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1. Introduction
1.1. Foreword

How do you approach a massive open problem with countless cases to consider? You
start from the beginning, of course, trying to resolve either the most natural, the most
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interesting or the simplest yet out of reach special cases. For example, when looking at the
billions and billions of stars contemplating the immense challenge of celestial cartography,
you start with the closest (Alpha Centauri and Barnard’s Star), the brightest (Sirius and
Canopus), or the most useful (Polaris aka North Star), but not with the galaxy far, far
away.

The same principle applies to the Kronecker coefficients g(\, pu,v). Introduced by
Murnaghan in 1938, they remain among the great mysteries of Algebraic Combinatorics.
In part due to the fact that they lack a combinatorial interpretation, even the most basic
questions present seemingly insurmountable challenges, while even the simplest examples
are already hard to compute. Yet, this should not prevent us from pursuing both.

In our previous paper [24], we briefly surveyed the dispiriting state of art on Kro-
necker bounds, and identified two promising problems which are both interesting, simple
looking, yet not immediately approachable with the tools previously used:

(1) give upper bounds for g(A, u,v), where A, i, v have a small Durfee square,

(2) give lower bounds for the maximal g(\, A\, \), where X is symmetric: A = X.

We largely resolve both problems, getting estimates up to a constant in the leading
terms of the asymptotics. For the small Durfee square problem (1), we employ symmetric
functions technology and obtain new estimates on the Littlewood—Richardson coefficients
which are of independent interest. For the fully symmetric Kronecker problem (2), we
use a combinatorial argument based on the monotonicity property. We then use this
argument to derive the first nontrivial lower bounds in several explicit examples.

1.2. Small Durfee square problem

For a partition A F n, denote by £(\) the length of A, i.e. the number of rows in
the Young diagram \. Denote by d(\) the Durfee square size, i.e. the size of the largest
square which fits . Clearly, d(A) < ¢(A).

The Kronecker coefficients g(\, u,v) € N are defined as the structure constants in the
ring of characters of S,,:

XXt =Y g\ mv)x, where pvbn
AFn

and x® denotes the character of the irreducible representation (Specht module) indexed
by the partition «. Note that g(\, u, ) are symmetric with respect to permutations of
three partitions.

It is known that g(\, #,v) < min{ f*, f#, f}, where f* := x*(1) is the dimension of
the Specht module, see [26], but there are no other general bounds. On the other hand,
for partitions with few rows, we have the following general upper bound:

Theorem 1.1 (/24]). Let A\, pi,v = n, such that £(A\) = ¢, €(p) = m, and (v) = r. Then:

n mr
) < <1+fm_f> <1+L) |
n Imr
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In particular, we have:

Corollary 1.2 (see §2.5). Let A\, u,v F n, such that £(N\),£(n), (v) < k. Then:

3

g\ p,v) < n*”. (1.1)

In other words, for partitions with fixed number of rows, the Kronecker coefficients
are bounded polynomially.! Recently, we conjectured that the same holds for partitions
with fixed Durfee square size.

Conjecture 1.3 (/2/, Rem. 5.10]). Fiz k > 1 and let \, p, v F n, such that d(X),d(w),d(v)
< k. Then g(\, p,v) < nc for some constant ¢ = c(k) > 0.

The contingency arrays estimates we used in the proof of Theorem 1.1 are inapplicable
in this case. Using symmetric functions techniques, here we prove the conjecture with
an explicit constant c(k).

Theorem 1.4. Let n,k > 1, and let A\, u,v b n, such that d(X\),d(u),d(v) < k. Then:

g\ p,v) < W Ak H13k 431k (1.2)
Note that the upper bound (1.2) is slightly weaker than the upper bound in (1.1), but
only by constant 4 is the leading term. In fact, Corollary 1.2 is crucial for the proof of
Theorem 1.4.
To appreciate the power of the theorem, compare it with the previous bounds. For
example, when A = (m+1,1™) is a hook of size n = 2m + 1, so d(A) = 1, the dimension
bound is exponential:

g < A= () = 0(2"/Vn).

By contrast, Theorem 1.4 gives a polynomial upper bound: g(A, A\, \) < n*°. In fact, it
is known that g(A, A, A) =1 in this special case, see e.g. [29,32].

Similarly, in [24, Prop. 5.9], we used contingency tables and an ad hoc orbit counting
argument to give a weakly exponential upper bound for the case when v is a hook and
A, 1 are double hooks, i.e. d(N),d(p) < 2:

g(A,,LL,l/) § n450p(n)400 = ee(ﬁ)7

where A\, u,v - n and p(n) is the number of partitions of n. By contrast, Theorem 1.4
gives a polynomial upper bound: g(\, u,v) < nl46/2% 2

! Let us mention [22] which appeared after the first version of this paper, and improves some of our
constants from [23,24] in some special cases of partitions with bounded number of rows.

2 The constant 146 is likely very far from optimal, and we make no effort to improve it as we are mostly
interested in the asymptotic estimates.
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In the opposite direction, let us show that the bound in (1.1) is tight up to the lower
order terms in the following strong sense. Let

A(n, k) := max {g(\, p,v) : A\,p,vEn and £(N),4(w),(v) < k}.

Theorem 1.5. For all k > 1, there is a constant Cy, > 0, such that
A(n, k) > Cpnk’—3K" =3k+3 for all n>1. (1.3)

In other words, the theorem says that for all n, there exist partitions A, u, v F n, such
that £(A), €(u), £(v) < k and we have g(A, u,v) > right-hand side of (1.3). In particular,
the theorem implies that the upper bound (1.2) is tight up to a constant 4 in the leading
term, cf. §6.6.

1.8. Symmetric Kronecker problem?

Let
K(n) := max {g()\,u,u) : /\,,u,yl—n}

denote the mazimal Kronecker coefficient. It was shown by Stanley [35, slide 44, item
(d)], that*

K(n) = Vnle OWm), (1.4)

Later,” it was shown in [26] that the maximum can only occur when all three partitions
have Vershik—Kerov—Logan—Shepp shape, and their limit curve is of course self-conjugate,
see e.g. [31]. It is thus natural to ask whether the following maximal Kronecker coefficients
for the symmetric and fully symmetric problem have the same asymptotics as K(n):

K*(n) := max {g(\,\,\) : Abn}, and
K*(n) == max {g(\,\,\) : AFn, A=)}

Clearly, K”*(n) < K*(n) < K(n).

We showed in [24, §6.3], that K*(n) = ) using an explicit construction and
the asymptotics of plane partitions.® Although no nontrivial lower bound was known for
K’(n), we (somewhat audaciously) stated:

3 Here “symmetric” refers to the problem, not the coefficient. The symmetric Kronecker coefficients are
defined in [7], and not studied in this paper.

4 Here and throughout the paper we use f = gefo("ﬂ) to mean that there is a universal constant ¢ > 0
such that f > ge °"" for all n > 1. The notation f = g — O(n®) is defined analogously.

5 Formula (1.4) is stated in [35] in a different, slightly weaker form: logK(n) ~ inlogn. However, the
one-sentence proof Stanley gives in fact implies (1.4) as stated. We expound on the connection in [26, §3.2].

6 The statement of Theorem 1.3 in [24] has an error: we prove the lower bound for K*(n), not K*(n) as
claimed in the theorem.
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Conjecture 1.6 (/2/, Conj. 6.7]).

log K**(n) = %nlogn —O(n).

Here we give a surprisingly simple proof of a superexponential lower bound, resolving
the problem up to a constant factor in the logarithm.

Theorem 1.7. For all € > 0, we have:

log K*(n) >

1

1.4. FEaxplicit constructions

A key problem we identified in [24] is an explicit construction of partitions A, u, v F n
with large g(\, p,v). Here by explicit construction we mean an algorithm which outputs
the triple (A, p,v) in poly(n) time. As we mentioned above, in [24, §6.2] we gave an
explicit construction of A k- n, such that £(\) = ©(n'/3) and g(A\,\,\) = ™)

In the symmetric case of Kronecker coefficients g(A, A\, \) with A = ), until now very
little was known. It was shown in [5], that g(A, A\, A\) > 1 for all A = X. In connection
with the Sazl conjecture, the staircase shape pr, = (k —1,...,2,1) F (g) is especially
important, see [14,16,25]. Unfortunately, the best lower and upper bounds in this case

remain
1< g(pk, pr> pi) < fP* = Vnle 0. (1.5)
While we conjecture the asymptotics on the right is the correct estimate, we are
nowhere close to proving this claim (cf. §6.8). However, we are able to obtain lower

bounds for the other two shapes considered in [25] in connection with the Saxl conjecture.

Theorem 1.8. Let r > 1, k = 22"+ n = k2 and let 6, := (k¥) - n be the square shape.
Then:

9(8k Ok, 0k) > 2,
Simalarly, let r > 1, k=22 —1, n=3k*>4+1, and let
=8k —1,3k—3,...,k+3,(k+1)% (k—1)>...,2%1*) Fn
be the caret shape. Then:

1/4
9 (7o, Ty i) > .
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Although both lower bounds are rather weak compared to what we believe to be the
correct asymptotics (see §6.7), these are the first nontrivial bounds we obtain in this
case. Note that they are weaker than the bound g(\ A, \) > 2" from our earlier
explicit construction.

1.5. Structure of the paper

We start with a brief Section 2 with definitions and some background. In the next
Section 3 we give estimates for the Kostka and Littlewood—Richardson coefficients. We
then proceed to obtain bounds on the Kronecker coefficients and prove Theorems 1.4
and 1.5 in Section 4. We then prove Theorem 1.7 and give explicit constructions (Theo-
rem 1.8) in Section 5. In Section 6, we conclude with final remarks, conjectures and open
problems.

2. Definitions and basic results

We assume the reader is familiar with the notation and standard results in the liter-
ature, see e.g. [17] and [34, §7]. In this section we recall several useful basic results to
help the reader navigate through the paper.

2.1. Partitions

Let A = (A1, Aa,..., \¢) be a partition of size n := |A| = A\ + A2 + ... + Ay, where
A1 > Xy > ... > A > 1. We write A F n in this case. As in the introduction, let £(\) := ¢
be the length of A, and let d(A\) = max{k : A\r >k} denote the Durfee square size.

Denote by p(n) the number of partitions A - n. Let A’ denote the conjugate partition
of A. Let A + u denote the sum of partitions: (A1 + p1, A2 + po, .. .). Similarly, let AU p
denote the union of partitions defined as A\Up := (N +p'). We write u C X if pu; < A; for
all i > 1. The skew shape A/p is the difference of two straight shapes (Young diagrams).

We use (a®) = (a,...,a), b times, to denote the rectangular shape, and p, = (£ —
1,...,2,1) denotes the staircase shape. Other special partitions include the hooks shape
(k,1"~*) and the two-row shape (n — k, k).

2.2. Basic inequalities
Throughout the paper we will use several basic inequalities allowing us to reach the

polynomial bounds. By AM—-GM we will refer to the Arithmetic vs Geometric mean
inequality

=1

m m 1/m
s (1)
m
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for nonnegative real numbers z;. In particular, applying this with z; = N + 1 — i gives
(Y —ﬁ(N—i—l ) < T N 41 k— g ' (2.1)
Ny = 11 i) < 2 = 5 .

We will also use the fact that (1 + %)n is an increasing sequence in n with limit e”.
We will also use the log-concavity of binomial coefficients, namely

2
T r—1\[/x+1 r—r\[x+r
> > s > . .
(k;)(k)(k) (k‘)<k> 22
2.8. Partition inequalities

We draw partitions as Young diagrams in the English notation. For example, we use

for A = (4,3,1). We will use several bounds on the number of partitions which can be
easily seen from this graphical representation.

The Young diagram of a partition can be determined by its boundary, which is a
North-East monotone lattice path. If the partition has length k& and at most n boxes,
then, after removing its first column, it fits in an k x (n — k) rectangle and we can bound
it by the number of lattice paths as

#NFn LN =k < (Z) (2.3)

If A\F n and ¢()\) < k, then the number of partitions can be bounded by the (unsorted)
n+k—1

1 ) and so

number of weak compositions of n into k parts, given by (

#{AFn )<k} < <”Zf;1) = O(n" 1), (2.4)

where the last equality holds when & is fixed and n — oo.
For a partition v C A with £(A\) = k and A F n, then « can be viewed as a lattice path
inside the k x (n — k + 1) rectangle bounding A. This gives:

#{y v S A} < <n_:+1)-

For A+ n and d(\) < k, we have then:

#{v 7S A} < (/2% (2.5)
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This follows by considering v as a NE lattice path from the lower left corner of A at
(0, —£(\)), through a point on the diagonal (i, —i) with 7 € [1, k], to (A1,0). For £(\) = ¢,
then \;y <n+1—/, and the total lattice path count gives

k

Z@(H;—e)Sg(mlgzj)(m) Ek; 2 _

i=1

Here the first inequality follows from (2.2), and the last inequality is easily seen by
induction on k.

2.4. Kronecker coefficients

Recall an equivalent definition of Kronecker coefficients:

9\ ) Zx X" (o).

' oE€Sy
From here it is easy to see both the symmetry and the conjugation properties:
g\ wv) =g(pAv) =g\ v,p)=... and g\ pv) =g\, p'v). (26)

We will use the following lesser known monotonicity property, which is an extension of
the semigroup property, see [11].

Theorem 2.1 ([18]). Suppose a, 8,7 = m, such that g(«, 3,7v) > 0. Then for all A\, u,v
m, we have g(A+a, p+ B,v +7) > g(\, i, v).

2.5. Dimension bound
As in the introduction, denote f* = x*(1), which is also the number of Standard
Young Tableaux of shape A. We make frequent use of the dimension bound g(A, p,v) <

< V/nl, see e.g. [26]. For example, we have:

Proof of Corollary 1.2. If k> > n, then the result follows from the dimension bound:
g\ v) <nl < nk’ IF k3 < nand k > 2, it follows from (1.1), that

n k3
g\ uv) < (1 + k—;) (1 + 2‘—3) < nk.

The last inequality is a consequence of the fact that if 2e < a < b then

(1+%)b(1+2>a<ea <1+§)a<ba.

Finally, if £ = 1, then all three partitions are hooks, and the result follows from [32]. O
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2.6. Symmetric functions

Recall the homogeneous symmetric functions hy, elementary symmetric functions ey,
monomial symmetric functions my and Schur functions sy. The Kostka numbers can be
defined as

hy = ZK)\’QS)\ forall ok n. (2.7)
AFn

More generally, for skew shapes A\/u we have skew Kostka numbers

Su~ha = E KA/#VQS)\.
A lpl+lal

The Kronecker coefficients can be equivalently defined as follows:

sxlzy] = Z g\, 1, v)s,(x)s,(y) forall Ak n, (2.8)
w,vkEn
where [zy] = (z1y1, 212, ..., 2y}, ...) denote all pairwise products of variables. The

last identity can be written as the tripple Cauchy identity given by

1
Z 9 v)sx(@)su(y)su(z) = H % (2.9)
A,V N

We will also need Littlewood’s identity [15]:

Sx * (sasp) = Z cg)\n (sa * 39) (55 * Sn) (2.10)
OF|a,nk| 8]

where c;\“, denote the Littlewood—Richardson coefficients, and “+” denotes the Kronecker
product of symmetric functions:

Su Sy = Z cl);,js,\ and s, x5, = Zg()\,,u,l/)s,\, for all p,vt n.
A p]+v| AFn

3. Bounds on Kostka numbers and Littlewood—Richardson coefficients

In this section, we obtain bounds on the Littlewood—Richardson coefficients in terms
of Durfee square size of partitions. We begin with the skew Kostka numbers:

Lemma 3.1. Let \/p be a skew shape, |\/u| = m, and let o m. Suppose d(\) < k and
) <r. Then:

r(k—1)
F(m k
Kyjpo < 2° <7+§> )
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Proof. Recall the Pieri rule for s, - hq. We have:
Kyjpoa = #{pc XV oA =2},

where the set has sequences of partitions AV, ... A" such that )\(i)/)\(i_l) is a hori-
zontal strip of size «;, which can be zero if £(a) < r. Such a strip can have at most k
rows of total size k, which are below the diagonal in our English notation, and then at
most k rows of total size at most a;. The first number is bounded by 2* and the second

a,;+k71)

number is bounded by the number of weak compositions of «; into k parts, i.e. ( 1

Overall, we have:

i+k—1
];()\/M7 2rk H <a ) r H az+1 Oél+k*1)}
1=1

Applying the AM-GM inequality as (2.1) to each product term at the end we get the
bound (ai + %)T Another application of AM—-GM gives

T . T 'f‘(k—l)
H(aiﬂ) < (M) _ (@J)
Py 2 r T 2

for the big product. Since 2¥=2 < (k — 1)!, the first factor is bounded by 22". Putting it
all together we obtain the result. 0O

Lemma 3.2. Let A+ n, utn—m and v+ m, such that ¢(\) < k. Then:

=\ k 3

Proof. Recall that cf;l, is equal to the number of Littlewood-Richardson tableaux of
shape \/u and type v. These are characterized by having only 1’s in the first row, only
1’s and 2’s in the second row, etc. Thus, we have:

I A e us B Gt}

By the AM—GM applied to each product term in the numerators of the binomial coeffi-
cients, the right-hand side is bounded by

Hk1112| (z§_2<m—ué<)i—1>+(k§1))(5) . (2_m . w>(’s)

k 3
which completes the proof. O
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Remark 3.3. Lemma 3.2 is slightly sharper than the upper bound in Theorem 4.14 of [26].
Both upper bounds are the same asymptotically when the length k is fixed and n — oo,
and match the lower bound in the same theorem. The proof of the lemma is concise and
very different from that in [26], so we included it for completeness.

Lemma 3.4. Let A\ b n such that d(\) < k. Then for every pu,v C X with |u| + |v| = n,
we have:

N n 2k?
CNV S (E + k) .

Proof. Let v = aUp’, where a = (v1,...,vx) and ' = (Vgy1,...). Since d(v) < d(N\) < k,
we have £(8) < k. Then we have:

cﬁy = (s5x,8u50) < (Sx, Sphaep).

By definition, we have

Spha = Z Ky /o S+
v

Multiplying by eg, expanding in the Schur basis and extracting the sy term, we get:

(sx,sphaep) = Z Ky pakn v -
%l

Applying the bounds from Lemma 3.1 and using the fact that ¢(«), ¢(58) < k, we obtain

m E\FEED o k(R
CQV < Z 21k (k + 2) ( k + 2) ,  where m :=|q|.

yEm

Observe that the number of partitions ¥ C A is bounded above by (n/2)%* from
inequality (2.5). Note also that, by the AM—GM inequality, we have:

ﬂ_FE n_m_;,_ﬁ <l(ﬁ+k>2
k2 k 2) 7 4\k '

Putting everything together, after some cancellations we obtain:

94k 2k(k—1) 2k?
S < (/2% - (T +k) < (B+k)

as desired. O
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4. Bounds on Kronecker coefficients
In this section we prove Theorem 1.4 and Theorem 1.5, main results of the paper.
4.1. Upper bounds

We approach the problem gradually, starting from the case where two partitions have
bounded number of rows (Lemma 4.2), then just one (Lemma 4.3), and then in full
generality.

Before we proceed with those, we need to add a Lemma complementing the results
in [24].

Lemma 4.1. Let \, y,v =n and £(\) < a, £(p) < b, £(v) < c. Then g(\, u, ') < 29b¢.

Proof. From the triple Cauchy identity (2.9), applying the involution w on the symmetric
functions in z we get that w(s,(z)) = s,/(2) on the left-hand side, so

Y 9 )sa(@)su()su(z) = [T (1 +@igsan).

Ap,v 1,5,k

Expanding both sides in monomials in z,%, 2z and taking the coefficient at z*y*z" on
both sides we get

a,b,c
g0 ') < [y2] T (1 +zie)
ij k=1
as only the variables x1,..., %4, Y1,---,Ypb, 21, - - -, 2c can appear. The right-hand side is

the generating function of @ X b x ¢ binary arrays B, where for each coordinate (i, j, k)
we have a multiplicative weight (z;y; 21,)Bisk. Thus, the coefficient on the right-hand side
above is bounded by the total number of such binary arrays, which is 2%¢. 0O

Lemma 4.2. Let A\, p, v - n, such that £(N\),4(n) < k and d(v) < k. Then

g\ ) < 2k3nk3+k2+3k.
Proof. Let v = aU 3, where a = (v1,...,v,) and 8’ = (Vg41,...). Again, since d(v) <
d(\) = k, we have £(3) < k. Let m = ||, son —m = ||
Since 5458 = s, + - -+ is a Schur positive sum containing s,, we have:
g 1, v) = (sx x5, 80) < (Sx % (5a5p7),5u)- (4.1)

Applying Littlewood’s identity (2.10), we get:
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(sx% (5a58),8u) = Y Concheg(0,0,7)g(n, B,€). (4.2)
0,m.8,v

Since cﬁjg > 0 only if v,£ C pu, and similarly Cé\m > 0 only if 8,7 C A, it follows that all
partitions in the right-hand side above have length at most k.

We now apply previous results to estimate the right-hand side of (4.2). By Corol-
lary 1.2, we have:

9(0,a,v) < mk’.

For the term g(n, §’,£), note that we have £(n), £(£) < k. Furthermore, if g(n, 8',&) # 0,
then by [28], we must have £(3) < k2. Since we also have ¢(3) = vy 41 < k, we can apply
Lemma 4.1 and see that g(n,8’,&) < 2k*

Applying Lemma 3.2, we also have upper bounds for the Littlewood—Richardson
coefficients involved. Indeed, denote by r := min{n — m, m}. Then for the Littlewood—
Richardson coefficients in (4.2), we have:

y or k1))
06'77’675S f_’_T :

Therefore, equations (4.1) and (4.2) give

k
2r k+1 2(2) 3 .3
gA u,v) < Z <? + T) 2k mk

0,m,€,y

The sum above is over 8,7 C X\ of sizes m, n — m, and over £,v C u of sizes
m, n — m, respectively. The number of such pairs can be bound following (2.4) by

(m,jfl_l) (”",Z_*f‘l) <(2.2) (n/it]i_l)z will suffice. We conclude:

k
w2+ k—1\* f2r k+1\?G) o
A < — 2
< R KR BE < o g (k41

as desired. 0O

Lemma 4.3. Let A\, p, v F n, such that d(p),d(v) <k and ¢(\) < k. Then

1
9\ ) < 2R
Proof. As before, let 1 = aU 3, where a = (p1,...,p%) and 8 = (pg41,...)". Let
m = |a|, n —m = |f], and let 7 := min{m,n — m}. Since sos3 = s, + --- is a Schur
positive sum containing s,,, we have:
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g\ 1, v) = (sxx8u,5,) < (sx*(sasp), s0). (4.3)

Applying Littlewood’s identity (2.10), we get

(sx% (5a59),80) = > Concheg(0,0,7)g(n, B',€). (4.4)
0,1,7,§

We will bound the terms in the right-hand side of (4.4). For partitions 6,7 such that
cé\m > 0 we must have 6, C A, and so £(0),£(n) < k. By Lemma 3.2, we thus have:

\ o k+1)\®
Ceng ?—’—T .

On the other hand, since we only select partitions v, &, for which ¢Z, > 0, then we must
have ~,¢ C v, and so d(v),d(§) < k. By Lemma 3.4, we thus have:

. n 2k?

For the Kronecker coefficients in the summation, by Lemma 4.2, we have:

9(03 a?’Y) S 2k3mk3+k2+3k'

Similarly, we have:

9(0,8'.€) = g(n,8.€) < 2% (n — m)F ++*+3k,

Now, the summation in the right-hand side of (4.4), we bound the number of pairs
2
of partitions 0, n following inequalities (2.3)and (2.2) by (”/ i‘tﬁ_l) , and the number of
partitions «, ¢ by (n/2)?* from (2.5).

Combining (4.3), (4.4) and the upper bounds above, we conclude:

k
n/2+k—1\" /n\4k o3 (T 2% (9 k41 ()
< b =z 2t
9 pwv) < ( ko1 > (3) 2 G+ 5+

3 2 3 2
s S HRBI (R 43k

< 1 2k 42k +6k-+6k+2k%+(5) 1 P2k +3K°+ 2k
= k2k? f2k? ?
where the constant factors involving k are altogether bounded by k2. o

Proof of Theorem 1.4. We use the same setup as in the proofs of Lemma 4.3, where
uw=aUp and m = |a|. We have:
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g\ pv) < <3>\*(5a53’)»su> = Z cg)\ncggg(ﬁ,a,'y)g(n,ﬂl,f).
6.m,7:¢

Again, we must have d(0), d(n), d(v), d(§) < k. Thus, we can apply the upper bounds
on the Kronecker coefficients from Lemma 4.3, and on the Littlewood—Richardson co-
efficients from Lemma 3.4. Bounding the number of partitions 0,7n,v,£ from (2.5) by
(n/2)?*, we obtain

2
g my) < > (%*’ffk A R LU Cant Lt
0,m,7,§

k 4k?
(2)8 L (ﬁ k) m2 R R () 2k SR

=) e gt

3 2
< L n 8 n RTAORTHE g2 1 4k34+13k%+31k
— k8k% \ 9 2 n - k8k228k3n s

which completes the proof. O

4.2. Proof of Theorem 1.5

Let n = ak. Combining (2.7) and (2.8), we have the following identity:

hooloy) = Y Kywsaloyl = Y KyargO pv)su(@)s,(y).
AFn, 0(N) <k A, u,vbn
Let ¢ = (x1,...,2x) and y = (y1,...,Yx), so all partitions in the above identity have

lengths bounded by k. Compare the coefficients at mgx () - mqr (y) on both sides, where
me are monomial symmetric functions. We then have:

[f ... zfyl . yplhar[xy] = Z I, V) Ky g1 Ky o1 K g (4.5)
A\, p,vbn

Consider the term on the left-hand side. We have that
ha[xy] = Z H(xzyJ)M” — Zxrow(M)ycol(M)
M i IY;

is the generating function for contingency tables M = (M”) with respect to their row and
column sums. Since hqr = (hy)¥, we conclude that the coefficients at x¢ - - - z¢y§ - - - y?
are equal to the number of 3-dim contingency arrays A with all 2-dim marginals equal
to a. We refer to [24] for precise definitions and further details.

Geometrically, these contingency arrays A are integer points in a three-way transporta-
tion polytope Ty (m) C R¥* such that dim Ty (a) = (k® — 3k). By the Ehrhart theory for
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rational polytopes (see e.g. [3, §3.7]), the number of such points is given by a quasipoly-
nomial in a of degree (k® — 3k). Thus there exists a constant Gy, > 0 (see also §6.4), such
that

3
(29 .. 2yl YR har [zy] > Gra® =3k, (4.6)

On the other hand, in (4.5) we have K ,» < o’k by Lemma 3.1, and a similar
bound for the other Kostka numbers. We conclude:

Z g()‘nu7l/)K/\,aka,,akKu,ak < a3k2_3k Z g(A,,LL,I/)
A,V E€Pg (1) A p,vE€P (1) (4 7)
3 3k?-3k 3k%-3
< |Pr(n)| a max Auv) < oa max A, v),
- | k( )’ A, VEPE (n) g( H ) - A, VEPE (n) g( H )

where Pj(n) = {AFn: {(\) <k}, so that [Pg(n)| = O(n*~!). Comparing the inequali-
ties from (4.6) and (4.7), we obtain

3 2
max  g(\ p,v) > Gra® THTIAS

A, 11,V EPL (1)

as desired. O

5. Kronecker bounds via the monotonicity property

5.1. Bounds for the symmetric Kronecker problem
For all n, k > 1, define

A*(n, k) := max {g(A\,\,A) + A n, £(A) <k}, and
B*(n,k) := max {gA N A) © A, A=X, d(N) < k).

Clearly, A%(n, k) < K*(n) and BF(n, k) < K*(n).
Lemma 5.1. For alln > 1, we have:
K*BBn) > K(n) and A°(3n,k) > A(n, k). (5.1)

Proof. Let g(a, 8,7) = K(n), for some a, 8,7+ n. Let A := (o + 8+ ) F 3n. By the
symmetry property (2.6) and monotonicity property (Theorem 2.1), we have:

v

K°(3n) = g\ A\ A) = gla+B8+7,8+v+a,v+a+p)
> max {g(a, 3,7), g(B+ 7,7+ a,a+B)}

max {g(a, 8,7), 9(B,7,a), g(v,, B)} = K(n).

\Y

v



374 I. Pak, G. Panova / Journal of Algebra 629 (2023) 358—-380

This proves the first inequality in (5.1). The second inequality follows verbatim the
argument above and the fact that £(\) = max{l(«),¢(B),4(y)}. O

Corollary 5.2. For all k > 1, there is a constant C), > 0, such that
As(n, k) > Conk’ —3K°—3k+3 for all n > 1. (5.2)

Proof. Combining Theorem 1.5 and Lemma 5.1, we obtain the result for 3|n. For gen-
eral n, note that g(A+ 1, u+ 1,v+ 1) > g(\, u, v), again by the monotonicity property.
Thus, we have A*(n + 1,k) > A®(n, k). This completes the proof. O

Lemma 5.3. For alln,k > 1, we have:
BF(4n + k%, k) > A(n, k). (5.3)

Proof. Let g(a,3,7) > 1, for some «, 3,7 F n such that ¢(a),4(8),4(y) < k. Recall
from the introduction that g(&y,dx,dx) > 1, where 6, = (k*) is the square shape. By
the repeated alternating application of the monotonicity property (Theorem 2.1) and
symmetry /conjugation properties (2.6), we have the following long formula:

9(e,8,7) < g0k + 0, 0u+ B0k +7) = g(6r U, 6, UB 0k +7)
< g(Ge+B) U, (O +7)UB 0k +7+a)

(

= g(Gk+B) U, (6p +B) UV, 0k U (v + )
(
((

A

< g( Sk +B+7)Ud, (6 + B+ a) Uy, (6 + B) U (v + @))
9Ok +a)U(B+7), 0k +7) U B+ ), (6 +8)U(y+a))

_g((5k+04+/3) B+, (0k +7+ )

U(B+a), 0k +B8+7)U(y+a)).

See Fig. 1 for an illustration.
Now, let & = = v and suppose g(«, o, ) = A®(n, k). From above,

g(a,o,a) < g((6 + 2a) U (200), (8 + 20)) U (200)', (65 4 20) U (20)') = g(p, s 1),
where g1 := (6, + 20) U (2a)’ = 4n + k. Since p = p/ and d(p) < k, we conclude:
BP(4n + k2 k) > g(u,p, i) > gla, o) = AS(n, k),

as desired. O

Corollary 5.4. For all k > 1, there is a constant Dy > 0, such that

B (n, k) > Dynk’ — 18K +102k—182 for all n>1. (5.4)
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AN
"I‘"’ 44 4
= P >

Fig. 1. Graphic rendering of the long formula in the proof of Lemma 5.3.

Proof. Combining Lemma 5.1 and Lemma 5.3, we have
BF(12n + k%, k) > A(n, k). (5.5)

Now Theorem 1.5 implies the result for 12|(n — k?).
For general n, note that in the proof of Lemma 5.3, we can use

= (Okse +2a) U (2a) Fdn+ (k+c)® forall ¢ > 1 and {(a) < k.

We can also replace dp4. with a chopped symmetric square by removing a symmet-
ric partition of size t € {0,1,3,4,...,10,11,14} from its bottom right corner. Since
g(A A A) > 1 for all A = X, see [5,25], we can then repeat the steps in the proof of
Lemma 5.3 with the chopped square instead of the d. This allows us to construct sym-
metric partitions p of any size modulo 12, and note that ¢ = 5 suffices.

We conclude that g(u, i, ) > A(n, k) for some pu - 12n+ (k+¢)? —t with k < d(p) <
k + c. This implies that B/(n, k) > A([(n — k?)/12],k —5), and the bound follows. O

Remark 5.5. A curious Conjecture 5.12 in [9], claims that
g(A+1DUL (p+1)Ul,(r+1)Ul) > g\ p,v) forall A\, p, vk n.

This would imply that B(n + 2,k) > Bf*(n,k) and improve the lower order terms
n (5.4).
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Proof of Theorem 1.7. Fix ¢ > 0 and let k = (2+¢)+/n. Let us show that for sufficiently
large n > N(g), we have A(n, k) = K(n). We follow [26] in our presentation.

Recall that a sequence {\} of partitions is called Plancherel if f = Vnle=OWn),
Suppose that g(A, u,v) = K(n). By Stanley’s theorem (1.4) and the dimension bound,
we have:

Vlem OV = K(n) = g(\, p,v) < f* < Vn!

We conclude that all three sequences {A}, {11} and {v} achieving the maximum g(X, p, V)
are Plancherel. In fact, we can even fix two of these three sequences (see [26, Thm 1.4]).

Now, by the VKLS Theorem (see [26, Thm 1.3]), all three sequences must have VKLS
shape. Without stating it explicitly, it follows from the definition that

6, L), Uv) < 27+ O%) < 2+ ) = k,
for n large enough. Thus we have A(n, k) = K(n) in that case. By (5.5), we conclude:
KfS((16+3€)n) > Kf8(12n+k2) > st(12n+k27/€) > A(n,k) = K(n) = \/me—owﬁ)’

for k = (2 + €)+/n as above and n large enough. Taking logs on both sides implies the
result. O

5.2. Proof of Theorem 1.8

We now use the iterated conjugation trick in the proof of Lemma 5.3 to give the first
nontrivial lower bound for g(ék, O, 5k).
We start with [23, Thm 1.2], which gives for k = 2s? that

g((25)%, (25)%, k%) > C2%(25)7%2 > 0

for some universal constant C' > 0.004.
Observe that by conjugating two partitions we get

g((25)257 (25)28, 2]“) = g((2s)25, (23)25, k2) > 0.

Let s := 2". We can repeatedly apply the combination of monotonicity and conjugation,
from 4m = k = 252, to get

g((4m)4m’(4m)4m7(4m)4m) 2 g<(2m)4m7(Qm)4m7(2m)4m) _
(4m)*™, (2m)*™) > g((2m)*™, (2m)*™", (m)*™)

> > g((28)%,(28)%, k%) > 2% (2s) /2

v

Since s = V2k = \/§n1/4, we obtain the first part of Theorem 1.8.
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For the caret shape 71, note that

T = (041 + 2pk) U 2py.

In notation of the proof of Lemma 5.3, let « := pj and recall from (1.5) that g(a, o, ) >
0. From the long formula in the proof, we have:

g(Tk, Tk Tk) = g((5k+1 + 200) U 2av, (Op+1 + 2a) U 2ax, (Oge41 + 2c0) U 2a)

V

> max {g(a, a, ), g(6k11, Okt1, Oky1) }-

Now the second part of Theorem 1.8 follows from the first part. O
6. Final remarks and open problems

6.1. The importance of Durfee square size in connection with the vanishing of Kro-
necker coefficients (i.e., whether they are nonzero), has long been understood in the
literature. We refer to [5, §3] and [13,28] for some notable examples.

6.2. There are many special cases of partitions with small Durfee square size (at
most three), where the Kronecker coefficients are computed exactly, see e.g. [10,8,30,37].
In all these cases the Kronecker coefficients are bounded by a constant. This is in sharp
contrast with examples in [1,21] and our lower bound in Theorem 1.5, suggesting that
being bounded is a small numbers phenomenon.

6.3. Recall Murnaghan’s stability property: the sequence (ag, a1, ag, ...) defined as
aq = ad(>\7ﬂv V) = g()‘ + (d)vlu + (d)7 v+ (d))
is increasing and bounded. This phenomenon was recently generalized by Stembridge

ag = ag(\, p,via, 3,7) = g(A+da,p+dB,v+dy) for g(a,B,7) =1.

The nondecreasing of {aq} follows from the monotonicity property (Theorem 2.1), while
boundedness was proved by Sam and Snowden [33].

It is known that a4 are a quasi-polynomial in d [18], see also [1,19]. In view of Corol-
lary 1.2 and Theorem 1.5, it would be interesting to give a combinatorial description of
the degree of these quasi-polynomials. Let us mention that ay > d+1 for all g(«, 8,7v) > 1
[36, Prop. 3.2].

Similarly, one can consider more general families of Kronecker coefficients

ba = ba(A, i, v, 8,7 ¢, €,m) == g((A+da) U (dC)', (u+ dB) U (€)', (v +dvy) U (dn)’),

where g(o, 8,7),9(¢,&,m) > 1. In view of Theorem 1.4, we conjecture that by are again
quasi-polynomial in d, for d large enough. In a special case when a = =v=(=¢ =
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7 = 1, this is the hook stability introduced in [9]. Note that even characterizing the cases
when these quasi-polynomials are nonzero is quite challenging (cf. [9, §6.2]).
A more general approach to stability for Lie groups can be found in [27].

6.4. One can give explicit lower bounds on the constants Cy in (1.3). For that, in
notation of the proof of Theorem 1.5, we need to use the integral volume Gy of the
three-way transportation polytopes Ty (1). These polytopes are highly symmetric, so the
lower bounds are especially simple and can be found in [4], see also [2] for a survey. See
also a recent explicit lower bound in [3, Ex. 2.6], on the (usual) volume of Tj(1). To
put these bounds into context, recall the natural upper bound used in [24] in this case.
The main result in [4] (and in greater generality in [2]), is that these upper bounds are
asymptotically sharp.

6.5.  For the uniform random partitions A F n, we have £(\) = O(y/nlogn) and
d(X) = O(y/n), see e.g. [12] and references therein. This implies that the bounds in (1.1)
and (1.2) are useful only for partitions with relatively few rows and small Durfee square
size, respectfully.

6.6. Define
B(n, k) := max {g(A,p,v) : A,p,vbn and d(N),d(p),d(v) < k}.

Comparing the bounds in Theorem 1.5 and Theorem 1.4, it would be natural to believe
that the upper bound on B(n,k) in (1.2) is closer to the truth than the lower bound
in (1.3).
Conjecture 6.1. There is a universal constant ¢ > 0 such that
B(n,k) > pk® =k’ for all n,k > 1.

6.7.  We believe that the Kronecker coefficients in Theorem 1.8 grow much faster than
our lower bounds suggest. The following conjecture immediately implies Conjecture 1.6
improving upon Theorem 1.7.

Conjecture 6.2. We have:

Q(leplmpk) = \/Tie_o(”) where n = (12“)7 and
9(60,00,07) = Vnle " where n = ¢

6.8. Letn= (’;) Define

F(n) := max {g(pr, pr,A) : A n and A= X}.
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It would be interesting to find sharp lower bounds on F(n).

It was shown in [23, §4.2], that g(px,pr,\) = V™ for two-row partitions A =
(n/2,m/2), where n is even. For self-conjugate A, it was only shown recently in [6, §5]
using modular representation theory, that the F(n) is unbounded.

Combined with the lower bound for Littlewood—Richardson coefficients given in [26,
Thm 1.5], Theorem 5.11 in [6] implies that F(n) = V™). This is nowhere close to
Conjecture 6.2, but gives us a hope that there might be more tools to be discovered.

6.9. In [20], there is a tight asymptotic bound g(das, d2s, (n — k, k)) = @(2m/
k3/2) in the case when k/n € (0,1/2). However, this bound cannot be applied when
k =n/2+ o(n), so the bound from [23] is still the best known lower bound in this case.
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