1
)
.

Overall, we have:

Kλ/μ,α ≤ 2rk
r∏

i=1

(
αi + k − 1

k − 1

)
≤ 2rk

((k − 1)!)r

r∏
i=1

[(αi + 1) · · · (αi + k − 1)] .

Applying the AM–GM inequality as (2.1) to each product term at the end we get the 
bound 

(
αi + k

2
)r. Another application of AM–GM gives

r∏
i=1

(
αi + k

2

)
≤

(
rk/2 +

∑
i αi

r

)r

=
(

m

r
+ k

2

)r(k−1)

for the big product. Since 2k−2 ≤ (k − 1)!, the first factor is bounded by 22r. Putting it 
all together we obtain the result. �
Lemma 3.2. Let λ � n, μ � n − m and ν � m, such that �(λ) ≤ k. Then:

cλ
μν ≤

(
2m

k
+ k + 1

3

)(k
2)

Proof. Recall that cλ
μν is equal to the number of Littlewood–Richardson tableaux of 

shape λ/μ and type ν. These are characterized by having only 1’s in the first row, only 
1’s and 2’s in the second row, etc. Thus, we have:

cλ
μν ≤

(
λ2−μ2+1

1
)(

λ3−μ3+2
2

)
· · ·

(
λk−μk+k−1

k−1
)
.

By the AM–GM applied to each product term in the numerators of the binomial coeffi-
cients, the right-hand side is bounded by

1∏k−1
i=1 i!

( ∑k
i=2(λi−μi)(i−1)+(k+1

3 )
(k

2)

)(k
2)

≤
(

2m

k
+ k + 1

3

)(k
2)

,

which completes the proof. �
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Remark 3.3. Lemma 3.2 is slightly sharper than the upper bound in Theorem 4.14 of [26]. 
Both upper bounds are the same asymptotically when the length k is fixed and n → ∞, 
and match the lower bound in the same theorem. The proof of the lemma is concise and 
very different from that in [26], so we included it for completeness.

Lemma 3.4. Let λ � n such that d(λ) ≤ k. Then for every μ, ν ⊆ λ with |μ| + |ν| = n, 
we have:

cλ
μν ≤

(n

k
+ k

)2k2

.

Proof. Let ν = α∪β′, where α = (ν1, . . . , νk) and β′ = (νk+1, . . .). Since d(ν) ≤ d(λ) ≤ k, 
we have �(β) ≤ k. Then we have:

cλ
μν = 〈sλ, sμsν〉 ≤ 〈sλ, sμhαeβ〉.

By definition, we have

sμhα =
∑

γ

Kγ/μ,α sγ

Multiplying by eβ , expanding in the Schur basis and extracting the sλ term, we get:

〈sλ, sμhαeβ〉 =
∑

γ

Kγ/μ,αKλ′/γ′,β .

Applying the bounds from Lemma 3.1 and using the fact that �(α), �(β) ≤ k, we obtain

cλ
μν ≤

∑
γ�m

24k

(
m

k
+ k

2

)k(k−1) (
n − m

k
+ k

2

)k(k−1)

, where m := |α|.

Observe that the number of partitions γ ⊂ λ is bounded above by (n/2)2k from 
inequality (2.5). Note also that, by the AM–GM inequality, we have:

(
m

k
+ k

2

) (
n − m

k
+ k

2

)
≤ 1

4

(n

k
+ k

)2
.

Putting everything together, after some cancellations we obtain:

cλ
μν ≤ (n/2)2k 24k

4k

(n

k
+ k

)2k(k−1)
≤

(n

k
+ k

)2k2

,

as desired. �
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4. Bounds on Kronecker coefficients

In this section we prove Theorem 1.4 and Theorem 1.5, main results of the paper.

4.1. Upper bounds

We approach the problem gradually, starting from the case where two partitions have 
bounded number of rows (Lemma 4.2), then just one (Lemma 4.3), and then in full 
generality.

Before we proceed with those, we need to add a Lemma complementing the results 
in [24].

Lemma 4.1. Let λ, μ, ν � n and �(λ) ≤ a, �(μ) ≤ b, �(ν) ≤ c. Then g(λ, μ, ν′) ≤ 2abc.

Proof. From the triple Cauchy identity (2.9), applying the involution ω on the symmetric 
functions in z we get that ω(sν(z)) = sν′(z) on the left-hand side, so

∑
λ,μ,ν

g(λ, μ, ν′)sλ(x)sμ(y)sν(z) =
∏
i,j,k

(1 + xiyjzk).

Expanding both sides in monomials in x, y, z and taking the coefficient at xλyμzν on 
both sides we get

g(λ, μ, ν′) ≤ [xλyμzν ]
a,b,c∏

i,j,k=1

(1 + xiyjzk)

as only the variables x1, . . . , xa, y1, . . . , yb, z1, . . . , zc can appear. The right-hand side is 
the generating function of a × b × c binary arrays B, where for each coordinate (i, j, k)
we have a multiplicative weight (xiyjzk)Bijk . Thus, the coefficient on the right-hand side 
above is bounded by the total number of such binary arrays, which is 2abc. �
Lemma 4.2. Let λ, μ, ν � n, such that �(λ), �(μ) ≤ k and d(ν) ≤ k. Then

g(λ, μ, ν) ≤ 2k3
nk3+k2+3k.

Proof. Let ν = α ∪ β′, where α = (ν1, . . . , νk) and β′ = (νk+1, . . .). Again, since d(ν) ≤
d(λ) = k, we have �(β) ≤ k. Let m = |α|, so n − m = |β|

Since sαsβ = sν + · · · is a Schur positive sum containing sν , we have:

g(λ, μ, ν) = 〈sλ ∗ sν , sν〉 ≤
〈
sλ ∗ (sαsβ′), sμ

〉
. (4.1)

Applying Littlewood’s identity (2.10), we get:
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〈
sλ ∗ (sαsβ′), sμ

〉
=

∑
θ,η,ξ,γ

cλ
θηcμ

γξg(θ, α, γ)g(η, β′, ξ). (4.2)

Since cμ
γξ > 0 only if γ, ξ ⊂ μ, and similarly cλ

θ,η > 0 only if θ, η ⊂ λ, it follows that all 
partitions in the right-hand side above have length at most k.

We now apply previous results to estimate the right-hand side of (4.2). By Corol-
lary 1.2, we have:

g(θ, α, γ) ≤ mk3
.

For the term g(η, β′, ξ), note that we have �(η), �(ξ) ≤ k. Furthermore, if g(η, β′, ξ) �= 0, 
then by [28], we must have �(β′) ≤ k2. Since we also have �(β) = νk+1 ≤ k, we can apply 
Lemma 4.1 and see that g(η, β′, ξ) ≤ 2k3 .

Applying Lemma 3.2, we also have upper bounds for the Littlewood–Richardson 
coefficients involved. Indeed, denote by r := min{n − m, m}. Then for the Littlewood–
Richardson coefficients in (4.2), we have:

cλ
θη, cμ

γξ ≤
(

2r

k
+ k + 1

3

)(k
2)

.

Therefore, equations (4.1) and (4.2) give

g(λ, μ, ν) ≤
∑

θ,η,ξ,γ

(
2r

k
+ k + 1

3

)2(k
2)

2k3
mk3

The sum above is over θ, η ⊂ λ of sizes m, n − m, and over ξ, γ ⊂ μ of sizes 
m, n − m, respectively. The number of such pairs can be bound following (2.4) by (

m+k−1
k−1

)(
n−m+k−1

k−1
)

≤(2.2)
(

n/2+k−1
k−1

)2
will suffice. We conclude:

g(λ, μ, ν) ≤
(

n/2 + k − 1
k − 1

)4 (
2r

k
+ k + 1

3

)2(k
2)

2k3
mk3

≤ 2k3
nk3+k2+3k ≤ Ckn(k+1)3

,

as desired. �
Lemma 4.3. Let λ, μ, ν � n, such that d(μ), d(ν) ≤ k and �(λ) ≤ k. Then

g(λ, μ, ν) ≤ 1
k2k2 n2k3+ 9

2 k2+ 19
2 k .

Proof. As before, let μ = α ∪ β′, where α = (μ1, . . . , μk) and β = (μk+1, . . .)′. Let 
m = |α|, n − m = |β|, and let r := min{m, n − m}. Since sαsβ = sμ + · · · is a Schur 
positive sum containing sμ, we have:
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g(λ, μ, ν) = 〈sλ ∗ sμ, sν〉 ≤
〈
sλ ∗ (sαsβ′), sν

〉
. (4.3)

Applying Littlewood’s identity (2.10), we get

〈
sλ ∗ (sαsβ′), sν

〉
=

∑
θ,η,γ,ξ

cλ
θηcν

γξg(θ, α, γ)g(η, β′, ξ). (4.4)

We will bound the terms in the right-hand side of (4.4). For partitions θ, η such that 
cλ

θ,η > 0 we must have θ, η ⊂ λ, and so �(θ), �(η) ≤ k. By Lemma 3.2, we thus have:

cλ
θη ≤

(
2r

k
+ k + 1

3

)(k
2)

.

On the other hand, since we only select partitions γ, ξ, for which cν
γξ > 0, then we must 

have γ, ξ ⊂ ν, and so d(γ), d(ξ) ≤ k. By Lemma 3.4, we thus have:

cν
γξ ≤

(n

k
+ k

)2k2

.

For the Kronecker coefficients in the summation, by Lemma 4.2, we have:

g(θ, α, γ) ≤ 2k3
mk3+k2+3k.

Similarly, we have:

g(η, β′, ξ) = g(η, β, ξ′) ≤ 2k3
(n − m)k3+k2+3k.

Now, the summation in the right-hand side of (4.4), we bound the number of pairs 
of partitions θ, η following inequalities (2.3)and (2.2) by 

(
n/2+k−1

k−1
)2

, and the number of 
partitions γ, ξ by (n/2)2k from (2.5).

Combining (4.3), (4.4) and the upper bounds above, we conclude:

g(λ, μ, ν) ≤
(

n/2 + k − 1
k − 1

)2 (n

2

)4k

22k3
(n

k
+ k

)2k2 (
2r

k
+ k + 1

3

)(k
2)

× mk3+k2+3k(n − m)k3+k2+3k

≤ 1
k2k2 n2k3+2k2+6k+6k+2k2+(k

2) = 1
k2k2 n2k3+ 9

2 k2+ 23
2 k,

where the constant factors involving k are altogether bounded by k−2k2 . �
Proof of Theorem 1.4. We use the same setup as in the proofs of Lemma 4.3, where 
μ = α ∪ β′ and m = |α|. We have:
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g(λ, μ, ν) ≤
〈
sλ ∗ (sαsβ′), sν

〉
=

∑
θ,η,γ,ξ

cλ
θη cν

γξ g(θ, α, γ) g(η, β′, ξ).

Again, we must have d(θ), d(η), d(γ), d(ξ) ≤ k. Thus, we can apply the upper bounds 
on the Kronecker coefficients from Lemma 4.3, and on the Littlewood–Richardson co-
efficients from Lemma 3.4. Bounding the number of partitions θ, η, γ, ξ from (2.5) by 
(n/2)2k, we obtain

g(λ, μ, ν) ≤
∑

θ,η,γ,ξ

(n

k
+ k

)4k2 1
k4k2 m2k3+ 9

2 k2+ 23
2 k(n − m)2k3+ 9

2 k2+ 23
2 k

≤
(n

2

)8k 1
k4k2

(n

k
+ k

)4k2

m2k3+ 9
2 k2+ 23

2 k(n − m)2k3+ 9
2 k2+ 23

2 k

≤ 1
k8k2

(n

2

)8k (n

2

)4k3+9k2+23k

n4k2
= 1

k8k228k3 n4k3+13k2+31k,

which completes the proof. �
4.2. Proof of Theorem 1.5

Let n = ak. Combining (2.7) and (2.8), we have the following identity:

hak [xy] =
∑

λ�n,�(λ)≤k

Kλ,ak sλ[xy] =
∑

λ,μ,ν�n

Kλ,ak g(λ, μ, ν)sμ(x)sν(y).

Let x = (x1, . . . , xk) and y = (y1, . . . , yk), so all partitions in the above identity have 
lengths bounded by k. Compare the coefficients at mak (x) · mak (y) on both sides, where 
mα are monomial symmetric functions. We then have:

[xa
1 . . . xa

kya
1 . . . ya

k ]hak [xy] =
∑

λ,μ,ν�n

g(λ, μ, ν)Kλ,ak Kμ,ak Kν,ak . (4.5)

Consider the term on the left-hand side. We have that

ha[xy] =
∑
M

∏
i,j

(xiyj)Mij =
∑
M

xrow(M)ycol(M)

is the generating function for contingency tables M =
(
Mij

)
with respect to their row and 

column sums. Since hak = (ha)k, we conclude that the coefficients at xa
1 · · · xa

kya
1 · · · ya

k

are equal to the number of 3-dim contingency arrays A with all 2-dim marginals equal 
to a. We refer to [24] for precise definitions and further details.

Geometrically, these contingency arrays A are integer points in a three-way transporta-
tion polytope Tk(m) ⊂ Rk3 such that dim Tk(a) = (k3 − 3k). By the Ehrhart theory for 
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rational polytopes (see e.g. [3, §3.7]), the number of such points is given by a quasipoly-
nomial in a of degree (k3 −3k). Thus there exists a constant Gk > 0 (see also §6.4), such 
that

[
xa

1 . . . xa
kya

1 . . . ya
k

]
hak [xy] ≥ Gkak3−3k. (4.6)

On the other hand, in (4.5) we have Kλ,ak ≤ ak2−k by Lemma 3.1, and a similar 
bound for the other Kostka numbers. We conclude:

∑
λ,μ,ν∈Pk(n)

g(λ, μ, ν)Kλ,ak Kμ,ak Kν,ak ≤ a3k2−3k
∑

λ,μ,ν∈Pk(n)

g(λ, μ, ν)

≤
∣∣Pk(n)

∣∣3
a3k2−3k max

λ,μ,ν∈Pk(n)
g(λ, μ, ν) ≤ a3k2−3 max

λ,μ,ν∈Pk(n)
g(λ, μ, ν),

(4.7)

where Pk(n) =
{

λ � n : �(λ) ≤ k
}

, so that |Pk(n)| = O
(
nk−1)

. Comparing the inequali-
ties from (4.6) and (4.7), we obtain

max
λ,μ,ν∈Pk(n)

g(λ, μ, ν) ≥ Gkak3−3k−3k2+3,

as desired. �
5. Kronecker bounds via the monotonicity property

5.1. Bounds for the symmetric Kronecker problem

For all n, k ≥ 1, define

As(n, k) := max
{

g(λ, λ, λ) : λ � n, �(λ) ≤ k
}

, and

Bfs(n, k) := max
{

g(λ, λ, λ) : λ � n, λ = λ′, d(λ) ≤ k
}

.

Clearly, As(n, k) ≤ Ks(n) and Bfs(n, k) ≤ Kfs(n).

Lemma 5.1. For all n ≥ 1, we have:

Ks(3n) ≥ K(n) and As(3n, k) ≥ A(n, k). (5.1)

Proof. Let g(α, β, γ) = K(n), for some α, β, γ � n. Let λ := (α + β + γ) � 3n. By the 
symmetry property (2.6) and monotonicity property (Theorem 2.1), we have:

Ks(3n) ≥ g(λ, λ, λ) = g
(
α + β + γ, β + γ + α, γ + α + β

)
≥ max

{
g(α, β, γ), g(β + γ, γ + α, α + β)

}
{ }
≥ max g(α, β, γ), g(β, γ, α), g(γ, α, β) = K(n).



374 I. Pak, G. Panova / Journal of Algebra 629 (2023) 358–380
This proves the first inequality in (5.1). The second inequality follows verbatim the 
argument above and the fact that �(λ) = max{�(α), �(β), �(γ)}. �
Corollary 5.2. For all k ≥ 1, there is a constant Ck > 0, such that

As(n, k) ≥ Cknk3−3k2−3k+3 for all n ≥ 1. (5.2)

Proof. Combining Theorem 1.5 and Lemma 5.1, we obtain the result for 3|n. For gen-
eral n, note that g(λ + 1, μ + 1, ν + 1) ≥ g(λ, μ, ν), again by the monotonicity property. 
Thus, we have As(n + 1, k) ≥ As(n, k). This completes the proof. �
Lemma 5.3. For all n, k ≥ 1, we have:

Bfs(4n + k2, k) ≥ As(n, k). (5.3)

Proof. Let g(α, β, γ) ≥ 1, for some α, β, γ � n such that �(α), �(β), �(γ) ≤ k. Recall 
from the introduction that g

(
δk, δk, δk

)
≥ 1, where δk = (kk) is the square shape. By 

the repeated alternating application of the monotonicity property (Theorem 2.1) and 
symmetry/conjugation properties (2.6), we have the following long formula:

g
(
α, β, γ

)
≤ g

(
δk + α, δk + β, δk + γ

)
= g

(
δk ∪ α′, δk ∪ β′, δk + γ

)
≤ g

(
(δk + β) ∪ α′, (δk + γ) ∪ β′, δk + γ + α

)
= g

(
(δk + β) ∪ α′, (δk + β) ∪ γ′, δk ∪ (γ + α)′)

≤ g
(
(δk + β + γ) ∪ α′, (δk + β + α) ∪ γ′, (δk + β) ∪ (γ + α)′)

= g
(
(δk + α) ∪ (β + γ)′, (δk + γ) ∪ (β + α)′, (δk + β) ∪ (γ + α)′)

≤ g
(
(δk + α + β) ∪ (β + γ)′, (δk + γ + α)

∪ (β + α)′, (δk + β + γ) ∪ (γ + α)′).

See Fig. 1 for an illustration.
Now, let α = β = γ and suppose g(α, α, α) = As(n, k). From above,

g
(
α, α, α

)
≤ g

(
(δk + 2α) ∪ (2α)′, (δk + 2α) ∪ (2α)′, (δk + 2α) ∪ (2α)′) = g(μ, μ, μ),

where μ :=
(
δk + 2α

)
∪ (2α)′ � 4n + k2. Since μ = μ′ and d(μ) ≤ k, we conclude:

Bfs(4n + k2, k) ≥ g(μ, μ, μ) ≥ g(α, α, α) = As(n, k),

as desired. �

Corollary 5.4. For all k ≥ 1, there is a constant Dk > 0, such that

Bfs(n, k) ≥ Dknk3−18k2+102k−182 for all n ≥ 1. (5.4)



I. Pak, G. Panova / Journal of Algebra 629 (2023) 358–380 375
Fig. 1. Graphic rendering of the long formula in the proof of Lemma 5.3.

Proof. Combining Lemma 5.1 and Lemma 5.3, we have

Bfs(12n + k2, k) ≥ A(n, k). (5.5)

Now Theorem 1.5 implies the result for 12|(n − k2).
For general n, note that in the proof of Lemma 5.3, we can use

μ :=
(
δk+c + 2α

)
∪ (2α)′ � 4n + (k + c)2 for all c ≥ 1 and �(α) ≤ k.

We can also replace δk+c with a chopped symmetric square by removing a symmet-
ric partition of size t ∈ {0, 1, 3, 4, . . . , 10, 11, 14} from its bottom right corner. Since 
g(λ, λ, λ) ≥ 1 for all λ = λ′, see [5,25], we can then repeat the steps in the proof of 
Lemma 5.3 with the chopped square instead of the δk. This allows us to construct sym-
metric partitions μ of any size modulo 12, and note that c = 5 suffices.

We conclude that g(μ, μ, μ) ≥ A(n, k) for some μ � 12n + (k + c)2 − t with k ≤ d(μ) ≤
k + c. This implies that Bfs(n, k) ≥ A

(
�(n − k2)/12
, k − 5

)
, and the bound follows. �

Remark 5.5. A curious Conjecture 5.12 in [9], claims that

g
(
(λ + 1) ∪ 1, (μ + 1) ∪ 1, (ν + 1) ∪ 1

)
≥ g(λ, μ, ν) for all λ, μ, ν � n.

This would imply that Bfs(n + 2, k) ≥ Bfs(n, k) and improve the lower order terms 
in (5.4).
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Proof of Theorem 1.7. Fix ε > 0 and let k = (2 +ε)
√

n. Let us show that for sufficiently 
large n > N(ε), we have A(n, k) = K(n). We follow [26] in our presentation.

Recall that a sequence {λ} of partitions is called Plancherel if fλ =
√

n!e−O(
√

n). 
Suppose that g(λ, μ, ν) = K(n). By Stanley’s theorem (1.4) and the dimension bound, 
we have:

√
n!e−O(

√
n) = K(n) = g(λ, μ, ν) ≤ fλ ≤

√
n!

We conclude that all three sequences {λ}, {μ} and {ν} achieving the maximum g(λ, μ, ν)
are Plancherel. In fact, we can even fix two of these three sequences (see [26, Thm 1.4]).

Now, by the VKLS Theorem (see [26, Thm 1.3]), all three sequences must have VKLS 
shape. Without stating it explicitly, it follows from the definition that

�(λ), �(μ), �(ν) ≤ 2
√

n + O(n1/6) ≤ (2 + ε)
√

n = k,

for n large enough. Thus we have A(n, k) = K(n) in that case. By (5.5), we conclude:

Kfs(
(16+3ε)n

)
≥ Kfs(12n+k2) ≥ Bfs(12n+k2, k

)
≥ A(n, k) = K(n) =

√
n!e−O(

√
n),

for k = (2 + ε)
√

n as above and n large enough. Taking logs on both sides implies the 
result. �
5.2. Proof of Theorem 1.8

We now use the iterated conjugation trick in the proof of Lemma 5.3 to give the first 
nontrivial lower bound for g

(
δk, δk, δk

)
.

We start with [23, Thm 1.2], which gives for k = 2s2 that

g
(
(2s)2s, (2s)2s, k2)

≥ C22s(2s)−9/2 > 0

for some universal constant C > 0.004.
Observe that by conjugating two partitions we get

g
(
(2s)2s, (2s)2s, 2k

)
= g

(
(2s)2s, (2s)2s, k2)

> 0.

Let s := 2r. We can repeatedly apply the combination of monotonicity and conjugation, 
from 4m = k = 2s2, to get

g
(
(4m)4m, (4m)4m, (4m)4m

)
≥ g

(
(2m)4m, (2m)4m, (2m)4m

)
=

= g
(
(4m)2m, (4m)2m, (2m)4m

)
≥ g

(
(2m)2m, (2m)2m, (m)4m

)
≥

≥ . . . ≥ g
(
(2s)2s, (2s)2s, k2)

> C22s(2s)−9/2.

Since s =
√

2k =
√

2n1/4, we obtain the first part of Theorem 1.8.
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For the caret shape τk, note that

τk =
(
δk+1 + 2ρk

)
∪ 2ρk.

In notation of the proof of Lemma 5.3, let α := ρk and recall from (1.5) that g(α, α, α) >
0. From the long formula in the proof, we have:

g
(
τk, τk, τk

)
= g

(
(δk+1 + 2α) ∪ 2α, (δk+1 + 2α) ∪ 2α, (δk+1 + 2α) ∪ 2α

)
≥ max

{
g(α, α, α), g(δk+1, δk+1, δk+1)

}
.

Now the second part of Theorem 1.8 follows from the first part. �
6. Final remarks and open problems

6.1. The importance of Durfee square size in connection with the vanishing of Kro-
necker coefficients (i.e., whether they are nonzero), has long been understood in the 
literature. We refer to [5, §3] and [13,28] for some notable examples.

6.2. There are many special cases of partitions with small Durfee square size (at 
most three), where the Kronecker coefficients are computed exactly, see e.g. [10,8,30,37]. 
In all these cases the Kronecker coefficients are bounded by a constant. This is in sharp 
contrast with examples in [1,21] and our lower bound in Theorem 1.5, suggesting that 
being bounded is a small numbers phenomenon.

6.3. Recall Murnaghan’s stability property: the sequence (a0, a1, a2, . . .) defined as

ad = ad(λ, μ, ν) := g
(
λ + (d), μ + (d), ν + (d)

)
is increasing and bounded. This phenomenon was recently generalized by Stembridge

ad = ad(λ, μ, ν; α, β, γ) := g
(
λ + dα, μ + dβ, ν + dγ

)
for g(α, β, γ) = 1.

The nondecreasing of {ad} follows from the monotonicity property (Theorem 2.1), while 
boundedness was proved by Sam and Snowden [33].

It is known that ad are a quasi-polynomial in d [18], see also [1,19]. In view of Corol-
lary 1.2 and Theorem 1.5, it would be interesting to give a combinatorial description of 
the degree of these quasi-polynomials. Let us mention that ad ≥ d +1 for all g(α, β, γ) > 1
[36, Prop. 3.2].

Similarly, one can consider more general families of Kronecker coefficients

bd = bd(λ, μ, ν; α, β, γ; ζ, ξ, η) := g
(
(λ + dα) ∪ (dζ)′, (μ + dβ) ∪ (dξ)′, (ν + dγ) ∪ (dη)′),

where g(α, β, γ), g(ζ, ξ, η) ≥ 1. In view of Theorem 1.4, we conjecture that bd are again 
quasi-polynomial in d, for d large enough. In a special case when α = β = γ = ζ = ξ =
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η = 1, this is the hook stability introduced in [9]. Note that even characterizing the cases 
when these quasi-polynomials are nonzero is quite challenging (cf. [9, §6.2]).

A more general approach to stability for Lie groups can be found in [27].

6.4. One can give explicit lower bounds on the constants Ck in (1.3). For that, in 
notation of the proof of Theorem 1.5, we need to use the integral volume Gk of the 
three-way transportation polytopes Tk(1). These polytopes are highly symmetric, so the 
lower bounds are especially simple and can be found in [4], see also [2] for a survey. See 
also a recent explicit lower bound in [3, Ex. 2.6], on the (usual) volume of Tk(1). To 
put these bounds into context, recall the natural upper bound used in [24] in this case. 
The main result in [4] (and in greater generality in [2]), is that these upper bounds are 
asymptotically sharp.

6.5. For the uniform random partitions λ � n, we have �(λ) = Θ(
√

n log n) and 
d(λ) = Θ(

√
n), see e.g. [12] and references therein. This implies that the bounds in (1.1)

and (1.2) are useful only for partitions with relatively few rows and small Durfee square 
size, respectfully.

6.6. Define

B(n, k) := max
{

g(λ, μ, ν) : λ, μ, ν � n and d(λ), d(μ), d(ν) ≤ k
}

.

Comparing the bounds in Theorem 1.5 and Theorem 1.4, it would be natural to believe 
that the upper bound on B(n, k) in (1.2) is closer to the truth than the lower bound 
in (1.3).

Conjecture 6.1. There is a universal constant c > 0 such that

B(n, k) ≥ n4k3−ck2
for all n, k ≥ 1.

6.7. We believe that the Kronecker coefficients in Theorem 1.8 grow much faster than 
our lower bounds suggest. The following conjecture immediately implies Conjecture 1.6
improving upon Theorem 1.7.

Conjecture 6.2. We have:

g(ρk, ρk, ρk) =
√

n! e−O(n) where n =
(

k
2
)
, and

g(δ�, δ�, δ�) =
√

n! e−O(n) where n = �2.

6.8. Let n =
(

k
2
)
. Define

F(n) := max
{

g(ρk, ρk, λ) : λ � n and λ = λ′}.
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It would be interesting to find sharp lower bounds on F(n).
It was shown in [23, §4.2], that g(ρk, ρk, λ) = eΩ(

√
n) for two-row partitions λ =

(n/2, n/2), where n is even. For self-conjugate λ, it was only shown recently in [6, §5]
using modular representation theory, that the F(n) is unbounded.

Combined with the lower bound for Littlewood–Richardson coefficients given in [26, 
Thm 1.5], Theorem 5.11 in [6] implies that F(n) = eΩ(

√
n). This is nowhere close to 

Conjecture 6.2, but gives us a hope that there might be more tools to be discovered.

6.9. In [20], there is a tight asymptotic bound g
(
δ2s, δ2s, (n − k, k)

)
= Θ

(
2

√
2k/

k3/2)
in the case when k/n ∈ (0, 1/2). However, this bound cannot be applied when 

k = n/2 + o(n), so the bound from [23] is still the best known lower bound in this case.
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