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Abstract

Bayesian regression is performed to infer parameters of thermodynamic binding models
from isothermal titration calorimetry measurements in which the titrant is an
enantiomeric mixture. For some measurements the posterior density is multimodal,
indicating that additional data with a different protocol are required to uniquely
determine the parameters. Models of increasing complexity - two-component binding,
racemic mixture, and enantiomeric mixture - are compared using model selection
criteria. To precisely estimate one of these criteria, the Bayes factor, a variation of
bridge sampling is developed.

Introduction

Isothermal titration calorimetry (ITC) is a solution-phase analytical technique that
measures the heat absorbed or released due to a chemical reaction as a titrant is
injected into a sample cell. As the reaction proceeds, the heat discharged or consumed
in the sample cell modifies the power required to maintain it at the same temperature
as a reference cell [1]. Kinetic models, e.g. for noncovalent binding [2], enzyme
catalysis [31/4], or covalent inhibition of enzymes [5], may be used to interpret the
differential power. More often, the differential power is numerically integrated to yield
an integrated heat of each injection. Models for the integrated heat based on
equilibrium concentrations of chemical species are fit to the data to determine
thermodynamic parameters of chemical reactions: the enthalpy AH, entropy AS, and
Gibbs free energy AG. ITC is frequently applied to noncovalent binding between
proteins and organic ligands [6], DNA/RNA [7,[8], lipids [9], and proteins |10]. It is also
used to study the protonation and tautomerization of binding partners [11},/12].

As recently reviewed by Werberg and Mastai [13], ITC has been used to study chiral
interactions. Although enantiomers - molecules with mirror-image chirality - have the
same chemical composition and similar structures, they may have significantly different
bioactivities, metabolic rate, metabolites, excretion, potency, receptor preference,
interactions with transporters and enzymes, and toxicity |[14]. ITC has been used in
many types of chiral studies [13], including: comparing enthalpies of injecting two
enantiomers, phenyl-a-L- and phenyl-a-D- mannopyranoside, into a sample cell with
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molecularly imprinted polymers [15]; measuring the enthalpy of dilution and pairwise
interaction coefficients of enantiomers [16,/17]; and determining thermodynamic
parameters of binding galactonoamidine derivatives to chiral organometallic
complexes [18]. In contrast to other common chiroptical methods that strongly restrict
experimental conditions, ITC is a simple label-free technique that can yield a complete
set of thermodynamic parameters relevant to chiral interactions, characterize chiral
selectivity, and investigate the formation of chiral complexes [13].

Although ITC measurements for binding thermodynamics (including studies of chiral
systems) are typically performed with a single binding species in the titrant and titrand,
other experimental designs have been investigated. In 2006, Fokkens et. al. described a
protocol in which an enantiomeric mixture is injected into the sample cell [19]. While it
is generally beneficial to separate the compounds prior to analysis, a preliminary
determination of thermodynamic parameters without separation can save time and
money. For example, racemic mixtures (which have a 1:1 ratio of enantiomers) of
aminoadamantane derivatives were titrated with the M2 proton channel of influenza
A |20,|21). Fokkens et. al. demonstrated that if binding affinities of two enantiomers are
sufficiently distinct, two distinct affinities can be determined by fitting a simple binding
model to different regions of the isotherm. In 2012, Krainer et. al. described an
experimental protocol that is essentially opposite: a macromolecular receptor was the
titrant and the titrand contains a dilute mixture of two competing ligands (which were
not enantiomers) [22]. Fitting data to an analytical expression for the concentration of
each complex, they were able to obtain accurate and precise dissociation constants and
binding enthalpies for both ligands.

One common shortcoming of methods to analyze data from ITC (and many other
analytical instruments) is underestimation of statistical uncertainty. Determination of
thermodynamic parameters from ITC is a nonlinear regression problem that is typically
implemented by maximizing the likelihood of observing the data. If the fitting
procedure does not allow variation in a parameter (e.g. concentrations of titrand or
titrand), then the uncertainty of these quantities is not accounted for in the asymptotic
standard error. The problem is quite general; Petr Kuzmic, developer of the enzymology
software package DynaFit, wrote “formal standard errors can (and usually do) grossly
underestimate the statistical uncertainty” [23]. Indeed, multiple studies have indicated
that the Origin software package included with the MicroCal VP-ITC instrument and
commonly used to analyze ITC data by nonlinear least squares regression does not
account for all relevant sources of error [24H26]. For this reason, it is common practice
in ITC data analysis to perform replicates of the measurement (usually at least in
triplicate) and report the standard deviation of multiple maximum likelihood estimates
rather than the formal standard error. In the ABRF-MIRG‘02 study, in which the same
sample was analyzed by 14 biomolecular resource facilities, the standard deviation of
replicate analyses yielded much larger and more accurate uncertainty intervals than the
standard error from nonlinear regression [27].

On the other hand, if fixing parameters that contribute to error can lead to the
underestimation of uncertainty, including additional parameters that increase the
complexity of the statistical model runs the risk of overfitting the data. In ITC
experiments, additional parameters that could be reasonable are those that describe the
concentrations of species in the titrant or titrand and thermodynamic parameters for
more complex reactions. If the titrant includes a mixture of enantiomers, it is plausible
for the enantiomers to be racemic or to be optically active, present in different
concentrations. Moreover, several chemical reactions may occur in the solution. If only
a single enantiomer binds to the receptor or if the enantiomers bind with equal affinity,
a two-component binding model is the most appropriate. If they bind with different
affinity, a competitive binding model is most appropriate. It is nearly always the case
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that a more complex statistical model will reduce the residual. However, an excessively
complex statistical model may not improve or may even deteriorate the quality of fit to
additional data from the same system, especially if it is measured with a different
experimental protocol.

Bayesian statistics provides a theoretical framework to address these interrelated
issues of uncertainty quantification and model selection. Uncertainty in any quantity
that can contribute to estimation error may be incorporated as an additional parameter
in the model. For example, we recently developed a Bayesian regression method for the
analysis of ITC data with a two-component binding model |28]. In MicroCal’s nonlinear
regression for such data, the titrant concentration is fixed and the titrand concentration
(via the site parameter N) is allowed to freely vary. Hence, the standard error is
severely underestimated. By treating both the titrant and titrand concentrations as
variables, we were able to improve the estimation of uncertainty; we obtained Bayesian
credible intervals that were larger and much more consistent with observed confidence
intervals. While our analysis included a larger number of parameters than the standard
approach, overfitting was not an issue when we used an informative prior for the
concentrations of both species: a lognormal distribution centered at the stated
concentration. Even with an uninformative prior, the model selection problem may be
addressed by the Bayes factor [29}30], which compares the odds of the data being
produced by two models irrespective of specific values of model parameters. In addition
to the Bayes factor, other commonly-used model selection criterion include the Bayesian
information criterion (BIC) |31], an approximation to the Bayes factor that assumes
that the posterior is a multivariate Gaussian, and the Akaike information criterion
(AIC) [32]. Both the AIC and BIC include the log likelihood of the maximum likelihood
estimate and penalties for a larger number of parameters.

Besides Bayesian regression, another strategy to address the underestimation of
uncertainty in nonlinear regression based on maximum likelihood estimation (but not
model selection) is error propagation. In error propagation, some parameters that could
contribute to the uncertainty of estimated values are not explicitly fitted. Rather, the
error in these parameters is propagated to the uncertainty of estimated values based on
a first-order Taylor series expansion. Boyce et. al. [33] suggested that the error in
titrant concentration could be propagated to estimates of thermodynamic quantities.
While this error propagation does expand confidence intervals, the authors did not
demonstrate, in either simulations or experiments, that the expanded intervals
accurately reflect the uncertainty of thermodynamic parameters.

In the present contribution, we perform Bayesian regression and model selection on
ITC data in which a mixture of enantiomers is titrated into a solution with a single
receptor. In addition to the two-component binding model (2C), we consider models in
which the titrant contains a racemic mixture (RM) with equal amount of each
enantiomer or an enantiomeric mixture (EM) with optical activity. Moreover, we
introduce a new way (to our knowledge) to use bridge sampling [34] to precisely
compute Bayes factors in nested statistical models. Finally, we use Bayes factors as well
as the BIC and AIC to determine which models are best supported by the data.

Materials and methods

Models for ITC data

Data from an ITC experiment consists of a series of measured injection heats,
D={q,q2,-..,9n}, where N is the number of injections. Measured injection heats
may be treated as the sum of the measurement error and model integrated heat. As in
our previous work [28], we make the common assumption that measurement error is
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independently and identically distributed with a Gaussian distribution. Model
integrated heats depend on a set of parameters, denoted as 8. The parameters
comprising 8 depend on the specific binding model.

In all three binding models that we use here - 2C, RM, and EM - the parameters
include the initial concentration of receptor in the sample cell, [R]o, and the total
concentration of ligand in the syringe, [L]s;. They also include AHy, the heat of dilution
and stirring per injection, and o, the standard deviation in the measurement error of
each integrated heat. Additional thermodynamic parameters and mixture composition
parameters for the 2C, RM, and EM models are described below:

1. The 2C binding model assumes that only one ligand binds with the receptor. In
this case, the model parameters are [28],

0°¢ = (AG,AH, AHy, [R]o, [L]s,0), (1)

where AG and AH are the standard free energy and enthalpy of binding,
respectively. While it is often customary to denote standard thermodynamic
quantities with a superscript © or ?, for the sake of notational simplicity we omit
these labels in this manuscript.

2. The RM model assumes that the titrant contains a mixture of two different
ligands with possibly different AG and AH. The relative composition of the two
ligands is assumed to be fixed at 0.5. In this case, the model parameters are,

0™ = (AGy, AAG, AHy, AHy, AHy, [Rlo, (L, 0), (2)

where AG} is the binding free energy of the higher-affinity ligand,

AAG = AG, — AG; is the difference in binding free energy between the second
and the first ligands. Without loss of generality, we assume that AAG is
non-negative, AAG > 0. AH; and AH, are enthalpies of binding the first and
second ligands, respectively.

3. The EM model is the same as the RM model except that the mixture composition
p is a free variable varying between 0 and 1. The parameters in this case are

GEM = (Ale AAGa AHl; AH27 AI—IO7 [R]07 [L]Sa P g)' (3)

Obtaining the theoretical heat of injection from model parameters also requires the
experimental protocol of injection volumes and models for concentrations prior to
reaction and at equilibrium. Concentrations prior to reaction were based on the
perfusion model |35]. For the 2C model, equilibrium concentrations were based on a
quadratic expression, as previously described [28]. For the RM and EM binding models,
we used an analytical expression for equilibrium concentrations of the competitive
pinding model [22,36]. Mathematical details of the binding models are included in

I:Append

Simulation

To assess whether Bayesian credible intervals from our analysis accurately reflect the
uncertainty of parameters, we simulated 50 ITC experiments in which an enantiomeric
mixture is titrated into the cell. In each simulated experiment, [L]s and [R]y were
drawn from a lognormal distribution with stated values of 1.0 and 0.05 mM,
respectively, and with an uncertainty of 10%. Model integrated heats were calculated
using the EM model with AG; = —11.5 kcal/mol, AAG = 4 kcal/mol, AH; = -7
kecal/mol, AHy = —2 kecal/mol, AHy = 0.5 pcal/mol, and p = 0.5.
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Data curation 160

We also analyzed 11 experimental ITC curves. Five of them were reported in Figure 1 165
of Fokkens et. al. [19] (we denote them as Fokkens_la, Fokkens_1b, .., Fokkens_le). The 1

remaining six were extracted from figures 57, 59, and 60 of Bernhard Baum’s PhD 167
dissertation [37]. These are denoted as Baum_57, Baum_59, Baum_60_1,.., Baum_60_4. 1
Because the original data were no longer available from the authors, we digitized the 160
integrated heats from the figures using the WebPlotDigitizer web site 170
(https://automeris.io/WebPlotDigitizer/)). We also collected information about 171
the systems and experimental conditions (see . Concentrations of 172
macromolecule in the sample cell and of small molecule ligand(s) in the syringe were 173
available for 7 datasets. For the other 4 datasets, we were unable to locate 174
concentrations of either titrand, titrant, or both. Fokkens et. al [19] and Baum et. 175

al. [37] used MCS-ITC and VP-ITC instruments made by Microcal Inc., Northhampton, s
MA, USA to carry out the ITC experiments. Fokkens et. al [19] did not specify the 177
experiment temperature but Baum et. al. |[37] explained that measurements in the lab s
are routinely performed at 298 K. All datasets were analyzed assuming a temperature of 17

300 K. The cell volume of the calorimeters is 1.3513 mL [3§]. 180
Bayesian regression 181
Bayesian regression using ITC data to determine parameters for binding models was 182
performed similarly to our previous work [28]. The posterior probability of the 183
parameters given the data is expressed with Bayes’ rule, 184
p(6|D) o p(D|#) p(6), (4)

where p(D|0) is the likelihood of observing the data given the parameters and p(6) is the 1
prior probability of the parameters. Based on the assumption that measurement error is 1ss
independently and identically distributed with a Gaussian distribution, the likelihood is, 1

N
1 1 * 2

p(D]0) = W exp T 952 ;(% —q,(0))7] , (5)
where ¢ (0) is the theoretical heat of injection n. 188
We assume that the parameters 0 are independent from one another and, therefore, 1so
the prior p(0) is a product of priors of individual parameters, p(6) = [[, p(#;). The 190
priors for AG, AGy, AAG, AH, AH,, AH; (in kcal/mol) and AHy (in calories) were 11
chosen to be uniform, 102

AG, AGy ~ Uniform(—40,40), AAG ~ Uniform(0, 40), (6)
193

AH,AHy, AH5 ~ Uniform(—100, 100), (7)
194

AHy ~ Uniform(qmm — Aq, Gmaz + AQ)a (8)
where gmin = min{qi, g2, ..., N}, Gmaex = max{q1, g2, ..., qn}, and AGQ = gmaz — Gmin- 1%

Priors for cell [R]o and syringe [L]s concentrations (in nM) are either log-normal or 19
uniform. If the stated value is available (see [S1 Table)) then the log-normal prior was 197
used, 198

In[XJo ~ N (= [XJg™**%, 0 = 0.1 [X]5ted), (9)
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where [X]gtated ¢ [[R]stated [[]stated}  Otherwise, the uniform prior was used,
[R]o ~ Uniform(0.001,1), [L]s ~ Uniform(0.01, 10). (10)

These concentration priors are appropriate for the analysis of single experiments. If
multiple experiments are performed using the same stock solutions, then concentration
parameters could be shared across all the pseudo-independent replicates. If new
solutions are prepared for each replicate, then it is appropriate to use independent
concentration parameters for each measurement.

The parameter p (dimensionless) in the EM model also has uniform prior,

p ~ Uniform(0, 1). (11)

Finally, the prior for the standard deviation of the measurement error o, a nuisance
parameter, was chosen to be an uninformative Jeffreys prior [39],

0o
plo) o 2, (12
where 0g = 1 cal, an arbitrary constant to make % a dimensionless quantity.

The No-U-Turn sampler (NUTS) [40] was used to sample from posterior
distributions. NUTS is an extension of Hamiltonian Monte Carlo [41], which uses
trajectories akin to molecular dynamics simulations to generate candidates for Markov
chain Monte Carlo. Hamiltonian Monte Carlo has a tuning problem in which it may
suffer from random walk behavior if the number of integration steps L is set too small
or waste computing time if L is set too large. NUTS automatically selects an optimal
value for L for each move by stopping the integrator when the trajectory starts to trace
back its steps. We used the implementation of NUTS in PyMC3 [42].

After a warmup of 10,000 NUTS moves, we collected 200,000 samples for the 2C
model and 600,000 samples for the RM and EM models. Samples from the posterior
were thinned by a factor of 10, retaining only every 10 samples, resulting in 20,000
samples for the 2C model and 60,000 samples for the RM and EM models. Neglecting
warmup samples reduces bias due to the initial state and thinning reduces the
correlation between Markov chain Monte Carlo samples. When analyzing the
simulations, we initiated the Markov chain using the true values.

Model selection

The model best supported by each dataset was assessed via Bayes factors, BIC, and
AIC. A Bayes factor quantifies the odds of observing the data D given two models M/
and M. It is defined as a ratio of the likelihood of the data D given model My over
the likelihood of the data D given model M1,

p(DIMy)
R AT 13
p(DIMy) "
The BIC and AIC are commonly used criteria for model selection, defined as,
AIC = —2In [meaxp(DW)} + 2k, (14)
BIC = —2In {mﬂaxp(DW)] + kIn(N), (15)

where k is the number of free parameters and N is the number of data samples. While
the BIC and AIC are straightforward to compute from the maximum likelihood
estimate, precise estimation of Bayes factors is more challenging.
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We computed Bayes factors by using bridge sampling [34] in a new way. Bridge
sampling is the statistical generalization of the Bennett Acceptance Ratio (BAR) [43],
which was derived to compute the free energy difference between a pair of
thermodynamic states based on samples from molecular simulations in each state (see
. A free energy difference is the negative logarithm of the ratio of
normalizing constants for the Boltzmann distribution of molecular configurations. Bayes
factors may also be expressed as ratios of normalizing constants, but for posterior
probability distributions,

fp(92|M2)p(D|02,M2)d62

. J p(61|M1)p(D|61, M1)d6, (16)
[ p2(82)dBs
[ p1(61)d6;” (17)

Here, 6, and 05 are parameters of models My and Ma, respectively. p(0|M;) is the
prior distribution of @ and p(D|0) is the likelihood of D given 8. To simplify the
notation, the unnormalized posteriors of 8, and @, are defined as

p1(61) = p(61|M1)p(D|61) and p2(02) = p(62| M2)p(D|62).

In order to use bridge sampling, the integrals in the numerator and denominator of
Eq. must be taken over the same variables. Thus, we reformulate Eq. such that it
satisfies this requirement. Assume that the models M7 and M5 are nested and M is
more complex than M, i.e. 05 contains more parameters than 6;. In this case, the
parameters in 87 are a subset of parameters in 05, 83 = (61,7). In terms of ~, the
Bayes factor is,

[ p2(01,7)d0dy

= [ p1(61)d0, (18)
_Jp2(01,7)d61dv
[ p1(01) f(7)dO1dy (19)

Eq. is obtained from Eq. by multiplying the denominator by [ f(v)dy = 1, where
f(v) is a proposal distribution, a normalized probability density from which random
variates can be easily generated.

Computing the Bayes factor with bridge sampling requires drawing samples from two
distributions and computing the ratio of probabilities that the sample would be drawn
from each distribution. The two distributions are the posterior probability p2(61,-) and
the joint probability p;1(01)f(«y). For the latter, samples from p;(601) generated by
Markov chain Monte Carlo may be supplemented by independent and identically
distributed random variates from f(«). The ratio of probabilities that the sample would
be drawn from each distribution may be expressed as an exponentiated potential energy
difference. The potential energy, or negative logarithm of the unnormalized probability,
is, u1(01,7) = —Ilnp1(01) — In f(y) and, uz(01,7) = —Inp2(61,7). Differences
between u; and us are computed for each sample from the two distributions and used in
Eq. A.34 of [ST Appendix| to estimate the Bayes factor.

In principle, f(7) can be any probability distribution from which random variates
can be easily generated, e.g. a uniform distribution. However, if random samples from
p1(601) f(v) have a low probability in pa(01,7), then the estimator of the Bayes factor
may require a prohibitive number of samples to converge. To increase overlap between
the distributions in the numerator and denominator of Eq. we chose f(v) to be a
multivariate Gaussian with a mean vector from the sample mean, 7, and covariance

matrix from the sample covariance, 02, of NUTS samples drawn from ps(61,7).
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Results and discussion

Estimated posteriors and Bayes factors are converged

Robust Bayesian analysis requires adequate sampling from the posterior such that
summary statistics are converged, unaffected by additional sampling. Convergence of
sampling the Bayesian posteriors was evaluated based on the 5-th, 25-th, 50-th, 75-th
and 95-th percentiles of the marginal probability of key parameters as the number of
Monte Carlo samples is increased (Figures |1} [S1 Figl and [S2 Fig). As the number of
samples increases, the percentiles change very little, with negligible estimated standard
errors. This convergence indicates that the posterior distributions have been thoroughly
sampled after a small number of samples from the posterior.

Fig 1. Convergence of percentiles of the Bayesian posterior of the 2C model
based on the Fokkens_la dataset. 20,000 samples were drawn from the Bayesian
posterior using the NUTS sampler. Four key parameters are shown. Lines correspond to
the 5-th (blue circle), 25-th (green square), 50-th (red diamond), 75-th (cyan upward
triangle) and 95-th (magenta downward triangle) percentile. The error bars, which are
too small to be visible, are standard deviations estimated by 100 bootstrapping samples.
Similar plots for RM and EM models are shown in [ST Fig and [S2 Figl respectively.
also shows the convergence of percentiles for fits to a representative simulation of
the EM model.

In comparison, estimates of the Bayes factors based on bridge sampling converge
more slowly. For all datasets, the estimated Bayes factors start to level off after about
60% of the total Monte Carlo samples (Fig. [2] and [S3 Fig|to[S12 Fig). Convergence
provides confidence in using Bayes factors for model selection.

A possible reason that the Bayes factor is not used more widely is that it is difficult
to estimate precisely. At least with the present data and statistical models, the novel
approach to using bridge sampling for nested models appears to be resolve this issue.

The variation of bridge sampling described here is related to but not equivalent to
an approach that has been previously described [44,/45]. In these related works, bridge
sampling was used to evaluate the marginal likelihood of a single model, opposed to
Bayes factors, which are the ratio of marginal likelihoods for two models. Hence,
proposal distributions included all degrees of freedom, opposed to a subset that are
present in one model but not the other. As we have done here, the authors suggested
that a normal distribution with the first two moments selected to match the posterior is
usually a suitable proposal distribution.

Concentration priors have distinct impacts on posteriors

While it is possible to sample from the Bayesian posterior and obtain converged
summary statistics without knowing the concentration of [L]s or [R]o or even both,
uninformative priors generally lead to broader posteriors.

In our simulations, as shown by histograms (Figure [3)), standard deviations (Table
, and root mean square errors (Table [2)) of the 1D marginals (Table , using an

Fig 2. Convergence of Bayes factors for the Fokkens_la dataset. Bayes factors
were estimated based on 20,000 NUTS samples for the 2C model and 60,000 NUTS
samples for the RM and EM models. The error bars are standard deviations estimated
by 1000 bootstrapping samples. Similar plots for the 10 other datasets are shown in the
Supporting Information (S3 Fig| to [S12 Fig)).
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Fig 3. Representative 1D histograms of thermodynamic parameters
sampled from the Bayesian posterior with four concentration priors. Priors
for the concentration were lognormal for both [L]s and [R]y (yellow line), lognormal for
[L]s and uniform for [R]y (green line), uniform for [L]s and lognormal for [R]y (blue
line), or uniform for both [L]; and uniform for [R]y (purple line). Integrated heats are
from a representative simulation from the EM model. Horizontal bars show 95%
Bayesian credible intervals. True values for parameters were shown as red dashed line.

informative lognormal prior for both [L]s or [R]o leads to the most accurate and precise
posteriors. If the receptor concentration [R]y is unknown and a uniform prior is used,
the standard deviations and root mean square errors for all thermodynamic parameters
are roughly doubled. Similar behavior is observed if the ligand concentration is missing,
with the exception of AAG, which retains a comparable accuracy and uncertainty. If
both the ligand and receptor concentration are missing, then posteriors of most
parameters are broader than if a single concentration is missing. It is still possible to
determine the binding free energies AG; and AAG, the latter which is surprisingly
precise, but without concentrations the posterior of the enthalpies AH; and AH> are so
broad that the values are essentially unknown.

Table 1. Mean and standard deviation (in parentheses) of the Bayesian
posterior with four concentration priors, based on the 50 simulations from the EM
model.

[R]o prior lognormal uniform lognormal uniform
[L]s prior lognormal lognormal uniform uniform
[R]o 4.84E-2 4.79E-2 4.94E-2 1.43E-1
(3.80E-3) (7.44E-3) (4.74E-4) (7.23E-2)
[L]s 1.01E+4-0 9.90E-1 1.05E+0 2.97E40
(8.08E-2) (1.19E-2) (1.67E-1) (1.40E+0)
AG, -1.156E+1 -1.15E+1 -1.15E+1 -1.20E+1
(4.63E-2) (6.62E-2) (7.11E-2) (4.04E-1)
AAG 4.00E+0 4.00E+0 4.00E+0 4.01E+0
(2.71E-2) (3.89E-2) (2.91E-2) (7.53E-2)
AH, -7.04E4-0 -7.18E+0 -6.89E+0 -4.45E+1
(4.27E-1) (7.53E-1) (8.72E-1) (9.99E+0)
AH, -2.01E4-0 -2.07E+0 -1.99E4-0 -1.28E+1
(1.26E-1) (2.17E-1) (2.20E-1) (2.87TE+0)
AHy, 4.97E-7 4.88E-7 4.87E-7 4.96E-7
(3.49E-8) (6.61E-8) (7.60E-8) (3.64E-8)
P 5.00E-1 4.99E-1 4.99E-1 5.00E-1
(1.97E-3) (5.27E-3) (4.95E-3) (4.74E-3)

The impact of missing concentration information is also evident in the analysis of
experimental data. As shown by 1D and 2D histograms of NUTS samples (S2 Appendix
for 2C, [S3 Appendix| for RM, and [S4 Appendix|for EM), it is possible to estimate

thermodynamic parameters even if the concentration is unknown and a uniform prior is
used. However, this lack of information has consequences. In these cases (Fokkens_la,
Fokkens_1b, Baum_57, and Baum_59), the posterior for the unknown concentrations is
broad. Additionally, posteriors of the thermodynamic parameters may change shape. In
our previous work fitting with the 2C model and using known concentrations [28],
posteriors for thermodynamic parameters were all close to symmetric, with only subtle
skew, and Gaussian. Here, when fitting the 2C model with unknown concentrations,

many posteriors for AG and AH are highly skewed (S2 Appendix]). Finally, the lack of
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Table 2. Root mean square error of the mean. The root mean square error, or
root mean square difference between the estimate and the true value, of the mean
parameter value from the Bayesian posterior.

[R]o prior lognormal uniform lognormal uniform
[L]s prior lognormal lognormal uniform uniform
(Rl 1.08E-03 7.65E-03 7.30E-04 1.1SE-01
[L]s 8.10E-02 1.56E-02 1.72E-01 2.41E4-00
AG, 4.66E-02 6.81E-02 7.06E-02 6.50E-01
AAG 2.70E-02 3.85E-02 2.88E-02 7.54E-02
AH, 4.25E-01 7.67E-01 8.70E-01 3.88E4-01
AH, 1.25E-01 2.27E-01 2.18E-01 1.11E+401
AHy, 3.47E-08 6.65E-08 7.64E-08 3.62E-08

P 1.99E-03 5.34E-03 5.02E-03 4.70E-03

a nominal concentration may also shift the peak of posteriors for thermodynamic
parameters. In a previous fit to the Fokkens_la dataset in which the solution
concentrations presumably were specified, the dissociation constant was found to be
43.9 x 10> M1 [19], which corresponds to AG = -9.1 kcal/mol. In contrast, the
Bayesian posterior for AG has samples in the range of -7.5 and -7 kcal/mol. Other
datasets in which the concentration is presently unknown clearly have a step in the
integrated heat and were fit with two independent simple binding events. Thus, the
model was distinct and parameters are not directly comparable to the present results.

Many Bayesian posteriors have complex structure

The histograms of NUTS samples also show that many of the Bayesian posterior
distributions have complex structure. The simplest posteriors are from the 2C model.
For the Fokkens_la, Fokkens_le, and Baum_60_2 datasets, in which the integrated heat
is a sigmoidal function, the posteriors show simple unimodal peaks and essentially linear
correlation between parameters. Similar behavior was observed in our previous Bayesian
analysis for two-component binding processes |28]. For some other datasets such as
Baum_57 and Fokkens_1b, the posteriors given by the 2C model have nonlinear
correlations between parameters. Posteriors based on the RM and EM model are mostly
complex, with multimodal and skewed peaks, and nonlinear relationships between
parameters (S3 Appendix| and [S4 Appendix]). Exceptions include analyses of the
simulation data sets with informative concentration priors and of dataset Fokkens_1d,
which show a rather simple posterior for both RM and EM models. In the
representative simulation of the EM model, when a uniform prior is used for both the
ligand and receptor concentration, the posterior becomes multimodal.

Broad or multimodal posteriors indicate that additional data is required to uniquely
determine model parameters. The ability to reveal ambiguity in parameter fitting is the
key advantage of the Bayesian approach over maximum likelihood estimation.

Bayesian credible intervals can be accurate confidence intervals
for the EM model

Bayesian credible intervals were assessed by plotting the fraction of intervals that
contain the true value against the stated confidence level. Similar plots are Figure 8 of
Nguyen et. al. [28] and Figure 1 of Minh and Makowski [46]. If the credible intervals are
good confidence intervals, then the data points should lie on the diagonal. Points below
the diagonal indicate that the credible intervals underestimate the error. Conversely,
points above the diagonal suggest that they overestimate the error.
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Fig 4. Uncertainty validation for Bayesian analysis of simulated data. The
predicted versus observed rate (%) in which BCIs contain the true value for binding
parameters are shown. Priors for the concentration were lognormal for both [L]s; and
[R]o (red left triangle), lognormal for [L]s and uniform for [R]y (green circle), uniform
for [L]; and lognormal for [R]y (blue right triangle), or uniform for both [L], and
uniform for [R]y (black square). Error bars are standard deviations based on
bootstrapping of 1000 samples.

If concentrations are specified, then Bayesian credible intervals are accurate
confidence intervals (Figure [4). If the ligand concentration [L]s is missing, then the
credible intervals of the concentrations and enthalpies somewhat underestimate the
confidence intervals. If the receptor concentration [R]g is missing, then most confidence
intervals are accurately estimated but the smaller confidence intervals of concentrations
are underestimated. Missing both the ligand and receptor concentration leads to
significant underestimation of uncertainties for concentrations and thermodynamic
parameters.

Bayes factors are the most accurate model selection criterion

For the 11 datasets, calculated model selection criterion did not always yield consistent
results (see . While Bayes factors and BIC were consistent for most datasets,
the AIC favored the more complex EM and RM models. In the following discussion, we
categorize the datasets into four groups according to Bayes factors (Tab. .

Table 3. Estimated log;, of Bayes factors. Numbers in parentheses are standard
errors estimated by the standard deviations of 1000 bootstrap samples.

2C model is best log pp((%lgg)) log pp(gggf))
Fokkens_la -4.63(0.46) -0.98(0.17)
Fokkens_le -1.65(0.54) -1.29(0.35)
Baum_60_2 -1.17(0.59) -1.46(0.47)
EM model is best

Fokkens_lc -0.82(0.21) 1.94(0.20)
Baum_57 -0.16(0.52) 58.81(9.82)
Baum_59 53.73(5.94) 77.54(12.58)
RM and EM models

are comparable and

best

Fokkens_1b 0.73(0.27) 1.02(0.14)
Fokkens_1d 157.71(7.23) 165.48(8.72)
Baum_60_1 2.83(1.02) 2.57(1.32)
Inconclusive

Baum_60_3 3.51(2.73) 1.57(2.19)
Baum_60_4 0.51(3.01) -0.79(0.64)

In three titrations, the integrated heats appear sigmoidal and Bayes factors favor the
2C model (Fig. . Indeed, Fokkens_la corresponds to titration of trypsin with a single
enantiomer, D-Napap (8) |19], and is therefore a two-component binding process. For
this dataset, the AIC does not sufficiently penalize model complexity and favors the EM
model . The other two datasets, Fokkens_le and Baum_60_2, correspond to
titrations with racemates that have relatively small differences in affinity: 22- |[19] and
66-fold |37], respectively. With small differences in affinity, integrated heat curves from
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Fig 5. Model fits to integrated heat data. The data were fitted by the 2C (left),
RM (middle), and EM (right) models. The solid line is the theoretical heat g} (Omap),
where Oyap is the Maximum a Posteriori estimate of the parameters. The grey band is
the 95% confidence interval. Crosses are the observed heat. The three datasets are best
fitted by the 2C model according to the estimated Bayes factors (Table .

Fig 6. Integrated ITC heat data and their fit. The data were fitted by the 2C
(left), RM (middle), and EM (right) models. The solid line is the theoretical heat

g (Opmap), where Oyap is the Maximum a Posteriori estimate of the parameters. The
grey band is the 95% confidence interval. Crosses are the observed heat. The three
datasets are best fitted by the EM model according to the estimated Bayes factors
(Table [3)).

the three models are not clearly distinguishable (Fig. [5]) and thus more complex models
are not supported by the data. In addition to small differences in fitting quality, further
evidence that the data do not support the RM or EM models is that some parameters
(AHy, AHy, AGy, AGy = AG1 + AAG, or p) have very broad posteriors
and that the posterior of AAG is inconsistent with reported affinity differences. For
Fokkens_le, the posterior is bimodal the larger peak centered around 0.15 kcal/mol
|Table| and |S4 AppendixD, or a multiplicative factor of about exp [%] = 1.3 times
(using the gas constant R and T' = 298K as the temperature), much smaller than the
factor determined by independent measurements. In contrast, the posterior of AAG is
broad with a peak centered around 4 kcal/mol (S3 Table| and [S4 Appendix)), or 858 fold,
much larger than the reported factor.

In a second group of titrations, the EM model is unambiguously superior according
to all model selection criteria . In Baum_57 and Baum_59, the integrated heat
data clearly show a two-step binding that cannot be produced by the 2C model (Fig. @
Moreover, the EM model is clearly a better fit than the RC model. Baum_57
corresponds to titration of Thrombin with rac-2. In the EM model, the posterior of p is
peaked near 0.45 (S3 Table| and [S4 Appendix|). Baum_59 corresponds to titration of
Trypsin with a mixture of two compounds of different binding affinity, UB_.THR_32 and
n-pentyl-Benzamindin [37], which is clearly not racemic. The posterior of p is peaked
near 0.15 (S3 Tablel and [S4 Appendix]). In Fokkens_lc, the titration of Thrombin with
rac-1, the benefit of the EM model is much more subtle, primarily evident at the

eginning of the curve (Fig. @ The posterior of p is broad and peaked near 0.9 (S3 |
Table| and |S4 Appendixl).

In a third group of titrations, both RM and EM models are comparably good and
clearly superior to the 2C model (Fig. @ All three datasets involve titration with
racemic mixtures. Fokkens_1b corresponds to the titration of Trypsin with rac-Napap
(8) |19]. Fokkens_1d is the titration of Thrombin with rac-2 (which is the same system
as Baum_57 but with possibly different experimental conditions [19]). Baum_60-1 also
corresponds to a racemic mixture titration but a two-step binding is not evident from
the heat curve. For Fokkens_1d, the evidence given by Bayes factor (Table |3 for
favoring RM and EM models is very strong and all parameters are well-determined. In
this case, the posterior of p is sharply peaked at 0.45, near the RM value of 0.5. Hence
any improvements in fit due to the small shift in p are cancelled by the increased
complexity of the model such that differences in Bayes factors are not statistically
significant, with log, pDIEM) _ 165 48 + 8.72 for the RM model and

p(D[2C)
log, pDIRM) _ 157 71 4 7.23 for the EM model. For the other two datasets, the
p(D[2C)

evidence is not so strong. In particular, both RM and EM models do not show a good
fit to Fokkens_1b dataset with rather large 95% CI bands as shown in Fig. [7] Some key
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Fig 7. Integrated ITC heat data and their fit. The data were fitted by the 2C
(left), RM (middle), and EM (right) models. The solid line is the theoretical heat

¢ (Opmap), where Opap is the Maximum a Posteriori estimate of the parameters. The
grey band is the 95% confidence interval. Crosses are the observed heat. The three
datasets are best fitted by both RM and EM models according to the estimated Bayes
factors (Table |3).

Fig 8. Integrated ITC heat data and their fit. The data were fitted by the 2C

(left), RM (middle), and EM (right) models. The solid line is the theoretical heat

¢ (Opmap), where Opap is the Maximum a Posteriori estimate of the parameters. The

grey band is the 95% confidence interval. Crosses are the observed heat. For these two
datasets, the estimated Bayes factors (Table [3) is inconclusive in selecting which model
is the best.

parameters are also underdetermined for Fokkens_1b and Baum_60_1 (S3 Tablé).

In the fourth group (Fig. , due to the large estimated errors, the estimated Bayes
factors are inconclusive about which model is best (Table . Probably due to high
concentration of the receptor [37], Baum_60_4 does not show saturation.

Conclusions

We have performed Bayesian regression to infer parameters for thermodynamic binding
models from isothermal titration calorimetry measurements in which the titrant is an
enantiomeric mixture. When a lognormal prior is used for the concentrations, analyses
of simulated experiments provide Bayesian credible intervals that are accurate
confidence intervals. Based on our analysis, we are able to determine when the
measurements do not provide enough information to precisely determine parameters,
leading to broad or multimodal posteriors. We have also introduced a variation of
bridge sampling to perform precise estimates of Bayes factors. We find that Bayes
factors are superior to other model selection criterion in selecting models that are
consistent with prior knowledge about the experiments.

Supporting information

S1 Appendix. Mathematical description of binding models and the Bennett
acceptance ratio (BAR) estimator.

S2 Appendix. Estimated 1D and 2D histograms of key parameters for the
2C model.

S3 Appendix. Estimated 1D and 2D histograms of key parameters for the
RM model.

S4 Appendix. Estimated 1D and 2D histograms of key parameters for the
EM model.

S1 Table. Summary of systems and experimental protocol.

S2 Table. Best models according to Bayes factor, Akaike information
criterion (AIC) and Bayesian information criterion.
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S3 Table. Estimated Bayesian credible intervals. Binding enthalpy (AH, AHq,
AH,) and free energy (AG, AG1, AAG) in kecal/mol.

S1 Fig. Convergence of percentiles of the Bayesian posterior of the RM
model based on the Fokkens_la dataset 60,000 samples were drawn from the
Bayesian posterior using the NUTS sampler. Six key parameters are shown. Lines
correspond to the 5-th (blue circle), 25-th (green square), 50-th (red diamond), 75-th
(cyan upward triangle) and 95-th (magenta downward triangle) percentile. The error
bars, which are too small to be visible, are standard deviations estimated by 100
bootstrapping samples.

S2 Fig. Convergence of percentiles of the Bayesian posterior of the EM
model based on the Fokkens_la dataset and one representative simulation of
the EM model. 60,000 samples were drawn from the Bayesian posterior using the
NUTS sampler. Six key parameters are shown. Lines correspond to the 5-th (blue
circle), 25-th (green square), 50-th (red diamond), 75-th (cyan upward triangle) and
95-th (magenta downward triangle) percentile. The error bars, which are too small to
be visible, are standard deviations estimated by 100 bootstrapping samples.

S3 Fig. Convergence of Bayes factors for the Fokkens_1b dataset. The Bayes
factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000
NUTS samples for the RM and EM models. The error bars are standard deviations
estimated by 1000 bootstrapping samples.

S4 Fig. Convergence of Bayes factors for the Fokkens_1c dataset. The Bayes
factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000
NUTS samples for the RM and EM models. The error bars are standard deviations
estimated by 1000 bootstrapping samples.

S5 Fig. Convergence of Bayes factors for the Fokkens_1d dataset. The Bayes
factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000
NUTS samples for the RM and EM models. The error bars are standard deviations
estimated by 1000 bootstrapping samples.

S6 Fig. Convergence of Bayes factors for the Fokkens_le dataset. The Bayes
factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000
NUTS samples for the RM and EM models. The error bars are standard deviations
estimated by 1000 bootstrapping samples.

S7 Fig. Convergence of Bayes factors for the Baum_57 dataset. The Bayes
factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000
NUTS samples for the RM and EM models. The error bars are standard deviations
estimated by 1000 bootstrapping samples.

S8 Fig. Convergence of Bayes factors for the Baum_59 dataset. The Bayes
factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000
NUTS samples for the RM and EM models. The error bars are standard deviations
estimated by 1000 bootstrapping samples.
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S9 Fig. Convergence of Bayes factors for the Baum_60_1 dataset. The Bayes

factors were estimated based on 20,000 NUTS samples for the 2C model and 60,000
NUTS samples for the RM and EM models. The error bars are standard deviations
estimated by 1000 bootstrapping samples.

S10 Fig. Convergence of Bayes factors for the Baum_60_2 dataset. The
Bayes factors were estimated based on 20,000 NUTS samples for the 2C model and
60,000 NUTS samples for the RM and EM models. The error bars are standard
deviations estimated by 1000 bootstrapping samples.

S11 Fig. Convergence of Bayes factors for the Baum_60_3 dataset. The
Bayes factors were estimated based on 20,000 NUTS samples for the 2C model and
60,000 NUTS samples for the RM and EM models. The error bars are standard
deviations estimated by 1000 bootstrapping samples.

S12 Fig. Convergence of Bayes factors for the Baum_60_4 dataset. The
Bayes factors were estimated based on 20,000 NUTS samples for the 2C model and
60,000 NUTS samples for the RM and EM models. The error bars are standard
deviations estimated by 1000 bootstrapping samples.
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