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Abstract

Bayesian regression is performed to infer parameters of thermodynamic binding models
from isothermal titration calorimetry measurements in which the titrant is an
enantiomeric mixture. For some measurements the posterior density is multimodal,
indicating that additional data with a different protocol are required to uniquely
determine the parameters. Models of increasing complexity - two-component binding,
racemic mixture, and enantiomeric mixture - are compared using model selection
criteria. To precisely estimate one of these criteria, the Bayes factor, a variation of
bridge sampling is developed.

Introduction 1

Isothermal titration calorimetry (ITC) is a solution-phase analytical technique that 2

measures the heat absorbed or released due to a chemical reaction as a titrant is 3

injected into a sample cell. As the reaction proceeds, the heat discharged or consumed 4

in the sample cell modifies the power required to maintain it at the same temperature 5

as a reference cell [1]. Kinetic models, e.g. for noncovalent binding [2], enzyme 6

catalysis [3, 4], or covalent inhibition of enzymes [5], may be used to interpret the 7

differential power. More often, the differential power is numerically integrated to yield 8

an integrated heat of each injection. Models for the integrated heat based on 9

equilibrium concentrations of chemical species are fit to the data to determine 10

thermodynamic parameters of chemical reactions: the enthalpy ∆H, entropy ∆S, and 11

Gibbs free energy ∆G. ITC is frequently applied to noncovalent binding between 12

proteins and organic ligands [6], DNA/RNA [7,8], lipids [9], and proteins [10]. It is also 13

used to study the protonation and tautomerization of binding partners [11,12]. 14

As recently reviewed by Werberg and Mastai [13], ITC has been used to study chiral 15

interactions. Although enantiomers - molecules with mirror-image chirality - have the 16

same chemical composition and similar structures, they may have significantly different 17

bioactivities, metabolic rate, metabolites, excretion, potency, receptor preference, 18

interactions with transporters and enzymes, and toxicity [14]. ITC has been used in 19

many types of chiral studies [13], including: comparing enthalpies of injecting two 20

enantiomers, phenyl-α-L- and phenyl-α-D- mannopyranoside, into a sample cell with 21
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molecularly imprinted polymers [15]; measuring the enthalpy of dilution and pairwise 22

interaction coefficients of enantiomers [16,17]; and determining thermodynamic 23

parameters of binding galactonoamidine derivatives to chiral organometallic 24

complexes [18]. In contrast to other common chiroptical methods that strongly restrict 25

experimental conditions, ITC is a simple label-free technique that can yield a complete 26

set of thermodynamic parameters relevant to chiral interactions, characterize chiral 27

selectivity, and investigate the formation of chiral complexes [13]. 28

Although ITC measurements for binding thermodynamics (including studies of chiral 29

systems) are typically performed with a single binding species in the titrant and titrand, 30

other experimental designs have been investigated. In 2006, Fokkens et. al. described a 31

protocol in which an enantiomeric mixture is injected into the sample cell [19]. While it 32

is generally beneficial to separate the compounds prior to analysis, a preliminary 33

determination of thermodynamic parameters without separation can save time and 34

money. For example, racemic mixtures (which have a 1:1 ratio of enantiomers) of 35

aminoadamantane derivatives were titrated with the M2 proton channel of influenza 36

A [20,21]. Fokkens et. al. demonstrated that if binding affinities of two enantiomers are 37

sufficiently distinct, two distinct affinities can be determined by fitting a simple binding 38

model to different regions of the isotherm. In 2012, Krainer et. al. described an 39

experimental protocol that is essentially opposite: a macromolecular receptor was the 40

titrant and the titrand contains a dilute mixture of two competing ligands (which were 41

not enantiomers) [22]. Fitting data to an analytical expression for the concentration of 42

each complex, they were able to obtain accurate and precise dissociation constants and 43

binding enthalpies for both ligands. 44

One common shortcoming of methods to analyze data from ITC (and many other 45

analytical instruments) is underestimation of statistical uncertainty. Determination of 46

thermodynamic parameters from ITC is a nonlinear regression problem that is typically 47

implemented by maximizing the likelihood of observing the data. If the fitting 48

procedure does not allow variation in a parameter (e.g. concentrations of titrand or 49

titrand), then the uncertainty of these quantities is not accounted for in the asymptotic 50

standard error. The problem is quite general; Petr Kuzmic̆, developer of the enzymology 51

software package DynaFit, wrote “formal standard errors can (and usually do) grossly 52

underestimate the statistical uncertainty” [23]. Indeed, multiple studies have indicated 53

that the Origin software package included with the MicroCal VP-ITC instrument and 54

commonly used to analyze ITC data by nonlinear least squares regression does not 55

account for all relevant sources of error [24–26]. For this reason, it is common practice 56

in ITC data analysis to perform replicates of the measurement (usually at least in 57

triplicate) and report the standard deviation of multiple maximum likelihood estimates 58

rather than the formal standard error. In the ABRF-MIRG‘02 study, in which the same 59

sample was analyzed by 14 biomolecular resource facilities, the standard deviation of 60

replicate analyses yielded much larger and more accurate uncertainty intervals than the 61

standard error from nonlinear regression [27]. 62

On the other hand, if fixing parameters that contribute to error can lead to the 63

underestimation of uncertainty, including additional parameters that increase the 64

complexity of the statistical model runs the risk of overfitting the data. In ITC 65

experiments, additional parameters that could be reasonable are those that describe the 66

concentrations of species in the titrant or titrand and thermodynamic parameters for 67

more complex reactions. If the titrant includes a mixture of enantiomers, it is plausible 68

for the enantiomers to be racemic or to be optically active, present in different 69

concentrations. Moreover, several chemical reactions may occur in the solution. If only 70

a single enantiomer binds to the receptor or if the enantiomers bind with equal affinity, 71

a two-component binding model is the most appropriate. If they bind with different 72

affinity, a competitive binding model is most appropriate. It is nearly always the case 73

August 5, 2022 2/18



that a more complex statistical model will reduce the residual. However, an excessively 74

complex statistical model may not improve or may even deteriorate the quality of fit to 75

additional data from the same system, especially if it is measured with a different 76

experimental protocol. 77

Bayesian statistics provides a theoretical framework to address these interrelated 78

issues of uncertainty quantification and model selection. Uncertainty in any quantity 79

that can contribute to estimation error may be incorporated as an additional parameter 80

in the model. For example, we recently developed a Bayesian regression method for the 81

analysis of ITC data with a two-component binding model [28]. In MicroCal’s nonlinear 82

regression for such data, the titrant concentration is fixed and the titrand concentration 83

(via the site parameter N) is allowed to freely vary. Hence, the standard error is 84

severely underestimated. By treating both the titrant and titrand concentrations as 85

variables, we were able to improve the estimation of uncertainty; we obtained Bayesian 86

credible intervals that were larger and much more consistent with observed confidence 87

intervals. While our analysis included a larger number of parameters than the standard 88

approach, overfitting was not an issue when we used an informative prior for the 89

concentrations of both species: a lognormal distribution centered at the stated 90

concentration. Even with an uninformative prior, the model selection problem may be 91

addressed by the Bayes factor [29,30], which compares the odds of the data being 92

produced by two models irrespective of specific values of model parameters. In addition 93

to the Bayes factor, other commonly-used model selection criterion include the Bayesian 94

information criterion (BIC) [31], an approximation to the Bayes factor that assumes 95

that the posterior is a multivariate Gaussian, and the Akaike information criterion 96

(AIC) [32]. Both the AIC and BIC include the log likelihood of the maximum likelihood 97

estimate and penalties for a larger number of parameters. 98

Besides Bayesian regression, another strategy to address the underestimation of 99

uncertainty in nonlinear regression based on maximum likelihood estimation (but not 100

model selection) is error propagation. In error propagation, some parameters that could 101

contribute to the uncertainty of estimated values are not explicitly fitted. Rather, the 102

error in these parameters is propagated to the uncertainty of estimated values based on 103

a first-order Taylor series expansion. Boyce et. al. [33] suggested that the error in 104

titrant concentration could be propagated to estimates of thermodynamic quantities. 105

While this error propagation does expand confidence intervals, the authors did not 106

demonstrate, in either simulations or experiments, that the expanded intervals 107

accurately reflect the uncertainty of thermodynamic parameters. 108

In the present contribution, we perform Bayesian regression and model selection on 109

ITC data in which a mixture of enantiomers is titrated into a solution with a single 110

receptor. In addition to the two-component binding model (2C), we consider models in 111

which the titrant contains a racemic mixture (RM) with equal amount of each 112

enantiomer or an enantiomeric mixture (EM) with optical activity. Moreover, we 113

introduce a new way (to our knowledge) to use bridge sampling [34] to precisely 114

compute Bayes factors in nested statistical models. Finally, we use Bayes factors as well 115

as the BIC and AIC to determine which models are best supported by the data. 116

Materials and methods 117

Models for ITC data 118

Data from an ITC experiment consists of a series of measured injection heats, 119

D = {q1, q2, . . . , qN}, where N is the number of injections. Measured injection heats 120

may be treated as the sum of the measurement error and model integrated heat. As in 121

our previous work [28], we make the common assumption that measurement error is 122
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independently and identically distributed with a Gaussian distribution. Model 123

integrated heats depend on a set of parameters, denoted as θ. The parameters 124

comprising θ depend on the specific binding model. 125

In all three binding models that we use here - 2C, RM, and EM - the parameters 126

include the initial concentration of receptor in the sample cell, [R]0, and the total 127

concentration of ligand in the syringe, [L]s. They also include ∆H0, the heat of dilution 128

and stirring per injection, and σ, the standard deviation in the measurement error of 129

each integrated heat. Additional thermodynamic parameters and mixture composition 130

parameters for the 2C, RM, and EM models are described below: 131

1. The 2C binding model assumes that only one ligand binds with the receptor. In 132

this case, the model parameters are [28], 133

θ2C ≡ (∆G,∆H,∆H0, [R]0, [L]s, σ), (1)

where ∆G and ∆H are the standard free energy and enthalpy of binding, 134

respectively. While it is often customary to denote standard thermodynamic 135

quantities with a superscript ◦ or θ, for the sake of notational simplicity we omit 136

these labels in this manuscript. 137

2. The RM model assumes that the titrant contains a mixture of two different 138

ligands with possibly different ∆G and ∆H. The relative composition of the two 139

ligands is assumed to be fixed at 0.5. In this case, the model parameters are, 140

θRM ≡ (∆G1,∆∆G,∆H1,∆H2,∆H0, [R]0, [L]s, σ), (2)

where ∆G1 is the binding free energy of the higher-affinity ligand, 141

∆∆G ≡ ∆G2 −∆G1 is the difference in binding free energy between the second 142

and the first ligands. Without loss of generality, we assume that ∆∆G is 143

non-negative, ∆∆G ≥ 0. ∆H1 and ∆H2 are enthalpies of binding the first and 144

second ligands, respectively. 145

3. The EM model is the same as the RM model except that the mixture composition 146

ρ is a free variable varying between 0 and 1. The parameters in this case are 147

θEM ≡ (∆G1,∆∆G,∆H1,∆H2,∆H0, [R]0, [L]s, ρ, σ). (3)

Obtaining the theoretical heat of injection from model parameters also requires the 148

experimental protocol of injection volumes and models for concentrations prior to 149

reaction and at equilibrium. Concentrations prior to reaction were based on the 150

perfusion model [35]. For the 2C model, equilibrium concentrations were based on a 151

quadratic expression, as previously described [28]. For the RM and EM binding models, 152

we used an analytical expression for equilibrium concentrations of the competitive 153

binding model [22,36]. Mathematical details of the binding models are included in S1 154

Appendix. 155

Simulation 156

To assess whether Bayesian credible intervals from our analysis accurately reflect the 157

uncertainty of parameters, we simulated 50 ITC experiments in which an enantiomeric 158

mixture is titrated into the cell. In each simulated experiment, [L]s and [R]0 were 159

drawn from a lognormal distribution with stated values of 1.0 and 0.05 mM, 160

respectively, and with an uncertainty of 10%. Model integrated heats were calculated 161

using the EM model with ∆G1 = −11.5 kcal/mol, ∆∆G = 4 kcal/mol, ∆H1 = −7 162

kcal/mol, ∆H2 = −2 kcal/mol, ∆H0 = 0.5 µcal/mol, and ρ = 0.5. 163
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Data curation 164

We also analyzed 11 experimental ITC curves. Five of them were reported in Figure 1 165

of Fokkens et. al. [19] (we denote them as Fokkens 1a, Fokkens 1b, .., Fokkens 1e). The 166

remaining six were extracted from figures 57, 59, and 60 of Bernhard Baum’s PhD 167

dissertation [37]. These are denoted as Baum 57, Baum 59, Baum 60 1,.., Baum 60 4. 168

Because the original data were no longer available from the authors, we digitized the 169

integrated heats from the figures using the WebPlotDigitizer web site 170

(https://automeris.io/WebPlotDigitizer/). We also collected information about 171

the systems and experimental conditions (see S1 Table). Concentrations of 172

macromolecule in the sample cell and of small molecule ligand(s) in the syringe were 173

available for 7 datasets. For the other 4 datasets, we were unable to locate 174

concentrations of either titrand, titrant, or both. Fokkens et. al [19] and Baum et. 175

al. [37] used MCS-ITC and VP-ITC instruments made by Microcal Inc., Northhampton, 176

MA, USA to carry out the ITC experiments. Fokkens et. al [19] did not specify the 177

experiment temperature but Baum et. al. [37] explained that measurements in the lab 178

are routinely performed at 298 K. All datasets were analyzed assuming a temperature of 179

300 K. The cell volume of the calorimeters is 1.3513 mL [38]. 180

Bayesian regression 181

Bayesian regression using ITC data to determine parameters for binding models was 182

performed similarly to our previous work [28]. The posterior probability of the 183

parameters given the data is expressed with Bayes’ rule, 184

p(θ|D) ∝ p(D|θ) p(θ), (4)

where p(D|θ) is the likelihood of observing the data given the parameters and p(θ) is the 185

prior probability of the parameters. Based on the assumption that measurement error is 186

independently and identically distributed with a Gaussian distribution, the likelihood is, 187

p(D|θ) = 1

(2π)N/2σN
exp

[︄
− 1

2σ2

N∑︂
n=1

(qn − q∗n(θ))
2

]︄
, (5)

where q∗n(θ) is the theoretical heat of injection n. 188

We assume that the parameters θ are independent from one another and, therefore, 189

the prior p(θ) is a product of priors of individual parameters, p(θ) =
∏︁

i p(θi). The 190

priors for ∆G, ∆G1, ∆∆G, ∆H, ∆H1, ∆H2 (in kcal/mol) and ∆H0 (in calories) were 191

chosen to be uniform, 192

∆G,∆G1 ∼ Uniform(−40, 40), ∆∆G ∼ Uniform(0, 40), (6)
193

∆H,∆H1,∆H2 ∼ Uniform(−100, 100), (7)
194

∆H0 ∼ Uniform(qmin −∆q, qmax +∆q), (8)

where qmin = min{q1, q2, . . . , qN}, qmax = max{q1, q2, . . . , qN}, and ∆q = qmax − qmin. 195

Priors for cell [R]0 and syringe [L]s concentrations (in nM) are either log-normal or 196

uniform. If the stated value is available (see S1 Table) then the log-normal prior was 197

used, 198

ln[X]0 ∼ N (µ = [X]stated0 , σ = 0.1 ∗ [X]stated0 ), (9)
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where [X]stated0 ∈ {[R]stated0 , [L]stateds }. Otherwise, the uniform prior was used, 199

[R]0 ∼ Uniform(0.001, 1), [L]s ∼ Uniform(0.01, 10). (10)

These concentration priors are appropriate for the analysis of single experiments. If 200

multiple experiments are performed using the same stock solutions, then concentration 201

parameters could be shared across all the pseudo-independent replicates. If new 202

solutions are prepared for each replicate, then it is appropriate to use independent 203

concentration parameters for each measurement. 204

The parameter ρ (dimensionless) in the EM model also has uniform prior, 205

ρ ∼ Uniform(0, 1). (11)

Finally, the prior for the standard deviation of the measurement error σ, a nuisance 206

parameter, was chosen to be an uninformative Jeffreys prior [39], 207

p(σ) ∝ σ0

σ
, (12)

where σ0 = 1 cal, an arbitrary constant to make σ0

σ a dimensionless quantity. 208

The No-U-Turn sampler (NUTS) [40] was used to sample from posterior 209

distributions. NUTS is an extension of Hamiltonian Monte Carlo [41], which uses 210

trajectories akin to molecular dynamics simulations to generate candidates for Markov 211

chain Monte Carlo. Hamiltonian Monte Carlo has a tuning problem in which it may 212

suffer from random walk behavior if the number of integration steps L is set too small 213

or waste computing time if L is set too large. NUTS automatically selects an optimal 214

value for L for each move by stopping the integrator when the trajectory starts to trace 215

back its steps. We used the implementation of NUTS in PyMC3 [42]. 216

After a warmup of 10,000 NUTS moves, we collected 200,000 samples for the 2C 217

model and 600,000 samples for the RM and EM models. Samples from the posterior 218

were thinned by a factor of 10, retaining only every 10 samples, resulting in 20,000 219

samples for the 2C model and 60,000 samples for the RM and EM models. Neglecting 220

warmup samples reduces bias due to the initial state and thinning reduces the 221

correlation between Markov chain Monte Carlo samples. When analyzing the 222

simulations, we initiated the Markov chain using the true values. 223

Model selection 224

The model best supported by each dataset was assessed via Bayes factors, BIC, and 225

AIC. A Bayes factor quantifies the odds of observing the data D given two models M1 226

and M2. It is defined as a ratio of the likelihood of the data D given model M2 over 227

the likelihood of the data D given model M1, 228

R =
p(D|M2)

p(D|M1)
. (13)

The BIC and AIC are commonly used criteria for model selection, defined as, 229

AIC = −2 ln

[︃
max
θ

p(D|θ)
]︃
+ 2k, (14)

230

BIC = −2 ln

[︃
max
θ

p(D|θ)
]︃
+ k ln(N), (15)

where k is the number of free parameters and N is the number of data samples. While 231

the BIC and AIC are straightforward to compute from the maximum likelihood 232

estimate, precise estimation of Bayes factors is more challenging. 233
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We computed Bayes factors by using bridge sampling [34] in a new way. Bridge 234

sampling is the statistical generalization of the Bennett Acceptance Ratio (BAR) [43], 235

which was derived to compute the free energy difference between a pair of 236

thermodynamic states based on samples from molecular simulations in each state (see 237

S1 Appendix). A free energy difference is the negative logarithm of the ratio of 238

normalizing constants for the Boltzmann distribution of molecular configurations. Bayes 239

factors may also be expressed as ratios of normalizing constants, but for posterior 240

probability distributions, 241

R =

∫︁
p(θ2|M2)p(D|θ2,M2)dθ2∫︁
p(θ1|M1)p(D|θ1,M1)dθ1

(16)

=

∫︁
p2(θ2)dθ2∫︁
p1(θ1)dθ1

. (17)

Here, θ1 and θ2 are parameters of models M1 and M2, respectively. p(θ|Mi) is the 242

prior distribution of θ and p(D|θ) is the likelihood of D given θ. To simplify the 243

notation, the unnormalized posteriors of θ1 and θ2 are defined as 244

p1(θ1) ≡ p(θ1|M1)p(D|θ1) and p2(θ2) ≡ p(θ2|M2)p(D|θ2). 245

In order to use bridge sampling, the integrals in the numerator and denominator of 246

Eq. 17 must be taken over the same variables. Thus, we reformulate Eq. 17 such that it 247

satisfies this requirement. Assume that the models M1 and M2 are nested and M2 is 248

more complex than M1, i.e. θ2 contains more parameters than θ1. In this case, the 249

parameters in θ1 are a subset of parameters in θ2, θ2 = (θ1,γ). In terms of γ, the 250

Bayes factor is, 251

R =

∫︁
p2(θ1,γ)dθ1dγ∫︁

p1(θ1)dθ1
(18)

=

∫︁
p2(θ1,γ)dθ1dγ∫︁
p1(θ1)f(γ)dθ1dγ

(19)

Eq. 19 is obtained from Eq. 18 by multiplying the denominator by
∫︁
f(γ)dγ = 1, where 252

f(γ) is a proposal distribution, a normalized probability density from which random 253

variates can be easily generated. 254

Computing the Bayes factor with bridge sampling requires drawing samples from two 255

distributions and computing the ratio of probabilities that the sample would be drawn 256

from each distribution. The two distributions are the posterior probability p2(θ1,γ) and 257

the joint probability p1(θ1)f(γ). For the latter, samples from p1(θ1) generated by 258

Markov chain Monte Carlo may be supplemented by independent and identically 259

distributed random variates from f(γ). The ratio of probabilities that the sample would 260

be drawn from each distribution may be expressed as an exponentiated potential energy 261

difference. The potential energy, or negative logarithm of the unnormalized probability, 262

is, u1(θ1,γ) ≡ − ln p1(θ1)− ln f(γ) and, u2(θ1,γ) ≡ − ln p2(θ1,γ). Differences 263

between u1 and u2 are computed for each sample from the two distributions and used in 264

Eq. A.34 of S1 Appendix to estimate the Bayes factor. 265

In principle, f(γ) can be any probability distribution from which random variates 266

can be easily generated, e.g. a uniform distribution. However, if random samples from 267

p1(θ1)f(γ) have a low probability in p2(θ1,γ), then the estimator of the Bayes factor 268

may require a prohibitive number of samples to converge. To increase overlap between 269

the distributions in the numerator and denominator of Eq. 19, we chose f(γ) to be a 270

multivariate Gaussian with a mean vector from the sample mean, γ, and covariance 271

matrix from the sample covariance, σ2
γ , of NUTS samples drawn from p2(θ1,γ). 272
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Results and discussion 273

Estimated posteriors and Bayes factors are converged 274

Robust Bayesian analysis requires adequate sampling from the posterior such that 275

summary statistics are converged, unaffected by additional sampling. Convergence of 276

sampling the Bayesian posteriors was evaluated based on the 5-th, 25-th, 50-th, 75-th 277

and 95-th percentiles of the marginal probability of key parameters as the number of 278

Monte Carlo samples is increased (Figures 1, S1 Fig, and S2 Fig). As the number of 279

samples increases, the percentiles change very little, with negligible estimated standard 280

errors. This convergence indicates that the posterior distributions have been thoroughly 281

sampled after a small number of samples from the posterior. 282

Fig 1. Convergence of percentiles of the Bayesian posterior of the 2C model
based on the Fokkens 1a dataset. 20,000 samples were drawn from the Bayesian
posterior using the NUTS sampler. Four key parameters are shown. Lines correspond to
the 5-th (blue circle), 25-th (green square), 50-th (red diamond), 75-th (cyan upward
triangle) and 95-th (magenta downward triangle) percentile. The error bars, which are
too small to be visible, are standard deviations estimated by 100 bootstrapping samples.
Similar plots for RM and EM models are shown in S1 Fig and S2 Fig, respectively. S2
Fig also shows the convergence of percentiles for fits to a representative simulation of
the EM model.

In comparison, estimates of the Bayes factors based on bridge sampling converge 283

more slowly. For all datasets, the estimated Bayes factors start to level off after about 284

60% of the total Monte Carlo samples (Fig. 2 and S3 Fig to S12 Fig). Convergence 285

provides confidence in using Bayes factors for model selection. 286

A possible reason that the Bayes factor is not used more widely is that it is difficult 287

to estimate precisely. At least with the present data and statistical models, the novel 288

approach to using bridge sampling for nested models appears to be resolve this issue. 289

The variation of bridge sampling described here is related to but not equivalent to 290

an approach that has been previously described [44,45]. In these related works, bridge 291

sampling was used to evaluate the marginal likelihood of a single model, opposed to 292

Bayes factors, which are the ratio of marginal likelihoods for two models. Hence, 293

proposal distributions included all degrees of freedom, opposed to a subset that are 294

present in one model but not the other. As we have done here, the authors suggested 295

that a normal distribution with the first two moments selected to match the posterior is 296

usually a suitable proposal distribution. 297

Concentration priors have distinct impacts on posteriors 298

While it is possible to sample from the Bayesian posterior and obtain converged 299

summary statistics without knowing the concentration of [L]s or [R]0 or even both, 300

uninformative priors generally lead to broader posteriors. 301

In our simulations, as shown by histograms (Figure 3), standard deviations (Table 302

1), and root mean square errors (Table 2) of the 1D marginals (Table 1), using an 303

Fig 2. Convergence of Bayes factors for the Fokkens 1a dataset. Bayes factors
were estimated based on 20,000 NUTS samples for the 2C model and 60,000 NUTS
samples for the RM and EM models. The error bars are standard deviations estimated
by 1000 bootstrapping samples. Similar plots for the 10 other datasets are shown in the
Supporting Information (S3 Fig to S12 Fig).
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Fig 3. Representative 1D histograms of thermodynamic parameters
sampled from the Bayesian posterior with four concentration priors. Priors
for the concentration were lognormal for both [L]s and [R]0 (yellow line), lognormal for
[L]s and uniform for [R]0 (green line), uniform for [L]s and lognormal for [R]0 (blue
line), or uniform for both [L]s and uniform for [R]0 (purple line). Integrated heats are
from a representative simulation from the EM model. Horizontal bars show 95%
Bayesian credible intervals. True values for parameters were shown as red dashed line.

informative lognormal prior for both [L]s or [R]0 leads to the most accurate and precise 304

posteriors. If the receptor concentration [R]0 is unknown and a uniform prior is used, 305

the standard deviations and root mean square errors for all thermodynamic parameters 306

are roughly doubled. Similar behavior is observed if the ligand concentration is missing, 307

with the exception of ∆∆G, which retains a comparable accuracy and uncertainty. If 308

both the ligand and receptor concentration are missing, then posteriors of most 309

parameters are broader than if a single concentration is missing. It is still possible to 310

determine the binding free energies ∆G1 and ∆∆G, the latter which is surprisingly 311

precise, but without concentrations the posterior of the enthalpies ∆H1 and ∆H2 are so 312

broad that the values are essentially unknown. 313

Table 1. Mean and standard deviation (in parentheses) of the Bayesian
posterior with four concentration priors, based on the 50 simulations from the EM
model.

[R]0 prior lognormal uniform lognormal uniform
[L]s prior lognormal lognormal uniform uniform

[R]0 4.84E-2
(3.80E-3)

4.79E-2
(7.44E-3)

4.94E-2
(4.74E-4)

1.43E-1
(7.23E-2)

[L]s 1.01E+0
(8.08E-2)

9.90E-1
(1.19E-2)

1.05E+0
(1.67E-1)

2.97E+0
(1.40E+0)

∆G1 -1.15E+1
(4.63E-2)

-1.15E+1
(6.62E-2)

-1.15E+1
(7.11E-2)

-1.20E+1
(4.04E-1)

∆∆G 4.00E+0
(2.71E-2)

4.00E+0
(3.89E-2)

4.00E+0
(2.91E-2)

4.01E+0
(7.53E-2)

∆H1 -7.04E+0
(4.27E-1)

-7.18E+0
(7.53E-1)

-6.89E+0
(8.72E-1)

-4.45E+1
(9.99E+0)

∆H2 -2.01E+0
(1.26E-1)

-2.07E+0
(2.17E-1)

-1.99E+0
(2.20E-1)

-1.28E+1
(2.87E+0)

∆H0 4.97E-7
(3.49E-8)

4.88E-7
(6.61E-8)

4.87E-7
(7.60E-8)

4.96E-7
(3.64E-8)

ρ 5.00E-1
(1.97E-3)

4.99E-1
(5.27E-3)

4.99E-1
(4.95E-3)

5.00E-1
(4.74E-3)

The impact of missing concentration information is also evident in the analysis of 314

experimental data. As shown by 1D and 2D histograms of NUTS samples (S2 Appendix 315

for 2C, S3 Appendix for RM, and S4 Appendix for EM), it is possible to estimate 316

thermodynamic parameters even if the concentration is unknown and a uniform prior is 317

used. However, this lack of information has consequences. In these cases (Fokkens 1a, 318

Fokkens 1b, Baum 57, and Baum 59), the posterior for the unknown concentrations is 319

broad. Additionally, posteriors of the thermodynamic parameters may change shape. In 320

our previous work fitting with the 2C model and using known concentrations [28], 321

posteriors for thermodynamic parameters were all close to symmetric, with only subtle 322

skew, and Gaussian. Here, when fitting the 2C model with unknown concentrations, 323

many posteriors for ∆G and ∆H are highly skewed (S2 Appendix). Finally, the lack of 324
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Table 2. Root mean square error of the mean. The root mean square error, or
root mean square difference between the estimate and the true value, of the mean
parameter value from the Bayesian posterior.

[R]0 prior lognormal uniform lognormal uniform
[L]s prior lognormal lognormal uniform uniform

[R]0 4.08E-03 7.65E-03 7.30E-04 1.18E-01
[L]s 8.10E-02 1.56E-02 1.72E-01 2.41E+00
∆G1 4.66E-02 6.81E-02 7.06E-02 6.50E-01
∆∆G 2.70E-02 3.85E-02 2.88E-02 7.54E-02
∆H1 4.25E-01 7.67E-01 8.70E-01 3.88E+01
∆H2 1.25E-01 2.27E-01 2.18E-01 1.11E+01
∆H0 3.47E-08 6.65E-08 7.64E-08 3.62E-08
ρ 1.99E-03 5.34E-03 5.02E-03 4.70E-03

a nominal concentration may also shift the peak of posteriors for thermodynamic 325

parameters. In a previous fit to the Fokkens 1a dataset in which the solution 326

concentrations presumably were specified, the dissociation constant was found to be 327

43.9× 105 M−1 [19], which corresponds to ∆G = -9.1 kcal/mol. In contrast, the 328

Bayesian posterior for ∆G has samples in the range of -7.5 and -7 kcal/mol. Other 329

datasets in which the concentration is presently unknown clearly have a step in the 330

integrated heat and were fit with two independent simple binding events. Thus, the 331

model was distinct and parameters are not directly comparable to the present results. 332

Many Bayesian posteriors have complex structure 333

The histograms of NUTS samples also show that many of the Bayesian posterior 334

distributions have complex structure. The simplest posteriors are from the 2C model. 335

For the Fokkens 1a, Fokkens 1e, and Baum 60 2 datasets, in which the integrated heat 336

is a sigmoidal function, the posteriors show simple unimodal peaks and essentially linear 337

correlation between parameters. Similar behavior was observed in our previous Bayesian 338

analysis for two-component binding processes [28]. For some other datasets such as 339

Baum 57 and Fokkens 1b, the posteriors given by the 2C model have nonlinear 340

correlations between parameters. Posteriors based on the RM and EM model are mostly 341

complex, with multimodal and skewed peaks, and nonlinear relationships between 342

parameters (S3 Appendix and S4 Appendix). Exceptions include analyses of the 343

simulation data sets with informative concentration priors and of dataset Fokkens 1d, 344

which show a rather simple posterior for both RM and EM models. In the 345

representative simulation of the EM model, when a uniform prior is used for both the 346

ligand and receptor concentration, the posterior becomes multimodal. 347

Broad or multimodal posteriors indicate that additional data is required to uniquely 348

determine model parameters. The ability to reveal ambiguity in parameter fitting is the 349

key advantage of the Bayesian approach over maximum likelihood estimation. 350

Bayesian credible intervals can be accurate confidence intervals 351

for the EM model 352

Bayesian credible intervals were assessed by plotting the fraction of intervals that 353

contain the true value against the stated confidence level. Similar plots are Figure 8 of 354

Nguyen et. al. [28] and Figure 1 of Minh and Makowski [46]. If the credible intervals are 355

good confidence intervals, then the data points should lie on the diagonal. Points below 356

the diagonal indicate that the credible intervals underestimate the error. Conversely, 357

points above the diagonal suggest that they overestimate the error. 358
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Fig 4. Uncertainty validation for Bayesian analysis of simulated data. The
predicted versus observed rate (%) in which BCIs contain the true value for binding
parameters are shown. Priors for the concentration were lognormal for both [L]s and
[R]0 (red left triangle), lognormal for [L]s and uniform for [R]0 (green circle), uniform
for [L]s and lognormal for [R]0 (blue right triangle), or uniform for both [L]s and
uniform for [R]0 (black square). Error bars are standard deviations based on
bootstrapping of 1000 samples.

If concentrations are specified, then Bayesian credible intervals are accurate 359

confidence intervals (Figure 4). If the ligand concentration [L]s is missing, then the 360

credible intervals of the concentrations and enthalpies somewhat underestimate the 361

confidence intervals. If the receptor concentration [R]0 is missing, then most confidence 362

intervals are accurately estimated but the smaller confidence intervals of concentrations 363

are underestimated. Missing both the ligand and receptor concentration leads to 364

significant underestimation of uncertainties for concentrations and thermodynamic 365

parameters. 366

Bayes factors are the most accurate model selection criterion 367

For the 11 datasets, calculated model selection criterion did not always yield consistent 368

results (see S2 Table). While Bayes factors and BIC were consistent for most datasets, 369

the AIC favored the more complex EM and RM models. In the following discussion, we 370

categorize the datasets into four groups according to Bayes factors (Tab. 3). 371

Table 3. Estimated log10 of Bayes factors. Numbers in parentheses are standard
errors estimated by the standard deviations of 1000 bootstrap samples.

2C model is best log10
p(D|RM)
p(D|2C) log10

p(D|EM)
p(D|2C)

Fokkens 1a -4.63(0.46) -0.98(0.17)
Fokkens 1e -1.65(0.54) -1.29(0.35)
Baum 60 2 -1.17(0.59) -1.46(0.47)
EM model is best
Fokkens 1c -0.82(0.21) 1.94(0.20)
Baum 57 -0.16(0.52) 58.81(9.82)
Baum 59 53.73(5.94) 77.54(12.58)
RM and EM models
are comparable and
best
Fokkens 1b 0.73(0.27) 1.02(0.14)
Fokkens 1d 157.71(7.23) 165.48(8.72)
Baum 60 1 2.83(1.02) 2.57(1.32)
Inconclusive
Baum 60 3 3.51(2.73) 1.57(2.19)
Baum 60 4 0.51(3.01) -0.79(0.64)

In three titrations, the integrated heats appear sigmoidal and Bayes factors favor the 372

2C model (Fig. 5). Indeed, Fokkens 1a corresponds to titration of trypsin with a single 373

enantiomer, D-Napap (8) [19], and is therefore a two-component binding process. For 374

this dataset, the AIC does not sufficiently penalize model complexity and favors the EM 375

model (S2 Table). The other two datasets, Fokkens 1e and Baum 60 2, correspond to 376

titrations with racemates that have relatively small differences in affinity: 22- [19] and 377

66-fold [37], respectively. With small differences in affinity, integrated heat curves from 378
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Fig 5. Model fits to integrated heat data. The data were fitted by the 2C (left),
RM (middle), and EM (right) models. The solid line is the theoretical heat q∗n(θMAP),
where θMAP is the Maximum a Posteriori estimate of the parameters. The grey band is
the 95% confidence interval. Crosses are the observed heat. The three datasets are best
fitted by the 2C model according to the estimated Bayes factors (Table 3).

Fig 6. Integrated ITC heat data and their fit. The data were fitted by the 2C
(left), RM (middle), and EM (right) models. The solid line is the theoretical heat
q∗n(θMAP), where θMAP is the Maximum a Posteriori estimate of the parameters. The
grey band is the 95% confidence interval. Crosses are the observed heat. The three
datasets are best fitted by the EM model according to the estimated Bayes factors
(Table 3).

the three models are not clearly distinguishable (Fig. 5) and thus more complex models 379

are not supported by the data. In addition to small differences in fitting quality, further 380

evidence that the data do not support the RM or EM models is that some parameters 381

(∆H1, ∆H2, ∆G1, ∆G2 = ∆G1 +∆∆G, or ρ) have very broad posteriors (S3 Table) 382

and that the posterior of ∆∆G is inconsistent with reported affinity differences. For 383

Fokkens 1e, the posterior is bimodal the larger peak centered around 0.15 kcal/mol (S3 384

Table and S4 Appendix), or a multiplicative factor of about exp
[︁
0.15
RT

]︁
= 1.3 times 385

(using the gas constant R and T = 298K as the temperature), much smaller than the 386

factor determined by independent measurements. In contrast, the posterior of ∆∆G is 387

broad with a peak centered around 4 kcal/mol (S3 Table and S4 Appendix), or 858 fold, 388

much larger than the reported factor. 389

In a second group of titrations, the EM model is unambiguously superior according 390

to all model selection criteria (S2 Table). In Baum 57 and Baum 59, the integrated heat 391

data clearly show a two-step binding that cannot be produced by the 2C model (Fig. 6). 392

Moreover, the EM model is clearly a better fit than the RC model. Baum 57 393

corresponds to titration of Thrombin with rac-2. In the EM model, the posterior of ρ is 394

peaked near 0.45 (S3 Table and S4 Appendix). Baum 59 corresponds to titration of 395

Trypsin with a mixture of two compounds of different binding affinity, UB THR 32 and 396

n-pentyl-Benzamindin [37], which is clearly not racemic. The posterior of ρ is peaked 397

near 0.15 (S3 Table and S4 Appendix). In Fokkens 1c, the titration of Thrombin with 398

rac-1, the benefit of the EM model is much more subtle, primarily evident at the 399

beginning of the curve (Fig. 6). The posterior of ρ is broad and peaked near 0.9 (S3 400

Table and S4 Appendix). 401

In a third group of titrations, both RM and EM models are comparably good and 402

clearly superior to the 2C model (Fig. 7). All three datasets involve titration with 403

racemic mixtures. Fokkens 1b corresponds to the titration of Trypsin with rac-Napap 404

(8) [19]. Fokkens 1d is the titration of Thrombin with rac-2 (which is the same system 405

as Baum 57 but with possibly different experimental conditions [19]). Baum 60 1 also 406

corresponds to a racemic mixture titration but a two-step binding is not evident from 407

the heat curve. For Fokkens 1d, the evidence given by Bayes factor (Table 3) for 408

favoring RM and EM models is very strong and all parameters are well-determined. In 409

this case, the posterior of ρ is sharply peaked at 0.45, near the RM value of 0.5. Hence 410

any improvements in fit due to the small shift in ρ are cancelled by the increased 411

complexity of the model such that differences in Bayes factors are not statistically 412

significant, with log10
p(D|EM)
p(D|2C) = 165.48± 8.72 for the RM model and 413

log10
p(D|RM)
p(D|2C) = 157.71± 7.23 for the EM model. For the other two datasets, the 414

evidence is not so strong. In particular, both RM and EM models do not show a good 415

fit to Fokkens 1b dataset with rather large 95% CI bands as shown in Fig. 7. Some key 416
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Fig 7. Integrated ITC heat data and their fit. The data were fitted by the 2C
(left), RM (middle), and EM (right) models. The solid line is the theoretical heat
q∗n(θMAP), where θMAP is the Maximum a Posteriori estimate of the parameters. The
grey band is the 95% confidence interval. Crosses are the observed heat. The three
datasets are best fitted by both RM and EM models according to the estimated Bayes
factors (Table 3).

Fig 8. Integrated ITC heat data and their fit. The data were fitted by the 2C
(left), RM (middle), and EM (right) models. The solid line is the theoretical heat
q∗n(θMAP), where θMAP is the Maximum a Posteriori estimate of the parameters. The
grey band is the 95% confidence interval. Crosses are the observed heat. For these two
datasets, the estimated Bayes factors (Table 3) is inconclusive in selecting which model
is the best.

parameters are also underdetermined for Fokkens 1b and Baum 60 1 (S3 Table). 417

In the fourth group (Fig. 8), due to the large estimated errors, the estimated Bayes 418

factors are inconclusive about which model is best (Table 3). Probably due to high 419

concentration of the receptor [37], Baum 60 4 does not show saturation. 420

Conclusions 421

We have performed Bayesian regression to infer parameters for thermodynamic binding 422

models from isothermal titration calorimetry measurements in which the titrant is an 423

enantiomeric mixture. When a lognormal prior is used for the concentrations, analyses 424

of simulated experiments provide Bayesian credible intervals that are accurate 425

confidence intervals. Based on our analysis, we are able to determine when the 426

measurements do not provide enough information to precisely determine parameters, 427

leading to broad or multimodal posteriors. We have also introduced a variation of 428

bridge sampling to perform precise estimates of Bayes factors. We find that Bayes 429

factors are superior to other model selection criterion in selecting models that are 430

consistent with prior knowledge about the experiments. 431

Supporting information 432

S1 Appendix. Mathematical description of binding models and the Bennett 433

acceptance ratio (BAR) estimator. 434

S2 Appendix. Estimated 1D and 2D histograms of key parameters for the 435

2C model. 436

S3 Appendix. Estimated 1D and 2D histograms of key parameters for the 437

RM model. 438

S4 Appendix. Estimated 1D and 2D histograms of key parameters for the 439

EM model. 440

S1 Table. Summary of systems and experimental protocol. 441

S2 Table. Best models according to Bayes factor, Akaike information 442

criterion (AIC) and Bayesian information criterion. 443
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S3 Table. Estimated Bayesian credible intervals. Binding enthalpy (∆H, ∆H1, 444

∆H2) and free energy (∆G, ∆G1, ∆∆G) in kcal/mol. 445

S1 Fig. Convergence of percentiles of the Bayesian posterior of the RM 446

model based on the Fokkens 1a dataset 60,000 samples were drawn from the 447

Bayesian posterior using the NUTS sampler. Six key parameters are shown. Lines 448

correspond to the 5-th (blue circle), 25-th (green square), 50-th (red diamond), 75-th 449

(cyan upward triangle) and 95-th (magenta downward triangle) percentile. The error 450

bars, which are too small to be visible, are standard deviations estimated by 100 451

bootstrapping samples. 452

S2 Fig. Convergence of percentiles of the Bayesian posterior of the EM 453

model based on the Fokkens 1a dataset and one representative simulation of 454

the EM model. 60,000 samples were drawn from the Bayesian posterior using the 455

NUTS sampler. Six key parameters are shown. Lines correspond to the 5-th (blue 456

circle), 25-th (green square), 50-th (red diamond), 75-th (cyan upward triangle) and 457

95-th (magenta downward triangle) percentile. The error bars, which are too small to 458

be visible, are standard deviations estimated by 100 bootstrapping samples. 459

S3 Fig. Convergence of Bayes factors for the Fokkens 1b dataset. The Bayes 460

factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000 461

NUTS samples for the RM and EM models. The error bars are standard deviations 462

estimated by 1000 bootstrapping samples. 463

S4 Fig. Convergence of Bayes factors for the Fokkens 1c dataset. The Bayes 464

factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000 465

NUTS samples for the RM and EM models. The error bars are standard deviations 466

estimated by 1000 bootstrapping samples. 467

S5 Fig. Convergence of Bayes factors for the Fokkens 1d dataset. The Bayes 468

factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000 469

NUTS samples for the RM and EM models. The error bars are standard deviations 470

estimated by 1000 bootstrapping samples. 471

S6 Fig. Convergence of Bayes factors for the Fokkens 1e dataset. The Bayes 472

factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000 473

NUTS samples for the RM and EM models. The error bars are standard deviations 474

estimated by 1000 bootstrapping samples. 475

S7 Fig. Convergence of Bayes factors for the Baum 57 dataset. The Bayes 476

factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000 477

NUTS samples for the RM and EM models. The error bars are standard deviations 478

estimated by 1000 bootstrapping samples. 479

S8 Fig. Convergence of Bayes factors for the Baum 59 dataset. The Bayes 480

factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000 481

NUTS samples for the RM and EM models. The error bars are standard deviations 482

estimated by 1000 bootstrapping samples. 483
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S9 Fig. Convergence of Bayes factors for the Baum 60 1 dataset. The Bayes 484

factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000 485

NUTS samples for the RM and EM models. The error bars are standard deviations 486

estimated by 1000 bootstrapping samples. 487

S10 Fig. Convergence of Bayes factors for the Baum 60 2 dataset. The 488

Bayes factors were estimated based on 20,000 NUTS samples for the 2C model and 489

60,000 NUTS samples for the RM and EM models. The error bars are standard 490

deviations estimated by 1000 bootstrapping samples. 491

S11 Fig. Convergence of Bayes factors for the Baum 60 3 dataset. The 492

Bayes factors were estimated based on 20,000 NUTS samples for the 2C model and 493

60,000 NUTS samples for the RM and EM models. The error bars are standard 494

deviations estimated by 1000 bootstrapping samples. 495

S12 Fig. Convergence of Bayes factors for the Baum 60 4 dataset. The 496

Bayes factors were estimated based on 20,000 NUTS samples for the 2C model and 497

60,000 NUTS samples for the RM and EM models. The error bars are standard 498

deviations estimated by 1000 bootstrapping samples. 499
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