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Abstract: We study the problem of detecting latent geometric structure
in random graphs. To this end, we consider the soft high-dimensional ran-
dom geometric graph G(n,p,d, q), where each of the n vertices corresponds
to an independent random point distributed uniformly on the sphere S—1,
and the probability that two vertices are connected by an edge is a decreas-
ing function of the Euclidean distance between the points. The probability
of connection is parametrized by g € [0,1], with smaller g corresponding
to weaker dependence on the geometry; this can also be interpreted as the
level of noise in the geometric graph. In particular, the model smoothly
interpolates between the hard spherical random geometric graph G(n, p, d)
(corresponding to ¢ = 1) and the Erdés—Rényi model G(n,p) (correspond-
ing to ¢ = 0). We focus on the dense regime (i.e., p is a constant).

We show that if ng — 0 or d > n3¢?, then geometry is lost: G(n, p, d, q)
is asymptotically indistinguishable from G(n,p). On the other hand, if d <
n3¢®, then the signed triangle statistic provides an asymptotically powerful
test for detecting geometry. These results generalize those of Bubeck, Ding,
Eldan, and Récz (2016) for G(n,p,d), and give quantitative bounds on
how the noise level affects the dimension threshold for losing geometry.
We also prove analogous results under a related but different distributional
assumption which corresponds to the random dot product graph.
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1. Introduction

Random graphs emerge as canonical models for many real-life applications, in-
cluding social networks, wireless communications, and in the biological sciences.
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Among them, the simplest yet structurally rich model is the Erdés—Rényi ran-
dom graph, which has been studied extensively (e.g., [19, 7]). However, in many
scenarios the independence of edges is an oversimplified assumption and is often
insufficient to capture the subtle relations in complex networks.

A natural extension is to assume an underlying geometric structure. The
graph is then generated according to some dependence on this structure. Due to
their wide applicability, random graphs of this kind have various incarnations in
different fields: random geometric graphs, latent space models, spatial networks,
random connection models, to name a few. We refer the reader to [33] for a
comprehensive theoretical treatment of the subject.

In real-world networks, the geometric space often remains unobserved. Most
of the time, only the graph structure can be obtained rather than the latent
factors that generated the graph. For example, in a social network, it is usually
easy to access the interactions between people but not how these connections are
established. This brings up the natural question of understanding the extent to
which a latent space model is an accurate description. As a first step, it is crucial
to understand when the presence of geometry is even detectable assuming that
the network follows a specific generative model. Mathematically this was first
studied by Devroye, Gyorgy, Lugosi, and Udina [16] for a particular random
geometric graph equipped with the spherical geometry. They showed that this
random geometric graph becomes indistinguishable from an Erdés—Rényi graph
when the dimension of the sphere goes to infinity. In other words, geometry
is lost in high dimensions. Subsequently, Bubeck, Ding, Eldan, and Récz [12]
pinpointed the phase transition for testing high-dimensional geometry in dense
random graphs. Our paper builds upon and generalizes this result.

A caveat of the aforementioned works is that the model is restricted to a
“hard geometry” setting, where the existence of an edge is a deterministic func-
tion of the distance between the latent points corresponding to the two vertices.
This assumption overlooks the fact that in reality connections can often have
stochastic dependence on the latent variables. Consequently, the phase transi-
tion in the hard geometry setting happens at dimensions as high as the cube of
the number of vertices, seemingly much larger than what many high-dimensional
statistics theories would consider [43].

Our focus in this paper is to understand the above question in the setting
of soft random geometric graphs, in which the softness can be viewed as noise
in the geometric graph. We are particularly interested in the interplay between
dimensionality and noise in affecting the phenomena of losing geometry in ran-
dom graphs. To this end, we study a particular type of soft random geometric
graph where there is a parameter ¢ € [0, 1] that naturally encodes the level of
noise, correspondingly the strength of geometry. This model is an interpolation
between the hard spherical random geometric graph (corresponding to ¢ = 1)
and the Erd6s—Rényi model (corresponding to ¢ = 0). Our main results pro-
vide bounds, as a function of both dimension and geometry strength, of where
the phase transition lies. In particular, these results quantitatively demonstrate
the qualitative phenomenon that the dimension threshold for losing geometry
is smaller for soft random geometric graphs and decreases as a function of noise
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level. We next specify the precise setting of our work, before describing our main
results.

1.1. Random geometric graphs

We first describe the spherical random geometric graph model G(n,p,d) [16,

12]. For a set of n vertices V = [n] = {1,2,...,n}, associate each vertex %
with a point represented by a d-dimensional random vector ;. We assume that
x1,...,T, are independently uniformly distributed on the sphere S¥~! := {x €
R? : ||x|| = 1}, where ||| stands for the Euclidean norm. For a fixed value of

p € [0,1] that parametrizes the edge density, the graph is defined as follows:
There is an undirected edge between distinct vertices ¢ and j if and only if

<m7,7m_]> Z tp,d7 (1)

where (-, -) denotes the inner product of two vectors. Equivalently, ¢ and j are
connected by an edge if and only if their Euclidean distance satisfies ||x; — ;|| <
v/2(1 —t, 4). The threshold ¢, 4, which may depend on p and d, is determined
by the equation

P({zi, ;) > tpa) = p,

so that the probability of an edge existing between any pair of distinct vertices
is p. Given the latent vectors a1, . . ., €, the edges in the graph are deterministic.
The only source of randomness in G(n,p, d) comes from the random points. For
this reason, the random graph defined above is referred to as a hard random
geometric graph.

More generally, the model above may be extended by adding additional
randomness to the edge generating process, given the latent positions. That
is, we connect ¢ and j with probability ¢((z;,x;)) for a connection function
¢ : R — [0,1]. Formally, let i ~ j denote the event that there exists an undi-
rected edge between i and j. Then,

Pi~j|x,...,zn) = 0((zi, ;). (2)

This is equivalent to connecting i and j with probability ¢(1 — ||z; — x;||%/2).
When the connection function is an indicator ¢(x) = 1{z > t,q}, we obtain
the hard random geometric graph defined previously. For general connection
functions, which are typically nondecreasing,' such random graphs are referred
to as soft random geometric graphs.

Denote by K = [k; ;] the connection matriz defined by k; ; = o¢((z;, z;)).
For a simple graph G = (V, E), where V is the set of vertices and FE is the set of
edges, let A = [a; ;] be its adjacency matrix, where a; j = 1if i ~ jand a; ; =0
otherwise for all i # j. Denote by X € R™*¢ the matrix whose rows are the
random vectors @1, ..., x,. For a soft random geometric graph with connection

'In the literature, connection functions often take as their argument the distance ||z; — ;||
and hence are a nonincreasing function. Here it is more convenient to take the inner product
(z;, ;) as the argument of ¢ and hence this is a nondecreasing function.
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p

bq(x) = (1 — q)p + gst(x)

Fic 1. A comparison of connection functions.

matrix K, conditioned on X, 1{i ~ j} is an independent Bernoulli random
variable with parameter k;;. The distribution of the soft random geometric
graph is then specified by

P(G) = Ex [T ko™ (1= ki), 3)
i<j
We focus on a particular family of soft random geometric graphs parametrized
by the level of dependence on the underlying points. The connection function
in these models is a linear interpolation between a constant p € [0, 1] and a step
function s; : R — {0,1} defined as s;(x) := 1{z > t}. Concretely, we consider
the following connection function with a parameter ¢ € [0, 1]:

bq(x) = (1 = q)p + gsi(z), (4)

where ¢ controls the strength of geometry in the graph. The threshold ¢ is
similarly determined by setting the probability of an edge to be p:

P(i ~ j) = Elpg((®i, 25))] = p,

which gives the same threshold ¢ = t, 4 as in the definition of G(n,p,d). We
denote by G(n,p,d, q) the soft random geometric graph equipped with the con-
nection function ¢4,. When ¢ = 1, the graph becomes the hard random geometric
graph G(n, p,d). When g = 0, each edge in the graph is generated independently
with probability p, corresponding to the well-known Erdds—Rényi graph G(n, p)
that does not possess latent geometric structure. As an illustration, ¢4(z) is
plotted against the connection functions of G(n,p) and G(n,p,d) in Figure 1.

G(n,p,d,q) can also be viewed as a hard random geometric graph with in-
dependent edge resampling. Starting with a sample graph from G(n,p,d), for
each pair of vertices in the graph, we flip a biased coin with the probability of
heads equal to g. If the coin shows heads, we keep the edge/non-edge between
them; otherwise, we resample the connection, creating an edge independently
with probability p. The resampled graph then follows G(n, p,d, q).

1.2. Main results

As the scope of this paper, we are interested in whether it is possible to detect the
underlying geometric structure, which we formulate as the following hypothesis
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testing problem. The null hypothesis is that the observed graph G is a sample
from the Erdés-Rényi model with edge density p:

Hy : G ~ G(n,p).

The alternative hypothesis is that the graph is a (matching edge density) soft
random geometric graph with dimension d and geometry strength ¢:

Hy: G~ G(n,p,d,q).

The hypothesis testing problem can be understood through guarantees for
the total variation distance between the two distributions. Our findings are
summarized in the following theorem.

Theorem 1.1 (Detecting geometry). Let p € (0,1) be fized.
(a) (Impossibility) If ng — 0 or n3¢*/d — 0, then
TV(G(n,p),G(n,p,d,q)) = 0.
(b) (Possibility) If n3¢®/d — oo, then

TV(G(n,p),G(n,p,d,q)) — 1.

Theorem 1.1(a) specifies a lower bound for detection: If ng — 0 or d >> n3¢>
then no test can detect the latent geometric structure; G(n,p,d, q) is asymp-
totically indistinguishable from G(n,p). On the other hand, Theorem 1.1(b)
provides an upper bound: If d < n3¢® then there exists an asymptotically pow-
erful test for detecting the latent geometric structure. Specifically, we will show
that the signed triangle statistic of Bubeck et al. [12] (which in particular is
computationally efficient) works in this regime to distinguish the two models.

Recall that G(n,p,d, q) becomes G(n,p,d) in the special case when ¢ = 1. In
this case Theorem 1.1 recovers the results of Bubeck et al. [12], showing that
d = n? is the dimension threshold for losing geometry in G(n,p,d).

In general, both the impossibility and possibility results in Theorem 1.1 de-
pict a polynomial dependency on g. However, the polynomials have different
powers of ¢, which implies that there exists a gap between the lower and upper
bounds. We believe that the phase transition for losing geometry in G(n,p, d, q)
happens at a certain power of ¢. We conjecture that the bound in Theorem 1.1(b)
specified by the signed triangle statistic is tight, that is, when d > n3¢®, it is
impossible to distinguish between the two models; in other words, the signed
triangle statistic is (nearly) optimal. In particular, the dimension threshold
d = (ng®plog(1/p))? determined by the signed triangle statistic is consistent
with the conjectured threshold for the original random geometric graph in the
sparse regime (see [12, Conjecture 1] and [26, after Theorem 1.2]). Specifically,
the authors of [26] showed that signed triangles can in fact distinguish G(n, p, d)
from G(n,p) whenever d < (nplog(1/p))? for all p = Q(1/n) and conjectured
this is optimal for all p < 1/2.

Theorem 1.1 can be displayed graphically by a phase diagram of when the
latent geometric structure can be detected and when it cannot in G(n,p,d, q)
regarding dimension d and geometry strength q. We further introduce a more
convenient parametrization that allows us to visualize the phase diagram.
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F1a 2. Phase diagram for detecting geometry in the soft random geometric graph G(n,p,d,q).
Here d=n® and g =n—" for some o, 8 > 0.

Corollary 1.2 (Phase diagram). Suppose that d < n® and q¢ < n=? for some
a, > 0.

(a) If B>1 or a+2B >3, then as n — oo,
TV(G(n,p),G(n,p,d,q)) — 0.

(b) If a4+ 63 < 3, then as n — oo,
TV(G(n,p),G(n,p,d,q)) — 1.

The resulting phase diagram is plotted in the two-dimensional space of o and
B in Figure 2.

1.3. Related work

The study of high-dimensional random geometric graphs originates from the
work of Devroye et al. [16], who showed via the multivariate central limit theo-
rem that geometry is lost in high dimensions. Subsequently, Bubeck et al. [12]
determined that the phase transition of losing geometry happens asymptoti-
cally at dimension d =< n? in the dense setting (for fixed 0 < p < 1). This
work also points out the connection to classical random matrix ensembles,
showing that the Wishart to GOE transition also happens at d < n3 (see
also [23, 11, 37, 36, 14, 28]). Eldan and Mikulincer [17] further extended the
results to an anisotropic setting of the underlying distribution of points; recent
follow-up work of Brennan, Bresler, and Huang [10] precisely determined the
detection threshold in this setting. In the sparse setting, when p vanishes as a
function of n, it is conjectured in [12] that geometry should be lost at much
lower dimensions. Progress towards this conjecture, which in particular breaks
the n? barrier, was made by Brennan, Bresler, and Nagaraj [8]. This is an active
line of research; after we finished this work, we learned about a new preprint by
Brennan, Bresler, and Huang [9] on understanding the Wishart to GOE tran-
sition when only a subset of entries is revealed. A breakthrough in the sparse
case was made by Liu, Mohanty, Schramm, and Yang [26], who showed that
when p = ¢/n for a constant ¢, if d > polylog(n), the total variation distance
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between the two distributions is close to 0. This resolves the conjecture of [12]
up to logarithmic factors.

Soft random geometric graphs arise as natural models in many areas, in-
cluding wireless communications [20], social networks [22], and biological net-
works [41]. Penrose [34] studied the connectivity of soft random geometric graphs
from a modern probability-theoretic perspective, determining the asymptotic
probability of connectivity in fixed dimensions and for a broad class of connec-
tion functions. Dettmann and Georgiou [15] discussed the same questions from
a statistical physics viewpoint in two and three dimensions, and provided a com-
prehensive list of connection functions widely used in practice. Connectivity in
one-dimensional soft random geometric graphs was considered in [45], where the
authors showed that the reason for connectivity is vastly different from the hard
case. Parthasarathy et al. [32] studied a model of perturbed networks, which is
similar to the setting under consideration in our work. A phase transition in
soft random geometric graphs with a critical value of chemical potential was
demonstrated in [31], where a related model was also considered. Our paper can
be viewed as a first step towards understanding the questions described in the
previous paragraph for soft random geometric graphs. In a follow-up paper to
this one [25], we showed a similar phase diagram for detecting high-dimensional
geometry for smooth connection functions. A recent preprint by Bangachev and
Bresler [5] extends the results to geometric and algebraic settings and makes
several advances in this direction.

Following up detecting geometry, a natural next question is how to recover
it; indeed, a line of research focuses on recovering the underlying latent posi-
tions of soft random geometric graphs. In [40], it is shown that latent positions
for random dot product graphs can be estimated consistently using the eigen-
decomposition of the adjacency matrix, when the dimension d is fixed. Several
subsequent works [3, 2, 18] applied similar approaches to kernels and general
connection functions on spheres satisfying certain eigengap conditions.

1.4. Open problems

The most immediate problem that our work leaves open is to understand the
intermediate region not covered by Theorem 1.1. Specifically, the main question
is to determine the exact boundary between the two phases where the limiting
total variation distance transitions from 1 to 0. The existence of an intermediate
phase where detection is information-theoretically possible while no efficient
algorithm exists is also worth studying.

More broadly, a natural direction of future research is to consider these ques-
tions for other connection functions or underlying latent spaces, in order to
understand how the dimension threshold for losing geometry depends on them.

1.5. Owutline of the paper

The rest of the paper is organized as follows. In Section 2, we introduce some
notations used throughout the paper and several standard definitions. The im-
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possibility of detection is presented afterwards in Section 3, where the results
of Theorem 1.1(a) in the two regimes are proved. Section 4 consists of the proof
of Theorem 1.1(b) using the signed triangle statistic. Finally, in Section 5 we
show that similar results also hold under a different distributional assumption,
when the underlying latent vectors are i.i.d. standard normal, and we consider
the corresponding random dot product graph.

2. Notations and preliminaries

We use boldface capitals to denote matrices, and their corresponding lower cases
with subscript indices separated by a comma to denote the entries. For example,
a matrix A = [a; ;] has entry a; ; in its ith row and jth column. We use o to
denote the Hadamard product, which is the entrywise product of two matrices.
Vectors are represented by boldface lowercase letters, and the corresponding
normal font with a subscript index denotes each entry. All vectors are treated
as columns.

Definition 2.1 (f-divergence). Let P and Q be two probability measures on
the same measurable space (€2, F). Suppose that P is absolutely continuous with
respect to Q. For a convex function f such that f(1) = 0, the f-divergence of
P and Q is defined as

D;(P Q) —Eg[f(jg)] /f(jZ) a0,

where 4 E is the Radon—Nikodym derivative of P with respect to Q.

In Definition 2.1, by choosing f(t) = tlogt, we have the Kullback—Leibler
(KL) divergence, which we simply refer to as the divergence. Throughout the
paper, log stands for the natural logarithm.

Definition 2.2 (Kullback—Leibler (KL) divergence). Let P and Q be two prob-
ability measures on the same measurable space (2, F). Suppose that P is abso-
lutely continuous with respect to Q. The (KL) divergence of P and Q is defined

as
dp . dP dP
KL(P | Q) ::Eg[dglogdg} / Edp

Definition 2.3 (Total variation distance). Let P and Q be two probability
measures on a measurable space (€2, F). The total variation distance between P
and Q is defined as
V(P, Q) := sup|P(A) — Q(A)|.
AcF
The total variation distance can also be viewed as an f-divergence with
f(z) = 3|z —1|. The total variation distance is simply referred to as the distance
where no confusion is caused. From the definition, it is clear that the distance
between P and Q is symmetric. That is,

V(P,Q)=TV(Q,P).
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We use several inequalities concerning f-divergences in the proofs; we state
these later before they are applied. The divergence and the distance are con-
nected through Pinsker’s inequality.

Proposition 2.4 (Pinsker’s inequality). For probability measures P and Q, we

have that
TV(P, Q) < /5 KL(P | Q)

3. Impossibility of detecting geometry

In this section we prove the impossibility results stated in Theorem 1.1(a). We
start our discussion with some weaker bounds obtained through a simple mixture
argument, and then proceed to the proof of the main impossibility results.

We may view the soft random geometric graph G(n,p,d, q) as an edge-wise
mixture between G(n,p) and G(n, p, d), in the following way. First, we draw two
sample graphs G; ~ G(n,p) and Gy ~ G(n,p,d). We next construct a graph G
using G1, G2, and additional coin flips. Specifically, for every pair of distinct
vertices ¢ and j, we flip an independent biased coin which comes up heads with
probability ¢. If the coin flip is heads, connect i and j with an edge in G if
and only if they are connected with an edge in Go; otherwise, connect ¢ and j
with an edge in G if and only if they are connected with an edge in G;. This
construction guarantees that G ~ G(n, p,d, q).

We can obtain two simple bounds directly from this construction. Bubeck
et al. [12, Theorem 1(c)] showed that G(n,p) and G(n,p,d) become indistin-
guishable when d > n3. Thus, as an edge-wise mixture of these two models,
G(n,p,d, q) also cannot be distinguished from G(n, p) in this regime.

Meanwhile, when ¢ < 1/n?, for any pair (i, ) the probability that the con-
nection between i and j is sampled from Gy is o(1/n?). This implies that the
expected number of edges that are sampled from G is o(1). Therefore, by
Markov’s inequality, the probability that there exists an edge which is sampled
from Go is o(1). Hence, with probability 1 — o(1) we have that G = G; in
the construction above. Therefore, G(n,p) and G(n, p,d, q) are indistinguishable
when ¢ < 1/n%. These two arguments are summarized in the following claim.

Claim 3.1. Ifn®/d — 0 or n?q — 0, then

sup TV(g(n,p)ag(napa da Q)) - 0
pE[O,l]

Our main result in Theorem 1.1(a) improves on Claim 3.1 by relaxing both of
the conditions and thus proving the impossibility result for a larger parameter
regime. First, notice that the condition n®/d — 0 does not take ¢ into consider-
ation at all; we improve this to the condition n3¢?/d — 0. We also improve the
condition n?2g¢ — 0 to ng — 0.

As before, by choosing a convenient parametrization, Claim 3.1 translates
into the following corollary picturing a region of a phase diagram.
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Corollary 3.2. Suppose that d < n® and q < n=? for some a,3 > 0. If a« > 3
or 8> 2, then as n — oo,

sup TV(G(n,p),G(n,p,d,q)) — 0.
p€[0,1]

3.1. Impossibility of detection under large noise

In this subsection we show that G(n, p) and G(n,p, d, q) are asymptotically indis-
tinguishable when ng — 0, thus proving Theorem 1.1(a) under this regime. This
shows that when the noise is large enough (i.e., ¢ is small enough), detecting
geometry becomes impossible, regardless of the dimensionality.
For a graph G with adjacency matrix A = [a; ;], the probability Pg(,, ,.4,q)(G)
is given in (3) with k; ; = ¢4((x;,x;)). We can write the probability Pg, ) (G)
similarly:
Pg(n,p)(G) — Hpai,j(l _p)l—ai.j. (5)
i<j

The divergence of G(n,p) and G(n,p,d, q) can then be written as

Pg(np dq)(G)
KL(G(n,p G(n,p,d,q)) =E n, {_IOgé
(G0.) | G(n.p. s ) = B | ~log 5224400

ai,j 7. N\ 1-ai;
wa e IL() (7))

1<J

where the a; ;’s are independent Bernoulli random variables with parameter p
since the expectation is taken under G ~ G(n,p). Since —log is convex, by
Jensen’s inequality we have that

KL(G(n,p) || G(n,p,d, q))

,ZC' . a,;‘j 1 _ k . 1—a,;‘j
<sax[eel()(25) ]

i<j
ki 1— ki
= EA,X |:— Z(ai,]— IOg 2] + (1 _ ai,j) IOg »J >:| (6)
i<y
ki.j 1— ki
- Z(EA[%J'] Ex [bg ’]] +Ea[l —a;;]Ex {log 71} ),
i<j p 1—p

where the last line is due to linearity of expectation and independence.
Since a;,; ~ Bern(p), we have E[a; ;] = p and E[1 — a;,;] = 1 — p. By the
definition of the connection function in (2) and (4), we have that

iy = Byl ) = {El “apta 1 (005) 2 b,

1—q)p otherwise.
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Recall that ¢, 4 is chosen such that P({x;, ;) > t, 4) = p. Hence, the marginal

distribution of k; ; satisfies k; ; = (1 — q)p + ¢ with probability p and k; ; =
(1 — q)p with probability 1 — p. Therefore, we have that

ki 1—
Expng}=pbg0+~7#%>+(l—mbdl—®

and

1—Fk;j
Ex[log 1 pj} :plog(l—q)+(1—p)log(l—&-%q).

By the elementary inequality log(1 + x) > 2 — 22 for > —1/2, we obtain that
for 0 < ¢ <1/2,

k; i 1-— 1— ks
Ex [log ’]] > —710(]2 and Ex [log ’J} > __r 7.
P P 1—p 1—p

Inserting the above estimates into (6), we conclude that for 0 < g < 1/2,

KL(G(n.p) | Gl ) < () < G @

To be consistent with the main discussion, we turn this upper bound on the
divergence into an upper bound on the distance. An application of Pinsker’s
inequality (Proposition 2.4) combined with (7) proves the following theorem.

Theorem 3.3. For 0 < ¢ < 1/2 we have that

1
sup TV(G(np), G p.ds0) <
p€(0,1]

The ng — 0 regime of Theorem 1.1(a) directly follows from Theorem 3.3.

3.2. Impossibility of detecting weak high-dimensional geometry

In this subsection we show that G(n,p) and G(n,p,d, q) are asymptotically in-
distinguishable when n®q?/d — 0, thus proving Theorem 1.1(a) in this regime.
This result thus highlights the interplay between noise and dimensionality in
determining when it is possible to detect geometry.

In order to capture this interplay between noise and dimensionality, we use
several inequalities concerning f-divergences, and we start by recalling these.
The distance (divergence) between two random variables is understood as the
distance (divergence) between their corresponding probability measures. Since
we focus our attention on random graphs without self-loops, the diagonal en-
tries of real symmetric matrices are usually set to zero unless specified. For
the distance (divergence) between two real symmetric random matrices, only
the lower triangular part is considered. We also place notations for distribu-
tions inside the operators E, Var to denote a sample from the corresponding
distribution.
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Proposition 3.4 (Conditioning increases divergence). Let Px and Qx be two
probability measures. Let' Y be a random variable on the same space and denote
by Px|y and Qx\y the conditional laws. Then, the f-divergence satisfies

Dy(Px || @x) < Ey Dy(Pxpy || @xv)-

Proposition 3.4 is usually referred to as “conditioning increases divergence”
in standard texts (e.g., Theorem 2.2(5) and Remark 4.2 in [35]). Following
the convention widely adopted in the information theory community, we write
KL(Pxy || @xy | Py) = Ey KL(Px}y || Qx|y) and call it the conditional
divergence.

Proposition 3.5 (Data processing inequality). For two probability distributions
Px and Qx, consider the joint distributions Pxy = Py xPx and Qxy =
Py|x Qx with the same conditional law Py|x. Then, the f-divergence of the
marginal distributions Py = Ep, [Py x] and Qy = Eqg, [Py|x] satisfies

Dy (Py || Qv) < Dy(Px | 9x)-

A simple proof of Proposition 3.5 using Jensen’s inequality can be found in
most texts (see, e.g., [35, Theorem 6.2]). For a measurable function g: £ — F,
by choosing Py |x (y | ) = 1{y = g(z)}, we have the following corollary.

Corollary 3.6 (Data processing inequality). Let X,Y € E be two random
variables and let g : E — F be a measurable function. Then, the f-divergence
of the pushforward measures satisfies

Dy(g(X) [ 9(Y)) <Ds(X [ V).

With these preliminaries in place, we now turn to our question of interest.
Let Z € R™*? be a random matrix with independent standard normal entries.
Then, W := ZZ" € R"*" has a Wishart distribution W,,(I,d). Let Y contain
the off-diagonals of W scaled by the square root of the dimension, that is,
Yij = wi’j/\/a. By the central limit theorem, y; ; converges to a standard
normal random variable as d — co. Let V' := 1 diag(W) consist of the scaled
diagonals; by the law of large numbers, each nonzero entry v; ; converges to 1.
For compactness of presentation, denote by v the vectorized diagonal of V,
that is, v; == w;;/d. Let M = [m, ;| be a zero-diagonal symmetric random
matrix with off-diagonal entries m; ; following independent standard normal
distributions for 1 < i < j < n. Let M’ and M” be two independent copies
of M.

A standard method to create uniform random vectors on the sphere (which
goes back to [27] and before) is as follows: If z is a standard normal vector, then
2 := z/||z|| is uniformly distributed in S?~!. Thus, we can create the random
vectors {@;}_; using {z;}},. With the random matrices defined above, the
inner product of ; and x; for ¢ # j can be expressed as

iy %5 i 1y
.

llzillll 2l /Wi i W5 5 Vd \/Uiv;
(Vfl/Qval/Q)iJ.

sl-
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Define the step function s;, (z) := 1{z > t,}, where t, is determined by
E[s;,(N(0,1))] = p. That is, if we denote the cumulative distribution function
of the standard normal distribution by ®, then ¢, = ®~1(1—p). In what follows,
when we apply a univariate function to a matrix, it is applied entrywise, resulting
in a matrix of the same shape. With this convention, we define two matrices
P = [p, ;] and Q = [g; ;] as follows:

P = Stp(M/)
and
Q = (1—q)st, (M) +qst, (XX T) = (1=q)s, (M) +gs, , q(V/2YV2),

where recall that X € R™*? is the matrix with ith row equal to x; and that
tp.q is the threshold in (1).
By the definition of G(n,p) and the independence of entries of M,

n;D) Hpalj - 1 i =Ep |:Hpal] 1_pz,J 1 g 3 (8)
1<j 1<J

where we use the standard convention that 0° = 1. By (4) and the definition of
m; j, We can write

kij = (1= q)Elst, (mi ;)] + gst, , (@i 25)) = Elgi ; | @i, 5]

Then, by (3) and the independence of the m; j,

Pg(n7p7d7q) EQ |:H qaL Ni 1 —q j 1 ai,j .
1<J

Since G(n,p) and G(n,p,d, q) have the same conditional law given P and Q,
respectively, by Proposition 3.5 we have that

TV(G(n,p),G(n,p,d,q)) < TV(P,Q).

Recall that the total variation distance is only applied to off-diagonal entries.
Equivalently, we can set the diagonals of P and Q to zeros.

Define the zero-diagonal symmetric random matrix B = [b; ;] with b; ;,1 <
1 < j < n, following an independent Bernoulli distribution with parameter g;
the matrix B is also independent of everything else defined previously. We can
then rewrite @Q as

Q=Eg[11" —B)os, (M)+Bo s, AV Ry vt

For step functions with parameters ¢ and ', we have the simple relation: sy (z) =
si(z +t —t'). Hence, we can further express Q as

Q=Eg[(11T = B)os, (M) + Bos, (VY2?YV~V2 4 (t, —t,,Vd)117)]
=Ep[s, (11T —B)o M + Bo (V2YV 12 4 (t, —t, sVd)117))].
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Let 6,4 = t,—tpaVdand H .= (117 =B)oM +Bo(V-Y2Y V1245, j117).
With this notation we have that Q = Ep[s;, (H)].
Applying Proposition 3.4 gives

TV(P,Q) =TV (s, (M'),Ep[si,(H)]) < Ep TV (s, (M'), 51, (H)).
Further, by Corollary 3.6 we have that
Ep TV (s, (M'), s, (H)) <Ep TV(M' H).

Let H == (11" — B)o M" + Bo V~Y2M"V~1/2, By the triangle inequality
of the distance (see, e.g., [24, (4.6)]),

EgTV(M' H) <EgTV(M',H')+Eg TV(H', H).
By Proposition 3.4 again,
EgTV(H',H)<Ep v TV(H' H).

For a fixed value of B, both H and H’ consist of entries from two matrices.
For the (i,j)th entry, if b; ; = 0, the entries are from M" and M respectively;
if b;; = 1, they come from V~1/2YV~1/2 4§, ,117 and V-1/2M"V~1/2
respectively. In the latter case, when V is fixed, we can multiply both entries
by /vi;vj;, and the distance between the new matrices stays the same by
definition. That is, if we let H” :== (117 —B)oM +Bo(Y +6,4V'/211TV1/2),
then

EpvTV(H ,H)=Egyv TV(M" , H").

Putting the bounds from above together, we obtain that

TV(G(n,p),G(n,p,d,q)) <Ep TV(M',H') +Ep,v TV(M",H").  (9)

E1 E2

The first term on the right depicts the distance caused by normalization, while
the second one characterizes the level of independence between edges. We deal
with the two expectations E; and Es in (9) separately in the following two
parts. Subsequently, we bring our estimates together to conclude at the end of
the section.

8.2.1. Upper bound for the first expectation

By Pinsker’s inequality and Proposition 3.4,

1 1
By <Ep |5 KL(M' | H)<Ep \/5 Ey KL(M' || H')

1
< |/ SEsv KL | B,
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where the last inequality is by Jensen’s inequality.
Given B and V, the entries of H' are independent. Since the entries of M’
are also independent, we have that

KL M/ || Hl ZbZJKL 1] | (vivj)il/ngl,j%

i<j

where we use the facts that m; ; and m}; are identically distributed and that
the divergence of identical distributions is zero. Therefore,

Ep,v KL(M' || H') =) E[bij]Ev KL(m{ ; | (viv;)"/*m{;)

i<j
— / oy \N—1/2, 1
=4q E Ev KL(mi,j | (vivg) mi,j)'
i<j
Since m/; is a standard normal random variable, (v;v;)~'/?m]; is a mean zero
el

normal random variable with variance (v;v;)~!.
The divergence of two normal distributions has an explicit formula given by
the following proposition, which appears in most standard texts (see, e.g., [6,

exercise 1.30]).

Proposition 3.7. For two normal distributions with means u1, e and vari-

2 2
ances o1, 0%,

2 2
oy o+ (1 — o) 1
KL(N (1, 07) || N (2, 03)) = log — + —L———=— — .

il 203 2

Applying Proposition 3.7, we have that
U —-1/2, 1 1
KL(mi,j | (vivj) mi,j) = 5(*10g(vivj) +viv; — 1)
1
= 5(—10gvi —logv; + vjv; — 1).

2
1’Lj

has a x?(d) distribution. We utilize a lower bound on the expected logarlthm of
a chi-square random variable shown by the following proposition.

Since z; ;’s are independent standard normal random variables, v;d = Z

Proposition 3.8. Suppose that X is a x*(k) random variable. Then,
2
E[log X] > logk — T

Proof. We have the following explicit formula for the expected logarithm of X
(see, e.g., [6, (B.30)]):

Eflog X] = w(%) ~log .
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where 1) is the digamma function defined by ¢ (x) := I''(z) /T'(x). The digamma
function has the well-known upper and lower bounds (see [1, (2.2)] and references
therein):

1 1
1 ——< <l - —. 10
o8 — 1 < y(a) < logr — o (10)
By the lower bound in (10),

k2 1 2

E[log X] > log§ %" 1og§ =logk — T
The claim is hence proved. O
Using E[v;] = E[v;d]/d = 1 and the estimate in Proposition 3.8, we have that
Ev KL(m} ; || (viv;)~?m,)

2]
1
= 5(— Ellog(v;d)] + logd — E[log(v;d)] + logd + E[v;] E[v;] — 1)
2
= logd — E[log(v;d)] < 7
Therefore, we conclude that

1 _ n\ g n?q
o V 303 BV KLOm [ ) <\ (3) 8 <50 an

i<j

8.2.2. Upper bound for the second expectation

We now turn to estimating Fs from (9). We first bound the divergence of M"
and H”, assuming that B and V are fixed, and then provide an estimate for
the distance between them through Pinsker’s inequality (Proposition 2.4). The
benefit of resorting to the divergence is the chain rule property. Our strategy
resembles that of Bubeck and Ganguly [11].

We state the chain rule for the divergence as the following proposition.

Proposition 3.9 (Chain rule). For joint distributions Pxy = PxyPy and
Oxy = QX|y Qy, the chain rule for the divergence reads

KL(Px,y || Qx,v) = KL(Py || Qv) + KL(Pxy || Qxy | Py)-

For an n x n matrix A = [a; ;], denote its kth order leading principal subma-
trix by Ay and let ap = (ax1,. .., ark—1) be the vector of the first £ — 1 entries
in the kth row. We also use Zj to denote the matrix composed of the first k
rows of Z € R"*% and z; to denote the kth row of Z.

Until the end of this section, we assume that B and V are fixed. We similarly
use H;! and M/ to denote the first k rows of H” and M", and m}/ and hj to
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denote the kth row, respectively. Applying the chain rule to the divergence of
H;/ | and M} |, we obtain

KL(HJ .y || My',) = KL(H, || M)
+Epy KL(hi o | HY || mify, | My = HY).

Further, since my.,, is independent of M/,
Epy KL(hyyy | Hy | miyy | My = HY) = Bpy KL(hi | HY (| miy).
By Proposition 3.4,
Epy KL( Z+1 | H | m k+1) < Eny z, KL( H+1 | Hy, Zy || mg+1)
=Ez, KL(hi 1 | Zi || miyy).

The equality holds since hj] 41 only depends on Zj, and is independent of other
randomness in H}/. Since zj41 is a standard normal random vector, conditioned
on Zy, ZkzkH/\/E is distributed as A/(O, ZkaT/d). By definition, mj; has
a N(0, I},) distribution. Let Dy, := diag(bgy1) be the diagonal matrix whose
entries are the elements of by1. Since

Vi = (1 =bgy1) omprs +bprs o (Yot + 6pay/Tiia Vi °1)
= (1= by 1) o mggs + s 0 (Zk\jgﬂ N §p7d\/m‘/kl/21)7
the distribution of hgﬂ, given Zy, Dy, and Vj, is N(pg, X%) with
ur = 5p,d\/kaVk/

and

z,Z,," Z,Z,,"
d d

As a general form of Proposition 3.7, we have an explicit formula for the

divergence of two d-dimensional normal distributions (see, e.g., [43, Exercise
15.13(b)]), stated as follows.

Y= Dk( >DkT+(Ik_Dk)(Ik —-Dy)' = Dk( )Dk+Ik_Dk~

Proposition 3.10. For two d-dimensional multivariate normal distributions
with means w1, po and covariance matrices X1, X5, we have that

KLV (g1, 21) || N (p2, X2))

1 T det (X9)

= = — X5 log ——== + Tr(%¥5 ly d

2((#1 H2) Y1 — p2) + Ogdt(2)+ ( 1) —

Since mj/, ~ N(0, I;), applying Proposition 3.10, we have that
Ev z, KL( k1 | Z |l mk+1)
= — ]EV,Zk [5p,dvk+11 Dkal — log det (Zk) + Tr(Zk) — k}
1

= 2 ]Ezk ViesUk 41 [6]9 dVk+1 Tr(Dka) log det (Zk) + TI‘(Zk) — k]
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Since vid has a x2(d) distribution, E[vy] = E[vgd]/d = 1. Further, since V' and
D are independent, by linearity of expectation we have that

1
Ev 7, KL(his1 | Zi | miisr) = 5(05,0 Tr(Dy) + Ez, [~ log det(X)]
+Egz, Te(X)) — k).

Additionally,

ZkZ];r
d
=Tr(Dy) + k — ’IT(Dk) = k.

Ez, Tr(Z;) = Tr (Dk Ez, [ } Dk> + k — Te(Dy,)

Therefore, we obtain that
1
Ev z, KL(hi 1 | Zy || miy ) = 5(5§,d Tr(Dy,) + Ez, [~ logdet (Z)]). (12)

Next, we derive upper bounds for the two terms in the above display.
An upper bound on |8, 4| = |t,.aV/d — t,]| is shown in [16], which is stated as
the following lemma.

Lemma 3.11 ([16, Lemma 1]). Assume 0 < p < 1/2 and d > max{(2/p)?,27}.
Then
|tp>0l‘/a —tp| < Upa,

where
Up,a = ip\/logd/d + k), /Vd

with Ky = 2¢/2071(1 = p) and k], = 2v/2mexp((®~1(1 — p/2))?/2).

However, the log d factor above is an artifact due to the use of concentration
inequalities; if we were to apply the lemma directly, it would show up in our
final bounds. To address this, we present an improved result, which not only
removes the log d factor in the upper bound but also tightens the upper bound
such that it decays as 1/d instead of 1/+/d.

Lemma 3.12. Assume 0 < p < 1/2. There exists a constant C,, such that
Cp

Itp,d\/a_ tp‘ d .

IN

Proof. By rotational invariance, fixing €1 = e; and letting xy = 2 = z/||z]|
with z ~ N(0, I;), we have that

B((@1, 28) > tpd) = P(H > tp,d) —p.

Then, by symmetry of the distribution, we have

Z1
Pl — < —t = .
(nz = W) P
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Therefore,
( =)
Pl ——— >t = 2p.
d = 'pd
Ylim1 %
Since zl ~ x%(1) and ZZ 5 22 ~ x%(d — 1) are independent, 27/ ZZ L 72 has
a Beta(3, —) distribution. For ease of presentation, we switch from dimension

d to considering dimension d+ 3. By the probability density function of the beta
distribution we have that

2p = P(Z%izg > tp,d+3) = (F)( ?)i) /1 w1 = 2)? da.

1=1 pd+3

The change of variables x = z/d, together with some rearranging, yields

(2£2)/d 1 d d/2
(5 2+{2p: . / 2172 (1 - f) dz. (13)
Var(432) V2L(3) Ji2 1y d
Wendel’s double inequality (see [44, equation (7)]) states that for 0 < s < 1,
1-s
. < L(z+5) < 1.
z+s = 2T(2) —

Then, by setting s = 1/2 and z = d/2, we have that

1 - (gz V20d+1) (1)

5o T(B) S d

r(42)vd _ | 2
\fr( )— d+ 22l iy

where the last inequality is due to the fact that (1 — x)1/2 >1—zfor0<z<1.

Thus,

Since
/2
z d z d z z
I = = — — < —| —= = ——
log(l d) 5 log(l d) < 2( d) 5 (15)
we have
1 /d —1/2( Z>d/2 1 /d S1/2—
—_— z 1— - dz < 12e=%/2 4y
V2L (3) Jiz g d Vor(3) Ji

1 e 1/2 —2/2
< — 2 fe R dy
V2r(3) / d

,d+3

11
=1-F d; =
(st g5)
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where F(x;a,b) is the cumulative distribution function of the gamma distri-
bution Gamma(a,b). Therefore, putting these inequalities back into (13), we

obtain that ) L1
211 — —— <1-— dt?
( d+2>p_ ( pd+37 o 2)

Since Gamma( %, %) is also the distribution of a squared standard normal random

variable,
2
<1 — m)p S 1 — ¢(tp,d+3\/8)-

By the monotonicity of the cumulative distribution function, we have that

2p
t d<o 11— —_—
p,d+3\/__ ( p+d+2)

Since ®~1(x) is convex for 1/2 < 2 < 1, we have that for 0 <y < 1 — ,
Nz +y) < @7 (x) +y(@7) (z +y).

Let ¢ be the probability density function of the standard normal distribution.
Then,

(@) (@ +y) = —varew( 5@~ +)?)

p(@~Hz +y))

Additionally, for d > 2,

_ 2 _
o 1<1p+d+pZ) < 1(12’) =t,.

Therefore, for d > 2 we have that

tp7d+3\/a <t + \/ exp( p/2)

Then,

2v/2m 1
tpa+3Vd+3 <4/1 d(t t o2 P(Qtpm))

2v2m 1
1 t t
< (e 30) (o 7o (a))
By assuming d > 6,

3 2v27 1,
< _ —
tpaVd < (1+ 2(d_3)> (t +5 exp(2tp/2)
3 427 1
< (1—&—3) (tp—|— d CXp<2 p/2>) <t,

&|@Q
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where Cp, = 3(t, + 2v2mexp(3 p/2))
Similarly, we also have

2
z
p(il < )ZHp
d+3 —= "p,d+3 ’
27, 1 Z2

7

which gives

e <) 50-2) = s | dt;d%“l/Q(l‘g)d/Q“'

Employing (14) and (15) again, we have

11
1-——)1-2p)<F dt? 1=, = .
( d+2> p)— ( p,d+3?232)

Then,

1 2 1—-2p
P(t d)>1—=(1—-(1———|(1—-2 =1—p— .
(p,d+3\/_>_ 2( ( d+2)( P)) p d+2

By convexity of ®~!(z) in (1/2,1), for 1/2 <z +y < 1,

1
B ) 2 074 0) + g Br e (@7 )2
Therefore, we have that

1-2p 1
tp.d+sVd+3 >tpd+3\/_>t <d 2)\/2wexp(§t§>.

Hence, by assuming d > 6,

C
tp.aVd >t, — =

where C), = 2(1 — 2p)v/2m exp(5t2).

Remark 3.13. From the proof of Lemma 3.12, we see that the lemma actually
specifies a convergence rate for the quantile function of a scaled beta distribution
to that of a gamma distribution. More general claims and a Berry—FEsseen type

result can be derived with the same techniques.
Corollary 3.14. Forp € (0,1), there exists a constant Cp, such that

C

2
5d7d§

Proof. Applying Lemma 3.12 for 0 < p < 1/2, we have that there exists a

constant 01/7 such that

2, G
G
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As before, by fixing €1 = e; and letting &2 = 2 == z/||z|| with 2z ~ N(0, 1),
we have

P((z1, a2) > ty.q) = P<H271” > tp,d) —p.

Since z1/||2|| has a symmetric distribution, we have t, 4 > 0 for 0 < p < 1/2
and t, 4 <0for1/2<p<1l. When1/2<p<1,

21 21 21
Pl — > —t =P -— <t =P — <t =1—np.
(nzn = M) ( El P’d> (|z|| = ”’d> P

Applying Lemma 3.12 again, we obtain that there exists a constant 01/7/ such
that

(~tpaVd =7 (p)? = (tpaVd+ @7 (p)? = (tpaVd — @71 (1 - p))* < %.

By taking C;, = C}, + C}/, the claim directly follows. ]

We now return to bounding the two terms in (12), starting with the first
one. Let ¢ := Tr(Dy) be the number of nonzero entries in byy;. Then, £ is a
function of B, is independent of everything else, and has a binomial distribution.
Corollary 3.14 gives

C,l
65 4 Tr(Dy) < d—’;. (16)
Next, we turn to the upper bound for the second term in (12). Let IT be
a permutation matrix such that by IT = (1,...,1,0,...,0) becomes a vector

with its first ¢ entries equal to 1 and the remaining k — ¢ entries equal to O.

Then,
T (S5 O
IT' X I1 = (O I.,)

where O is the all-zero matrix and S is distributed the same as Z;Z, /d. Recall
that Z, € R is the matrix of the first £ rows of Z, which has independent
standard normal entries. Since IT is a permutation matrix, its determinant is
either 1 or —1. Therefore, we have that

Ez, [-logdet(X})] = Egz, [ log det(HTEkH)] =Ez, [ logdet(S)]
T 17
=Eg, {— logdet<Zé§[ )} 1

So our main focus is bounding (17) from above.

The study of covariance matrices has attracted broad interests in probability
and statistics communities. As an example, Cai, Liang, and Zhou [13] showed a
central limit theorem (CLT) for the log-determinant of such matrices. An upper
bound of the expected negative log-determinant is given in [11] under a general
log-concave measure assumption, serving as the major step towards an entropic
CLT. We first state their result as the following lemma.
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Lemma 3.15 ([11, Lemma 2]). Let Z be an n x d random matriz with i.i.d. en-
tries from a log-concave probability measure p with zero mean and unit variance.
There exists an absolute constant C > 0 such that for d > Cn?,

zZ7Z n  n?
_ < _ ).
]E{ logdet( ﬂ C( + )

A direct application of Lemma 3.15 results in an upper bound that is loose
for our analysis. It is possible to leverage the normal distribution assumption
to obtain an improved estimate, which we implement in Lemma 3.16 below.
Applying the lemma results in a better upper bound on the distance.

Lemma 3.16. Consider an n X d matriz Z with independent standard normal

entries. For d > 2n,
zZZ7 dn  n?
E|—logdet < — 4 —.

Remark 3.17. Compared to Lemma 3.15, the improvement thanks to Lem-
ma 3.16 is twofold. First, the upper bound removes the y/n/d term, which
would be the leading term in our analysis, replacing it with an n/d term. Sec-
ond, the inequality holds for d > 2n rather than d > Cn?. We shall see how
this improvement is reflected in the upper bound on the distance in the final
remarks.

Proof of Lemma 3.16. For a random matrix W following a Wishart distribution
Wi (X, d), the expectation of its log-determinant has an explicit formula (see,
e.g., [6, (B.81)]):

n

E[log det(W)] =) "¢ <

i=1

d—i+1

5 ) + nlog2 + log det (X)), (18)

where ) is the digamma function. Applying (18) to ZZ T, we obtain

T

E[logdet(ZZ )] = —E[logdet(ZZ")] 4+ nlogd

- d—i+1 d
=) ¢ —= log —.
; 1/}( 2 )+nog2

By the lower bound on the digamma function in (10),

zZzZ7 ~ 2 d—i+1 d
— < — —
E{ logdet( ] )} < E (d—i+1 log 5 )+nlog2

i=1

S1 Sa

(19)
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The rest of the proof is devoted to bounding the two sums S; and Sy from above
separately.

By the elementary inequality © < —log(1—x), S1 can be bounded from above
by

Sl<2z 10g< ) 2log(Hd )z—?log(l—%).

Further, by —log(1 — x) < 2z for 0 < z < 1/2, we have that for d > 2n,

4n
Sy < 210g(1 - E) < R (20)

For S5, we show a lower bound by constructing a continuous integral. Since
log(d —i+1) > log(d — x) for all z € [i — 1,4),

d

Sy > / log(d—x) dz = (zlogz—x)
0

= —n+dlogd—(d—n)log(d—n). (21)

d—n

Bringing the inequalities (20) and (21) into (19), we conclude that for d > 2n,

ZZ7 4
]E[—logdet( 7 )] §+n—dlogd+(d n)log(d —n) + nlogd

IN

4
=§+n+(d—n)log<1—g>

<4§+n+(d—n)<—%)

_dn 2
T d d’
The lemma is hence established. |

As a consequence of Lemma 3.16, there is an absolute constant C' > 0 (we
can take C' = 5), such that for d > 2n > 2k > 2/,

Z,Z) C?
E | —log det C) < —. 22
e (270)] < 2
Plugging the estimates in (16) and (22) into (12), we get that for d > 2n,
" 1 1 " 1 E £2
Ev gy KL(hiyy | Hy || miy) < Ev z, KL(hjyy | Zy || mi ) < Cpﬁ +CE
(23)

for constants C, Cp.
Since b; ; has an independent Bernoulli distribution, ¢ = Z =1 br+1,; follows

a binomial distribution Bin(k, q). Hence, we have E[¢(] = kq, and E[(?] can be
bounded from above by

E[¢?] = Var[l] + E[{]* = kq(1 — q) + (kq)? < kq + k>
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Therefore, by taking the expectation over B in (23), we obtain that for d > 2n
Elg | ~E[]
Ep v ay KL(hj | HY | mi,) pr C—— d
kq kq K¢
<C,— +C|—
re T ( d " d

An iterative application of the chain rule yields

n—1
Epv KL(H" | M") =Epv {Z Egy KL(hy,, | HY! | mgﬂ)}
k=0
n—1
= Epyv ay KLk, | H || mi,).
k=0
Therefore, for d > 2n,
n—1
kq kq k2¢?
" 12
Ep v KL(H" | M") < Z(Cpﬁ +C(F +—
k=0 (24)
n2q n%q  nd¢?
< Cp—2 +C<7+T),

for some C,C)p < oo.
By Pinsker’s inequality (Proposition 2.4) and Jensen’s inequality, we have

that
1
E2 = EB,V TV(MN, H//) < IEB,V \/5 KL(H// ” M//)

1
< \/5 Epv KL(H" | M").

Hence, using (24) we conclude that there exist constants C, C, < oo such that
for d > 2n,
n2q n2q n3q2
Ey <Cp\|— +C( 1\ — . 25
250\ T (\/ 7 V4 (25)

3.2.3. Concluding the proof
Plugging the estimates in (11) and (25) into (9), we have proven that there exist

constants C, C),, such that for d > 2n,
2 2 3,2
TVG(1,9), 000 ) < Gy 4 0 (50 ).

We now explain why the n3¢?/d — 0 regime of Theorem 1.1(a) follows. First
(ng)?n/d. Thus, if we were to have d < 2n, then n3¢?/d — 0

note that n®q?/d =
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implies that ng — 0, and under this assumption we have already shown in
Section 3.1 that the conclusion of Theorem 1.1(a) holds. So we may assume
that d > 2n, in which case the bound in (26) holds. Then, n3¢?/d — 0 implies
that the last term in (26) goes to 0. For the second term, note that n?q/d =
(ntq?/d*)'/? < (n3q?/d)'/?, where we used that d > n, and so this term also
vanishes. This implies that the first term vanishes as well.

Remark 3.18. Using Lemma 3.15 in the place of Lemma 3.16 and following the
same derivations, we would similarly obtain that for constants C”,C;,, when
d > C'n?,

2 4/n3 3,2
TV(Q(n,p),g(n,p,d,q))SC;\/%+C/<\/¥+\/?>.

In this case, the dominating term becomes {/n3q/d, resulting in a worse bound
than (26), and hence the conclusion follows only in a smaller parameter regime.

Remark 3.19. Utilizing Lemma 3.16, an upper bound of the total variation
distance between Wishart and GOE is readily available. Applying chain rule
directly to the divergence between Y and M, we conclude that for an absolute

constant C > 0,
n3
TV(Y,M)<C R

This result removes the first term and log factors of Theorem 2 in [11] in this
special case, and coincides with the exact formula given by Récz and Richey [37]
up to a multiplicative constant.

4. Detecting geometry using signed triangles

In this section, we show when detecting geometry in G(n,p,d,q) is possible
and how to detect it. In particular, we demonstrate that the signed triangle
statistic, proposed by Bubeck et al. [12], can be used to detect latent geometric
structure whenever n3q®/d — oo, thus proving Theorem 1.1(b). Our strategy is
to bound the expectation and variance of signed triangle statistic in G(n, p) and
G(n,p,d, q) respectively, and then apply Chebyshev’s inequality.

Consider a simple graph G = (V, E), where V is the set of vertices and
EC (‘2/) is the set of edges. For a set S, we use (*:) to denote the collection of
all subsets of S with cardinality k. Let A = [a; ;] be the adjacency matrix of G
and write a. = a;; for any edge e = {i,j} € (‘2/) Let H = (S, F') be another
graph with S C V and F C (g) Define I to be the indicator of H being a
subgraph of G. When the graph G is clear from the context, we simply write
Iy instead of Iy g. Then,

Ip =1{F C E} =[] a..
ecF
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Further, for a constant p € [0, 1], let

>\H = H(ae _p)

ecF

be the signed indicator of the subgraph H.
We first state a lemma that connects the expected signed indicator in
G(n,p,d,q) to that in G(n,p,d).

Lemma 4.1. Let H = (S, F) be a fized graph. The signed indicator satisfies
Eg(n,p,d,q) Am] = qu‘ Eg(n,p,a) Am].
Proof. By conditioning on X, we have

Egnp.aq il =Ex {E[H(ae -p) ' X” =Ex {

ecF

[] o —»1 1]

ecF

where the last equality is by conditional independence of edges.
Given x; and x;, a; ; is a Bernoulli random variable with parameter

kij =1 —qp+qst, ,(xi, x;))-

Hence,
Elaij—p | X] = (1=p)kij+(=p)(A=ki;) = ki j—p = q(s¢, ,({zi, ®;))—p). (27)

Therefore,

EgmdmpH]:EX[ 11 q(stp,d«wi,wm—p)]

{i,j}€F (28)
—7Ex| T Gsullenas) ).
{i,j}eF
On the other hand, for a hard random geometric graph G(n, p, d),
ool = | [0 )| =Ex| TT (o0, unes) -»)|
ecF {i,j}EF
The claim directly follows. ([

We first consider the graph H = (S, F) being a complete graph on three
vertices, namely a triangle. Since in this case the subgraph H is fully determined
by its vertex set S, we denote Ts := [y to emphasize the dependency. Given
the adjacency matrix A of G, Ts can be expressed as

TS = H Qg 5.

{i,j}CS
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Then, the total number triangles in G, denoted by T5(G), can be written as
T3(G) = Z Ts.
se(y)

The signed triangle and its count in G, following the proposal by Bubeck et
al. [12], are defined as

Tigey = || (ae—p) and w(G) = > -

eC{ijk} {i.gk}CV

For a sample random graph G with edge density p, 75(G) is called the signed
triangle statistic.
To simplify our presentation, for random graphs with edge density p, we let

@i = a;; —Ela;j] =a;; —p and 55 = s, ,((zi, ;) —p.

For G(n,p), by the analyses in [12, Section 3.1], we have that

Blra@(n.p)] =0 and Varlra(@np)] = (5 )% -

We analyze the expectation and variance of the signed triangle statistic in
G(n,p,d, q) in the following two subsections. Various estimates in the previous
work [12] largely simplify our calculations. In addition, for expository purposes,
we show that the estimates on the expectation and variance are tight up to
constants, and that natural generalizations of signed triangles—signed cycles
and signed cliques—are unlikely to improve the detection boundary, both in the
special case when p = 1/2. Details are provided in Supplementary Material.

4.1. Estimating the expectation

Consider the events
BN = {(@1, @) > tya, (1, @3) > tpa} (29)

and
E® = {(z1,22) > tpa, (T2, @3) > tya, (T3, T1) > tpal}. (30)

By rotation invariance on the sphere, we can fix ; = e;. Then,

P(EY) = P((x1, 22) > ty.a, (T1,23) > tpa) = P({e1, xa) > tya, (€1, 23) > t,.4)
=P((e1, ®2) > tpq) P((e1, @3) > t,4) = p°.

The following technical lemma from [12] provides a lower bound on the proba-
bility of EA.
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Lemma 4.2 ([12, Lemma 1]). For a fired p € (0,1), there exists a C, > 0 such
that for all d > 1/C,,

P(EA) > p3(1 + %)

By (28), the expectation of a signed triangle can be written as

Eg(np.da(Ti1,2,3)]
= ¢*Ex|(st,,((z1,22)) — p) (51, . ({2, 23)) — ) (51, , (@3, 1)) — p)]
= @#(P(E®) = 3pP(EY) + 2p°) = ¢*(P(E®) — p?).

Using Lemma 4.2, we have that

Q

3
q
Eg(npd,g)[T(1,2,3)] > \;3 )

Therefore, we conclude that there exists a C, > 0 depending only on p such
that for d > 1/Cp,
Cpn3q3

Nz (31)

Eg(n,p,d.q) [13(G)] >

4.2. Estimating the variance

The variance of 73(G) for G ~ G(n,p,d, q) satisfies

Var[rs(G(n.p, d,q))] = E[r3(G)?] — E[r3(G)]?

:EK > T{LM}Y]—( > ]E[T{i,j,k}]f-

{ig,krev {i,5,k}eV

Expanding the squares of sums and by linearity of expectation, we can decom-
pose the variance into one summation of variances and three summations of
covariances; they are grouped by the number of shared vertices. Since the vari-
ances or the covariances are identically distributed within each group, we can
rewrite them as

n n\ [4
Var[r3(G(n,p,d, q))] = (3>V{1,2,3},{1,2,3} + (4> (2) Vi1,2,3).{1,2,4}

n 5 3

+ <5> <3) (1) Vi1,2,33,{1,4,5} (32)
n\ (6

" <6> <3) V{1’2’3}7{4a5,6}7

Viggrr g vy = Blrg eyt oe] — Elrg ey Elrge g0y

where
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and the coefficients arise from simple combinatorial computations. We bound
the variance and covariances in the following parts respectively.

The signed triangles with vertex sets {1,2,3} and {4,5,6} are independent.
Hence,

V{1,2,3},{4,5,6} = 0.

For two triangles sharing a single vertex, by rotation invariance, we have
E[r1,2,317(1,4,5}) = E[E[T(1,2,3y7(1,4,5) | 1]] = E[E[r{12.31 | ®1] E[T114,5) | 1]
= E[E[T{l,Z,S}] E[T{1,4,5}]] = E[T{1,2,3}] IE[7{1,4,5}]-
Thus, we have
Vii23},{1,45) = 0.
For two triangles with exactly the same vertices,

E[(T{1,2,3})2] = E[E%zﬁg,eﬁg,l] =Ex [E[EiQ | X]E[6273 | X]E[ag,l | XH <L

Hence,
Vii,2,31,{1,2,3) < E[(T{1,2,3})2] <1

As a last step, for two triangles sharing two vertices,

]E[T{1,2,3}7'{1,2,4}]
=Ex(E[a], | X]E[azs | X]E[as, | X|E[azs | X]|Efas,: | X]]
< Ex[E[az;s | X]E[as, | X|E[azs | X]|E[as, | X]]
= ¢' Ex[52,353,152,454,1)-
Further by conditioning on x1, x5, we have
Ex[52,353,152,4541] = Eg, a0, [Ex,[52,353,1 | @1, 2| Eg, [52,454.1 | @1, 22]]
=Eu, 25 [Eay [52.353.1 | 1, 22]?].

A bound in [12, Lemma 4] implies that

2
T
Eayw; By [52,353,1 | @1, 22]%] < R (33)
Thus, we have that
72¢*
E[r1,2,3)7(1,2,4}] < P
Therefore, we establish that
2 4

T™q
Vit2,8y.{1.24) < E[T1,2,317(1,2,43] < i

Inserting the above bounds into (32), we conclude that for an absolute con-
stant C' > 0,

TL4 4
Var[m(G(n, p. d, )] < c(n3 n Tq)
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4.3. Concluding the proof

From the previous analyses, for a fixed p € (0, 1), there exist constants C}, > 0
and C' < oo such that

Cpn3q3

Vd

Egnp (@) =0, Egenpdglms(G)] >
and
Vi = max{Var[r3(G(n, p))], Var[r3(G(n,p,d, q))]} < C<n3 + %)

Let A = E[r3(G(n,p,d,q))]. Chebyshev’s inequality implies that for a con-

stant C,
1 4V, C d 1
P <-A)< 2R < P

<T3(g(n7p7 dv Q)) =9 ) ="A2 = 9 <n3q6 712(]2)

and AWV, O, d
1 1
> = < <P .
P<7-3(g(nap)) = QA) - AQ - 9 (n3q6 + n2q2>

Therefore, we conclude that
TV(G(n,p),G(n,p,d, q))

> p<73<g<n,p, d,q)) >

d 1
= Cp(ngqﬁ + n2q2)'

Theorem 1.1(b) directly follows. Note that when n3q®/d — oo, we also have
that n2¢% = (n2¢%)%/3 > (n3¢® - ¢*/d)?/®> — oo, since ¢*/d < 1.

5. Random dot product graphs

The starting point of this paper is the random geometric graph G(n, p, d), where
the underlying points x,...,x, € R? are distributed uniformly on the unit
sphere. Our main object of study, G(n, p,d, q), builds upon G(n,p, d). Note that
in G(n,p,d) there is an edge between two nodes if and only if the dot product
of the corresponding latent vectors is greater than some threshold (see (1)).
Models with this property are known as random dot product graphs and have
been widely studied [38, 4, 39].

A natural variant of G(n, p, d) is to take @1, ..., x, € R? to be i.i.d. standard
normal vectors and to consider the corresponding random dot product graph.
In this section we extend our results to this variant; the proofs are kept brief,
highlighting only the differences.
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At a high level, since the standard normal distribution in R? is concentrated
on the sphere of radius v/d, there should also be similar phase transition phe-
nomena under this setting. However, there are important technical differences,
due to the errors caused by normalization and different thresholds, so we do not
simply reduce it to the previous setting. Please see Remark 5.2 below for details
on this point.

Let x1,...,x, € R?bei.i.d. standard normal vectors and define the threshold
Up,d by

B((@,2;) > tpa) = p.

Consider the connection function
¢q(x) = (1 = @)p + qSu, ,(2).

We denote the random graph generated using x1,. .., @, € R? and this connec-
tion function by G(n,p,d, q). The results of Theorem 1.1 also hold under this
setting, which we state as the following theorem.

Theorem 5.1 (Detecting geometry). Let p € (0,1) be fized.
(a) (Impossibility) If nqg — 0 or n3¢*/d — 0, then

TV(G(n,p),G(n,p,d,q)) — 0.
(b) (Possibility) If nq®/d — oo, then

TV(G(n,p),G(n,p,d,q)) = 1.
Remark 5.2. There are two main differences between G(n, p, d, ¢) and Q(n7 p,d,q).

(1) First, the coordinates of ; € R? are independent in G(n, p,d, q); this is
not the case for G(n,p,d, q).

(2) On the other hand, while @1, ..., @, € R? have rotation symmetry in both
models, in g(n, p,d, q) these vectors no longer have unit norm, which must
be accounted for.

The first property simplifies the proof of Theorem 5.1(a); however, the second
one adds complexity to the proof of Theorem 5.1(b).

Since the proofs are quite similar to those for Theorem 1.1, we only sketch
them, highlighting the important adaptations.

5.1. Proof of part (a)

The proof in the regime ng — 0, which is presented in Section 3.1, only uses the
property that P({x;, ;) > t, ) = p. Hence, it holds directly for G(n,p,d, q) as
well.

Now we consider the other regime. If we define R = (1 — q)s;, (M) +
qSu, (Z Z "), following the same arguments, we have

TV(G(n,p),4(n,p,d,q)) < TV(P, R).
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Note that for 1 <7< j <mn,
(20, 2) = wij = Vdyi ;.

Then we have R = (1 —q)s, (M) +gs,, ,,/a(Y). Let H = (11T —B)o M +

Bo(Y +(t, —upa/vVd)11T). We can implement the same procedure and obtain
the upper bound on the distance, which gives

TV(P,R) <Ep TV(M', H).

The challenge is that we have to bound |u,, 4/v/d—t,| from above. The following
lemma can be derived as a corollary of Lemma 13.4 in [17].

Lemma 5.3. There exists a constant Cp,, depending only on p, such that

Cp
Vd

Plugging this bound into the proof, we conclude that there exist constants
C, Cp, such that for d > 2n,

' 2 2 3,42
TV(G(n,p).G(n,p,d,q)) < Cp@+ C(\/ % - M)’

similarly to (26). The conclusion follows.

|up,d/\/a - tpl <

5.2. Proof of part (b)

Compared to the random geometric graph, the proofs are similar but require
the estimation of several quantities under a different setting.

We first present technical lemmas for bounding the probabilities of E* and
E? defined as counterparts of (29) and (30) respectively, which are derived as
corollaries from [17].

Lemma 5.4 (Corollary of [17, Lemma 13.10]

~—

. For a fized p € (0,1), we have

P(E*) —p® <

| 0o

Lemma 5.5 (Corollary of [17, Theorem 13.5]). For a fized p € (0,1), there
exist some constants Cp, C,,, C}) > 0 depending only on p such that for d > Cy,

/ i
“p “p
Vd Vd
Plugging Lemma 5.4 and Lemma 5.5 into the estimate for E[7{; 23], we

obtain the same lower bounds as for G(n,p,d, q).
For estimating the variance, we still have

<P(E®) —p’ <

Vit23y,0456y =0 and Viyo3y (123 < 1.
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However, bounding Vi; 2.3} {1,2,4) and Vi1 23} (1,45} requires the following esti-
mate, which follows from the proof of [17, Lemma 13.11]:

80
Ea, o [Eas[52,355,1]%] < rE (34)

Replacing (33) with (34), we obtain the same result for Vi 23y 11,2,43-
For two signed triangles sharing only one vertex, we have

E[T{1,2,3}7'{1,475}] = IE[]E[T{172,3}7'{1,475} | z1]] = E[]E[T{Lz,?,} | 331]2]
= Eq, (B, , [E[@1,202 35,1 | ©1, T2, T3]]?]
= ¢ Eq, [Ex,, s [51,252,353,1]2]-
By Jensen’s inequality,
Eo, [Eay.2,(51,252,3531]°] < Eay 2, [Ea, [51,252,353,1]°]
= Emth [5%,2 Ews [52’353,1}2]

S Eml,mrz []Em3 [52,353,1]2] .

Using (34) again, we obtain

80¢°
E[7¢1,2,317(1,4,5}] < q

Therefore, similarly

80¢°
Vit23y.{1.45) < ElT12317(1.4,53] < Tq

Inserting the above estimates into (32), we conclude that for an absolute
constant C,

4.4 5 6
Varlra (@, )] < € (w0 + "+ ),

From the previous analyses, for a fixed p € (0, 1), there exist constants C}, > 0
and C' < oo such that

C n3q3
]Eg("»P) [7-3((;)] =0, IEg'(n,p,d,q) [T3(G)] 2 p\/a
and
4.4 5.6
Vi = max{Var|[r; (g(n,p))]7Var[Tg(G(n,p, d, )]} < C<n3 + ndq + %)

Repeating the same arguments as before, we conclude that there exists a con-
stant C,, such that for d > C),

. d 1 1

n3gs ' n2g2 ' n
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Supplementary Material

In this supplement, we explore whether the bounds of detecting geometry can
be improved using generalizations of signed triangles. In particular, we study
two families of natural extensions, signed cliques and signed cycles. We pro-
vide evidence suggesting that the detection boundary cannot be improved with
them.

1

A. Detecting geometry using signed triangles in the case p = 3

In this case, due to the symmetry of the distribution, the threshold satisfies
t1/2,4 = 0, which no longer depends on the dimension. As a result, the vectors
that have an inner product greater than or equal to the threshold with a fixed
vector lie in a half space instead of a cone, thus allowing a projection argument.
Utilizing the explicit distribution function in the projected space, we are able to
obtain asymptotically tight bounds for both the expectation and the variance
of the signed triangle statistic. Some results can also be derived as corollaries
from more general statements in [17]. However, we include our much simplified
proofs for completeness and as preparations for further claims.

Recall that the threshold ¢, 4 is determined by E[s;, , ((x:, ;)] =P((x;, x;) >
tp.a)=p. When p is set to 1/2, by symmetry of the distribution, we have ¢, 4 = 0.
Then, the connection probability becomes

ks = 51— 0) + asol (i,2,)).

Let x1,x, 3 be independent random vectors uniformly in S%~!. Consider
the event
E® = {{z1,x2) > 0, (@2, 23) > 0, (T3, 1) > 0} (35)

We first give asymptotically tight bounds for P(E?) via a geometric argument.

A.1. Estimating the expectation

Before starting our main discussion, we present a proposition which gives an
explicit probability density function for the angle between two uniform random
vectors in S?~!. Note that the probability density expressed by sin and gamma
functions was also derived in [21, 12] using different approaches.
For two vectors z,y € RY, let §(x,y) € [0, 7] stand for the angle between
them. Then,
(z.y)

O(x,y) = arccos ——=—.
[yl

If we further assume that «,y € S%~!, then

0(x,y) = arccos{x, y).
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Proposition A.1. The angle between two uniformly random vectors in S%—1
has the probability density function

where it
_ / T4, VIL(5H)
= sin®"“ 0 = 7]
0 (%)
s the normalization factor.
Proof. Let z ~ N(0,1;). Then, 2 = z/|z|| is a uniform random point in

S9! (see [29], also [30, 27]). By rotation invariance on the sphere, we can fix
one vector to be e, the first vector of the standard basis in R?. Then, the
cumulative distribution function of the angle satisfies

1 2
P(i > cos@) = —P(jil > 00829>.
|z 2 \2¢ 22

=11

F(0) = P(arccos (e, 2) < 0) = (” ” > cos 9>

For 0 € [0,7/2],

Since the z;’s are standard normal random variables, 22 ~ x2(1) and Zl 2 12 ~
x2(d—1) are independent. Therefore, 22/ Z 2? is distributed as Beta(% - )

i=1"~1

By the definition of the beta distribution,

2 1 1
P ;71 > cos?6 ) = ﬁ/ x*1/2(1 _ m)d/273/2 dz,
Z' 22 B(ﬁa T) cos? 6

1=1"1

where B(z,y) = I'(2)['(y)/T'(x + y) is the beta function. Taking the derivative
with respect to 6, we have that

h(0) = 2B(11 =) (—(cos0) 7 (1 — cos? 0)4/273/2) (=2 cos O sin 0)
2072
r(4
= (Qd)fl sin?=2¢
vl (43)
For 6 € [r/2, ],

<W > cos 9) (_W < cos(m 9)) (W < cos(m 9)),

where the last equality is by symmetry of the distribution. Hence,

(¢
sin?2(r — 0) = —ﬁr((%i)gl)

d
no) = LG) sin-2 9. O

VAL (4)
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Lemma A.2. For E® defined in (35), we have

<R - <o
2mV2r Vd 8~ 4ym Vi
Proof. We fix the plane determined by 1 and x5, and then project xs onto
this plane. Since no direction in this plane is unique, the projected direction of
x3 is uniform on the circle centered at the origin. Conditioning on x; and xs,
{{x1,x3) > 0, (x2,x3) > 0} happens if and only if the projection of x3 falls into
the intersection of two half spaces with normal vectors @1 and xs. Therefore,

™ — 9(.’131, ZCQ)

P({z1,z3) > 0,(z2,23) > 0| T1,T2) = 5
Hence, the joint probability

P(EA) = E[P(<$1,SC3> Z 0, <il)2,333> Z 0 | 1131,33'2) | <$1,$2> Z 0]
:E{Ml{g(mm) < g”

™

The density of §(x1,x2) is given by Proposition A.1. Then,

P(E2) = / ”_92 d29d9_/0 ”/“‘)é <126 df

21

0
/M2 05?2 0do = 1 / 0 cos?26do.
2< = 2 C COS

The elementary bounds 26/7 < sinf < 6, which hold for 8 € [0,7/2], give
sinf < 0 < gsinﬁ. (36)
Thus, multiplying by cos?~2 6 and taking the integral, we have
w/2 w/2 T /2
/ sin 6 cos™ 2 0df < / 0 cos? 20 df < 5 / sin 6 cos” 2 0 do.
0 0 0

A simple calculation gives

/2 /2 1 pd—1 1
/ sin @ cos? 20 do = —/ cos? 20 dcosf = / t42 qt =
0 0 0 d—1 0

1

d—1

The above display together with the definition of ( yields

L (4) _ 5
C/o sin 6 cos 0d9—\/_( F( )_2ﬁF(
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By (14),
v2 1 _ (g _ fdrr 1 _ 2
Vd o Jdj2 T T(Eh) TV d a2~ Vd
Putting all the above together, we obtain
1 1 1 1 1 1
4 = <PEA<S 4 —— —. O
8  2mV2m Vd B =g 4T \/d

With Lemma A.2, we are able to estimate the expectation of the signed
triangle statistic in G(n,1/2,d, q).

Lemma A.3. There exist absolute constants C,C’ > 0 such that

CTL3 q3 C/nSqS

Vd Vd

Proof. By (28), the expectation of the signed triangle 7(; 3} satisfies

S E[T?)(g(nv 1/27d7 q))] S

Eg(n,1/2,d,q)[T{1,2,3}]

— 5| (solaraad) - 3 ) (sallen,aa)) - 3 ) (sallaaen) - )|

By rotation invariance on the sphere, we may fix the direction of &; to be e;.
Then,

E[so((z1, 22))s0((z1, 3))] = P({(z1, Z2) > 0, (z1,23) > 0)
= IP(<61,£L‘2> Z 0, <61,IB3> Z 0)
= B({er, @) > 0)B({er, @) > 0) = 5 -2 =

Thus, by expanding the product in (A.1) and using the linearity of expectation,
we obtain

1

IEg(n,1/2,d,q) [7'{1,2,3}} = q3 <]P°(EA) - g)-

Inserting Lemma A.2 yields

L ¢ _g rriam] < —— - L (37)
C— n T < — =,
QW\/% \/E > LG(n,1/2,d,q)17{1,2,3} 4ﬁ \/E
Since all signed triangle indicators are identically distributed,
n
Eg(n1/2,d,9)[T3(G)] = Z Eg(n,1/2,d,0)[Tgi5,61] = <3) Eg(n1/2,d,9)[T(1,2,3}]-

{i.g.k}cv

The claim directly follows. O
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A.2. Estimating the variance

We perform similar analysis for each term of (32) in the special case when p =
1/2. The benefit is that by utilizing the symmetry, we obtain matching bounds
for the variance, hence showing that the estimates are tight up to constants.

Two signed triangles that do not share any vertices are independent, which
implies that

E[7¢1,2,317(4,5,6}) = E[7(1,2,3}] E[T{4,5.61]-
Thus, we have that
V{172,3},{4,5,6} =0.
For two signed triangles sharing a single vertex, by rotation invariance on

the sphere, if we fix the direction of the shared vertex to be ey, they are also
independent, which gives

E[T{1,2,3}T{1,4,5}] = E[E[T{1,2,3}7’{1,4,5} | 1’1” = E[E[T{m,s} | 531] IE[T{l,4,5} | iBlH
= E[E[T{1,2,3}] E[T{1,4,5}]] = E[T{1,2,3}] E[T{1,4,5}]~

Therefore,

V{1,2,3},{1,4,5} = 0.

For two signed triangles on exactly the same vertices,
E[(T{1,2,3})2] = E[Eizag,:ﬁg,l] =Ex [E[Eiz | X]E[az,s | X]E[Eg,l | XH

When p = 1/2, @y 5 is either 1/2 or —1/2. Hence, @}, = 1/4 regardless of X
and other randomness of a; 5. Therefore,

1
E N=—

[(T(1,2,33)7] 64’
which combined with (37) gives that for d > 8/,

1 1 1 6 1 1 6
e S 1 < V2,841,231 < 73" % <

1
128 — 64 167 d 64 83 64

64

That is, Vi1 2.3} (1,2,4) is bounded between absolute constants.

As a last step, for a pair of triangles sharing exactly two vertices, the fol-
lowing lemma provides asymptotically tight bounds for the expectation of their
product.

Lemma A.4. The expectation of two signed triangles sharing two vertices in
G(n,1/2,d,q) satisfies

1 q4 1 q4
62 d < Egn,1/2,d,9)[T{1,2,3)T(1,2,4}] < 61 d
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Proof. By the definition of signed triangles and conditional independence of
edges given X,

E[rf1,2,317(1,2,4}) = E[E%,252,353,152,454,1] =Ex [E[Ef726273637162746471 | X]]
=Ex|[E[al, | X]E[ay,s | X]E[as, | X|E[azs | X]E[as, | X]]
1

= L Ex[ElGos | X]Ef@s, | X)Efza | X]Efas | X]).

Further by (27) and rotation invariance, we have

E[7{1,2,317(1,24}) = — Ex[52,353,152,454,1]

=

@1 @2 | Bag m,[52,353.152,4541 | 1, T2)]

(38)

=

w1 @2 | Bag [52,353.1 | €1, 2] Ep, [$2,4541 | 1, T2]]

N N N N N

=

@122 | Eay (52,3531 | 5131,932]2]

The last equality holds since 3 and x4 are identically distributed. Recall that
O(x1,x2) denotes the angle between x; and xo. The conditional expectation
can be written as

1 1
Eaulsaasas | o1,22] = B, | (so((on. ) - 3 ) (sl an)) - 3 )|

1

= P((x2,x3) > 0,(x3,21) > 0| T1,T2) — 1
™ — 9(%1,332) _ l N 7'('/2 —9(331,%2)
B 27 4 27 '

Therefore, we have
4 2
q /2 —0(x,x
Elr(1,23)7(1,2,4)] = T E[(%) ] (39)

Using Proposition A.1, we can write

(2= () s

2
1 [™(r/2—0)2
= Z / (,7.[-/4720) Sind_2 0 de
0 I8
1 w/2 02
= z / 472 COSd72 0do
—7/2 ™

1 71'/2
= m / 62 cos?2 0 do,
m 0
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where the last line follows from a change of variables and the function inside
the integral being even. Applying (36), we have

o, 72 — 01, 22)
Y i - <E|| t—=—""=2"2
27T2</0 sin” 6 cos 0do < [( o ) ]

1 /2
< — / sin? @ cos?2 6 db.
¢Jo
By the definition of (,
/2 w/2 (4=t
/ cos?26 = / sin?20 = S _ M (40)
0 0 )
Since
/2 /2
/ sin? f cos? 20 df = / (1 —cos?0) cos?=260df
0 0

/2 /2
= / cos?20do — / cos? 0 do,
0 0

by (40) and T'(z + 1) = 2I'(2),

2 [7/2 /2 cos 0 d6 r(4) (g
—/ sin? 0 cos? 20 df = 1 - —{;0/2 © —1- (diQ) : 532
¢ Jo Jo ! cosi=26do r(42) r(4)
d—1 1
142
d d
Putting them together, we obtain
11 72— 0(xy, ) \7] 1 1
S <E| (2T o o2 41
dw2 d — [( 2m —16 d (41)
The claim directly follows from combining (39) and (41). O

Lemma A.4 together with (37) shows that when ¢ < 1/2, for absolute con-
stants C,C’ > 0,

Cg*

C/q4
4 <Viesni24r < Egmi/2.d,0)[m1,2,31 712,43 < .

d

Putting the estimates together, we conclude with the following lemma.

Lemma A.5. There exist absolute constants C,C’" > 0 such that for d > 8/7
and g < 1/2,

C<n3 + #) < Var[rs(G(n, 1/2,d,q))] < C (nd + ﬂ)
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A.3. Concluding the proof for p = %

Combining the estimates in Lemma A.3 and Lemma A.5, we establish that for
absolute constants C' > 0 and C’ < oo,

Cnq3

Vd

E[r3(G(n,1/2))] =0, E[rs(G(n,1/2,d,q))] =

and
ntq?

Vi = max{Var[r3(G(n, 1/2))], Var[r3(G(n,1/2,d, q))]} < C’ <n3 + d>'

Let A :=E[r3(G(n,1/2,d,q))]. Chebyshev’s inequality implies that for an abso-
lute constant C,

1 4V, C d 1
P(Tg(g(n,l/Q,d,q)) < §A> < ~ < 5(_ + _2)

n3¢5 | n2q

1 4v,, C /[ d 1
> — < < — .
P<T3(Q(n,1/2)) > 2A> <A S5 <n3q6 + n2q2)

and

Therefore, we conclude that
TV(G(n,1/2),G(n,1/2,d,q))

. P(Tg(gm,l/z,d, 9) >

d 1
210 )

Theorem 1.1(b) in the case when p = 1/2 directly follows. Note that when
n3¢®/d — oo, we also have that n2¢? = (n?¢)%/3 > (n3¢> - ¢*/d)?/* — oo, since
3
¢°/d < 1.

A) —P(Tg(g(n,m)) > %A)

| =

B. Detecting geometry using signed cliques

The method introduced in Section 4 proves an upper bound for detecting the
geometry in G(n,p,d,q), while providing an asymptotically powerful test that
is computationally efficient. However, the upper bound for detection does not
match the lower bound in Theorem 1.1(a). As a final remark, we explore whether
the possibility results for detection can be improved via generalizations of the
signed triangle statistic. Two families of extensions are studied: signed cliques
and signed cycles. We show by special examples of subgraphs on four vertices,
as well as those on a fixed number of vertices, that it is unlikely the detection
boundary can be improved with them.

A first generalization of the signed triangle is by increasing the number of
vertices in the set, resulting in the signed induced complete subgraphs of G,
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which we simply call signed cliques. Similar to the case of the signed triangle,
let S C V be a subset of vertices of G with cardinality |S| = k, where & < n
is fixed. Ts is again the indicator that the edges over the vertex set S form a
clique; namely, the induced subgraph is complete. Given the adjacency matrix
A of G, Ts can be expressed by

TS = H g -
{i,j}CS
Then, the total number of cliques of size k in G, denoted by Ty (G), can be
written as
Tk(G) = Z Ts.

se(¥)

For a constant p € [0, 1], define the signed indicator and its count in G by

Tg = H (a;; —p) and 7%(G) = Z TS.

{i,5}CS se(V)
We first compute the expectation and variance of the signed clique statistic
in G(n,p).
For G(n,p), since all edges are independent,
Efrl= ][] Elai;—p]=0.
{i,3}ClK]

Then, the expectation of the signed clique statistic satisfies

BlnGn. )] = () Elri] =0 (42)

Consider two sets of vertices S and S of size k. If S = 5/, we have

Efrsts] = E[(s)7]) = [ Ellais —p)?] = ((1 - p)) = (p(1 - p))FE-D/2,
{i,5}eV1

For S # S’, there is at least one signed edge that appears in 75 but not in 7g.
Suppose this edge is e. By the independence of edges in G(n, p),

E[TSTS’] = ]E[ae - p} E [TS/ H (ae’ - p)] =0.
ere(3)\{e}

Therefore, the variance of the signed clique statistic in G(n, p) satisfies

Var[7 (G (n, )] =E{< > TS>2] = > Elrse]= <Z> E[(714))°]

se(?) s.57€(}) (43)

= ()l e ot

for some C} , > 0 depending only on %k and p.
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B.1. Signed quadruples

For G(n,p,d,q), we start with the special case when p = 1/2 and consider the
signed clique on four vertices, called the signed quadruple.

Theorem B.1. There exists an absolute constant C' such that

Elru(@(n.1/2.d.9)) < L

Theorem B.1 together with (42) shows that

Cn4q6

[E[ra(G(n,1/2,d, q))] — E[ra(G(n, 1/2))]| < —

As we shall see, a lower bound on the variance of the signed quadruple statistic
in G(n,1/2,d,q) can be obtained from a more general argument in Lemma B.8,
which combined with (43) gives

min{Var[r4(G(n, 1/2))], Var[r4(G(n,1/2,d, q))]} > C'n*
for some constant C’ > 0. Therefore, there exists a constant C' such that

(E[ra(G(n, 1/2,d,))] ~ E[n(G(n,1/2)])*  _ Cn'q"
min{Var[ry(G(n,1/2))], Var[ra(G(n, 1/2,d, @)} = @ =

The above display implies that detecting geometry using the previous method
with a signed quadruple statistic is only possible if n2¢%/d — co. We see that
this is stronger than the condition n3¢%/d — oo given by the signed triangle.
Note that we use the lower bound on the minimum of the variances instead of
the maximum so that testing either hypothesis is not possible.

We prove Theorem B.1 in the following. A key estimation is that the expected
signed quadruple in G(n,1/2,d) is at most of the order 1/d, formally stated as
the following lemma.

Lemma B.2. There exists an absolute constant C such that
C
IEG(n,1/2,d)[Tag]] < 7
The proof of Lemma B.2 is divided into estimating several quantities.
As computed before, for a sample from G(n,1/2,d) with adjacency matrix

A = [a; ], by conditioning on x; and rotation invariance,

1

E[al,gal,g,} = E[E[a172a173 | 111]] = E[E[G/LQ ‘ acl} E[aLg | 581” = <§> .

We also have E[a; o] = 1 by definition.
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The expected signed quadruple in G(n,1/2,d) can be written as

4 4 1 1 1 6
Eotnswalr) =2| [T | =2 [I1 (- 3)| - (3-3)
i<j 1<J

6 1\°
= (6> (E[al,zal,3a1,4a2,3a2,4a3,4} - (§>

Q1

1
) I[‘3[6l1,2CL1,36L2.,3CL1.,4612.,4] - <§

)

N—

Q2

()G
. @%(;)2(@@@@,3%,4@,4] -(
()3 )
(5):(2)

Qs

DN =

N~ N~
N

N~

=

=

2 1
(E[a1,2a2,3a3,1a1,4] - (5

Q4

3 1 3
<E[a1,2a273a371] - (5) >7

Qs

where the fractions are from simple combinatorial calculations. In the following
we compute and estimate Q1, ..., Q5.
Following the definitions in the proof of Lemma A.2, we define the density

d
r(3)
Let P
g 2—40
= / Lh(@) do. (45)
0 27T
By the computation in Lemma A.2, Ela; a2 3a3,1]—1/8 = ~. Hence, we have
1
Qs = 37
The lemma also shows that
Lo 1
2m\V2r  d =7= 47 \d
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By conditional independence of a1 4 and a; 2a2 3031 and rotation invariance,

E[al,202,303,104,1] = Eml[E[a172a273a371a174|a:1]]

1
= Ewl[E[a1,2a2,3a3,1|$1]E[a1,4|w1]] = §E[a1,2a2,3a3,1 .
Hence, we have
3
Q4= 37
Let P )
e /2 -6
= h(0)do 46
n= [ (B2 ne (46)
By (41),
1 1 .11
a2 d="=16 "4
Lemma B.3. Let n be defined in (46). Then,
1
Ela1 302,301 402.4] = — + 21.

16
Proof. By conditional independence of a1 3as 3 and aj 402 4,

Elay,3a2,301 402,4] = E[E[a1 302,301 4024 | 21, %2]]
=E[E[a1 3a2,3 | 1, x2] Ela1 4024 | 1, 22]]
= E[E[al’gag)g | (131,%2]2}.

The last equality is because x3 and x4 are identically distributed.

Similar to the proof of Lemma A.2, we can fix the space spanned by x; and
2. The angle between them has the density h(6) given in Proposition A.1. We
have that aj gag 3 = 1 if and only if the projection of a3 onto this plane lies in
[0 — m/2,7/2]. Therefore,

T/ 9\ 2
Ela1 3a2,301,402,4] = / (WQ > h(6) db
0 T
™2 (r—0\? T =0\’
:/0 ( - ) h(9)d9+/7r/2( - ) h(0) do.
For the first integral in the above display,
™2 -0\ 224 w2 —6\> 11
h(0)do = —— | h(0)dd = —=+ = .
/0 (277) ©) /0 ( o > ©) 32 Tt
For the second integral, by the symmetry of the sin function,
T =0\’ 279 \?
/ﬂ/z( - ) h(0) do _/0 (%) h(6) do

_ /()”/2<W>2h(9) 6 = 3i2 - %’Y-‘rn.

The claim directly follows by adding them. O

(47)
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By Lemma B.3, we have that

3
Qs = 3"
Since
/2 T —0 2
Ela1 201 302,301 402 4] Z/ ( 5 > h(0) do,
0 7T

which equals the first integral in (47), we directly have the following lemma.

Lemma B.4. Let v and n be defined in (45) and (46) respectively. Then,

Elay 201 3a2 301 40 ]*i+1 +
1,201,302 301,402 4| = 39 2’7 n.
Therefore, we have
3
Q2 = 5’7 + 3n.
Plugging the previous estimates into (42), we obtain that
1 3
Elry] =Q1 — Q2+ Q3+ Q4 — Qs :Qlfiﬁ’* 3" (48)
An estimation for @ is provided in the following lemma.
Lemma B.5. Let v and n be defined before. Then,
1 n 1 L 1 H 1 vt 1 n 1 1
2 T o 16772 i i 4*2 2" T8 A

1<J

The proof of Lemma B.5 involves extending the argument in the proof of
Lemma A.2 to a three-dimensional subspace. Before proving Lemma B.5, we
show the following claim concerning the distribution of the angle between a
uniform random vector in R? and an arbitrary two-dimensional plane.

Proposition B.6. Let x be a uniform random point in S4=1. Let ¢ € [0,7/2]
be the angle between the vector x and any fized 2-dimensional subspace. Then,
the density g(¢) satisfies

g() = (d — 2)sin?3 pcos .

Proof. Let z ~ N (0, 1,) be a d-dimensional random vector. Then, 2 := z/||z|| is
a uniform random point in S¢~!. By rotation invariance, we can fix the plane to
be that spanned by the first two vectors of the standard basis. The projection
of 2 onto this plane is 2 = (z1,22,0,...,0)/||z||. Then, the angle between x
and the plane is equal to the angle between 2 and z. Hence, the cumulative
distribution function satisfies

> . > 2 2
e 21 2 2
Flp) = B sweees 127 < 0) =P 2 eonp) = P(z;f 2 o).

1=1"1
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Since the z;’s are standard normal random variables, we have 27423 ~ x?(2) and
Zf:3 22 ~ x%(d — 2), and these are independent. Therefore, (27 + 23)/ Zle 22
has a Beta(1, d—52) distribution. Hence, by the definition of the beta distribution,

2 2 T d 1
]P’( Z1d+ 25 > cos? @) _ gzz / (1- I)d/272 de
Zi:1 212 F(T) cos? ¢

—9 rl
_d-2 (1—2)Y? 2 dx.

2 cos? ¢

Taking the derivative with respect to ¢, we obtain

d-2 o

g(p) = ———(1 — cos” p)

d/2—2
2 (

—2cos @sinp) = (d —2)sin? > pcosp. O

Proof of Lemma B.3. Consider the space spanned by @1, 2, x3. Without loss
of generality, we can fix the coordinates as follows:

z; = (1,0,0,0,...,0),
T2 = (cosh,sinb,0,...,0),

x3 = (cos p cosp, cossin, sinp,0,...,0).

By symmetry on the sphere, we can constrain the parameters in the following
space:

0 €10, 7],
w € [_71-777]5
o€ [0,7/2).

Let f(6,4,¢) be the probability density function. Then, by independence of
the vectors,

1 d—2 ., 4 g
f0,9,0) = %h(ﬂ)g(ga) = Era sin=2 0 sin? 3 ¢ cos .

Denoting by 0(z, y) € [0, 7] the angle between two d-dimensional vectors, we
also have

cosf(x1, x2) = (x1,x2) = cosb, (49)
cosB(x1,x3) = (x1,T3) = coS Y cos Y, (50)

cos B(x2, x3) = (X2, T3) = cos p cos ) cosl + cos psinsin @ = cos ¢ cos(y — 6).
(51)

The event 1 ~ 2 happens if and only if § € [0, 7]. Vertex 3 is connected to
both 1 and 2 if and only if the projection of x3 onto the plane determined by x
and x5 forms an angle no greater than 7/2 with both @, and x5. Therefore, we
have ¢ € [0 — /2, 7/2]. The last vertex is connected to all of them if and only



3560 S. Liu and M. Z. Racz

if the direction of x4 falls in the spherical triangle determined by the three half
planes with normal vectors @1, s, x3 respectively. As a well-known fact (see,

g., [42, proposition 99]), the surface area of the spherical triangle equals the
spherical excess defined by

S =27 — 9(:131,%2) — 9(331,153) — 9(332,153)

= (r=0)+ (5 -0tw20) + (- otwnan).

Since the surface area of the sphere is 47, the probability that the four vertices
form a clique is

/2 /2 pw/2 S
[ srevpdaa
0 0 O—m/2 =T
n/2 pw/2 pw/2 r—0
— [T T e sy
0 0 o—m/2 2T

I
w/2 pw/2 pw/2 7T/2—9((El «’Bs) (52)
e[ [ TR g gy v do e
0 0 0—m/2 am ( )
I
w/2 pw/2 pw/2 7T/2—8(:132 133)
+/ / / T (0,1, ) dip dO dip
0 0 0—m/2 4m ( )
I3

We deal with the three integrals separately as follows.
By integrating over ¢ and ¢,

I = %/Oﬂm(”?;@fh(e) do = %/OW(WYW) do

—11++
“alz T

Plugging (50) into I, we have

w/2 pw/2
I, = i / / (z — arccos(cos p cos w)>f(9, ¥, @) di df dp
0—m/2 (53)

1 7r/2 /2 pw/2
/ / arcsin(cos @ cos ) f(0, 1, ) dip db de.
0

w/2
The Taylor expansion of arcsin gives

o0
arcsinx = g anz?tl,

n=0
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where
(2n)!
ap = ———————.
47 (nh)2(2n +1)
Hence, we get
[ee]
arcsin(cos @ cos ) = Z ay cos? T cos? T g (54)
n=0

Inserting the expansion (54) into (53) and interchanging the summation and
integration, we have

1 /2 pm/2 pw/2 O — _—
L=~ / / D an(cos™ ! @) (cos™ T ) (0,4, ) di df dp
T Jo 0 0—7/2 1,0
LS [ oot eds [Tae [ ot
=— G g(p) cos*™ gpd(p/ h(6 / cos“" T drp db.
82 o 0 0 0—m/2
Since

/2 /2 0
/ cos™ Ly dyp = cos" T dip + / cos>" ) dap, (55)
0

—m/2 0 0—m/2

the integral I can also be split into two integrals accordingly:

1 o w/2 —_ /2 /2 —
L=gs5 Zan/ g(y) cos®+ godap/ h(e)/ cos®™ 1o dyp df
n—0 0 0 0

Iz(a)
1 &> /2 _— /2 0 _—
+— an/ g(p) cos®™ godap/ h(9)/ cos?" 1 apdip db .
872 nZ:o 0 0 0—7/2
10Y0)

We deal with I,y and I5) separately.
Using the definition of g(y) in Proposition B.6 and by a change of variables
x = sin? o, we have

/2 /2
/ g(p) cos ™ pdp = (d - 2) / cos?™ 1 psin®=3 ¢ cos @ dyp
0 0

_ d;2 1(1 . l,)n+1/21,d/272 dx
0
d—2_(d 3 (@-2r(¢-1)r(n+32)
2 (2 ’"+2> oM(n+4+1)

_TE)IM+3)
Fn+4+3)’
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where the last equality is due to the identity 2T'(z) = T'(z + 1).
By (40),

"/ Val(n+1)
2n+1 _
/0 cos Pdyp = QF(n—I—%) .
Combining them and rearranging the terms, we have
L(r(n+3) valn+1)  val(g) T(FH)In+1)
Pn+g+3) 20(n+3)  T(F) 2°(n+5+3)

r
T 1 d—1
=—.-B[— 1).
c ()
By the definition of the beta function,

1 -1 1t /2
—B<d—, n+ 1) == / md/2_3/2(1 —z)"dx = / cos?" 1 9 sin?=2 0 df.
27\ 2 2 J A

Interchanging the summation and integration,

0 w/2 w/2 o
> an / cos™ ! g sin? 2 0 df = / > ancos®™ ' 6sin?2 0 do
n=0 0 0 n=0

/2
= / arcsin(cos #) sin =2 0 d@
0

w/2 T
= / (— - 9> sin?=20do = 2n (.
0 2
Further, by symmetry of sin 6,

/2 1
/ h(0)df = ~.
0 2

Putting them together, we obtain

1

1 = 1
bw=gz 3 ¢ 7=g7

Now we turn to I5(;) and show upper and lower bounds on it.
By the symmetry of cost and a change of variables x = sin ¢,

0 T/2—60 T/2—60
/ cos?" T pdip = / cos>" T dip = / cos>™ 1 d sin v
0 0 0

—m/2
cos 6
:/ (1—2%)"dx.
0

Since for x € [0, cos d],

sin?" g < (1- x2)" <1,
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we have 0

sin?" @ cos f < / cos™ b dip < cosb.
0—m/2

Integrating over the density of 8 gives

m/2 1 m/2
/ h(6) sin®" 6 cos 0 df = c / sin?" 42 0 cos 0 df
0 0

_l/ﬂ/2 VP Ny P —
=7/ sin sinf = Gnrd_1)
and
w/2 1 m/2 1 w/2
/ h(6) cosdf = —/ sin?=2 6 cosf df = —/ sin?=2 0 dsin 6
0 ¢ Jo ¢Jo
1
S d-1¢

We deal with the upper bound first. Interchanging the summation and inte-
gration yields

w/2 0

) w/2
> an / 9(p) cos” o dip = / > ang(p) cos™ M pdp
0 0 0 0

w/2
= / g(ip) arcsin(cos @) dy
0

/2
=(d- 2)/ (g — <p> sin®=? o cos p de.
0

We can derive an upper bound on the above display by the upper bound in (36).
Since ¢ € [0,7/2],

T T
- = = COS (.
2 80_2 ¥

By a change of variables 2 = sin? ¢ and the definition of the beta function,

1

w/2 /2
/ sin?=3 g cos? pdyp = 3 / sin?™* ¢ cos pdsin? ¢
0 0

1/t 1._/d 3
_ _ 1— 1/2 d/272d —Bl=Z-1.2
2/0( z) e TP\ T e

rE-yrE)

20 (43)
Therefore, I5() can be upper bounded by
PR A ) _w<d2>F(§1)F(§>_L( r(s) )2
B C NN C) AT (4 - Gam AT (%)

IN
|

1
167 d’
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where the last inequality is by (14).
For the lower bound on Iy, we have

/71'/2 1 ( ) _— p
o 2n+d—1gtpcos pap

d—2

w/2
= m/o cos? 1 psin?=3 ¢ cos ¢ dyp

r4—-1)rn+3
e () (-0}
2n+d—-1 2 2n—|—d—1 2F(n+§+%)

2
I (T2 (RS LIS (N

“ntd+l a(ntg+l) g+ 22T

2772
Hence, by the definition of beta function and a change of variables,

oo

1 d 3
Iy > —— 2Bl =, -
2() > T 2 <2 ”*2)
n=0
1 o 7T/2
= WQC ;::0 an /0 cos?" M 4 sin® 1 ) cos b dip
= b /W/2 i an cos? L ah sind=1 ) cos ) dip
8m2¢ J, =

/2
_ 873%/0 (g _ u)) sin=1 4 cos 1 dib.

Further, by the lower bound in (36), we obtain

1 d 3
I2(b = 2(/ d 11/)(308 ¢d¢_16712<B<2’2)

Inserting the definitions of { and the beta function gives

1 L(g)  TETE) 1 d-1(T(9)
T (43) :327r2'd+1( (d+1)>

16m2  /al(SL) (42

> (i)

Using (14), we have

Ly >

Nl

Ty > —— - =
20) = 3972 " ¢
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For the integral I3 in (52), by a change of variables £ = 0 — ),
n/2 pw/2 pw/2
I3 = / / / arcsin(cos ¢ cos(6 — ¥))h (0,1, ) dp db de
0 0 0—m/2
w/2 pw/2 pO0—m/2
= / / / —arcsin(cos ¢ cos §)h(0, v, p) d€ db dyp
0 0 /2

w/2 pw/2 pw/2
= / / / arcsin(cos @ cos ) h(0, 1, p) dip df dp = Is.
0 0 0—m/2

Combining the estimates of I, I, I3 given above proves the claim. |

Plugging Lemma B.5 into (48), we arrive at the claims in Lemma B.2.
Using Lemma 4.1 and Lemma B.2, we have

IEg(n,1/2.d.q) [Tralll = 96|]Eg(n,1/2,d,q) [r]| < 4

Then,

Bl 1/2. )| < () Eotnzanlriall < 7

Theorem B.1 is hence proved.

B.2. General signed cliques

We next turn to general signed cliques in G(n,p,d, q). Similarly, we start with
estimations in G(n,p, d). By the definition of the signed clique,

ool =[E| T[ (@;-n)
{i,5}C[k]
= ]E{ 11 (amp)} 1T (pp)‘
{i,5}C[k] {,5}ClK]
=| X @) -pp s
562([’5])
< Z |P(S),p\3\|p(§)*|5|'
SGQ([S])

The following corollary, derived from a result in Section 3.2 of the main
article, facilitates our calculations.

Corollary B.7. Let V = [k] be a set of vertices and E C VXV be a set of edges.
Denote by |E| the cardinality of E. Then, we have that for a constant Cy p,

Ck,p

P E)—plFl| <
PG (kp,ay(E) — p™!| < 7
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Proof. In (26), by setting ¢ = 1, we have that

TV(G(n.p).Gln.p.d)) < Gy + c(@ ; \/g)

By the definition of the distance,

Pgpa) (E) — P! = [Pgp.a) (E) — Pgipy (E)| < TV(G(k,p),G(k,p,d))

3
<opfE

The claim directly follows. O
By Corollary B.7,
Ck

Egn ]| < —2£. 56

Bg (n,p.0) [TTk)]| < Vi (56)
Therefore, for a constant Cj, 5,

k YR
Bl (000 .. ) = oD Bl (G0, D] < o) () 0]

_ (57)
. Oy gt F=D/2

- Vd
Lemma B.8. There exists a constant Cy ), > 0, depending only on p and k,
such that
Var[r(G(n,p,d,q))] > C’kvpnk.

Proof. Consider two sets of vertices S and S’ of size k. Since (a; ; — p)? equals
(1 —p)? or p?, we have that (a; ; — p)*> > p*(1 — p)?. Now if S = ', then

E[TSTS/]E[(Ts)Q]E{ 11 (ai,jp)z] > (p*(1-p)*) ) = (p(1 —p))FED.
{i,i}eV

By (56), there exists a C , > 0, such that for d > C}

El7s]” < 5 E[(7s)?].

DN | =

For S # S, let V/ = SN.S’ be the set of overlapping vertices. Then, we have
that

E[rs7s'] = E[E[rs7s | V']] = E[E[rs | V'] Elrs: | V'] = E[E[rs | V'’] > E[rs]?,

where the inequality is by Jensen’s.
Therefore, there exists a Cy , > 0, such that when d > C}, ,

Var[r.(G(n, p,d, q))] :EK z; Ts)T - ( 2 ]E[Ts]>2 > <Z> Var[r]
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Putting them together, we have that for some constant Cj, ,,

(E[:(G(n, p,d, q))] — E[7:(G(n,p))])? _ Cpop* g F=1)
min{Var[r,(G(n,p))], Var[mx(G(n,p,d, q))]} ~— d :

The above display implies that the method used to derive the possibility of
detection does not work when n*¢**=1) /d — 0, which suggests a certain bound-
ary of detection using general signed clique statistics. Note that for k > 4 this
does not rule out the whole region where signed triangles are not able to dis-
tinguish. However, based on the computation of the expected signed quadruple
count, we see that the upper bound on the expectation in (57) is not precise;
in particular, the dependence on d can be improved. In general, we do not ex-
pect the detection boundary to be improved by signed cliques. Towards this, we
present the following conjecture.

Conjecture B.9. There exists a constant Cy. , such that

Ch.
Eg(pay [l = 76 76

We briefly argue why this bound should hold. In the proof of Theorem 1.1(b),
we see that the dominating term comes from the ratio between the variance
of the signed triangle count in G(n,p) and the squared expectation of the
signed triangle count in G(n,p,d, q). Suppose this still holds for general signed
cliques. Then, the dominating term if we use a signed clique statistic becomes
Crpn®/d**, where Cj,,/d™ is a lower bound for [Eg(, .4 [7jx]]- Since n3/d is
the precise order for the phase transition in G(n, p, d), we must have k/(2a) < 3,
which gives a > k/6. Note that this argument does not give a tight bound on the
power of d, as witnessed by the case of k = 4, when we know from Lemma B.2
that |Egn,1/2,4)[7[4]]| decays as C/d.

In any case, assuming Conjecture B.9 holds, and by the same arguments
presented in this subsection, we obtain that detection is not possible with this
method if n?’q?’(k_l)/d — 0, and this bound gets worse as k grows.

C. Detecting geometry using signed cycles

Let S be a subset of V' and denote k := |S|. Consider a cycle C' C (g), which
is a set of edges forming a closed chain. There are (k — 1)!/2 possible Hamilton
cycles (each vertex is visited exactly once) on S; they are distributed identically
to 0 := {{1,2},{2,3},...,{k—1,k}, {k,1}}. Denote by K¢ the indicator that
the pairs in C' form a cycle of G. Given the adjacency matrix A of G, K¢ can
be expressed by

KC = H Qe.

ecC
Then, the total number of length k& cycles in G, denoted by K (G), can be

written as
Ki(G) = Z Ke.
oc(3).se(%)
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We similarly define the signed cycle and its count by

Ko = H(ae —p) and kg(G)= Z KC.

cec cc(3).5€(})

We again start with estimating the expectation and variance of the signed
cycle statistic in G(n,p).
For G(n,p), again by independence of edges, a signed cycle has expectation
ZEro:
E[kco] = H Ela. — p] = 0.
eeCO

Hence, the expectation of the signed length k cycle statistic in G(n,p) is also
zero:

k 2
Consider two cycles C and C’ of length k. If C' = C’, then

E[r(G(n,p))] = (“) k=D ] 0. (58)

Elkcrc] = E[(kc)?] = E[H (ae —p)z] = ] El(ac —p)*] = (p(1 - p))".

ecC ecC

For C # (', there exists at least one edge e that is in C but not in C’. Hence,

Elkcker] = Ela. — p| E |:I£C/ H (aer — p)] =0.
e’eC\{e}

Therefore, for some C}, , > 0,

2 n! 9
Varli (G(n.p)] = EKCC@%QW) ) | = g Bllre .
n!

= m(ﬁ(l —p))F > Cypn”.

In order to estimate the mean of the signed cycle statistic in G(n,p, d, q), we
additionally need the following lemma concerning the probability of an open
path (i.e., an open chain of edges) in G(n,p, d).

Lemma C.1. In G(n,p,d), any open path of length k has probability p*.

Proof. We prove the claim by induction on the length. For each edge in G(n, p, d),
by definition we have P(i ~ j) = E[a; ;] = p. Suppose we have a path Py =
{{1,2},{2,3},...,{k,k + 1}} on vertices [k + 1]. Then, the probability of the
path is

k
P(Ppy1) =E {H ai7i+1:| .
=1



Noisy high-dimensional random geometric graphs 3569
By conditional independence of the edges and rotation symmetry on sphere,
k k k—1
E{H am‘+1] = E[E [H Qi i+1 wk” = E{E[H i i+1
i=1 i=1 i=1

k—1

=pE [H ai,i+1] = pP(P}).

i=1

wk:| Elag k+1 | Sﬂk]}

Expanding the product of a signed cycle,

Egnpa)[ric] = D (=p)*" Sl( {Ha ] _p|s)

Se2¢ e€S

Since C is a cycle, all proper subsets of C' are a union of independent paths. By

Lemma C.1,
E [H ae] =P(S) =
ecS

for all S C C except for S = C. Hence, the expectation of a signed length k&
cycle in G(n, p, d) satisfies

Eg (n.pa)l#c] {H ae] — k. (60)

ecC

C.1. Signed quadrilaterals

We start with the expected number of signed cycles of length four, which are
called signed quadrilaterals. By (60), the expectation of a signed quadrilateral
C%in G(n,1/2,d) is

4
1
Elkco] = E[a1,2a2,3G3,4a4,1] = E[a1 202 303,404,1] — (5) .
Using Lemma B.3, we have that
E[kco] = 2n.
Hence, by (41),
1 1 1 1
5.2 7 SEgmay, &Kol < S 7
Therefore, for absolute constants C, C’ > 0, we have that
Cn4 4 Cln4 4
L < Elra(G(n,1/2,d,0)) <
d d
Together with (58), we have that
C’n4q4

[E[k4(G(n, 1/2,d,q))] = E[ra(G(n, 1/2))]] <

d
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By (59), we also have that
max{Var[ks(G(n,1/2))], Var[ks(G(n,1/2,d,q))]} > Var[ks(G(n,1/2))] > Cn*

for an absolute constant C' > 0.
Therefore, there is an absolute constant C' such that

(E[5a(G(n,1/2,d, )] — Elsa(G(n, 1/2))>  _ Cn*®
max{Var[rs(G(n,1/2))], Var[ks(G(n,1/2,d,q))]} = d*
This implies that if detection is possible using this method, then we should have
n?q*/d — oo. This is worse than the condition n®q®/d — oo under which signed
triangles can detect.

C.2. General signed cycle

Next we estimate the signed length & cycle count in G(n,p,d, q) with the help
of Lemma C.1.
By Corollary B.7, the probability of a cycle satisfies

Ck
P(C°) — p*| < =22,
P(CY) pl_\/a

Hence, by (60),

C
[Egnpalico]l < 2 (61)
Thus,
& q*n!
[E{si(G(n.p.d.0)]| = la* Bls(Gn.pd))]| < s Botoplicn]
< Ck,pnqu
T Vd

for a constant Cf, .

We cannot find an easy derivation for a lower bound of the variance in
G(n,p,d,q). However, Var[ri(G(n,p))] is already of order Q(n*) which we be-
lieve is also the correct order of Var[xi(G(n,p,d, q))]. Using (59),

max{Var[wy (G(n, p))], Var[si(G(n, p,d, q))]} = Var[ki(G(n, )] = Cypn".

Therefore, for some C},, > 0,

(Elsx(G(n,p,d, )] — Bk (G(n,p))])*  _ Crpng®”
max{Var(rx(G(n, p))), Var(si(G(n,p,d,q)} = d

The above display implies that detection is not possible using the previous
method with a signed length k cycle statistic when n*¢?*/d — 0. Note that
for k > 4 this does not rule out all regions not detectable by signed triangles.
However, based on the computations for signed quadrilaterals, we believe that
the dependence on d in the bound in (61) is not tight. Analogously to Conjec-
ture B.9, we have the following conjecture.
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Conjecture C.2. There exists a constant Cy j, such that

Ch,
[Eg(n.p.) ool < —56-

Assuming Conjecture C.2 holds, detection is not possible with this method
when n2¢®/d — 0. This would imply that all signed cycles have the same detect-
ing power. However, as witnessed by signed quadrilaterals, the above conjecture
is not tight, suggesting that signed triangles yield the best bound.
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