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Preliminary Guidelines For Combining Data
Integration and Visual Data Analysis

Adam Coscia, Ashley Suh, Remco Chang, and Alex Endert

Abstract—Data integration is often performed to consolidate information from multiple disparate data sources during visual data analysis.
However, integration operations are usually separate from visual analytics operations such as encode and filter in both interface design
and empirical research. We conducted a preliminary user study to investigate whether and how data integration should be incorporated
directly into the visual analytics process. We used two interface alternatives featuring contrasting approaches to the data preparation and
analysis workflow: manual file-based ex-situ integration as a separate step from visual analytics operations; and automatic UI-based
in-situ integration merged with visual analytics operations. Participants were asked to complete specific and free-form tasks with each
interface, browsing for patterns, generating insights, and summarizing relationships between attributes distributed across multiple files.
Analyzing participants’ interactions and feedback, we found both task completion time and total interactions to be similar across interfaces
and tasks, as well as unique integration strategies between interfaces and emergent behaviors related to satisficing and cognitive bias.
Participants’ time spent and interactions revealed that in-situ integration enabled users to spend more time on analysis tasks compared
with ex-situ integration. Participants’ integration strategies and analytical behaviors revealed differences in interface usage for generating
and tracking hypotheses and insights. With these results, we synthesized preliminary guidelines for designing future visual analytics
interfaces that can support integrating attributes throughout an active analysis process.

Index Terms—Visual analytics, Data integration, User interface design, Integration strategies, Analytical behaviors.

✦

1 INTRODUCTION

F rom a visual analytics perspective, the rapid growth of
data today requires methods to combine information

from disparate sources into a unified data representation to
facilitate analytical reasoning [1], [2]. From a systems engi-
neering perspective, this process involves data integration,
or the task of querying into multiple, often heterogeneous,
data sources with potentially differing levels of access and
resolving the results into a unified view of the data [3],
[4]. A human-in-the-loop perspective promotes “exploratory
knowledge discovery in large datasets” where a priori
knowledge of data is not guaranteed [5]. Yet visual analytics
tools such as Tableau present manual data preparation
solutions that occur as a separate step from visual analytics
operations such as encode and filter [6]. We posit that the
data preparation and visual analytics workflow in tools like
Tableau has created an expectation in research and design
that users’ interactions and behaviors are influenced by the
integration or analysis process separately.

In response, we raise two open research questions based
on the common approach of separating data integration and
visual analytics processes in research and design.

1) Where and how should data integration operations,
such as joins, be supported in tandem with visual
analytics operations, such as encode and filter?

Kandel et al. identify breakdowns in analysis workflows that
occur in the early stages and when transitioning between

• Adam Coscia and Alex Endert are with Georgia Institute of Technology.
Emails: {acoscia6, endert}@gatech.edu.

• Ashley Suh and Remco Chang are with Tufts University. Emails: ash-
ley.suh@tufts.edu, remco@cs.tufts.edu.

Manuscript received April 19, 2005; revised August 26, 2015.

tasks, where little research and few tools provide visualiza-
tion solutions [7]. Theories of information foraging [8] and
sensemaking processes [9], [10] that describe the analysis
process also maintain a simultaneous and inseparable view
of continuously finding and making sense of data. Consider
decision-makers integrating columns and rows across mul-
tiple spreadsheets using Microsoft Excel to visualize the
results as they work. Dimara and Stasko assert there is a gap
in visualization tools that support in-situ data integration
around maintaining flexibility and flow when performing
visual analytics operations [11].

2) How will incorporating data integration into an on-
going visual analytics process affect user behaviors?

Pirolli and Card identify potential constraints on analysis
during foraging and sensemaking due to time pressures,
data overload, and cognitive biases [9]. These constraints
may lead to satisficing based on the time and effort people
spend finding, gathering, and integrating data [12].

Our aim in this paper is to contribute preliminary
guidelines for incorporating data integration into an active
visual analytics process, towards fostering better information
retrieval that allows people to incorporate their data seam-
lessly and improve how visualizations are created and used.
To do this, we created two interface alternatives inspired
by Polestar [13] and ran a two (interfaces) by two (data
sets) within-subjects study, recruiting 16 participants and
randomly assigning an order to use both interfaces and data
sets for performing specific and free-form style visual data
analysis tasks. The first interface (Separated) requires manual
file-based ex-situ integration of attributes via Microsoft Excel
(column concatenation then selection). This more traditional
interface represents a simplified data preparation and analy-
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sis workflow common in most research and design that can
serve as a baseline for gathering users’ analytical behaviors.
The second interface (Combined) presents automatic user-
interface-based (UI-based) in-situ integration combined with
common visual analytics operations such as encode and filter
(column concatenation via selection). This non-traditional
interface removes much of the separation between data
preparation and visual analytics operations to investigate
how users’ strategies and analytical behaviors differ from
using the first interface. We then conducted a mixed-methods
analysis of users’ interactions and behaviors. As a first step
in tackling our broad research questions in a productive
way, our approach: (1) reduced confounds in relating users’
interactions and behaviors between interfaces; (2) helped us
elicit rich qualitative insights that raise important questions
and lay the foundation for future work; and (3) mirrored real
decision-making scenarios, e.g., Dimara and Stasko [11].

We found participants using unique in-situ integration
strategies (Sect. 4.3) based on time spent integrating, inter-
actions with different panels, and qualitative feedback. For
example, several participants exclusively integrated on the fly
on purpose, spending little to no time integrating beforehand.
Yet surprisingly, we found that interface and task type did not
significantly affect overall task completion time (Sect. 4.1) or
the total number of interactions (Sect. 4.2). At the same time,
in-situ integration operations sometimes negatively affected
the ability to generate and track hypotheses and insights;
specifically, participants’ analytical behaviors underscored
issues of satisficing and exhibiting biased behaviors (Sect. 4.4).
With these findings, we synthesized preliminary guidelines
for incorporating data integration into visual data analysis:
(1) show where and how data are being integrated (Sect. 5.1);
(2) use in-situ integration for exploring the space of attributes
(Sect. 5.2); and (3) balance manual and automated approaches
(Sect. 5.3). We also discuss limitations and future work on
eliciting effects in “real-world” data integration and visual
data analysis scenarios that can involve extensive planning
and custom tool development (Sect. 6).

In summary, our work contributes: (1) a within-subjects
user study employing two different visual analytics interfaces
for integrating and visualizing attributes across multiple
disparate data sources; (2) observations and reflections on
user interactions and behaviors with our combined data
integration and visual analytics interfaces; and (3) prelimi-
nary guidelines for incorporating data integration into visual
analytics processes and directions for future work.

2 RELATED WORK

2.1 Data Integration
Issues in data integration include specifying well-structured
queries, scaling with the number of sources, resolving the
heterogeneity of different file formats and data types, and
addressing the privacy and accessibility of each source [4].
Both enterprise and ad-hoc analysis, traditionally utilizing
structured data queried from data warehouses with or-
ganized schematic definitions, are seeking to incorporate
valuable unstructured and semi-structured sources such
as PDFs, news feeds, social media, images and video [7],
[14], [15], [16]. Further, data sources are increasingly being
made publicly available on the Web from government and

non-profit organizations such as data.gov and WikiMedia, a
movement known as open data [17]. As the scale, availability,
and complexity of data sources grows, visual analytics
tools should explore ways to incorporate and support the
integration process throughout analysis.

However, locating, collecting and integrating data sources
remains an open challenge. Heterogeneity between data sets,
insufficient semantics to describe data, and errors in data
insertion and modification [18] create entity resolution chal-
lenges. For example, when labelled data items with identical
attributes from different sources could refer to the same real-
world entity, deduplication is needed to identify and link
those sets of records. Further, there are considerable technical
challenges in detecting, linking, removing, and merging
entities efficiently [19]. Work in natural language processing
(NLP) has studied how entity resolution can be learned and
improved over time through user interactions [20]. A number
of tools [21], [22] help people model queries into knowledge
graphs [23], [24]; however, there are scale limitations for
large, complex, and heterogeneous structures [25]. Other
automated approaches feature interactive programming
interfaces [26], equi-join-able tables [27], and deep learning
approaches to entity resolution [28]. As data integration
solutions mature, we seek a baseline understanding of user
interactions and behaviors in visual analytics tools that
incorporate data integration capabilities.

2.2 Visual Analytics

In-situ data transformations in visual analytics tools often
seek to resolve issues of heterogeneity, quality, and semantics,
i.e., data wrangling [29], [30]. In this study, we focus on a
direct manipulation [21], [31] approach to transformations
that combine data from separate sources into a single
repository, i.e., data integration. From this perspective, we
discuss relevant systems and domains that use interactive
interfaces to integrate data throughout the visual analytics
process.

Systems. A few visual analytics systems and studies
have addressed the technical and cognitive limitations of
integrating data throughout the analysis process in unique
ways. Tableau provides data blending, a technique for
dynamically combining data from multiple heterogeneous
data sources without any upfront integration effort [14].
Cramer et al. investigate the effects of streaming new data
during analysis on sensemaking capabilities, finding an
increase in people’s explicit focus and reflection on analytic
progress [32]. Cashman et al.’s CAVA system allows users
to interactively augment related attributes from knowledge
graphs into an existing data set and visualize them during
exploration and analysis tasks [33]. Similarly, Latif et al.
utilize EventKG in a visualization system to automatically
integrate relevant event information and relationships for
historical figures in an existing data set [34]. A goal that cuts
across these examples is to help people explore differently
structured data across independently located sources without
interrupting the visual analytics process [35], [36]. Our aim
is to empirically describe user interactions and behaviors
when coupling both data integration and visual analytics
operations (UI) and processes (workflows).
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Domains. Data integration challenges can be found em-
bedded in various communities that engage in visual data
analysis. Kandel et al. identify data integration as a challenge
for analysts in analytics, biology, datamart, finance, health-
care, insurance, marketing, media, retail, social networking,
sports, and web development [7]. Zheng et al. find that
urban computing studies routinely integrate and visualize
traffic data for public safety and security applications from
large, open data sources that are often unstructured, noisy,
and heterogeneous [37]. In recent work by Dimara and
Stasko [11], recent visualization software is criticized by
decision-makers for its inability to restructure, integrate,
and forage for new data on the fly. Instead, flexible data
software like Excel is preferred by decision-makers, as
data is often unstructured and incomplete before analysis
begins. Adding new attributes to an otherwise fixed data set
towards improving model performance is an active area of
research in machine learning, commonly referred to as data
augmentation [38]. These challenges have inspired us to ask
how the data integration process affects the visual analytics
process commonly used across these domains.

3 STUDY DESIGN

We conducted a user study to empirically describe user
interactions and behaviors when data integration and visual
analytics processes are combined. Our goals were:

• Investigate if and how people use visual analytics
operations such as encode or filter to help them integrate
new attributes in-situ.

• Investigate if and how users’ strategies and analytical
behaviors during visual data analysis differ between
ex-situ and in-situ integration approaches.

We built two interfaces with different approaches to
data preparation and analysis: the Separated interface, with
manual file-based ex-situ integration as a separate step
from visual analytics operations; and the Combined interface,
with automatic UI-based in-situ integration merged with
visual analytics operations. Both simplify integration to
column concatenation and selection to reduce confounds
in observing users’ analysis strategies and interactions.
This improved our ability to directly compare interactions
and behaviors between these two different interfaces. To
further distinguish in-situ and ex-situ integration strategies
in the Combined interface, we define primary and secondary
integration processes and attribute interactions in Sect. 3.2.2.
We utilized a two (interfaces) by two (data sets) within-
subjects experiment design, exposing participants to both
interfaces and data sets to foster reflection on how their
analysis process differed between conditions. 16 participants
performed specific and free-form style visual data analysis
tasks with each interface and data set in a random order. We
logged all mouse events and captured both the screen and
audio of participants as they followed a think-aloud protocol
[39] and described their experience in a post-study semi-
structured interview. In this section, we describe the data
sets and tasks curated, the experimental systems developed,
and the procedure employed in this study.

LQ2

LQ1 Mary, 22, is applying for a housing loan after finally deciding to pursue her PhD. She 
expects to borrow at least $20,000, but her annual income is low and she is worried 
about high interest rates. Create a visualization that you feel best shows the 
relationship between loan amount, annual income and interest rate; then find 2 
examples of high grade loans given to renters.

There have been news reports across the US that loan applicants are receiving unjustly 
graded loans due to personal and financial biases. Create visualizations and find 
examples in the data that support, refute, or tell a different story from these news 
reports.

Loans

T1 What are the 3 lowest-rated movies

from the year 2000 to the year 2005?

T2 Which genre has the highest average

production budget for R-rated movies?

Source:  https://www.kaggle.com/adarshsng/lending-club-loan-data-csv
- Categorical
- Numerical

CQ1 Imagine you are a reporter writing an article about US colleges. Create a visualization 
that you feel best shows the relationship between colleges' tuition, admission rate, and 
location; then find 2 schools with a high enrollment and a high graduation rate.

CQ2 Your best friend wants to attend a prestigious US college. However, her test scores and 
her family’s income are lower than average. She's feeling discouraged and isn't sure 
whether she will qualify. Create visualizations and find examples in the data that could 
help your friend decide where to apply.

Source:  https://www.kaggle.com/sumithbhongale/american-university-data-ipeds-dataset/home
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Fig. 1. Data sets and tasks used in the study (Sect. 3.1). All data sets list
each attribute’s data type, percent complete (in italics), and total number
of missing records (in parentheses), grouped under the files they are in.

3.1 Data Sets and Tasks

We modified two publicly available tabular data sets on
Kaggle relating to colleges and loans and generated a training
movies data set in the style of the other two data sets, shown
in Fig. 1. The modifications to the colleges and loans data
sets include reducing the number of numerical attributes in
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the colleges data set and the number of records in the loans
data set to: (1) make it easier to find categorical attributes;
and (2) reduce the total number of data points to inspect
visually, respectively. While these changes limited ecological
validity, they also reduced potential confounds in participant
feedback when scaling integration to large data sets.

The final colleges data set contained all 1534 records from
the original and comprised one primary key (ID), seven
categorical attributes, and 26 numerical attributes out of the
145 original attributes. Each record of the colleges data set
represents one U.S. college. The final loans data set contained
a subset of 500 records from the original and comprised one
primary key (ID), five categorical attributes, and 21 numerical
attributes. Each record of the loans data set represents one
loan application. The final movies data set contained 250
records and comprised one primary key (ID), four categorical
attributes, and five numerical attributes. Each record of the
movies data set represents one movie. For all data sets,
the attributes were distributed between the primary.csv file
loaded into the interface to start and all other CSV files, with
a one-to-one mapping of records between every file using
the attribute ID as a relational key. The records in each file
except primary.csv were randomly sorted, any values missing
in the original data sets for a given record or attribute were
kept, and any potentially identifiable information, such as
the names of colleges or loan applicants, was removed.

We created two tasks for the colleges and loans data
sets (CQ1, CQ2; and LQ1, LQ2), labeled by data set (C
and L) and task type (Q1 and Q2), as well as two specific
training tasks (T1 and T2) for the training movies data
set. The task descriptions for each data set can be read
in Fig. 1. Participants were instructed to discover insights
from the data by locating attributes of interest and browsing
for patterns visually, then summarizing the uncovered
relationships between visualized attributes [40]. The first
task of the colleges and loans data sets, henceforth called
the specific task and labeled CQ1 and LQ1, required a specific
visualization and data points to answer successfully. The
second task of the colleges and loans data sets, henceforth
called the free-form task and labeled CQ2 and LQ2, featured
open-ended analysis and assignments to interpret the data.
Every task description listed at least one relevant attribute
that was not in primary.csv, thus requiring participants to
locate attributes in other files. For example, in CQ1, none
of “tuition”, “admission rate”, “location”, “enrollment”, or
“graduation rate” are located in primary.csv.

3.2 Experimental Systems

We developed both Separated and Combined interfaces in-
spired by PoleStar [13] (Fig. 2). With these interfaces, partici-
pants encoded data via drop-down menus and manipulated
it via select, arrange, change, filter, and aggregate operations
[6], [40]. The primary difference between these two interfaces
is how they structure the data integration process. The Com-
bined interface has data integration functionality (column
concatenation) embedded directly into drop-downs (column
selection), traditional user interface (UI) controls used for
visual data analysis found in tools such as Tableau. In com-
parison, the Separated interface has the same visualization
UI for column selection, but data integration happens outside

of the interface, where users manually combine attributes
into primary.csv using Excel via column concatenation.

3.2.1 Separated Interface
This baseline interface shown in Fig. 2 features six panels for
performing visual data analysis: an Attributes panel for dis-
playing the attributes and their data types from primary.csv;
an Encode panel for specifying the data-visual mapping; a
Filter panel for applying categorical and numerical filters to
the data; a Visualization panel that allows users to hover and
click on the data marks; and an Elaborate panel that shows a
table of the records corresponding with hovered and clicked
on data marks. A Navigation bar at the top of the screen
shows participants the current task description. To integrate
data, users navigated the operating system’s file browser
to open CSV files in Excel that collectively contained the
data sets used for the study (see Sect. 3.1 for a description of
the data and Fig. 1 for a representation of the file structure).
Participants were allowed to concatenate columns between
files using any operations available in Excel. The results of
their operations, including the integrated attributes, were
loaded into the interface through a single file, primary.csv, via
the Refresh button in the Attributes panel. We chose Excel
as a baseline for manual data integration for two reasons:
(1) it mirrors real decision-making scenarios described by
Dimara and Stasko [11]; and (2) its familiarity in our target
participant group.

3.2.2 Combined Interface
In contrast to the Separated interface, we designed a second
interface shown in Fig. 2 that incorporates integration
operations directly into the Attribute, Encode, Filter and
Elaborate panels without revisiting separate files or tools, e.g.,
Excel. To help participants focus on how in-situ integration
affected their analysis process, we sought to reduce potential
confounds, such as join errors, that could arise in feedback.
We achieved this by merging the separate files for each
data set used with the Separated interface into a single file
and schema when using the Combined interface. Then, when
participants used a panel to add an attribute to their analysis,
a lookup was performed. By exposing the operation as a
join in the interface and to the participant, we believe this
study design decision helped keep feedback focused on how
the combination of integration and visualization operations
affected analysis.

Primary and secondary attributes. While we know that ex-
situ integration operations can affect users’ analysis processes
during visual data analysis [9], it is unclear if analogous in-
situ integration operations uniquely affect users’ workflows
and analytical behaviors. To distinguish ex-situ and in-situ
integration, we separated the primary integration process of
adding attributes into the Attributes panel, available in both
interfaces, from the secondary method of integrating attributes
on the fly in the Encode and Filter panels, available only in
the Combined interface. Thus, we define primary attributes
as those attributes that are present in the Attributes panel
when they are used in any panel, and secondary attributes
are those attributes that are not present in the Attributes
panel when they are used in any panel. Fig. 2 describes
the location of primary and secondary attributes relative to
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joined using ID 
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joined attributes are shown 
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Integrate attributes outside of the interface using Microsoft Excel.

Then, click the Refresh button in the Attributes Panel to load new

attributes into the interface. Cannot integrate on the fly.

Separated Interface

Use the Attributes Panel to 
integrate attributes before 
using them in other panels;

or
Integrate attributes on the fly by 
directly encoding them in panels 
other than the Attributes Panel.

Combined Interface

Fig. 2. Our two interfaces: (1) Separated (top; showing task CQ1); and
(2) Combined (bottom; showing task LQ1) (Sect. 3.2).

the Combined interface panels. For example, a user could
visualize an attribute from outside primary.csv on the fly in
the Encode panel (i.e. secondary attribute interaction), then
intentionally add it to primary.csv and their Attributes panel
and encode it once again (i.e. primary attribute interaction).
They could also mostly integrate and visualize attributes
on the fly (i.e. secondary attribute interactions), a unique
integration strategy, or mostly integrate attributes before
visualizing them (i.e. primary attribute interactions), similar
to the Separated interface. We describe the results from
investigating these interactions in Sect. 4.2.

Attributes panel. In the Attributes panel (Fig. 2), participants
can integrate attributes into primary.csv via a drop-down
menu accessed by clicking on the join key (ID). Each item

in the menu is an attribute labeled with data type, source
file, and an indicator that the attribute is not originally from
primary.csv. Once clicked, attributes are joined into primary.csv
and displayed under the “Added” header.

Encode and Filter panels. In the drop-down menus of the
Encode and Filter panels (Fig. 2), “Added” attributes from
the Attributes panel can be used directly (i.e. primary attribute
interactions). Attributes not in primary.csv can also be used
(i.e. secondary attribute interactions) and thus “seamlessly”
integrated on the fly through visual analytics operations.
“Added” attributes are shown above the horizontal dividing
line while all other attributes available to integrate on the fly
are shown below it. Integrating an attribute on the fly does
not add it to the Attributes panel; however, once an attribute
is added to the Attributes panel, it moves above the dividing
line and can no longer be integrated on the fly.

Elaborate panel. In the Elaborate panel (Fig. 2), participants
access a drop-down menu by clicking on the join key (ID)
to add attributes from separate files directly to that panel
without adding them to the Attributes panel, similar to the
Encode and Filter panels. Attributes added on the fly are
shown to the right of the vertical dividing line. If an attribute
added on the fly is then added to the Attributes panel, it
moves to the left of the vertical dividing line.

3.3 Study Procedure

We recruited 16 participants (P1− 16) via recruitment emails
to university mailing lists. Seven self-identified as male,
and nine self-identified as female. All of the participants
held or were pursuing undergraduate or higher degrees in
fields spanning Computer Science (8), Analytics (4), Human-
Computer Interaction (2), Human-Centered Computing (1),
and Industrial Design (1). Participants self-reported prior
engagement with a wide range of visual data analysis tools
including Tableau (15), Python/Matplotlib (11), R/ggplot2
(6), Microsoft Power BI (4), D3.js (2), SAS (2), and AWS
Quicksight (1). All participants also had prior experience
with using Excel for visual data analysis: 11 participants
self-reported moderate experience; the rest self-reported as
having either a lot or a little experience.

After obtaining consent, participants self-reported their
demographics in a pre-study survey. Then one of each of the
two possible interfaces and data sets was randomly chosen
to control for ordering effects. The researcher conducting the
session explained aloud the various features of the interface.
Participants were then asked to complete a training task (T1
or T2) with the movies data set that would not be evaluated.
After, they were asked to complete a specific (Q1) task,
then a free-form (Q2) task, that would both be evaluated.
Participants then had the other interface explained aloud
to them and were similarly asked to complete a training
task (T1 or T2) with the movies data set, a specific (Q1) task,
and finally a free-form (Q2) task using the other data set
and the other interface. Participants were numbered in this
paper according to this counterbalancing effort: participants
P1− 8 used the Combined interface with the loans data set
and the Separated interface with the colleges data set; and
participants P9 − 16 used the Combined interface with the
colleges data set and the Separated interface with the loans
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data set. Finally, the participant and researcher engaged in a
semi-structured debrief interview discussing the participant’s
experience during the session.

We asked participants to use a think-aloud protocol [39]
as they worked and to summarize how they arrived at their
results after completing the tasks. We recorded the screen
and audio (participant and researcher) as well as interaction
logs of all mouse events. Each session took place in-person
and lasted between two and three and a half hours, with a
mean time of two and a half hours. Each participant was
compensated $30 USD via an Amazon gift card.

4 STUDY RESULTS

We used event logs and video recordings to uncover quan-
titative and qualitative patterns in participant’s interactions
and behaviors. Following Dragicevic [41], we interpreted
effect sizes such as sample means using bootstrapped 95%
confidence intervals (CIs) with 1000 resamples to represent
uncertainty (Fig. 3, Fig. 4). For a given confidence level and
sample size, CI width increases with increasing variability;
results are generally significant if CIs do not overlap. We
also provide absolute counts as bar charts (Fig. 3, Fig. 5).
We further evaluated both the video recordings of each
session and the audio recordings of participants’ think-
aloud protocol, debrief interview, and the researcher’s notes,
and conducted inductive thematic analysis [42], identifying
emergent themes that were discussed amongst all authors.
We acknowledge that a think-aloud protocol carries the
potential to affect time spent on tasks and interactions during
studies and consider this in our subjective interpretations. In
this section, we present preliminary observations and open
questions from our mixed-methods analysis around time
spent (Sect. 4.1), interactions (Sect. 4.2), integration strategies
(Sect. 4.3), and analytical behaviors (Sect. 4.4).

4.1 Time Spent

When presented with both in-situ and ex-situ integration
capabilities, will participants spend time differently between
interfaces and tasks?

We needed to temporally separate when participants were
integrating and visualizing data, especially in-situ where
these operations are combined. From Pirolli and Card [9] we
know that users locate sources of data, integrate these data,
and then analyze them, in a foraging and sensemaking loop.
We designed both of our interfaces with an Attributes panel
for users to keep track of what they have integrated in the
loop. Thus, as a first step, we can use the set of operations
that result in an attribute being added to the Attributes panel
as a proxy for intervals of data integration in both interfaces.
In the Separated interface, it is the time between when
Excel is first made the top-level, primary window on the
screen, at least one attribute is added to the Attributes panel,
and the next time that the participant creates or modifies a
visualization. In the Combined interface, it is the time spent
between when the Attributes panel drop-down menu is first
opened, at least one attribute is clicked on, and the next
time that the participant creates or modifies a visualization.
We also defined a proxy for when the participant started
their analysis as the moment they first assigned an attribute
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Fig. 3. Bootstrapped 95% CIs around the mean estimations of total
task completion time (A) and percent time spent integrating between
interfaces (B), as well as the time spent integrating organized by interface
and task (C) (Sect. 4.1). Each estimate represents eight participants
with 1000 resamples. The darker pink bars represent intervals of data
integration and the vertical black lines are a proxy for showing when
analysis started. The percent (%) of time spent integrating and number
(#) of intervals of integration are shown to the right of each bar.

to an encoding channel in the Encode panel. We reviewed
our video recordings and applied these definitions when
manually recording the time intervals of integration.

Observations. Comparing CI width and overlap of task
completion time in Fig. 3A, we found no significant difference
between interfaces or tasks. The percentage of time spent
integrating in Fig. 3B was significantly different between in-
terfaces; between 25% to 65% with the Separated, while only
10% to 30% with the Combined. P7 described this difference
during their session: “In the first [Separated] interface, I had to
go through 8 different files to select the attributes, sort them, and
add them to primary.csv. That was tedious and difficult compared
to the second [Combined] interface, where those operations were
much smoother.”

Breaking down when participants integrated throughout
the task in Fig. 3C, we see different user behaviors emerging.
When using Separated interface, participants mostly inte-
grated in one or two intervals and usually before starting
analysis, whereas with the Combined interface, integration
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Fig. 4. Bootstrapped 95% CIs around the mean estimations of (A) unique attributes added to the Attributes panel as well as total attribute interactions
between interfaces in the (B) Encode and (C) Filter panels (Sect. 4.2). Each estimate represents eight participants with 1000 resamples.

usually happened in two or more intervals any time through-
out the analysis. For P9, using the Separated interface
mirrored processes they followed with other visual analytics
tools: “When I try to work on visualization, I think of it as a two-
step process: I find the attributes first, then make the visualizations.
Otherwise it’s a lot to keep track of and think about... I’m just in
the habit of making my list before visualizing... I think of the tasks
as separate... I think my experience in Tableau makes me expect
to have to connect data in sheets first.” Unique strategies also
emerged; e.g., P4, 8, 14, 16 exclusively integrated attributes
on the fly (i.e. no time spent integrating and no pink bars in
Fig. 3C), while P3, 5, 6 used the Attributes Panel to integrate
one attribute at a time up to 6 times (i.e. many small pink
bars in Fig. 3C). P8 switched to this strategy during the free-
form task (Q2) saying: “It was very quick and efficient to test
and move attributes.” Differences between task types (Q1 and
Q2) were inconclusive.

When should data integration operations be combined
with visual analytics operations? Overall, we were surprised
to see that both specific and free-form tasks took roughly
the same time to complete with either interface, even though
there are fewer integration operations to perform in the
Combined interface. We also saw participants spend more
time integrating data before analyzing it using the Separated
interface, whereas integration happened less often and more
frequently throughout analysis with the Combined interface.
This could suggest that in-situ integration helps users stay
focused on analysis tasks longer than ex-situ integration. At
the same time, some participants chose when and how long
to integrate regardless of total task time based on previous
experience with tools like Tableau, where integration usually
happens separately from analysis. Users may require a
balance between manual and automated integration.

Open questions. In addition to the findings above, our
study revealed open questions, listed below, that encourage
future research in this area:

1) Are users spending more time thinking about their
analysis when using in-situ versus ex-situ integration?

2) Are users able to quickly transition between integration
and analysis with in-situ integration, or does new data
being introduced interrupt the flow?

3) What factors in a user’s prior experience affect time
spent? How do they correlate with task requirements
and interface design?

4) Will time spent be affected if users can choose between
in-situ and ex-situ integration on the fly?

4.2 Interactions

Will in-situ or ex-situ integration reveal differences in how
users perform visual analytics operations?

Observations. Comparing CI width and overlap of estima-
tions in Fig. 4, we found participants integrated slightly more
unique attributes into their analysis using the Separated
interface overall (Fig. 4A), yet interacted with slightly more
attributes in both the Encode and Filter panels of the
Combined interface (Fig. 4B and Fig. 4C), though not enough
to be significant. P15 demonstrated both of these patterns
by (1) mostly using the Attributes panel to integrate and
organize lots of unique attributes (“Since there were a lot
of attributes, having them at the top of the drop-downs was
useful”) while (2) also exploring new attributes on the fly
in the Encode and Filter panels because it was easy (“In
the [Combined] interface, I didn’t have to add the attribute to the
Attributes panel, I could just add the attribute to the panel I wanted
it in”).

Based on whether attributes were integrated ex-situ
(primary) or in-situ (secondary) in the Combined interface, we
observed three distinct patterns of interaction in Fig. 5
and compared them with the intervals of data integra-
tion in the Combined interface (Fig. 3C). 9/16 participants
(P1, 3, 5, 6, 7, 10, 12, 13, 15) interacted mostly with primary
attributes, similar to how the Separated interface is used;
6/9 of these participants (P1, 7, 10, 12, 13, 15) also spent a
majority of their time integrating with the Attributes panel
before starting their analysis. 4/16 participants (P4, 8, 11, 14)
interacted mostly with secondary attributes; 3/4 of these
participants (P4, 11, 14) also rarely used the Attributes panel,
in contrast to how the Separated interface is used. 3/16
participants (P2, 9, 16) interacted with a mixture of primary
and secondary attributes with no clear preference. P9 based
their interactions on the task: “If it’s a specific task and we
need attributes ‘x’, ‘y’, and ‘z’, then we can directly use the
Encode panel. But if I have a free-form task, then I want to
shortlist my attributes first [in the Attributes panel] and explore
those.” P2 initially used the Attributes panel, then switched to
integrating with the Encode and Filter panels, saying “I don’t
think adding attributes to the Attributes panel made a difference...
that is not where I use my attributes.” Attribute panel usage
was inconsistent for these three participants and the four
remaining participants (P3, 5, 6, 8) with mostly primary or
secondary attribute interactions. For example, P8 spent time
using the Attributes panel before starting analysis in LQ1,
then did not use the Attributes panel at all in LQ2. Yet we
found that they mostly interacted with secondary attributes
in the Encode and Filter panels across both tasks.
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Fig. 5. Total counts of primary and secondary attribute interactions in
the Encode and Filter panels of the Combined interface (Sect. 4.2). See
Sect. 3.2.2 and Fig. 2 for definitions.

Where should data integration operations be combined
with visual analytics operations? Overall, while attributes
took less operations to integrate in the Combined interface,
some participants integrated slightly more unique attributes
with the Separated interface. We also did not see large
differences in total interactions with attributes in either the
Encode or Filter panels between interfaces. In-situ integration
taking less operations may not strongly affect how many
attributes users interact with compared with ex-situ inte-
gration, suggesting a more balanced approached between
in-situ and ex-situ. Yet considering that the Attributes panel
is a common way to incorporate new attributes during
analysis and is our proxy for intervals of data integration
in both interfaces, we were surprised that Attributes panel
usage in the Combined interface was split. Similarly, while
primary attribute interactions are more common in tools like
Tableau, primary and secondary attribute interactions in the
Combined interface were also split and users did not converge
on a single strategy for using integrated attributes during
analysis. Participants further demonstrated preferences, e.g.,
those with a preference towards primary attribute interactions
used the Attributes panel more often, and analogously less
often for those with more secondary attribute interactions.
Participant preferences for integration strategies (Sect. 4.3)
suggest that in-situ integration helps users during visual
data analysis in unique ways, despite little difference in
interactions. We describe participants’ strategies for using
in-situ integration in the next section.

Open questions. In addition to the findings above, our
study revealed open questions listed below:

1) If users can choose between in-situ and ex-situ inte-
gration on the fly, will constraints based on time, task
requirements, or interface design affect users’ interac-
tions with a large coverage of attributes?

2) Similar to attribute coverage, if less operations does not
lead to more interactions overall, will other constraints
influence integration method preference?

3) Are users adapting their analysis process to new ways of
integrating on the fly? How does prior experience affect
whether users choose in-situ or ex-situ integration?

4.3 Integration Strategies

How should data integration operations be supported in tan-
dem with visual analytics operations? Based on participants’
time spent and interactions, as well as video recordings and
qualitative feedback, we identified four distinct integration
strategies across both interfaces. Most participants used a
single strategy for each interface across both tasks, while a
few switched strategies between tasks.

S1 – “Integrate attributes first” – both interfaces. Several
participants integrated attributes before starting analysis and
rarely integrated more afterwards. S1 is characterized by
more time spent integrating attributes into the Attributes
panel than other strategies and, in the Combined interface,
more primary attribute than secondary attribute interactions.
The time spent adding attributes to the Attributes panel
was usually apportioned to one integration session in the
beginning of each task collecting a large subset of attributes,
with participants rarely integrating after their initial collec-
tion. With the Separated interface, this strategy was used
almost exclusively since attributes could only be added to
the Attributes panel via Excel. When using the Combined
interface, 7/16 participants (P1, 7, 8, 9, 12, 15, 16) utilized
this strategy at least once and 4/16 used it exclusively
(P7, 9, 12, 15). P1 used this strategy to make a plan before
analyzing the data: “Based on the question, I didn’t need to worry
about all attributes. I wanted to pick attributes that would help me
answer the question... I wanted to have in my head, ’what makes
sense to visualize?’, before starting analysis.”

S2 – “Don’t think about integrating attributes” – Combined
interface only. Some participants integrated on the fly
and rarely shortlisted attributes before using them. S2 is
characterized by little to no time spent adding attributes to
the Attributes panel at any point during analysis and, in the
Combined interface, mostly secondary attribute interactions. In-
stead, participants used attributes directly in the panels they
were interested in; e.g., the Encode or Filter panel. S2 was not
possible when using the Separated interface. When using
the Combined interface, 6/16 participants (P2, 4, 8, 11, 14, 16)
utilized this strategy at least once and 3/16 used it exclu-
sively (P4, 11, 14). P6 reflected on how they would use this
strategy after the study: “Adding attributes in the Attributes
panel was confusing. At first I used it to see what attributes were
there, but you could do the same operation in the other panels...
The more you know the attributes, the less you would need the
Attributes panel.”
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S3 – “Integrate attributes as needed” – both interfaces. A
few participants used their analysis process to inform them
when to integrate, instead of all up front or on the fly. S3
is characterized similarly to S2, including more time spent
adding attributes to the Attributes panel and, in the Combined
interface, mostly primary attribute interactions. However,
that time was apportioned more evenly throughout the
task in an “analyze as you go” fashion, with participants
returning two or three times to integrate smaller subsets of at-
tributes as needed. While this strategy was possible with the
Separated interface, no participants engaged with it when
using the Separated interface. When using the Combined
interface, 6/16 participants (P1, 2, 5, 6, 10, 13) utilized this
strategy at least once and 2/16 used it exclusively (P10, 13).
P13 describes this strategy as an extension of their analysis
process: “I do that normally. I wanted to make changes then see
what happens... what if I come across something interesting as
the visualization changes?” For them, integrating helps them
generate insights: “I think the free-form task was more about
getting insights. I was seeing if adding or deleting anything was
changing the visualization.”

S4 – “Integrate attributes one-at-a-time” – both interfaces.
A handful of participants focused on a small number of
attributes in detail, adding them to the interface one at a
time. S4 is characterized by less time spent adding attributes
to the Attributes panel than the other strategies and, in
the Combined interface, mostly primary attribute usage. To
achieve this, participants briefly and sporadically added a
few attributes to the Attributes panel as many as six times
throughout a task. Only P13 used this strategy with the
Separated interface, while working on LQ1, returning to
Excel multiple times for integrating one to two attributes at a
time. When using the Combined interface, 3/16 participants
(P3, 5, 6) utilized this strategy at least once and one used
it exclusively (P3). P3 used this strategy to organize their
Attributes panel: “At first, I tried putting in the specific attributes
into the Encode panel, but that wasn’t such a good idea. I want to
have all of the attributes organized together in the Attributes panel
instead.” P5 used it to organize the Elaborate panel: “I wanted
to see the order of attributes I added in the Attributes panel in the
Elaborate table as well.”

Switching strategies. Some participants changed their
strategies between the specific task (Q1) and free-form task
(Q2). It is not clear what effects the task type had on why
participants switched tactics. Four participants (P1, 2, 5, 6)
started with S3: P1 switched to S1; P2 switched to S2; and
P5, 6 switched to S4. Two participants (P8, 16) started with
S1, then both switched to S2.

Ex-situ integration operations. Two ways of integrating
attributes ex-situ emerged: (1) copy-and-paste; and (2) the
Excel function V-LOOKUP. 13/16 participants copied and
pasted columns from one file to the next. P15 explains that “it
was similar to how I use other data analysis tools. I would copy and
paste data from one spreadsheet to another.” Participants varied
in whether and how they would validate the success of their
joins. For example, P11 told us that “when I was copy-pasting,
I assumed that the rows from the primary table were all there
in the secondary tables.” 3/16 participants (P2, 12, 16) used
V-LOOKUP to populate a new column with values based

on a look-up with the primary key (ID) column, ensuring a
correct join. P1 mentioned using V-LOOKUP as preferable to
copy-and-paste but did not use it, citing a lack of time and
familiarity: “Sorry it’s a bit slow [copy-and-paste], I’m not very
good at Excel... another good way [to integrate] would be to use a
V-LOOKUP to match the IDs... But looking at the IDs, they look
like they match up.”

4.4 Analytical Behaviors
How will incorporating data integration into an on-going
visual analytics process affect user behaviors? We describe
observed analytical behaviors related to satsificing and
exhibiting bias from a sensemaking perspective.

Satisficing. We observed patterns of satisficing, a cognitive
heuristic for choosing a satisfactory or “good enough” option
from alternatives [12]. Pirolli and Card explain that “time
pressures and data overload work against the individual
analyst’s ability to rigorously follow effective methods for
generating, managing, and evaluating hypotheses” [9]. P5
managed the constraints of integration by prioritizing insight
generation: “I got less time to decide on which attributes to use,
and I spent more time on the data pre-processing. I would prefer
the [Combined] interface more. In visual data analysis, it’s more
important to gain insights.” P9 told us that they considered not
introducing attributes into their analysis as a consequence of
their sensemaking: “It was a lot of operations to just add a single
variable. If I was 50/50 about whether to include an attribute, then
I may not include it in my analysis.”

Conversely, from a data-frame theory perspective, Klein
et al. suggest that sensemaking is the balance of fitting data
to a frame and the frame affecting how data is interpreted
[10]. When asked why they satisficed, P9 attributed the
difference between interface designs to their trust in the
data: “In terms of accuracy and insights the [Separated] interface
was better. But the simplicity of the [Combined] interface was
better... I think it all comes down to how much you trust the data.
If you trust it, the [Combined] is better. But if the data isn’t clean,
the [Separated] is better.” Having integration be a simpler and
more seamless part of visual data analysis could improve
both the generation and coverage of hypotheses afforded
by access to new attributes. At the same time, removing the
seams may affect the balance of fitting data to frames and
frames to data that proceeds under the constraints of time
pressures and data overload.

Exhibiting bias. We identified potential examples of cog-
nitive bias due to the separation of data preparation and
analysis. For example, participants visualized the same
set of attributes in similar ways, often saying they were
“familiar” with these attributes, and may have been exhibiting
confirmation bias [43]. We expected participants to consider
using different combinations of attributes to change their
perspective, particularly considering the ease of immedi-
ately viewing integrated attributes in the Combined interface.
However, many of these participants instead claimed that
“the data just wasn’t showing them what they wanted to
see” and continued attempting to preserve their frames by
rearranging the encodings of the same attributes. Klein et al.
suggest that initial anchors, in this case the data that these
participants first integrated, can have profound effects on
performance during sensemaking tasks [10].
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Similarly, we found a tendency for some participants to
exhibit anchoring effects [43], [44] by sticking to a smaller
number of attributes for a longer amount of time before
attempting to branch out and find more information, if at
all. Often these participants, when asked how their analysis
was going, would tell us that they were “trying to make it
work”. However, they rarely used the integration features
of either interface to overcome these issues, instead focusing
on trying different combinations of encodings and filters to
solve the problem. Both of these examples suggest that such
biases could persist even when the interface design affords
the opportunity to integrate data with a single click.

5 PRELIMINARY GUIDELINES

Towards preliminary guidelines, many participants cited
commonly raised concerns around affordances, direct manip-
ulation of the data [45], and fluid interaction [46], such as
the responsiveness of the system and lack of load times, the
layouts of the drop-down menus and panels, the usefulness
of dynamic querying [47], and the user experience. With these
in mind and our findings, we synthesized three guidelines for
designing future visual analytics interfaces that can support
integrating attributes throughout an active analysis process:
(1) show where and how data are being integrated (Sect. 5.1);
(2) use in-situ integration for exploring the space of attributes
(Sect. 5.2); and (3) balance manual and automated approaches
(Sect. 5.3).

5.1 Show where the data comes from

The transparency of how and what data are integrated is
essential for in-situ data integration within a visual analytics
system. For example, P1, 8, 12 all used strategy S1 in the
Combined interface and asked for more access to the raw
data. P1 specifically wanted access to verify the quality of
the data: “I liked [Combined] for the ease of use, but I also like to
see the actual data in the [Separated]. I would go back and use
the tool to verify the quality of the data.” On the other hand,
P5 felt that the Combined interface would process the raw
data better than they could, based on their experience with
similar visual analytics tools: “When I copy-and-pasted data in
the [Separated] interface, I had to manage column names and there
couldn’t be manual errors, and I feel like the [Combined] interface
would do a better job of overcoming those... I’ve used Tableau and
Power BI. I was told that those interfaces mapped data correctly, so
I assumed this one did as well.” While our study intentionally
controlled for data quality, future interfaces should clarify
the limitations of how and what data are integrated. For
example, Cashman et al. use a pop-up window in their
CAVA system [33] to display how a join will be performed
before it is ultimately integrated into the data set. Analysis
outcomes that follow from “anonymous” integration could
be dangerous if not carefully evaluated.

However, we found strong evidence that showing the
user all of what attributes can be integrated can negatively
affect analysis in several ways. For example, P2 expressed
concerns of cognitive overload from having too many
attributes to think about: “There were so many variables [in
the drop-downs] that I missed some. If the attributes were laid
out [in the Attributes panel] like in Tableau then maybe I would

have seen it...” Too many attributes can also negatively affect
task completion time. With the Combined interface, P10 cited
too many attributes in the drop-downs: “In the [Combined]
interface, having too many attributes in the drop-downs in the
Encode and Filter panels took more time than expected to look
through.” With the Separated interface, P5 took time to
traverse multiple files: “The attributes were spread across a lot
of files. Traversing the files to find the right attribute took a while.”
Further, making attributes more visible may contribute to
satisficing. P11 satisficed based on the task: “Sometimes I
wasn’t sure where to look... When doing the tasks, I would often look
for just the attributes I felt like were relevant to the task. I ignored
the rest because I had to go through the tables to find them.” P6
attributed this to interface design: “With the specific questions,
I knew where to look in the tables with the [Separated] interface,
compared with the [Combined] interface which was harder for this.”
However, when the number of attributes felt manageable,
P9 liked the drop-downs for finding relevant attributes: “I
didn’t know where the attributes were in the system, but that
wasn’t a problem. I had to skim through the attributes in the drop-
down [of the Combined interface], but the number of attributes
was not so great. If there was more, it would have been more
difficult.” Thus, designers should carefully consider how the
number of attributes in the data may influence users’ time
spent, interactions, and analytical behaviors by balancing
how much is shown to the user at once with how easy it
is for users to find relevant attributes to integrate during
analysis.

5.2 Use in-situ integration for exploration

The issues faced by participants using the Separated inter-
face are common to data integration as an entry point to
analysis. There is some evidence that the overhead cost of
integration outside the interface could prevent users from
finding relevant attributes. For example, P2 described trading
off between analyzing and integrating, causing conflicts
where the interface lacked support. They attributed mistakes
they made to managing multiple tables manually across
several windows with the Separated interface: “I copied the
values into the wrong file because so many windows were open.
That wasted my time.” Instead, we saw more evidence that
encode and filter operations were useful for exploring the
attribute space to find and integrate new attributes on the
fly in the Combined interface. P11 found the grouping of
attributes in a single drop-down helpful because it allowed
them to see all of the available data: “I liked having all of the
attributes that were relevant to the tasks in one place.” P14 felt
the Combined interface helped them find more attributes: “It
was more convenient to see all of the attributes in the [Combined]
interface. For example, what if there was an attribute hiding in a
table that I missed?” P5 used the names of the files as a proxy
for determining the semantic relevance of an attribute to the
task: “I didn’t know what all attributes were [in the Combined
interface], but I checked the names of the files for the attributes
in order to choose which attributes to use.” Thus, in-situ data
integration for quickly encoding new attributes in the visual-
ization could help users maintain their focus on performing
visual data analysis. In the Combined interface, participants
can immediately observe the results of integration in their
visualizations and generate new ideas and strategies to
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explore [14]. This can also allow participants to evaluate
the quality of the integrated information visually [15]. An
“undo” feature would further promote principles of direct
manipulation that preserve the flow of the analysis process
[46]. When combined with visual analytics operations, in-
situ integration may help users maintain an active and
continuous analysis process.

5.3 Balance manual and automated approaches

The differences in users’ interactions and behaviors between
ex-situ and in-situ integration provides some evidence for
when manual approaches should be used over automated ap-
proaches. P2 had difficulty remembering relevant attributes
when the integration process was automated: “In Tableau
and Power BI, you have to manually create tables when joining
tables... but since I wasn’t the one doing the joins [in the Combined
interface], it was harder to remember the attributes that were
available to me. I would have remembered them if I had to manually
join the attributes.” P16 also preferred manual interactions for
understanding their data: “I liked the [Separated] interface a
lot even though it involved a lot of manual interactions with the
CSVs... In the [Separated] interface, you are really visualizing
your data, you understand how your data will be visualized.
In the [Combined] interface, you have to understand how the
different panels work together instead.” Yet there is evidence that
automated approaches may improve the analysis process.
For example, despite tasks not being timed, the distribution
of time spent with the Separated interface affected the
performance of P5: “I think most of the time was spent doing data
preparation and I felt rushed.” P9 also spent longer with the
Separated interface because they had to separate analysis
from integration: “It takes a long time to do manual integration.
For example, when I open a CSV [file], I have thoughts about
what it may contain, then I see the attributes. It’s not the same
operation to find the attribute and use the attribute, unlike in
the [Combined] interface.” P2 elaborated on how maintaining
context affected both their time spent and insights generated:

“Adding attributes [to the Separated interface] was a pain. I had
to open tables and copy and remove incorrect values. I had to look
at the names of the files to guess where attributes would be... [my
time] was mostly spent cleaning and arranging data. I didn’t have
a lot of time to focus on how I could improve the visualization.”).
P9 explains how their experience differed between interfaces:
“In the [Combined] interface, I can explore more attributes in a
shorter amount of time. In the [Separated] interface, there’s more
overhead that takes time away from the task of visualizing data.”
This suggests that designers should consider a minimal but
fluid design [46] for in-situ integration when time spent
and interactions should be minimized, otherwise opt for
manual approaches. One potential in-situ solution could
be the automation of integration steps that do not require
as much human input. Data blending techniques such as
those provided by Tableau [14] and Google Data Studio
exemplify this idea by maintaining a human-in-the-loop
control while abstracting away the more technical details
of integration. This may help users reduce the number of
concurrent processes to manage while helping them maintain
context.

6 LIMITATIONS AND FUTURE WORK

Beyond the preliminary state of our guidelines, we contribute
open research questions and avenues for future work inves-
tigating more types of integration, task requirements, and
users’ prior experience towards “concrete” guidelines.

Types of integration. To elicit initial observations, we
directly compared ex-situ and in-situ integration by in-
tentionally simplifying and limiting integration to column
concatenation and selection. Because of this, we could not
study technical challenges associated with more complex
data integration, such as performing deduplication and entity
resolution described in Sect. 2.1, as well as issues of latency
in how long it takes to resolve joins and data quality across
heterogeneous sources. Column concatenation itself is very
simple compared to “real” data integration that can involve
extensive planning and even custom tool development when
the semantics of data is complicated and/or involved semi-
structured data such as text. Additionally, we ensured a
one-to-one mapping of recordings between every file and
described all files and attributes to participants up front
in Sect. 3.1. This choice did not allow us to investigate
how the quality of data from potentially unknown sources
affects users interactions and behaviors, e.g., introducing
attributes from multiple websites or APIs, potentially on the
fly as they become available, and throughout the analysis
process as users request them. Given these limitations, it
is unclear whether users will consider the validity of a
data source when data is not presented up front. The way
forward might require adopting (even developing) a more
sophisticated approach to comparative evaluation not based
on direct “apples-to-apples” comparison, e.g., focusing on
single-table data wrangling with more complex integration
tasks compared with equivalent field calculations wrapped
in a UI-based approach.

Task requirements. We chose tasks following Fekete et
al. [48], who argue that visualizations are often best for
exploratory tasks where the goal is to make discoveries or
generate insights about data. Our methodology did not allow
us to investigate effects on task performance, including what
markers indicate the end of a task and when or if participants
decide to stop integrating. Future work could model factors
that determine how much data will be integrated and when
based on task requirements and/or UI design. It is unclear
whether there is a threshold across which user interactions
and behaviors change. Additionally, while we found that
our definition of time spent integrating closely matched
qualitative feedback from participants, participants could
have been using the time between integrating and visualizing
data to consider what visualization to create that best utilizes
the integrated attributes; this time may be significant. We
acknowledge that other measurements for marking the start
and end of integration are also reasonable. Finally, we limited
the number of attributes in the data set, unlike real analysis
scenarios where users may have a priori knowledge of
attributes they want and/or risk cognitive overload while
browsing for relevant attributes out of many. Our preliminary
guidelines suggest not to overload users with every attribute
that can be integrated; future work should isolate these
effects and systematically describe them as a factors in the
data integration process during visual data analysis.
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Users’ experience. Our participants comprised a fairly
homogeneous user group (all recruited from the same
academic institution with varying levels of experience con-
ducting data analysis, creating visualizations, and using
data analysis software) to reduce confounds in comparing
feedback. Because of this, it is unclear whether incorporating
data integration into visual analytics processes at all will
depend on familiarity with software and analysis practices,
particularly where data integration plays a major role, either
as part of the analysis process or off-loaded to others. For
example, decision-makers with existing routines may or may
not conduct analysis differently [11] when integration on the
fly is possible. Participants also varied in how much time they
spent on tasks depending on their prior domain knowledge
of the data sets, skill in performing visual data analysis, and
comfort with learning and using the interfaces. For example,
P16 avoided attributes based on their domain experience:

“In the loan question, I wasn’t familiar with some of the terms, so I
didn’t really touch some of the files because I wasn’t comfortable
using them.” Additionally, when participants felt that a
task description was ambiguous or open to interpretation,
they took longer to prepare data. P15 reflected: “I feel like
the difference in the quality of my analysis was less about the
interface I was given and more about the task I was given.” Thus
future studies should investigate how task requirements
and existing domain knowledge impact integration during
visual data analysis. Our results indicate that it may be
neither preferable nor realistic to start with a single file full
of attributes.

7 CONCLUSION

This paper presents preliminary results and guidelines when
combining data integration and visual analytics processes.
We developed two visual analytics interfaces: one that
presents manual file-based ex-situ integration (Separated);
and one that presents automatic UI-based in-situ integration
(Combined). We conducted a within-subjects user study with
16 participants and a mixed-methods analysis of participants’
interactions and behaviors.

Where and how should we support data integration
operations in tandem with visual analytics operations?
Participants spent time integrating before analysis, on the fly,
and switching between strategies. The time spent on tasks
and interactions between interfaces was also not significantly
different. In-situ integration could enable analysts to explore
attributes faster than analogous ex-situ strategies, leaving
more time for analysis tasks. How will incorporating data
integration into an on-going visual analytics process affect
user behaviors? We observed participants using integration
operations to generate and track hypotheses and insights
as well as patterns of satisficing and bias in participants’
analytical behaviors. Supporting integration operations in
visual analytics tools will also require transparency up front
about what and how data are integrated as well as balancing
both automated and manual approaches.
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