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Abstract

We compare several different methods to quantify the uncertainty of binding parameters

estimated from isothermal titration calorimetry data: the asymptotic standard error from

maximum likelihood estimation, error propagation based on a first-order Taylor series ex-

pansion, and the Bayesian credible interval. When the methods are applied to simulated

experiments and to measurements of Mg(II) binding to EDTA, the asymptotic standard

error underestimates the uncertainty in the free energy and enthalpy of binding. Error prop-

agation overestimates the uncertainty for both quantities, except in the simulations, where

it underestimates the uncertainty of enthalpy for confidence intervals less than 70%. In both

data sets, Bayesian credible intervals are much closer to observed confidence intervals.
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Introduction

Isothermal titration calorimetry (ITC) is widely used to characterize binding processes

involving biomolecules including proteins,1 small organic molecules,2 DNA/RNA,3,4 and

lipids.5 ITC data is routinely analyzed to estimate thermodynamic parameters - the Gibbs

free energy ∆G and the enthalpy ∆H - for simple binding processes. Based on the relation

∆G = ∆H − T∆S that includes the temperature T, the entropy ∆S may also be obtained.

These parameters have often been estimated using what we will refer to as the standard

procedure: a nonlinear least squares regression method implemented in the Origin software

package that is distributed with the MicroCal VP-ITC instrument and its successors. The

software yields a maximum likelihood estimate (MLE) of the parameters and asymptotic

standard error (ASE). Unfortunately, the ASE underestimates the uncertainty by as much

as an order of magnitude6!

The severe underestimation of uncertainty is mainly a consequence of ignoring the error in

the titrant concentration. In the standard procedure, the error in the titrand concentration

(in the sample cell) is handled by assigning the stoichiometry n as a free parameter. On the

other hand, the titrant concentration (in the syringe) is treated as a constant. This assump-

tion is made because ITC data can only be used to estimate the ratio of the titrant:titrand

concentrations as opposed to individual values.7 However, it is a poor assumption because

large errors (10–20%) in titrant concentration between laboratories have been observed.6

In 2015, Boyce et. al. suggested that the uncertainty of the standard procedure could

be adjusted based on error propagation.8 Specifically, based on the Taylor expansion, errors

in Ka, ∆H, and the site parameter n may be corrected by the relative error of the titrant

concentration. However, they did not show that the resulting uncertainty estimate leads

to accurate confidence intervals. Confidence intervals are accurate when the X% confidence

interval includes the true value X% of the time, where X is a confidence level. In 2018,

Nguyen et. al. described the analysis of ITC data with Bayesian regression. They found

that Bayesian credible intervals (BCIs) - regions which contain a specified percentage of the
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Bayesian posterior - are more accurate confidence intervals than those based on the ASE.9

There was no comparison to confidence intervals based on the ASE augmented with error

propagation. The purpose of this short manuscript is to address this oversight.

Materials and Methods

Integrated heat data

Our data are integrated heats, D ∈ {q1, q2, ..., qN}, where qn is the integrated heat of injection

n. We analyzed simulations as well as ITC experiments that were previously described.9

Simulations are useful because it is inexpensive to collect large amounts of data and be-

cause thermodynamic parameters are known exactly. Simulations of simple 1:1 binding were

performed in a similar way as in Nguyen et. al.9 A total of 1000 integrated heat curves with

24 injections each were modeled depending on the free energy of binding ∆G, the enthalpy

of binding ∆H, the enthalpy of dilution and stirring per injection ∆H0, the concentration of

receptor (titrand) [R]0, the concentration of ligand (titrant) [L]s, and the standard deviation

of the measurement error σ. The thermodynamic parameters and enthalpy of injection were

fixed at ∆G = -10 kcal/mol, ∆H = -5 kcal/mol, and ∆H0 = 0.5 µcal. [R]0 and [L]s were

sampled from lognormal distributions with mean values of 0.1 and 1.0 mM, respectively.

Based on the uncertainty of 10% observed by Myszka et. al.,6 the variance was set at either

small (5% of the mean) or large (10% of the mean). Measurement error was modeled as

normally distributed with a zero mean and standard deviation of σ = 1 µcal.

We also analyzed 14 integrated heat curves from previously performed experiments in

which MgCl2 was titrated into a sample cell containing EDTA in a MicroCal VP-ITC

calorimeter.9
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Regression

Data were analyzed via Bayesian regression and maximum likelihood estimation. In both

procedures, integrated heat curves for simple 1:1 binding were modeled as previously de-

scribed.9 They are functions of the aforementioned parameters,

θ ≡ (∆G,∆H,∆H0, [R]0, [L]s, σ). (1)

Observed injection heats qn were treated as normally distributed about the true heats q∗n(θ),

qn ∼ N (q∗n(θ), σ
2). (2)

Thus, the likelihood function of an integrated heat curve D ∈ {q1, q2, ..., qN} is,

p(D|θ) = 1

(2π)N/2σN
exp

[︄
− 1

2σ2

N∑︂
n=1

(qn − q∗n(θ))
2

]︄
. (3)

Bayesian regression

For the Bayesian regression, the prior of parameters was independent, such that p(θ) =∏︁
i p(θi). As in Nguyen et. al.,9 uniform priors were used for ∆G, ∆H, ∆H0. Lognormal

priors were used for the concentrations of the ligand and the receptor,

ln[X ]0 ∼ LN ([X ]0, (δ[X ]0)
2), (4)

where [X ]0 ∈ {[R]0, [L]s} is the stated value of each quantity. δ was assumed to be either

5% or 10%. The uninformative Jeffreys prior was used for σ:10

p(σ) ∝ σ0

σ
, (5)
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where σ0 = 1 cal. For this model, the posterior probability density is,

p(θ|D) ∝ p(D|θ) p(θ), (6)

Sampling from the Bayesian posterior was performed using a Markov Chain Monte Carlo

method, as in Nguyen et. al.9 but with a few small adjustments. Instead of using pymc3, the

regression was implemented in numpyro.11,12 After 2000 warm-up moves, 10000 (opposed to

50009) samples from 4 chains were stored. The X% BCI of each parameter was calculated

based on the smallest interval that contains X% of the posterior samples. Additionally, the

uncertainty δ was set at either 5% and 10%, opposed to only 10%.

Maximum likelihood estimation

For the MLE, parameter estimates were obtained as,

θ̂ = argmax
θ

log p(D|θ). (7)

The covariance matrix of the asymptotic standard error (ASE) was estimated based on the

inverse Fisher information matrix,

cov(θ̂) ≈ − 1

N

[︃
∂logLN

∂θ∂θ⊤

⃓⃓⃓
θ=θˆ

]︃−1

. (8)

We used scipy.optimize.minimize function from the python package scipy13 to implement this

MLE model, estimate the parameters, and automatically calculate the covariance matrix for

parameter uncertainty. The X% CI of each parameter was defined by an interval in which the

lower bound was the 1 − X/2 percentile, and the upper bound was the 1 + X/2 percentile

of the normal distribution with a mean as the estimated value and standard deviation as the

ASE.
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Maximum likelihood estimation with error propagation

We performed error propagation to augment the ASE of MLE parameters based on the

formula provided by Boyce et. al.,8

(︂sθ
θ

)︂2

=
(︂sθ,ASE

θ

)︂2

+

(︃
s[L]s
[L]S

)︃2

(9)

In this equation, s are standard errors and θ ∈ {∆G,∆H} are the parameters affected by the

uncertainty of ligand concentration [L]S. sθ,ASE is the ASE, s[L]s is the standard error in the

ligand concentration, and sθ is the error estimate of the parameter θ that incorporates ligand

concentration error. The uncertainty of the ligand concentration s[L]s can be estimated by

another experiment or based on previous estimates. Considering uncertainty in both protein

and ligand concentrations, we used either 5% or 10% for both s[R]0/[R]0 and s[L]S/[L]S. CIs

of this procedure were estimated similarly to the MLE procedure.

Results

Bayesian posteriors are converged

As in Nguyen et. al.,9 the Markov chain Monte Carlo protocol leads to converged BCIs. In

a representative run for one of the 1000 simulated integrated heat curves (Fig. S1), fewer

than 10% of samples are required before estimated percentiles of the posterior density are

stable (Fig. S2). Comparable convergence behavior is observed when sampling the Bayesian

posterior for the ITC experiments (Fig. S3).
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Error propagation expands confidence intervals to be larger than

Bayesian credible intervals

For each of the 14 experiments, 95% CIs of ∆G and ∆H are shown in Fig. 1. Because the

true value of parameters is unknown, the median estimate is shown as a proxy. Panels (a)

and (b) reproduce Fig. 6 from Nguyen et. al.9 The 95% CIs of ∆G encompass the median

value in nearly every experiment. For CIs based on the ASE, 95% CIs of ∆H are too small.

Panel (c) shows that error propagation increases CIs to encompass the median, but the CIs

appear to be larger than necessary.

10.0 9.5 9.0 8.5 8.0
G (kcal/mol)

10.0 9.5 9.0 8.5 8.0
G (kcal/mol)

11 10 9 8 7
G (kcal/mol)

3.5 3.0 2.5 2.0 1.5
H (kcal/mol)

(a) Bayesian

3.5 3.0 2.5 2.0 1.5
H (kcal/mol)

(b) ASE

3.0 2.5 2.0
H (kcal/mol)

(c) ASE with EP

Figure 1: Uncertainty estimates of Mg(II):EDTA dataset. 95% credible intervals esti-
mated from the Bayesian posterior (left), confidence intervals calculated by ASE from nonlinear
least squares (middle), and confidence intervals calculated by ASE with EP (right) for parameters
specifying magnesium binding to EDTA. The median MCMC samples are shown by the vertical
green lines. The standard deviations of the lower and upper bounds are denoted as red bars and
estimated by bootstrapping.
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Even with error propagation, BCIs provide more accurate CIs than

the ASE

The accuracy of CIs was more carefully assessed by coverage plots, in which predicted con-

fidence intervals are plotted against the percentage of BCIs and CIs that contain the true

values of ∆G and ∆H. For accurate CIs, points should lie along the diagonal. If points

are below the diagonal, CIs are underestimated. If points are above the diagonal, CIs are

overestimated.

Coverage plots were generated for 1000 simulations with high error (Fig. 2) and low error

(Fig. S4) and for 14 experiments (Fig. 3). In all of the coverage plots, Bayesian credible

intervals are closest to the diagonal. As expected, the ASE consistently underestimates

confidence intervals. For ∆G, the ASE with error propagation overestimates confidence

intervals for nearly all confidence levels. For ∆H, the story is more subtle. In the simulations

at both high and low error, confidence intervals are underestimated for confidence levels less

than 70% but somewhat overestimated for higher confidence levels. In the experiments,

confidence intervals are overestimated for confidence intervals greater than 30%.

Conclusions

In both ITC simulations and experiments, BCIs provide more accurate uncertainty estimates

for thermodynamic binding parameters than the ASE, without or with error propagation.

The ASE underestimates the uncertainties of all datasets. Error propagation overestimates

the uncertainties in the experimental dataset, but in simulations it underestimates the un-

certainty of enthalpy for confidence intervals less than 70%.
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Figure 2: Uncertainty validation of the simulation dataset at high error 10%. The
predicted rate (%) of CIs containing the true values were plotted against the observed rate (%)
for Bayesian credible intervals (blue leftward triangles), nonlinear least squares confidence intervals
(red circles), and nonlinear least squares confidence intervals with error propagation (cyan down-
ward triangles). Error bars of Bayesian procedure, which were standard deviations based on 100
bootstrapping samples, were too small to be visible.
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Figure 3: Uncertainty validation of Mg(II)-EDTA dataset. The predicted rate (%) of CIs
containing the true values were plotted against the observed rate (%) for Bayesian credible intervals
(blue leftward triangles), nonlinear least squares confidence intervals (red circles), and nonlinear
least squares confidence intervals with error propagation (cyan downward triangles). Error bars of
Bayesian procedure were standard deviations based on 100 bootstrapping samples.
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Supplementary

S1 Figure. 1000 simulated curves of 1:1 binding ITC data. Parameters for the

curves are in the Materials and Methods section of the main text.

S2 Figure. Convergence analysis of Bayesian sampling for a representative sim-

ulated dataset 10,000 samples were generated from the Bayesian posterior. All six param-

eters are shown. The 5-th, 25-th, 50-th, 75-th, and 95-th percentiles are represented as lines

with blue circle, green square, red diamond, cyan upward triangle, and magenta downward

triangle, respectively. The error bars estimated by 100 bootstrapping samples are too small

to be visible.

S3 Figure. Convergence analysis of the Bayesian posterior for Mg(II)-EDTA

datasets 10,000 samples were generated from the Bayesian posterior. All six parameters

are shown. The 5-th, 25-th, 50-th, 75-th, and 95-th percentiles are represented as lines

with blue circle, green square, red diamond, cyan upward triangle, and magenta downward

triangle, respectively. The error bars estimated by 100 bootstrapping samples are too small

to be visible.

S4 Figure. Uncertainty validation of the simulation dataset at low error 5%.

The predicted rate (%) of CIs containing the true values were plotted against the observed

rate (%) for Bayesian credible intervals (blue leftward triangles), nonlinear least squares

confidence intervals (red circles), and nonlinear least squares confidence intervals with er-

ror propagation (cyan downward triangles). Error bars of Bayesian procedure, which were

standard deviations based on 100 bootstrapping samples, were too small to be visible.
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