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Abstract: We study the problem of detecting latent geometric structure
in random graphs. To this end, we consider the soft high-dimensional ran-
dom geometric graph G(n, p, d, q), where each of the n vertices corresponds
to an independent random point distributed uniformly on the sphere Sd−1,
and the probability that two vertices are connected by an edge is a decreas-
ing function of the Euclidean distance between the points. The probability
of connection is parametrized by q ∈ [0, 1], with smaller q corresponding
to weaker dependence on the geometry; this can also be interpreted as the
level of noise in the geometric graph. In particular, the model smoothly
interpolates between the hard spherical random geometric graph G(n, p, d)
(corresponding to q = 1) and the Erdős–Rényi model G(n, p) (correspond-
ing to q = 0). We focus on the dense regime (i.e., p is a constant).

We show that if nq → 0 or d � n3q2, then geometry is lost: G(n, p, d, q)
is asymptotically indistinguishable from G(n, p). On the other hand, if d �
n3q6, then the signed triangle statistic provides an asymptotically powerful
test for detecting geometry. These results generalize those of Bubeck, Ding,
Eldan, and Rácz (2016) for G(n, p, d), and give quantitative bounds on
how the noise level affects the dimension threshold for losing geometry.
We also prove analogous results under a related but different distributional
assumption which corresponds to the random dot product graph.
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1. Introduction

Random graphs emerge as canonical models for many real-life applications, in-
cluding social networks, wireless communications, and in the biological sciences.
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Among them, the simplest yet structurally rich model is the Erdős–Rényi ran-
dom graph, which has been studied extensively (e.g., [19, 7]). However, in many
scenarios the independence of edges is an oversimplified assumption and is often
insufficient to capture the subtle relations in complex networks.

A natural extension is to assume an underlying geometric structure. The
graph is then generated according to some dependence on this structure. Due to
their wide applicability, random graphs of this kind have various incarnations in
different fields: random geometric graphs, latent space models, spatial networks,
random connection models, to name a few. We refer the reader to [33] for a
comprehensive theoretical treatment of the subject.

In real-world networks, the geometric space often remains unobserved. Most
of the time, only the graph structure can be obtained rather than the latent
factors that generated the graph. For example, in a social network, it is usually
easy to access the interactions between people but not how these connections are
established. This brings up the natural question of understanding the extent to
which a latent space model is an accurate description. As a first step, it is crucial
to understand when the presence of geometry is even detectable assuming that
the network follows a specific generative model. Mathematically this was first
studied by Devroye, György, Lugosi, and Udina [16] for a particular random
geometric graph equipped with the spherical geometry. They showed that this
random geometric graph becomes indistinguishable from an Erdős–Rényi graph
when the dimension of the sphere goes to infinity. In other words, geometry
is lost in high dimensions. Subsequently, Bubeck, Ding, Eldan, and Rácz [12]
pinpointed the phase transition for testing high-dimensional geometry in dense
random graphs. Our paper builds upon and generalizes this result.

A caveat of the aforementioned works is that the model is restricted to a
“hard geometry” setting, where the existence of an edge is a deterministic func-
tion of the distance between the latent points corresponding to the two vertices.
This assumption overlooks the fact that in reality connections can often have
stochastic dependence on the latent variables. Consequently, the phase transi-
tion in the hard geometry setting happens at dimensions as high as the cube of
the number of vertices, seemingly much larger than what many high-dimensional
statistics theories would consider [43].

Our focus in this paper is to understand the above question in the setting
of soft random geometric graphs, in which the softness can be viewed as noise
in the geometric graph. We are particularly interested in the interplay between
dimensionality and noise in affecting the phenomena of losing geometry in ran-
dom graphs. To this end, we study a particular type of soft random geometric
graph where there is a parameter q ∈ [0, 1] that naturally encodes the level of
noise, correspondingly the strength of geometry. This model is an interpolation
between the hard spherical random geometric graph (corresponding to q = 1)
and the Erdős–Rényi model (corresponding to q = 0). Our main results pro-
vide bounds, as a function of both dimension and geometry strength, of where
the phase transition lies. In particular, these results quantitatively demonstrate
the qualitative phenomenon that the dimension threshold for losing geometry
is smaller for soft random geometric graphs and decreases as a function of noise
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level. We next specify the precise setting of our work, before describing our main
results.

1.1. Random geometric graphs

We first describe the spherical random geometric graph model G(n, p, d) [16,
12]. For a set of n vertices V = [n] := {1, 2, . . . , n}, associate each vertex i
with a point represented by a d-dimensional random vector xi. We assume that
x1, . . . , xn are independently uniformly distributed on the sphere S

d−1 := {x ∈
R

d : ‖x‖ = 1}, where ‖·‖ stands for the Euclidean norm. For a fixed value of
p ∈ [0, 1] that parametrizes the edge density, the graph is defined as follows:
There is an undirected edge between distinct vertices i and j if and only if

〈xi, xj〉 ≥ tp,d, (1)

where 〈·, ·〉 denotes the inner product of two vectors. Equivalently, i and j are
connected by an edge if and only if their Euclidean distance satisfies ‖xi −xj‖ ≤√

2(1 − tp,d). The threshold tp,d, which may depend on p and d, is determined
by the equation

P(〈xi, xj〉 ≥ tp,d) = p,

so that the probability of an edge existing between any pair of distinct vertices
is p. Given the latent vectors x1, . . . , xn, the edges in the graph are deterministic.
The only source of randomness in G(n, p, d) comes from the random points. For
this reason, the random graph defined above is referred to as a hard random
geometric graph.

More generally, the model above may be extended by adding additional
randomness to the edge generating process, given the latent positions. That
is, we connect i and j with probability φ(〈xi, xj〉) for a connection function
φ : R → [0, 1]. Formally, let i ∼ j denote the event that there exists an undi-
rected edge between i and j. Then,

P(i ∼ j | x1, . . . , xn) = φ(〈xi, xj〉). (2)

This is equivalent to connecting i and j with probability φ(1 − ‖xi − xj‖2/2).
When the connection function is an indicator φ(x) = 1{x ≥ tp,d}, we obtain
the hard random geometric graph defined previously. For general connection
functions, which are typically nondecreasing,1 such random graphs are referred
to as soft random geometric graphs.

Denote by K = [ki,j ] the connection matrix defined by ki,j := φ(〈xi, xj〉).
For a simple graph G = (V, E), where V is the set of vertices and E is the set of
edges, let A = [ai,j ] be its adjacency matrix, where ai,j = 1 if i ∼ j and ai,j = 0
otherwise for all i 
= j. Denote by X ∈ Rn×d the matrix whose rows are the
random vectors x1, . . . , xn. For a soft random geometric graph with connection

1In the literature, connection functions often take as their argument the distance ‖xi −xj‖
and hence are a nonincreasing function. Here it is more convenient to take the inner product
〈xi, xj〉 as the argument of φ and hence this is a nondecreasing function.
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Fig 1. A comparison of connection functions.

matrix K, conditioned on X, 1{i ∼ j} is an independent Bernoulli random
variable with parameter ki,j . The distribution of the soft random geometric
graph is then specified by

P(G) = EX

[∏

i<j

ki,j
ai,j (1 − ki,j)

1−ai,j

]
. (3)

We focus on a particular family of soft random geometric graphs parametrized
by the level of dependence on the underlying points. The connection function
in these models is a linear interpolation between a constant p ∈ [0, 1] and a step
function st : R → {0, 1} defined as st(x) := 1{x ≥ t}. Concretely, we consider
the following connection function with a parameter q ∈ [0, 1]:

φq(x) := (1 − q)p + qst(x), (4)

where q controls the strength of geometry in the graph. The threshold t is
similarly determined by setting the probability of an edge to be p:

P(i ∼ j) = E[φq(〈xi, xj〉)] = p,

which gives the same threshold t = tp,d as in the definition of G(n, p, d). We
denote by G(n, p, d, q) the soft random geometric graph equipped with the con-
nection function φq. When q = 1, the graph becomes the hard random geometric
graph G(n, p, d). When q = 0, each edge in the graph is generated independently
with probability p, corresponding to the well-known Erdős–Rényi graph G(n, p)
that does not possess latent geometric structure. As an illustration, φq(x) is
plotted against the connection functions of G(n, p) and G(n, p, d) in Figure 1.

G(n, p, d, q) can also be viewed as a hard random geometric graph with in-
dependent edge resampling. Starting with a sample graph from G(n, p, d), for
each pair of vertices in the graph, we flip a biased coin with the probability of
heads equal to q. If the coin shows heads, we keep the edge/non-edge between
them; otherwise, we resample the connection, creating an edge independently
with probability p. The resampled graph then follows G(n, p, d, q).

1.2. Main results

As the scope of this paper, we are interested in whether it is possible to detect the
underlying geometric structure, which we formulate as the following hypothesis
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testing problem. The null hypothesis is that the observed graph G is a sample
from the Erdős–Rényi model with edge density p:

H0 : G ∼ G(n, p).

The alternative hypothesis is that the graph is a (matching edge density) soft
random geometric graph with dimension d and geometry strength q:

H1 : G ∼ G(n, p, d, q).

The hypothesis testing problem can be understood through guarantees for
the total variation distance between the two distributions. Our findings are
summarized in the following theorem.

Theorem 1.1 (Detecting geometry). Let p ∈ (0, 1) be fixed.

(a) (Impossibility) If nq → 0 or n3q2/d → 0, then

TV(G(n, p), G(n, p, d, q)) → 0.

(b) (Possibility) If n3q6/d → ∞, then

TV(G(n, p), G(n, p, d, q)) → 1.

Theorem 1.1(a) specifies a lower bound for detection: If nq → 0 or d � n3q2

then no test can detect the latent geometric structure; G(n, p, d, q) is asymp-
totically indistinguishable from G(n, p). On the other hand, Theorem 1.1(b)
provides an upper bound: If d 
 n3q6 then there exists an asymptotically pow-
erful test for detecting the latent geometric structure. Specifically, we will show
that the signed triangle statistic of Bubeck et al. [12] (which in particular is
computationally efficient) works in this regime to distinguish the two models.

Recall that G(n, p, d, q) becomes G(n, p, d) in the special case when q = 1. In
this case Theorem 1.1 recovers the results of Bubeck et al. [12], showing that
d � n3 is the dimension threshold for losing geometry in G(n, p, d).

In general, both the impossibility and possibility results in Theorem 1.1 de-
pict a polynomial dependency on q. However, the polynomials have different
powers of q, which implies that there exists a gap between the lower and upper
bounds. We believe that the phase transition for losing geometry in G(n, p, d, q)
happens at a certain power of q. We conjecture that the bound in Theorem 1.1(b)
specified by the signed triangle statistic is tight, that is, when d � n3q6, it is
impossible to distinguish between the two models; in other words, the signed
triangle statistic is (nearly) optimal. In particular, the dimension threshold
d � (nq2p log(1/p))3 determined by the signed triangle statistic is consistent
with the conjectured threshold for the original random geometric graph in the
sparse regime (see [12, Conjecture 1] and [26, after Theorem 1.2]). Specifically,
the authors of [26] showed that signed triangles can in fact distinguish G(n, p, d)
from G(n, p) whenever d 
 (np log(1/p))3 for all p = Ω(1/n) and conjectured
this is optimal for all p ≤ 1/2.

Theorem 1.1 can be displayed graphically by a phase diagram of when the
latent geometric structure can be detected and when it cannot in G(n, p, d, q)
regarding dimension d and geometry strength q. We further introduce a more
convenient parametrization that allows us to visualize the phase diagram.
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Fig 2. Phase diagram for detecting geometry in the soft random geometric graph G(n, p, d, q).
Here d = nα and q = n−β for some α, β > 0.

Corollary 1.2 (Phase diagram). Suppose that d � nα and q � n−β for some
α, β > 0.

(a) If β > 1 or α + 2β > 3, then as n → ∞,

TV(G(n, p), G(n, p, d, q)) → 0.

(b) If α + 6β < 3, then as n → ∞,

TV(G(n, p), G(n, p, d, q)) → 1.

The resulting phase diagram is plotted in the two-dimensional space of α and
β in Figure 2.

1.3. Related work

The study of high-dimensional random geometric graphs originates from the
work of Devroye et al. [16], who showed via the multivariate central limit theo-
rem that geometry is lost in high dimensions. Subsequently, Bubeck et al. [12]
determined that the phase transition of losing geometry happens asymptoti-
cally at dimension d � n3 in the dense setting (for fixed 0 < p < 1). This
work also points out the connection to classical random matrix ensembles,
showing that the Wishart to GOE transition also happens at d � n3 (see
also [23, 11, 37, 36, 14, 28]). Eldan and Mikulincer [17] further extended the
results to an anisotropic setting of the underlying distribution of points; recent
follow-up work of Brennan, Bresler, and Huang [10] precisely determined the
detection threshold in this setting. In the sparse setting, when p vanishes as a
function of n, it is conjectured in [12] that geometry should be lost at much
lower dimensions. Progress towards this conjecture, which in particular breaks
the n3 barrier, was made by Brennan, Bresler, and Nagaraj [8]. This is an active
line of research; after we finished this work, we learned about a new preprint by
Brennan, Bresler, and Huang [9] on understanding the Wishart to GOE tran-
sition when only a subset of entries is revealed. A breakthrough in the sparse
case was made by Liu, Mohanty, Schramm, and Yang [26], who showed that
when p = c/n for a constant c, if d ≥ polylog(n), the total variation distance
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between the two distributions is close to 0. This resolves the conjecture of [12]
up to logarithmic factors.

Soft random geometric graphs arise as natural models in many areas, in-
cluding wireless communications [20], social networks [22], and biological net-
works [41]. Penrose [34] studied the connectivity of soft random geometric graphs
from a modern probability-theoretic perspective, determining the asymptotic
probability of connectivity in fixed dimensions and for a broad class of connec-
tion functions. Dettmann and Georgiou [15] discussed the same questions from
a statistical physics viewpoint in two and three dimensions, and provided a com-
prehensive list of connection functions widely used in practice. Connectivity in
one-dimensional soft random geometric graphs was considered in [45], where the
authors showed that the reason for connectivity is vastly different from the hard
case. Parthasarathy et al. [32] studied a model of perturbed networks, which is
similar to the setting under consideration in our work. A phase transition in
soft random geometric graphs with a critical value of chemical potential was
demonstrated in [31], where a related model was also considered. Our paper can
be viewed as a first step towards understanding the questions described in the
previous paragraph for soft random geometric graphs. In a follow-up paper to
this one [25], we showed a similar phase diagram for detecting high-dimensional
geometry for smooth connection functions. A recent preprint by Bangachev and
Bresler [5] extends the results to geometric and algebraic settings and makes
several advances in this direction.

Following up detecting geometry, a natural next question is how to recover
it; indeed, a line of research focuses on recovering the underlying latent posi-
tions of soft random geometric graphs. In [40], it is shown that latent positions
for random dot product graphs can be estimated consistently using the eigen-
decomposition of the adjacency matrix, when the dimension d is fixed. Several
subsequent works [3, 2, 18] applied similar approaches to kernels and general
connection functions on spheres satisfying certain eigengap conditions.

1.4. Open problems

The most immediate problem that our work leaves open is to understand the
intermediate region not covered by Theorem 1.1. Specifically, the main question
is to determine the exact boundary between the two phases where the limiting
total variation distance transitions from 1 to 0. The existence of an intermediate
phase where detection is information-theoretically possible while no efficient
algorithm exists is also worth studying.

More broadly, a natural direction of future research is to consider these ques-
tions for other connection functions or underlying latent spaces, in order to
understand how the dimension threshold for losing geometry depends on them.

1.5. Outline of the paper

The rest of the paper is organized as follows. In Section 2, we introduce some
notations used throughout the paper and several standard definitions. The im-
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possibility of detection is presented afterwards in Section 3, where the results
of Theorem 1.1(a) in the two regimes are proved. Section 4 consists of the proof
of Theorem 1.1(b) using the signed triangle statistic. Finally, in Section 5 we
show that similar results also hold under a different distributional assumption,
when the underlying latent vectors are i.i.d. standard normal, and we consider
the corresponding random dot product graph.

2. Notations and preliminaries

We use boldface capitals to denote matrices, and their corresponding lower cases
with subscript indices separated by a comma to denote the entries. For example,
a matrix A = [ai,j ] has entry ai,j in its ith row and jth column. We use ◦ to
denote the Hadamard product, which is the entrywise product of two matrices.
Vectors are represented by boldface lowercase letters, and the corresponding
normal font with a subscript index denotes each entry. All vectors are treated
as columns.

Definition 2.1 (f -divergence). Let P and Q be two probability measures on
the same measurable space (Ω, F). Suppose that P is absolutely continuous with
respect to Q. For a convex function f such that f(1) = 0, the f -divergence of
P and Q is defined as

Df (P ‖ Q) := EQ

[
f

(
dP
dQ

)]
=

∫

Ω

f

(
dP
dQ

)
dQ,

where dP
dQ is the Radon–Nikodym derivative of P with respect to Q.

In Definition 2.1, by choosing f(t) = t log t, we have the Kullback–Leibler
(KL) divergence, which we simply refer to as the divergence. Throughout the
paper, log stands for the natural logarithm.

Definition 2.2 (Kullback–Leibler (KL) divergence). Let P and Q be two prob-
ability measures on the same measurable space (Ω, F). Suppose that P is abso-
lutely continuous with respect to Q. The (KL) divergence of P and Q is defined
as

KL(P ‖ Q) := EQ

[
dP
dQ log

dP
dQ

]
=

∫

Ω

log
dP
dQ dP.

Definition 2.3 (Total variation distance). Let P and Q be two probability
measures on a measurable space (Ω, F). The total variation distance between P
and Q is defined as

TV(P, Q) := sup
A∈F

|P(A) − Q(A)|.

The total variation distance can also be viewed as an f -divergence with
f(x) = 1

2 |x−1|. The total variation distance is simply referred to as the distance
where no confusion is caused. From the definition, it is clear that the distance
between P and Q is symmetric. That is,

TV(P, Q) = TV(Q, P).
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We use several inequalities concerning f -divergences in the proofs; we state
these later before they are applied. The divergence and the distance are con-
nected through Pinsker’s inequality.

Proposition 2.4 (Pinsker’s inequality). For probability measures P and Q, we
have that

TV(P, Q) ≤
√

1

2
KL(P ‖ Q).

3. Impossibility of detecting geometry

In this section we prove the impossibility results stated in Theorem 1.1(a). We
start our discussion with some weaker bounds obtained through a simple mixture
argument, and then proceed to the proof of the main impossibility results.

We may view the soft random geometric graph G(n, p, d, q) as an edge-wise
mixture between G(n, p) and G(n, p, d), in the following way. First, we draw two
sample graphs G1 ∼ G(n, p) and G2 ∼ G(n, p, d). We next construct a graph G
using G1, G2, and additional coin flips. Specifically, for every pair of distinct
vertices i and j, we flip an independent biased coin which comes up heads with
probability q. If the coin flip is heads, connect i and j with an edge in G if
and only if they are connected with an edge in G2; otherwise, connect i and j
with an edge in G if and only if they are connected with an edge in G1. This
construction guarantees that G ∼ G(n, p, d, q).

We can obtain two simple bounds directly from this construction. Bubeck
et al. [12, Theorem 1(c)] showed that G(n, p) and G(n, p, d) become indistin-
guishable when d � n3. Thus, as an edge-wise mixture of these two models,
G(n, p, d, q) also cannot be distinguished from G(n, p) in this regime.

Meanwhile, when q 
 1/n2, for any pair (i, j) the probability that the con-
nection between i and j is sampled from G2 is o(1/n2). This implies that the
expected number of edges that are sampled from G2 is o(1). Therefore, by
Markov’s inequality, the probability that there exists an edge which is sampled
from G2 is o(1). Hence, with probability 1 − o(1) we have that G = G1 in
the construction above. Therefore, G(n, p) and G(n, p, d, q) are indistinguishable
when q 
 1/n2. These two arguments are summarized in the following claim.

Claim 3.1. If n3/d → 0 or n2q → 0, then

sup
p∈[0,1]

TV(G(n, p), G(n, p, d, q)) → 0.

Our main result in Theorem 1.1(a) improves on Claim 3.1 by relaxing both of
the conditions and thus proving the impossibility result for a larger parameter
regime. First, notice that the condition n3/d → 0 does not take q into consider-
ation at all; we improve this to the condition n3q2/d → 0. We also improve the
condition n2q → 0 to nq → 0.

As before, by choosing a convenient parametrization, Claim 3.1 translates
into the following corollary picturing a region of a phase diagram.
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Corollary 3.2. Suppose that d � nα and q � n−β for some α, β > 0. If α > 3
or β > 2, then as n → ∞,

sup
p∈[0,1]

TV(G(n, p), G(n, p, d, q)) → 0.

3.1. Impossibility of detection under large noise

In this subsection we show that G(n, p) and G(n, p, d, q) are asymptotically indis-
tinguishable when nq → 0, thus proving Theorem 1.1(a) under this regime. This
shows that when the noise is large enough (i.e., q is small enough), detecting
geometry becomes impossible, regardless of the dimensionality.

For a graph G with adjacency matrix A = [ai,j ], the probability PG(n,p,d,q)(G)
is given in (3) with ki,j = φq(〈xi, xj〉). We can write the probability PG(n,p)(G)
similarly:

PG(n,p)(G) =
∏

i<j

pai,j (1 − p)
1−ai,j . (5)

The divergence of G(n, p) and G(n, p, d, q) can then be written as

KL(G(n, p) ‖ G(n, p, d, q)) = EG(n,p)

[
− log

PG(n,p,d,q)(G)

PG(n,p)(G)

]

= EA

[
− logEX

[∏

i<j

(
ki,j

p

)ai,j
(

1 − ki,j

1 − p

)1−ai,j
]]

,

where the ai,j ’s are independent Bernoulli random variables with parameter p
since the expectation is taken under G ∼ G(n, p). Since − log is convex, by
Jensen’s inequality we have that

KL(G(n, p) ‖ G(n, p, d, q))

≤ EA,X

[
− log

∏

i<j

(
ki,j

p

)ai,j
(

1 − ki,j

1 − p

)1−ai,j
]

= EA,X

[
−

∑

i<j

(
ai,j log

ki,j

p
+ (1 − ai,j) log

1 − ki,j

1 − p

)]

= −
∑

i<j

(
EA[ai,j ]EX

[
log

ki,j

p

]
+ EA[1 − ai,j ]EX

[
log

1 − ki,j

1 − p

])
,

(6)

where the last line is due to linearity of expectation and independence.
Since ai,j ∼ Bern(p), we have E[ai,j ] = p and E[1 − ai,j ] = 1 − p. By the

definition of the connection function in (2) and (4), we have that

ki,j = φq(〈xi, xj〉) =

{
(1 − q)p + q if 〈xi, xj〉 ≥ tp,d,

(1 − q)p otherwise.
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Recall that tp,d is chosen such that P(〈xi, xj〉 ≥ tp,d) = p. Hence, the marginal
distribution of ki,j satisfies ki,j = (1 − q)p + q with probability p and ki,j =
(1 − q)p with probability 1 − p. Therefore, we have that

EX

[
log

ki,j

p

]
= p log

(
1 +

1 − p

p
q

)
+ (1 − p) log(1 − q)

and

EX

[
log

1 − ki,j

1 − p

]
= p log(1 − q) + (1 − p) log

(
1 +

p

1 − p
q

)
.

By the elementary inequality log(1 + x) ≥ x − x2 for x ≥ −1/2, we obtain that
for 0 ≤ q ≤ 1/2,

EX

[
log

ki,j

p

]
≥ −1 − p

p
q2 and EX

[
log

1 − ki,j

1 − p

]
≥ − p

1 − p
q2.

Inserting the above estimates into (6), we conclude that for 0 ≤ q ≤ 1/2,

KL(G(n, p) ‖ G(n, p, d, q)) ≤
(

n

2

)
q2 ≤ 1

2
n2q2. (7)

To be consistent with the main discussion, we turn this upper bound on the
divergence into an upper bound on the distance. An application of Pinsker’s
inequality (Proposition 2.4) combined with (7) proves the following theorem.

Theorem 3.3. For 0 ≤ q ≤ 1/2 we have that

sup
p∈[0,1]

TV(G(n, p), G(n, p, d, q)) ≤ 1

2
nq.

The nq → 0 regime of Theorem 1.1(a) directly follows from Theorem 3.3.

3.2. Impossibility of detecting weak high-dimensional geometry

In this subsection we show that G(n, p) and G(n, p, d, q) are asymptotically in-
distinguishable when n3q2/d → 0, thus proving Theorem 1.1(a) in this regime.
This result thus highlights the interplay between noise and dimensionality in
determining when it is possible to detect geometry.

In order to capture this interplay between noise and dimensionality, we use
several inequalities concerning f -divergences, and we start by recalling these.
The distance (divergence) between two random variables is understood as the
distance (divergence) between their corresponding probability measures. Since
we focus our attention on random graphs without self-loops, the diagonal en-
tries of real symmetric matrices are usually set to zero unless specified. For
the distance (divergence) between two real symmetric random matrices, only
the lower triangular part is considered. We also place notations for distribu-
tions inside the operators E,Var to denote a sample from the corresponding
distribution.
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Proposition 3.4 (Conditioning increases divergence). Let PX and QX be two
probability measures. Let Y be a random variable on the same space and denote
by PX|Y and QX|Y the conditional laws. Then, the f -divergence satisfies

Df (PX ‖ QX) ≤ EY Df (PX|Y ‖ QX|Y ).

Proposition 3.4 is usually referred to as “conditioning increases divergence”
in standard texts (e.g., Theorem 2.2(5) and Remark 4.2 in [35]). Following
the convention widely adopted in the information theory community, we write
KL(PX|Y ‖ QX|Y | PY ) := EY KL(PX|Y ‖ QX|Y ) and call it the conditional
divergence.

Proposition 3.5 (Data processing inequality). For two probability distributions
PX and QX , consider the joint distributions PX,Y = PY |XPX and QX,Y =
PY |XQX with the same conditional law PY |X . Then, the f -divergence of the
marginal distributions PY := EPX

[PY |X ] and QY := EQX
[PY |X ] satisfies

Df (PY ‖ QY ) ≤ Df (PX ‖ QX).

A simple proof of Proposition 3.5 using Jensen’s inequality can be found in
most texts (see, e.g., [35, Theorem 6.2]). For a measurable function g : E → F ,
by choosing PY |X(y | x) = 1{y = g(x)}, we have the following corollary.

Corollary 3.6 (Data processing inequality). Let X, Y ∈ E be two random
variables and let g : E → F be a measurable function. Then, the f -divergence
of the pushforward measures satisfies

Df (g(X) ‖ g(Y )) ≤ Df (X ‖ Y ).

With these preliminaries in place, we now turn to our question of interest.
Let Z ∈ R

n×d be a random matrix with independent standard normal entries.
Then, W := ZZ� ∈ R

n×n has a Wishart distribution Wn(I, d). Let Y contain
the off-diagonals of W scaled by the square root of the dimension, that is,
yi,j := wi,j/

√
d. By the central limit theorem, yi,j converges to a standard

normal random variable as d → ∞. Let V := 1
d diag(W ) consist of the scaled

diagonals; by the law of large numbers, each nonzero entry vi,i converges to 1.
For compactness of presentation, denote by v the vectorized diagonal of V ,
that is, vi := wi,i/d. Let M = [mi,j ] be a zero-diagonal symmetric random
matrix with off-diagonal entries mi,j following independent standard normal
distributions for 1 ≤ i < j ≤ n. Let M ′ and M ′′ be two independent copies
of M .

A standard method to create uniform random vectors on the sphere (which
goes back to [27] and before) is as follows: If z is a standard normal vector, then
ẑ := z/‖z‖ is uniformly distributed in S

d−1. Thus, we can create the random
vectors {xi}n

i=1 using {zi}n
i=1. With the random matrices defined above, the

inner product of xi and xj for i 
= j can be expressed as

〈xi, xj〉 = 〈ẑi, ẑj〉 =
〈zi, zj〉

‖zi‖‖zj‖ =
wi,j√

wi,iwj,j
=

1√
d

yi,j√
vivj

=
1√
d

(V −1/2Y V −1/2)i,j .
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Define the step function stp
(x) := 1{x ≥ tp}, where tp is determined by

E[stp
(N (0, 1))] = p. That is, if we denote the cumulative distribution function

of the standard normal distribution by Φ, then tp = Φ−1(1−p). In what follows,
when we apply a univariate function to a matrix, it is applied entrywise, resulting
in a matrix of the same shape. With this convention, we define two matrices
P = [pi,j ] and Q = [qi,j ] as follows:

P := stp
(M ′)

and

Q := (1−q)stp
(M)+qstp,d

(XX�) = (1−q)stp
(M)+qstp,d

√
d(V −1/2Y V −1/2),

where recall that X ∈ R
n×d is the matrix with ith row equal to xi and that

tp,d is the threshold in (1).
By the definition of G(n, p) and the independence of entries of M ′,

PG(n,p)(G) =
∏

i<j

pai,j (1 − p)1−ai,j = EP

[∏

i<j

p
ai,j

i,j (1 − pi,j)1−ai,j

]
, (8)

where we use the standard convention that 00 = 1. By (4) and the definition of
mi,j , we can write

ki,j = (1 − q)E[stp
(mi,j)] + qstp,d

(〈xi, xj〉) = E[qi,j | xi, xj ].

Then, by (3) and the independence of the mi,j ,

PG(n,p,d,q)(G) = EQ

[∏

i<j

q
ai,j

i,j (1 − qi,j)1−ai,j

]
.

Since G(n, p) and G(n, p, d, q) have the same conditional law given P and Q,
respectively, by Proposition 3.5 we have that

TV(G(n, p), G(n, p, d, q)) ≤ TV(P , Q).

Recall that the total variation distance is only applied to off-diagonal entries.
Equivalently, we can set the diagonals of P and Q to zeros.

Define the zero-diagonal symmetric random matrix B = [bi,j ] with bi,j , 1 ≤
i < j ≤ n, following an independent Bernoulli distribution with parameter q;
the matrix B is also independent of everything else defined previously. We can
then rewrite Q as

Q = EB[(11� − B) ◦ stp
(M) + B ◦ stp,d

√
d(V −1/2Y V −1/2)].

For step functions with parameters t and t′, we have the simple relation: st′(x) =
st(x + t − t′). Hence, we can further express Q as

Q = EB[(11� − B) ◦ stp
(M) + B ◦ stp

(V −1/2Y V −1/2 + (tp − tp,d

√
d)11�)]

= EB[stp
((11� − B) ◦ M + B ◦ (V −1/2Y V −1/2 + (tp − tp,d

√
d)11�))].
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Let δp,d := tp−tp,d

√
d and H := (11�−B)◦M +B◦(V −1/2Y V −1/2+δp,d11�).

With this notation we have that Q = EB[stp
(H)].

Applying Proposition 3.4 gives

TV(P , Q) = TV(stp
(M ′),EB[stp

(H)]) ≤ EB TV(stp
(M ′), stp

(H)).

Further, by Corollary 3.6 we have that

EB TV(stp
(M ′), stp

(H)) ≤ EB TV(M ′, H).

Let H ′ := (11� − B) ◦ M ′′ + B ◦ V −1/2M ′′V −1/2. By the triangle inequality
of the distance (see, e.g., [24, (4.6)]),

EB TV(M ′, H) ≤ EB TV(M ′, H ′) + EB TV(H ′, H).

By Proposition 3.4 again,

EB TV(H ′, H) ≤ EB,V TV(H ′, H).

For a fixed value of B, both H and H ′ consist of entries from two matrices.
For the (i, j)th entry, if bi,j = 0, the entries are from M ′′ and M respectively;
if bi,j = 1, they come from V −1/2Y V −1/2 + δp,d11� and V −1/2M ′′V −1/2

respectively. In the latter case, when V is fixed, we can multiply both entries
by

√
vi,ivj,j , and the distance between the new matrices stays the same by

definition. That is, if we let H ′′ := (11� −B)◦M +B◦(Y +δp,dV 1/211�V 1/2),
then

EB,V TV(H ′, H) = EB,V TV(M ′′, H ′′).

Putting the bounds from above together, we obtain that

TV(G(n, p), G(n, p, d, q)) ≤ EB TV(M ′, H ′)︸ ︷︷ ︸
E1

+EB,V TV(M ′′, H ′′)︸ ︷︷ ︸
E2

. (9)

The first term on the right depicts the distance caused by normalization, while
the second one characterizes the level of independence between edges. We deal
with the two expectations E1 and E2 in (9) separately in the following two
parts. Subsequently, we bring our estimates together to conclude at the end of
the section.

3.2.1. Upper bound for the first expectation

By Pinsker’s inequality and Proposition 3.4,

E1 ≤ EB

√
1

2
KL(M ′ ‖ H ′) ≤ EB

√
1

2
EV KL(M ′ ‖ H ′)

≤
√

1

2
EB,V KL(M ′ ‖ H ′),
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where the last inequality is by Jensen’s inequality.
Given B and V , the entries of H ′ are independent. Since the entries of M ′

are also independent, we have that

KL(M ′ ‖ H ′) =
∑

i<j

bi,j KL(m′
i,j ‖ (vivj)−1/2m′′

i,j),

where we use the facts that m′
i,j and m′′

i,j are identically distributed and that
the divergence of identical distributions is zero. Therefore,

EB,V KL(M ′ ‖ H ′) =
∑

i<j

E[bi,j ]EV KL(m′
i,j ‖ (vivj)−1/2m′′

i,j)

= q
∑

i<j

EV KL(m′
i,j ‖ (vivj)−1/2m′′

i,j).

Since m′′
i,j is a standard normal random variable, (vivj)−1/2m′′

i,j is a mean zero

normal random variable with variance (vivj)−1.
The divergence of two normal distributions has an explicit formula given by

the following proposition, which appears in most standard texts (see, e.g., [6,
exercise 1.30]).

Proposition 3.7. For two normal distributions with means μ1, μ2 and vari-
ances σ2

1 , σ2
2,

KL(N (μ1, σ2
1) ‖ N (μ2, σ2

2)) = log
σ2

σ1
+

σ2
1 + (μ1 − μ2)2

2σ2
2

− 1

2
.

Applying Proposition 3.7, we have that

KL(m′
i,j ‖ (vivj)−1/2m′′

i,j) =
1

2
(− log(vivj) + vivj − 1)

=
1

2
(− log vi − log vj + vivj − 1).

Since zi,j ’s are independent standard normal random variables, vid =
∑d

j=1 z2
i,j

has a χ2(d) distribution. We utilize a lower bound on the expected logarithm of
a chi-square random variable shown by the following proposition.

Proposition 3.8. Suppose that X is a χ2(k) random variable. Then,

E[log X] ≥ log k − 2

k
.

Proof. We have the following explicit formula for the expected logarithm of X
(see, e.g., [6, (B.30)]):

E[log X] = ψ

(
k

2

)
− log

1

2
,
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where ψ is the digamma function defined by ψ(x) := Γ′(x)/Γ(x). The digamma
function has the well-known upper and lower bounds (see [1, (2.2)] and references
therein):

log x − 1

x
≤ ψ(x) ≤ log x − 1

2x
. (10)

By the lower bound in (10),

E[log X] ≥ log
k

2
− 2

k
− log

1

2
= log k − 2

k
.

The claim is hence proved.

Using E[vi] = E[vid]/d = 1 and the estimate in Proposition 3.8, we have that

EV KL(m′
i,j ‖ (vivj)−1/2m′′

i,j)

=
1

2
(−E[log(vid)] + log d − E[log(vjd)] + log d + E[vi]E[vj ] − 1)

= log d − E[log(vid)] ≤ 2

d
.

Therefore, we conclude that

E1 ≤
√

1

2
q

∑

i<j

EV KL(m′
i,j ‖ (vivj)−1/2m′′

i,j) ≤
√(

n

2

)
q

d
≤

√
n2q

2d
. (11)

3.2.2. Upper bound for the second expectation

We now turn to estimating E2 from (9). We first bound the divergence of M ′′

and H ′′, assuming that B and V are fixed, and then provide an estimate for
the distance between them through Pinsker’s inequality (Proposition 2.4). The
benefit of resorting to the divergence is the chain rule property. Our strategy
resembles that of Bubeck and Ganguly [11].

We state the chain rule for the divergence as the following proposition.

Proposition 3.9 (Chain rule). For joint distributions PX,Y = PX|Y PY and
QX,Y = QX|Y QY , the chain rule for the divergence reads

KL(PX,Y ‖ QX,Y ) = KL(PY ‖ QY ) + KL(PX|Y ‖ QX|Y | PY ).

For an n × n matrix A = [ai,j ], denote its kth order leading principal subma-
trix by Ak and let ak = (ak,1, . . . , ak,k−1) be the vector of the first k − 1 entries
in the kth row. We also use Zk to denote the matrix composed of the first k
rows of Z ∈ Rn×d and zk to denote the kth row of Z.

Until the end of this section, we assume that B and V are fixed. We similarly
use H ′′

k and M ′′
k to denote the first k rows of H ′′ and M ′′, and m′′

k and h′′
k to
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denote the kth row, respectively. Applying the chain rule to the divergence of
H ′′

k+1 and M ′′
k+1, we obtain

KL(H ′′
k+1 ‖ M ′′

k+1) = KL(H ′′
k ‖ M ′′

k )

+ EH′′

k
KL(h′′

k+1 | H ′′
k ‖ m′′

k+1 | M ′′
k = H ′′

k ).

Further, since m′′
k+1 is independent of M ′′

k ,

EH′′

k
KL(h′′

k+1 | H ′′
k ‖ m′′

k+1 | M ′′
k = H ′′

k ) = EH′′

k
KL(h′′

k+1 | H ′′
k ‖ m′′

k+1).

By Proposition 3.4,

EH′′

k
KL(h′′

k+1 | H ′′
k ‖ m′′

k+1) ≤ EH′′

k ,Zk
KL(h′′

k+1 | H ′′
k , Zk ‖ m′′

k+1)

= EZk
KL(h′′

k+1 | Zk ‖ m′′
k+1).

The equality holds since h′′
k+1 only depends on Zk and is independent of other

randomness in H ′′
k . Since zk+1 is a standard normal random vector, conditioned

on Zk, Zkzk+1/
√

d is distributed as N (0, ZkZ�
k /d). By definition, m′′

k+1 has
a N (0, Ik) distribution. Let Dk := diag(bk+1) be the diagonal matrix whose
entries are the elements of bk+1. Since

h′′
k+1 = (1 − bk+1) ◦ mk+1 + bk+1 ◦ (yk+1 + δp,d

√
vk+1V

1/2
k 1)

= (1 − bk+1) ◦ mk+1 + bk+1 ◦
(

Zkzk+1√
d

+ δp,d
√

vk+1V
1/2

k 1

)
,

the distribution of h′′
k+1, given Zk, Dk, and Vk, is N (μk, Σk) with

μk = δp,d
√

vk+1DkV
1/2

k 1

and

Σk = Dk

(
ZkZk

�

d

)
Dk

�+(Ik−Dk)(Ik − Dk)
�

= Dk

(
ZkZk

�

d

)
Dk+Ik−Dk.

As a general form of Proposition 3.7, we have an explicit formula for the
divergence of two d-dimensional normal distributions (see, e.g., [43, Exercise
15.13(b)]), stated as follows.

Proposition 3.10. For two d-dimensional multivariate normal distributions
with means μ1, μ2 and covariance matrices Σ1, Σ2, we have that

KL(N (μ1, Σ1) ‖ N (μ2, Σ2))

=
1

2

(
(μ1 − μ2)

�
Σ−1

2 (μ1 − μ2) + log
det (Σ2)

det (Σ1)
+ Tr(Σ−1

2 Σ1) − d

)
.

Since m′′
k+1 ∼ N (0, Ik), applying Proposition 3.10, we have that

EV ,Zk
KL(h′′

k+1 | Zk ‖ m′′
k+1)

=
1

2
EV ,Zk

[δ2
p,dvk+11�D2

kVk1 − log det (Σk) + Tr(Σk) − k]

=
1

2
EZk,Vk,vk+1

[δ2
p,dvk+1 Tr(DkVk) − log det (Σk) + Tr(Σk) − k].
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Since vkd has a χ2(d) distribution, E[vk] = E[vkd]/d = 1. Further, since V and
D are independent, by linearity of expectation we have that

EV ,Zk
KL(h′′

k+1 | Zk ‖ m′′
k+1) =

1

2
(δ2

p,d Tr(Dk) + EZk
[− log det(Σk)]

+ EZk
Tr(Σk) − k).

Additionally,

EZk
Tr(Σk) = Tr

(
Dk EZk

[
ZkZ�

k

d

]
Dk

)
+ k − Tr(Dk)

= Tr(Dk) + k − Tr(Dk) = k.

Therefore, we obtain that

EV ,Zk
KL(h′′

k+1 | Zk ‖ m′′
k+1) =

1

2
(δ2

p,d Tr(Dk) + EZk
[− log det (Σk)]). (12)

Next, we derive upper bounds for the two terms in the above display.
An upper bound on |δp,d| = |tp,d

√
d − tp| is shown in [16], which is stated as

the following lemma.

Lemma 3.11 ([16, Lemma 1]). Assume 0 < p ≤ 1/2 and d ≥ max{(2/p)2, 27}.
Then

|tp,d

√
d − tp| ≤ Up,d,

where
Up,d = κp

√
log d/d + κ′

p/
√

d

with κp = 2
√

2Φ−1(1 − p) and κ′
p = 2

√
2π exp((Φ−1(1 − p/2))2/2).

However, the log d factor above is an artifact due to the use of concentration
inequalities; if we were to apply the lemma directly, it would show up in our
final bounds. To address this, we present an improved result, which not only
removes the log d factor in the upper bound but also tightens the upper bound
such that it decays as 1/d instead of 1/

√
d.

Lemma 3.12. Assume 0 < p ≤ 1/2. There exists a constant Cp such that

|tp,d

√
d − tp| ≤ Cp

d
.

Proof. By rotational invariance, fixing x1 = e1 and letting x2 = ẑ := z/‖z‖
with z ∼ N (0, Id), we have that

P(〈x1, x2〉 ≥ tp,d) = P

(
z1

‖z‖ ≥ tp,d

)
= p.

Then, by symmetry of the distribution, we have

P

(
z1

‖z‖ ≤ −tp,d

)
= p.
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Therefore,

P

(
z2

1∑d
i=1 z2

i

≥ t2
p,d

)
= 2p.

Since z2
1 ∼ χ2(1) and

∑d
i=2 z2

i ∼ χ2(d − 1) are independent, z2
1/

∑d
i=1 z2

i has
a Beta( 1

2 , d−1
2 ) distribution. For ease of presentation, we switch from dimension

d to considering dimension d+3. By the probability density function of the beta
distribution we have that

2p = P

(
z2

1∑d+3
i=1 z2

i

≥ t2
p,d+3

)
=

Γ
(

d+3
2

)

Γ
(

1
2

)
Γ

(
d+2

2

)
∫ 1

t2
p,d+3

x−1/2(1 − x)d/2 dx.

The change of variables x = z/d, together with some rearranging, yields

Γ
(

d+2
2

)√
d√

2Γ
(

d+3
2

)2p =
1√

2Γ
(

1
2

)
∫ d

t2
p,d+3d

z−1/2

(
1 − z

d

)d/2

dz. (13)

Wendel’s double inequality (see [44, equation (7)]) states that for 0 < s < 1,

(
z

z + s

)1−s

≤ Γ(z + s)

zsΓ(z)
≤ 1.

Then, by setting s = 1/2 and z = d/2, we have that

1√
d/2

≤ Γ
(

d
2

)

Γ
(

d+1
2

) ≤
√

2(d + 1)

d
. (14)

Thus,

Γ
(

d+2
2

)√
d√

2Γ
(

d+3
2

) ≥
√

d

d + 2
≥ 1 − 2

d + 2
,

where the last inequality is due to the fact that (1−x)1/2 ≥ 1−x for 0 ≤ x ≤ 1.

Since

log

(
1 − z

d

)d/2

=
d

2
log

(
1 − z

d

)
≤ d

2

(
−z

d

)
= −z

2
, (15)

we have

1√
2Γ

(
1
2

)
∫ d

t2
p,d+3d

z−1/2

(
1 − z

d

)d/2

dz ≤ 1√
2Γ

(
1
2

)
∫ d

t2
p,d+3d

z−1/2e−z/2 dz

≤ 1√
2Γ

(
1
2

)
∫ +∞

t2
p,d+3d

z−1/2e−z/2 dz

= 1 − F

(
t2
p,d+3d;

1

2
,

1

2

)
,
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where F (x; a, b) is the cumulative distribution function of the gamma distri-
bution Gamma(a, b). Therefore, putting these inequalities back into (13), we
obtain that

2

(
1 − 2

d + 2

)
p ≤ 1 − F

(
dt2

p,d+3;
1

2
,

1

2

)
.

Since Gamma( 1
2 , 1

2 ) is also the distribution of a squared standard normal random
variable, (

1 − 2

d + 2

)
p ≤ 1 − Φ(tp,d+3

√
d).

By the monotonicity of the cumulative distribution function, we have that

tp,d+3

√
d ≤ Φ−1

(
1 − p +

2p

d + 2

)
.

Since Φ−1(x) is convex for 1/2 ≤ x < 1, we have that for 0 < y < 1 − x,

Φ−1(x + y) ≤ Φ−1(x) + y(Φ−1)′(x + y).

Let ϕ be the probability density function of the standard normal distribution.
Then,

(Φ−1)′(x + y) =
1

ϕ(Φ−1(x + y))
=

√
2π exp

(
1

2
(Φ−1(x + y))2

)
.

Additionally, for d ≥ 2,

Φ−1

(
1 − p +

2p

d + 2

)
≤ Φ−1

(
1 − p

2

)
= tp/2.

Therefore, for d ≥ 2 we have that

tp,d+3

√
d ≤ tp +

2p

d + 2

√
2π exp

(
1

2
t2
p/2

)
.

Then,

tp,d+3

√
d + 3 ≤

√
1 +

3

d

(
tp +

2
√

2π

d + 2
exp

(
1

2
t2
p/2

))

≤
(

1 +
3

2d

)(
tp +

2
√

2π

d + 2
exp

(
1

2
t2
p/2

))
.

By assuming d ≥ 6,

tp,d

√
d ≤

(
1 +

3

2(d − 3)

)(
tp +

2
√

2π

d − 1
exp

(
1

2
t2
p/2

))

≤
(

1 +
3

d

)(
tp +

4
√

2π

d
exp

(
1

2
t2
p/2

))
≤ tp +

Cp

d
,
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where Cp = 3(tp + 2
√

2π exp(1
2 t2

p/2)).
Similarly, we also have

P

(
z2

1∑d+3
i=1 z2

i

≤ t2
p,d+3

)
= 1 − 2p,

which gives

Γ
(

d+2
2

)√
d√

2Γ
(

d+3
2

) (1 − 2p) =
1√

2Γ
(

1
2

)
∫ dt2

p,d+3

0

x−1/2

(
1 − x

d

)d/2

dx.

Employing (14) and (15) again, we have
(

1 − 2

d + 2

)
(1 − 2p) ≤ F

(
dt2

p,d+3;
1

2
,

1

2

)
.

Then,

Φ(tp,d+3

√
d) ≥ 1 − 1

2

(
1 −

(
1 − 2

d + 2

)
(1 − 2p)

)
= 1 − p − 1 − 2p

d + 2
.

By convexity of Φ−1(x) in (1/2, 1), for 1/2 < x + y < 1,

Φ−1(x + y) ≥ Φ−1(x) + y
√

2π exp

(
1

2
(Φ−1(x))2

)
.

Therefore, we have that

tp,d+3

√
d + 3 ≥ tp,d+3

√
d ≥ tp − (1 − 2p)

d + 2

√
2π exp

(
1

2
t2
p

)
.

Hence, by assuming d ≥ 6,

tp,d

√
d ≥ tp − Cp

d
,

where Cp = 2(1 − 2p)
√

2π exp(1
2 t2

p).

Remark 3.13. From the proof of Lemma 3.12, we see that the lemma actually
specifies a convergence rate for the quantile function of a scaled beta distribution
to that of a gamma distribution. More general claims and a Berry–Esseen type
result can be derived with the same techniques.

Corollary 3.14. For p ∈ (0, 1), there exists a constant Cp such that

δ2
p,d ≤ Cp

d2
.

Proof. Applying Lemma 3.12 for 0 < p ≤ 1/2, we have that there exists a
constant C ′

p such that

δ2
p,d ≤ C ′

p

d2
.
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As before, by fixing x1 = e1 and letting x2 = ẑ := z/‖z‖ with z ∼ N (0, Id),
we have

P(〈x1, x2〉 ≥ tp,d) = P

(
z1

‖z‖ ≥ tp,d

)
= p.

Since z1/‖z‖ has a symmetric distribution, we have tp,d ≥ 0 for 0 < p ≤ 1/2
and tp,d ≤ 0 for 1/2 ≤ p < 1. When 1/2 ≤ p < 1,

P

(
z1

‖z‖ ≥ −tp,d

)
= P

(
− z1

‖z‖ ≤ tp,d

)
= P

(
z1

‖z‖ ≤ tp,d

)
= 1 − p.

Applying Lemma 3.12 again, we obtain that there exists a constant C ′′
p such

that

(−tp,d

√
d − Φ−1(p))2 = (tp,d

√
d + Φ−1(p))2 = (tp,d

√
d − Φ−1(1 − p))2 ≤ C ′′

p

d2
.

By taking Cp = C ′
p + C ′′

p , the claim directly follows.

We now return to bounding the two terms in (12), starting with the first
one. Let � := Tr(Dk) be the number of nonzero entries in bk+1. Then, � is a
function of B, is independent of everything else, and has a binomial distribution.
Corollary 3.14 gives

δ2
p,d Tr(Dk) ≤ Cp�

d2
. (16)

Next, we turn to the upper bound for the second term in (12). Let Π be
a permutation matrix such that bk+1Π = (1, . . . , 1, 0, . . . , 0) becomes a vector
with its first � entries equal to 1 and the remaining k − � entries equal to 0.
Then,

Π�ΣkΠ =

(
S O

O Ik−�

)
,

where O is the all-zero matrix and S is distributed the same as Z�Z
�
� /d. Recall

that Z� ∈ R
�×d is the matrix of the first � rows of Z, which has independent

standard normal entries. Since Π is a permutation matrix, its determinant is
either 1 or −1. Therefore, we have that

EZk
[− log det(Σk)] = EZk

[− log det(Π�ΣkΠ)] = EZk
[− log det(S)]

= EZ�

[
− log det

(
Z�Z�

�

d

)]
.

(17)

So our main focus is bounding (17) from above.
The study of covariance matrices has attracted broad interests in probability

and statistics communities. As an example, Cai, Liang, and Zhou [13] showed a
central limit theorem (CLT) for the log-determinant of such matrices. An upper
bound of the expected negative log-determinant is given in [11] under a general
log-concave measure assumption, serving as the major step towards an entropic
CLT. We first state their result as the following lemma.



3534 S. Liu and M. Z. Rácz

Lemma 3.15 ([11, Lemma 2]). Let Z be an n×d random matrix with i.i.d. en-
tries from a log-concave probability measure μ with zero mean and unit variance.
There exists an absolute constant C > 0 such that for d ≥ Cn2,

E

[
− log det

(
ZZ�

d

)]
≤ C

(√
n

d
+

n2

d

)
.

A direct application of Lemma 3.15 results in an upper bound that is loose
for our analysis. It is possible to leverage the normal distribution assumption
to obtain an improved estimate, which we implement in Lemma 3.16 below.
Applying the lemma results in a better upper bound on the distance.

Lemma 3.16. Consider an n × d matrix Z with independent standard normal
entries. For d ≥ 2n,

E

[
− log det

(
ZZ�

d

)]
≤ 4n

d
+

n2

d
.

Remark 3.17. Compared to Lemma 3.15, the improvement thanks to Lem-
ma 3.16 is twofold. First, the upper bound removes the

√
n/d term, which

would be the leading term in our analysis, replacing it with an n/d term. Sec-
ond, the inequality holds for d ≥ 2n rather than d ≥ Cn2. We shall see how
this improvement is reflected in the upper bound on the distance in the final
remarks.

Proof of Lemma 3.16. For a random matrix W following a Wishart distribution
Wn(Σ, d), the expectation of its log-determinant has an explicit formula (see,
e.g., [6, (B.81)]):

E[log det(W )] =
n∑

i=1

ψ

(
d − i + 1

2

)
+ n log 2 + log det(Σ), (18)

where ψ is the digamma function. Applying (18) to ZZ�, we obtain

E

[
− log det

(
ZZ�

d

)]
= −E[log det(ZZ�)] + n log d

=

n∑

i=1

−ψ

(
d − i + 1

2

)
+ n log

d

2
.

By the lower bound on the digamma function in (10),

E

[
− log det

(
ZZ�

d

)]
≤

n∑

i=1

(
2

d − i + 1
− log

d − i + 1

2

)
+ n log

d

2

=

n∑

i=1

2

d − i + 1
︸ ︷︷ ︸

S1

−
n∑

i=1

log(d − i + 1)

︸ ︷︷ ︸
S2

+n log d.
(19)
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The rest of the proof is devoted to bounding the two sums S1 and S2 from above
separately.

By the elementary inequality x ≤ − log(1−x), S1 can be bounded from above
by

S1 ≤ 2

n∑

i=1

− log

(
1 − 1

d − i + 1

)
= −2 log

( n∏

i=1

d − i

d − i + 1

)
= −2 log

(
1 − n

d

)
.

Further, by − log(1 − x) ≤ 2x for 0 ≤ x ≤ 1/2, we have that for d ≥ 2n,

S1 ≤ −2 log

(
1 − n

d

)
≤ 4n

d
. (20)

For S2, we show a lower bound by constructing a continuous integral. Since
log(d − i + 1) ≥ log(d − x) for all x ∈ [i − 1, i),

S2 ≥
∫ n

0

log(d−x) dx = (x log x−x)
∣∣∣
d

d−n
= −n+d log d−(d−n) log(d−n). (21)

Bringing the inequalities (20) and (21) into (19), we conclude that for d ≥ 2n,

E

[
− log det

(
ZZ�

d

)]
≤ 4n

d
+ n − d log d + (d − n) log(d − n) + n log d

=
4n

d
+ n + (d − n) log

(
1 − n

d

)

≤ 4n

d
+ n + (d − n)

(
−n

d

)

=
4n

d
+

n2

d
.

The lemma is hence established.

As a consequence of Lemma 3.16, there is an absolute constant C > 0 (we
can take C = 5), such that for d ≥ 2n ≥ 2k ≥ 2�,

E

[
− log det

(
Z�Z

�
�

d

)]
≤ C�2

d
. (22)

Plugging the estimates in (16) and (22) into (12), we get that for d ≥ 2n,

EV ,H′′

k
KL(h′′

k+1 | H ′′
k ‖ m′′

k+1) ≤ EV ,Zk
KL(h′′

k+1 | Zk ‖ m′′
k+1) ≤ Cp

�

d2
+ C

�2

d
(23)

for constants C, Cp.

Since bi,j has an independent Bernoulli distribution, � =
∑k

j=1 bk+1,j follows

a binomial distribution Bin(k, q). Hence, we have E[�] = kq, and E[�2] can be
bounded from above by

E[�2] = Var[�] + E[�]2 = kq(1 − q) + (kq)2 ≤ kq + k2q2.
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Therefore, by taking the expectation over B in (23), we obtain that for d ≥ 2n,

EB,V ,H′′

k
KL(h′′

k+1 | H ′′
k ‖ m′′

k+1) ≤ Cp
E[�]

d2
+ C

E[�2]

d

≤ Cp
kq

d2
+ C

(
kq

d
+

k2q2

d

)
.

An iterative application of the chain rule yields

EB,V KL(H ′′ ‖ M ′′) = EB,V

[n−1∑

k=0

EH′′

k
KL(h′′

k+1 | H ′′
k ‖ m′′

k+1)

]

=

n−1∑

k=0

EB,V ,H′′

k
KL(h′′

k+1 | H ′′
k ‖ m′′

k+1).

Therefore, for d ≥ 2n,

EB,V KL(H ′′ ‖ M ′′) ≤
n−1∑

k=0

(
Cp

kq

d2
+ C

(
kq

d
+

k2q2

d

))

≤ Cp
n2q

d2
+ C

(
n2q

d
+

n3q2

d

)
,

(24)

for some C, Cp < ∞.
By Pinsker’s inequality (Proposition 2.4) and Jensen’s inequality, we have

that

E2 := EB,V TV(M ′′, H ′′) ≤ EB,V

√
1

2
KL(H ′′ ‖ M ′′)

≤
√

1

2
EB,V KL(H ′′ ‖ M ′′).

Hence, using (24) we conclude that there exist constants C, Cp < ∞ such that
for d ≥ 2n,

E2 ≤ Cp

√
n2q

d2
+ C

(√
n2q

d
+

√
n3q2

d

)
. (25)

3.2.3. Concluding the proof

Plugging the estimates in (11) and (25) into (9), we have proven that there exist
constants C, Cp such that for d ≥ 2n,

TV(G(n, p), G(n, p, d, q)) ≤ Cp

√
n2q

d2
+ C

(√
n2q

d
+

√
n3q2

d

)
. (26)

We now explain why the n3q2/d → 0 regime of Theorem 1.1(a) follows. First,
note that n3q2/d = (nq)2n/d. Thus, if we were to have d < 2n, then n3q2/d → 0
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implies that nq → 0, and under this assumption we have already shown in
Section 3.1 that the conclusion of Theorem 1.1(a) holds. So we may assume
that d ≥ 2n, in which case the bound in (26) holds. Then, n3q2/d → 0 implies
that the last term in (26) goes to 0. For the second term, note that n2q/d =
(n4q2/d2)1/2 ≤ (n3q2/d)1/2, where we used that d ≥ n, and so this term also
vanishes. This implies that the first term vanishes as well.

Remark 3.18. Using Lemma 3.15 in the place of Lemma 3.16 and following the
same derivations, we would similarly obtain that for constants C ′, C ′

p, when
d ≥ C ′n2,

TV(G(n, p), G(n, p, d, q)) ≤ C ′
p

√
n2q

d2
+ C ′

(
4

√
n3q

d
+

√
n3q2

d

)
.

In this case, the dominating term becomes 4
√

n3q/d, resulting in a worse bound
than (26), and hence the conclusion follows only in a smaller parameter regime.

Remark 3.19. Utilizing Lemma 3.16, an upper bound of the total variation
distance between Wishart and GOE is readily available. Applying chain rule
directly to the divergence between Y and M , we conclude that for an absolute
constant C > 0,

TV(Y , M) ≤ C

√
n3

d
.

This result removes the first term and log factors of Theorem 2 in [11] in this
special case, and coincides with the exact formula given by Rácz and Richey [37]
up to a multiplicative constant.

4. Detecting geometry using signed triangles

In this section, we show when detecting geometry in G(n, p, d, q) is possible
and how to detect it. In particular, we demonstrate that the signed triangle
statistic, proposed by Bubeck et al. [12], can be used to detect latent geometric
structure whenever n3q6/d → ∞, thus proving Theorem 1.1(b). Our strategy is
to bound the expectation and variance of signed triangle statistic in G(n, p) and
G(n, p, d, q) respectively, and then apply Chebyshev’s inequality.

Consider a simple graph G = (V, E), where V is the set of vertices and
E ⊂

(
V
2

)
is the set of edges. For a set S, we use

(
S
k

)
to denote the collection of

all subsets of S with cardinality k. Let A = [ai,j ] be the adjacency matrix of G

and write ae := ai,j for any edge e = {i, j} ∈
(

V
2

)
. Let H = (S, F ) be another

graph with S ⊂ V and F ⊂
(

S
2

)
. Define IH|G to be the indicator of H being a

subgraph of G. When the graph G is clear from the context, we simply write
IH instead of IH|G. Then,

IH = 1{F ⊂ E} =
∏

e∈F

ae.
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Further, for a constant p ∈ [0, 1], let

λH :=
∏

e∈F

(ae − p)

be the signed indicator of the subgraph H.
We first state a lemma that connects the expected signed indicator in

G(n, p, d, q) to that in G(n, p, d).

Lemma 4.1. Let H = (S, F ) be a fixed graph. The signed indicator satisfies

EG(n,p,d,q)[λH ] = q|F |
EG(n,p,d)[λH ].

Proof. By conditioning on X, we have

EG(n,p,d,q)[λH ] = EX

[
E

[∏

e∈F

(ae − p)

∣∣∣∣ X

]]
= EX

[∏

e∈F

E[ae − p | X]

]
,

where the last equality is by conditional independence of edges.
Given xi and xj , ai,j is a Bernoulli random variable with parameter

ki,j = (1 − q)p + qstp,d
(〈xi, xj〉).

Hence,

E[ai,j−p | X] = (1−p)ki,j+(−p)(1−ki,j) = ki,j−p = q(stp,d
(〈xi, xj〉)−p). (27)

Therefore,

EG(n,p,d,q)[λH ] = EX

[ ∏

{i,j}∈F

q(stp,d
(〈xi, xj〉) − p)

]

= q|F |
EX

[ ∏

{i,j}∈F

(stp,d
(〈xi, xj〉) − p)

]
.

(28)

On the other hand, for a hard random geometric graph G(n, p, d),

EG(n,p,d)[λH ] = E

[∏

e∈F

(ae − p)

]
= EX

[ ∏

{i,j}∈F

(stp,d
(〈xi, xj〉) − p)

]
.

The claim directly follows.

We first consider the graph H = (S, F ) being a complete graph on three
vertices, namely a triangle. Since in this case the subgraph H is fully determined
by its vertex set S, we denote TS := IH to emphasize the dependency. Given
the adjacency matrix A of G, TS can be expressed as

TS =
∏

{i,j}⊂S

ai,j .
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Then, the total number triangles in G, denoted by T3(G), can be written as

T3(G) :=
∑

S∈(V

3 )

TS .

The signed triangle and its count in G, following the proposal by Bubeck et
al. [12], are defined as

τ{i,j,k} :=
∏

e⊂{i,j,k}
(ae − p) and τ3(G) :=

∑

{i,j,k}⊂V

τ{i,j,k}.

For a sample random graph G with edge density p, τ3(G) is called the signed
triangle statistic.

To simplify our presentation, for random graphs with edge density p, we let

ai,j := ai,j − E[ai,j ] = ai,j − p and si,j := stp,d
(〈xi, xj〉) − p.

For G(n, p), by the analyses in [12, Section 3.1], we have that

E[τ3(G(n, p))] = 0 and Var[τ3(G(n, p))] =

(
n

3

)
p3(1 − p)3.

We analyze the expectation and variance of the signed triangle statistic in
G(n, p, d, q) in the following two subsections. Various estimates in the previous
work [12] largely simplify our calculations. In addition, for expository purposes,
we show that the estimates on the expectation and variance are tight up to
constants, and that natural generalizations of signed triangles—signed cycles
and signed cliques—are unlikely to improve the detection boundary, both in the
special case when p = 1/2. Details are provided in Supplementary Material.

4.1. Estimating the expectation

Consider the events

EΛ := {〈x1, x2〉 ≥ tp,d, 〈x1, x3〉 ≥ tp,d} (29)

and

E∆ := {〈x1, x2〉 ≥ tp,d, 〈x2, x3〉 ≥ tp,d, 〈x3, x1〉 ≥ tp,d}. (30)

By rotation invariance on the sphere, we can fix x1 = e1. Then,

P(EΛ) = P(〈x1, x2〉 ≥ tp,d, 〈x1, x3〉 ≥ tp,d) = P(〈e1, x2〉 ≥ tp,d, 〈e1, x3〉 ≥ tp,d)

= P(〈e1, x2〉 ≥ tp,d)P(〈e1, x3〉 ≥ tp,d) = p2.

The following technical lemma from [12] provides a lower bound on the proba-
bility of E∆.
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Lemma 4.2 ([12, Lemma 1]). For a fixed p ∈ (0, 1), there exists a Cp > 0 such
that for all d ≥ 1/Cp,

P(E∆) ≥ p3

(
1 +

Cp√
d

)
.

By (28), the expectation of a signed triangle can be written as

EG(n,p,d,q)[τ{1,2,3}]

= q3
EX [(stp,d

(〈x1, x2〉) − p)(stp,d
(〈x2, x3〉) − p)(stp,d

(〈x3, x1〉) − p)]

= q3(P(E∆) − 3pP(EΛ) + 2p3) = q3(P(E∆) − p3).

Using Lemma 4.2, we have that

EG(n,p,d,q)[τ{1,2,3}] ≥ Cpq3

√
d

.

Therefore, we conclude that there exists a Cp > 0 depending only on p such
that for d ≥ 1/Cp,

EG(n,p,d,q)[τ3(G)] ≥ Cpn3q3

√
d

. (31)

4.2. Estimating the variance

The variance of τ3(G) for G ∼ G(n, p, d, q) satisfies

Var[τ3(G(n, p, d, q))] = E[τ3(G)2] − E[τ3(G)]2

= E

[( ∑

{i,j,k}∈V

τ{i,j,k}

)2]
−

( ∑

{i,j,k}∈V

E[τ{i,j,k}]

)2

.

Expanding the squares of sums and by linearity of expectation, we can decom-
pose the variance into one summation of variances and three summations of
covariances; they are grouped by the number of shared vertices. Since the vari-
ances or the covariances are identically distributed within each group, we can
rewrite them as

Var[τ3(G(n, p, d, q))] =

(
n

3

)
V{1,2,3},{1,2,3} +

(
n

4

)(
4

2

)
V{1,2,3},{1,2,4}

+

(
n

5

)(
5

3

)(
3

1

)
V{1,2,3},{1,4,5}

+

(
n

6

)(
6

3

)
V{1,2,3},{4,5,6},

(32)

where

V{i,j,k},{i′,j′,k′} := E[τ{i,j,k}τ{i′,j′,k′}] − E[τ{i,j,k}]E[τ{i′,j′,k′}]
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and the coefficients arise from simple combinatorial computations. We bound
the variance and covariances in the following parts respectively.

The signed triangles with vertex sets {1, 2, 3} and {4, 5, 6} are independent.
Hence,

V{1,2,3},{4,5,6} = 0.

For two triangles sharing a single vertex, by rotation invariance, we have

E[τ{1,2,3}τ{1,4,5}] = E[E[τ{1,2,3}τ{1,4,5} | x1]] = E[E[τ{1,2,3} | x1]E[τ{1,4,5} | x1]]

= E[E[τ{1,2,3}]E[τ{1,4,5}]] = E[τ{1,2,3}]E[τ{1,4,5}].

Thus, we have
V{1,2,3},{1,4,5} = 0.

For two triangles with exactly the same vertices,

E[(τ{1,2,3})2] = E[a2
1,2a2

2,3a2
3,1] = EX [E[a2

1,2 | X]E[a2
2,3 | X]E[a2

3,1 | X]] ≤ 1.

Hence,
V{1,2,3},{1,2,3} ≤ E[(τ{1,2,3})2] ≤ 1.

As a last step, for two triangles sharing two vertices,

E[τ{1,2,3}τ{1,2,4}]

= EX [E[a2
1,2 | X]E[a2,3 | X]E[a3,1 | X]E[a2,4 | X]E[a4,1 | X]]

≤ EX [E[a2,3 | X]E[a3,1 | X]E[a2,4 | X]E[a4,1 | X]]

= q4
EX [s2,3s3,1s2,4s4,1].

Further by conditioning on x1, x2, we have

EX [s2,3s3,1s2,4s4,1] = Ex1,x2 [Ex3 [s2,3s3,1 | x1, x2]Ex4 [s2,4s4,1 | x1, x2]]

= Ex1,x2 [Ex3 [s2,3s3,1 | x1, x2]2].

A bound in [12, Lemma 4] implies that

Ex1,x2 [Ex3 [s2,3s3,1 | x1, x2]2] ≤ π2

d
. (33)

Thus, we have that

E[τ{1,2,3}τ{1,2,4}] ≤ π2q4

d
.

Therefore, we establish that

V{1,2,3},{1,2,4} ≤ E[τ{1,2,3}τ{1,2,4}] ≤ π2q4

d
.

Inserting the above bounds into (32), we conclude that for an absolute con-
stant C > 0,

Var[τ3(G(n, p, d, q))] ≤ C

(
n3 +

n4q4

d

)
.
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4.3. Concluding the proof

From the previous analyses, for a fixed p ∈ (0, 1), there exist constants Cp > 0
and C < ∞ such that

EG(n,p)[τ3(G)] = 0, EG(n,p,d,q)[τ3(G)] ≥ Cpn3q3

√
d

and

Vm := max{Var[τ3(G(n, p))],Var[τ3(G(n, p, d, q))]} ≤ C

(
n3 +

n4q4

d

)
.

Let ∆ := E[τ3(G(n, p, d, q))]. Chebyshev’s inequality implies that for a con-
stant Cp,

P

(
τ3(G(n, p, d, q)) ≤ 1

2
∆

)
≤ 4Vm

∆2
≤ Cp

2

(
d

n3q6
+

1

n2q2

)

and

P

(
τ3(G(n, p)) ≥ 1

2
∆

)
≤ 4Vm

∆2
≤ Cp

2

(
d

n3q6
+

1

n2q2

)
.

Therefore, we conclude that

TV(G(n, p), G(n, p, d, q))

≥ P

(
τ3(G(n, p, d, q)) ≥ 1

2
∆

)
− P

(
τ3(G(n, p)) ≥ 1

2
∆

)

≥ 1 − Cp

(
d

n3q6
+

1

n2q2

)
.

Theorem 1.1(b) directly follows. Note that when n3q6/d → ∞, we also have
that n2q2 = (n3q3)2/3 ≥ (n3q3 · q3/d)2/3 → ∞, since q3/d ≤ 1.

5. Random dot product graphs

The starting point of this paper is the random geometric graph G(n, p, d), where
the underlying points x1, . . . , xn ∈ Rd are distributed uniformly on the unit
sphere. Our main object of study, G(n, p, d, q), builds upon G(n, p, d). Note that
in G(n, p, d) there is an edge between two nodes if and only if the dot product
of the corresponding latent vectors is greater than some threshold (see (1)).
Models with this property are known as random dot product graphs and have
been widely studied [38, 4, 39].

A natural variant of G(n, p, d) is to take x1, . . . , xn ∈ Rd to be i.i.d. standard
normal vectors and to consider the corresponding random dot product graph.
In this section we extend our results to this variant; the proofs are kept brief,
highlighting only the differences.
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At a high level, since the standard normal distribution in R
d is concentrated

on the sphere of radius
√

d, there should also be similar phase transition phe-
nomena under this setting. However, there are important technical differences,
due to the errors caused by normalization and different thresholds, so we do not
simply reduce it to the previous setting. Please see Remark 5.2 below for details
on this point.

Let x1, . . . , xn ∈ R
d be i.i.d. standard normal vectors and define the threshold

up,d by
P(〈xi, xj〉 ≥ up,d) = p.

Consider the connection function

φq(x) = (1 − q)p + qsup,d
(x).

We denote the random graph generated using x1, . . . , xn ∈ R
d and this connec-

tion function by Ġ(n, p, d, q). The results of Theorem 1.1 also hold under this
setting, which we state as the following theorem.

Theorem 5.1 (Detecting geometry). Let p ∈ (0, 1) be fixed.

(a) (Impossibility) If nq → 0 or n3q2/d → 0, then

TV(G(n, p), Ġ(n, p, d, q)) → 0.

(b) (Possibility) If n3q6/d → ∞, then

TV(G(n, p), Ġ(n, p, d, q)) → 1.

Remark 5.2. There are two main differences between G(n, p, d, q) and Ġ(n, p, d, q).

(1) First, the coordinates of xi ∈ R
d are independent in Ġ(n, p, d, q); this is

not the case for G(n, p, d, q).
(2) On the other hand, while x1, . . . , xn ∈ R

d have rotation symmetry in both
models, in Ġ(n, p, d, q) these vectors no longer have unit norm, which must
be accounted for.

The first property simplifies the proof of Theorem 5.1(a); however, the second
one adds complexity to the proof of Theorem 5.1(b).

Since the proofs are quite similar to those for Theorem 1.1, we only sketch
them, highlighting the important adaptations.

5.1. Proof of part (a)

The proof in the regime nq → 0, which is presented in Section 3.1, only uses the
property that P(〈xi, xj〉 ≥ tp,d) = p. Hence, it holds directly for Ġ(n, p, d, q) as
well.

Now we consider the other regime. If we define R := (1 − q)stp
(M) +

qsup,d
(ZZ�), following the same arguments, we have

TV(G(n, p), Ġ(n, p, d, q)) ≤ TV(P , R).
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Note that for 1 ≤ i < j ≤ n,

〈zi, zj〉 = wi,j =
√

dyi,j .

Then we have R = (1 − q)stp
(M) + qsup,d/

√
d(Y ). Let H := (11� − B) ◦ M +

B ◦(Y +(tp −up,d/
√

d)11�). We can implement the same procedure and obtain
the upper bound on the distance, which gives

TV(P , R) ≤ EB TV(M ′, H).

The challenge is that we have to bound |up,d/
√

d−tp| from above. The following
lemma can be derived as a corollary of Lemma 13.4 in [17].

Lemma 5.3. There exists a constant Cp, depending only on p, such that

|up,d/
√

d − tp| ≤ Cp√
d

.

Plugging this bound into the proof, we conclude that there exist constants
C, Cp, such that for d ≥ 2n,

TV(G(n, p), Ġ(n, p, d, q)) ≤ Cp

√
n2q

d
+ C

(√
n2q

d
+

√
n3q2

d

)
,

similarly to (26). The conclusion follows.

5.2. Proof of part (b)

Compared to the random geometric graph, the proofs are similar but require
the estimation of several quantities under a different setting.

We first present technical lemmas for bounding the probabilities of EΛ and
E∆ defined as counterparts of (29) and (30) respectively, which are derived as
corollaries from [17].

Lemma 5.4 (Corollary of [17, Lemma 13.10]). For a fixed p ∈ (0, 1), we have

P(EΛ) − p2 ≤ 8

d
.

Lemma 5.5 (Corollary of [17, Theorem 13.5]). For a fixed p ∈ (0, 1), there
exist some constants Cp, C ′

p, C ′′
p > 0 depending only on p such that for d ≥ Cp,

C ′
p√
d

≤ P(E∆) − p3 ≤ C ′′
p√
d

.

Plugging Lemma 5.4 and Lemma 5.5 into the estimate for E[τ{1,2,3}], we
obtain the same lower bounds as for G(n, p, d, q).

For estimating the variance, we still have

V{1,2,3},{4,5,6} = 0 and V{1,2,3},{1,2,3} ≤ 1.
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However, bounding V{1,2,3},{1,2,4} and V{1,2,3},{1,4,5} requires the following esti-
mate, which follows from the proof of [17, Lemma 13.11]:

Ex1,x2 [Ex3 [s2,3s3,1]2] ≤ 80

d
. (34)

Replacing (33) with (34), we obtain the same result for V{1,2,3},{1,2,4}.
For two signed triangles sharing only one vertex, we have

E[τ{1,2,3}τ{1,4,5}] = E[E[τ{1,2,3}τ{1,4,5} | x1]] = E[E[τ{1,2,3} | x1]2]

= Ex1 [Ex2,x3 [E[a1,2a2,3a3,1 | x1, x2, x3]]2]

= q6
Ex1 [Ex2,x3 [s1,2s2,3s3,1]2].

By Jensen’s inequality,

Ex1 [Ex2,x3 [s1,2s2,3s3,1]2] ≤ Ex1,x2 [Ex3 [s1,2s2,3s3,1]2]

= Ex1,x2 [s2
1,2 Ex3 [s2,3s3,1]2]

≤ Ex1,x2 [Ex3 [s2,3s3,1]2].

Using (34) again, we obtain

E[τ{1,2,3}τ{1,4,5}] ≤ 80q6

d
.

Therefore, similarly

V{1,2,3},{1,4,5} ≤ E[τ{1,2,3}τ{1,4,5}] ≤ 80q6

d
.

Inserting the above estimates into (32), we conclude that for an absolute
constant C,

Var[τ3(Ġ(n, p, d, q))] ≤ C

(
n3 +

n4q4

d
+

n5q6

d

)
.

From the previous analyses, for a fixed p ∈ (0, 1), there exist constants Cp > 0
and C < ∞ such that

EG(n,p)[τ3(G)] = 0, EĠ(n,p,d,q)[τ3(G)] ≥ Cpn3q3

√
d

and

Vm := max{Var[τ3

(
G(n, p))],Var[τ3(Ġ(n, p, d, q))]} ≤ C

(
n3 +

n4q4

d
+

n5q6

d

)
.

Repeating the same arguments as before, we conclude that there exists a con-
stant Cp such that for d ≥ Cp,

TV(G(n, p), Ġ(n, p, d, q)) ≥ 1 − Cp

(
d

n3q6
+

1

n2q2
+

1

n

)
.



3546 S. Liu and M. Z. Rácz

Supplementary Material

In this supplement, we explore whether the bounds of detecting geometry can
be improved using generalizations of signed triangles. In particular, we study
two families of natural extensions, signed cliques and signed cycles. We pro-
vide evidence suggesting that the detection boundary cannot be improved with
them.

A. Detecting geometry using signed triangles in the case p = 1

2

In this case, due to the symmetry of the distribution, the threshold satisfies
t1/2,d = 0, which no longer depends on the dimension. As a result, the vectors
that have an inner product greater than or equal to the threshold with a fixed
vector lie in a half space instead of a cone, thus allowing a projection argument.
Utilizing the explicit distribution function in the projected space, we are able to
obtain asymptotically tight bounds for both the expectation and the variance
of the signed triangle statistic. Some results can also be derived as corollaries
from more general statements in [17]. However, we include our much simplified
proofs for completeness and as preparations for further claims.

Recall that the threshold tp,d is determined by E[stp,d
(〈xi, xj〉)]=P(〈xi, xj〉 ≥

tp,d)=p. When p is set to 1/2, by symmetry of the distribution, we have tp,d = 0.
Then, the connection probability becomes

ki,j =
1

2
(1 − q) + qs0(〈xi, xj〉).

Let x1, x2, x3 be independent random vectors uniformly in S
d−1. Consider

the event

E∆ := {〈x1, x2〉 ≥ 0, 〈x2, x3〉 ≥ 0, 〈x3, x1〉 ≥ 0}. (35)

We first give asymptotically tight bounds for P(E∆) via a geometric argument.

A.1. Estimating the expectation

Before starting our main discussion, we present a proposition which gives an
explicit probability density function for the angle between two uniform random
vectors in Sd−1. Note that the probability density expressed by sin and gamma
functions was also derived in [21, 12] using different approaches.

For two vectors x, y ∈ R
d, let θ(x, y) ∈ [0, π] stand for the angle between

them. Then,

θ(x, y) = arccos
〈x, y〉

‖x‖‖y‖ .

If we further assume that x, y ∈ Sd−1, then

θ(x, y) = arccos〈x, y〉.



Noisy high-dimensional random geometric graphs 3547

Proposition A.1. The angle between two uniformly random vectors in S
d−1

has the probability density function

h(θ) =
1

ζ
sind−2 θ, θ ∈ [0, π],

where

ζ :=

∫ π

0

sind−2 θ =

√
πΓ

(
d−1

2

)

Γ
(

d
2

)

is the normalization factor.

Proof. Let z ∼ N (0, Id). Then, ẑ := z/‖z‖ is a uniform random point in
S

d−1 (see [29], also [30, 27]). By rotation invariance on the sphere, we can fix
one vector to be e1, the first vector of the standard basis in R

d. Then, the
cumulative distribution function of the angle satisfies

F (θ) = P(arccos 〈e1, ẑ〉 ≤ θ) = P

(
z1

‖z‖ ≥ cos θ

)
.

For θ ∈ [0, π/2],

P

(
z1

‖z‖ ≥ cos θ

)
=

1

2
P

(
z2

1∑d
i=1 z2

i

≥ cos2 θ

)
.

Since the zi’s are standard normal random variables, z2
1 ∼ χ2(1) and

∑d
i=2 z2

i ∼
χ2(d−1) are independent. Therefore, z2

1/
∑d

i=1 z2
i is distributed as Beta(1

2 , d−1
2 ).

By the definition of the beta distribution,

P

(
z2

1∑d
i=1 z2

i

≥ cos2 θ

)
=

1

B
(

1
2 , d−1

2

)
∫ 1

cos2 θ

x−1/2(1 − x)d/2−3/2 dx,

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the beta function. Taking the derivative
with respect to θ, we have that

h(θ) =
1

2B
(

1
2 , d−1

2

) (−(cos θ)−1(1 − cos2 θ)d/2−3/2)(−2 cos θ sin θ)

=
Γ

(
d
2

)
√

πΓ
(

d−1
2

) sind−2 θ.

For θ ∈ [π/2, π],

P

(
z1

‖z‖ ≥ cos θ

)
= P

(
− z1

‖z‖ ≤ cos(π − θ)

)
= P

(
z1

‖z‖ ≤ cos(π − θ)

)
,

where the last equality is by symmetry of the distribution. Hence,

h(θ) =
Γ

(
d
2

)
√

πΓ
(

d−1
2

) sind−2(π − θ) =
Γ

(
d
2

)
√

πΓ
(

d−1
2

) sind−2 θ.
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Lemma A.2. For E∆ defined in (35), we have

1

2π
√

2π
· 1√

d
≤ P(E∆) − 1

8
≤ 1

4
√

π
· 1√

d
.

Proof. We fix the plane determined by x1 and x2, and then project x3 onto
this plane. Since no direction in this plane is unique, the projected direction of
x3 is uniform on the circle centered at the origin. Conditioning on x1 and x2,
{〈x1, x3〉 ≥ 0, 〈x2, x3〉 ≥ 0} happens if and only if the projection of x3 falls into
the intersection of two half spaces with normal vectors x1 and x2. Therefore,

P(〈x1, x3〉 ≥ 0, 〈x2, x3〉 ≥ 0 | x1, x2) =
π − θ(x1, x2)

2π
.

Hence, the joint probability

P(E∆) = E[P(〈x1, x3〉 ≥ 0, 〈x2, x3〉 ≥ 0 | x1, x2) | 〈x1, x2〉 ≥ 0]

= E

[
π − θ(x1, x2)

2π
1

{
θ(x1, x2) ≤ π

2

}]
.

The density of θ(x1, x2) is given by Proposition A.1. Then,

P(E∆) =

∫ π/2

0

π − θ

2π
· 1

ζ
sind−2 θ dθ =

∫ π/2

0

π/2 + θ

2π
· 1

ζ
cosd−2 θ dθ

=
1

2ζ

∫ π/2

0

(
1

2
+

θ

π

)
cosd−2 θ dθ =

1

8
+

1

2πζ

∫ π/2

0

θ cosd−2 θ dθ.

The elementary bounds 2θ/π ≤ sin θ ≤ θ, which hold for θ ∈ [0, π/2], give

sin θ ≤ θ ≤ π

2
sin θ. (36)

Thus, multiplying by cosd−2 θ and taking the integral, we have

∫ π/2

0

sin θ cosd−2 θ dθ ≤
∫ π/2

0

θ cosd−2 θ dθ ≤ π

2

∫ π/2

0

sin θ cosd−2 θ dθ.

A simple calculation gives

∫ π/2

0

sin θ cosd−2 θ dθ = −
∫ π/2

0

cosd−2 θ d cos θ =

∫ 1

0

td−2 dt =
td−1

d − 1

∣∣∣∣
1

0

=
1

d − 1
.

The above display together with the definition of ζ yields

1

ζ

∫ π/2

0

sin θ cosd−2 θ dθ =
Γ

(
d
2

)
√

π(d − 1)Γ
(

d−1
2

) =
Γ

(
d
2

)

2
√

πΓ
(

d+1
2

) .
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By (14), √
2√
d

=
1√
d/2

≤ Γ
(

d
2

)

Γ
(

d+1
2

) ≤
√

d + 1

d
· 1√

d/2
≤ 2√

d
.

Putting all the above together, we obtain

1

8
+

1

2π
√

2π
· 1√

d
≤ P(E∆) ≤ 1

8
+

1

4
√

π
· 1√

d
.

With Lemma A.2, we are able to estimate the expectation of the signed
triangle statistic in G(n, 1/2, d, q).

Lemma A.3. There exist absolute constants C, C ′ > 0 such that

Cn3q3

√
d

≤ E[τ3(G(n, 1/2, d, q))] ≤ C ′n3q3

√
d

.

Proof. By (28), the expectation of the signed triangle τ{1,2,3} satisfies

EG(n,1/2,d,q)[τ{1,2,3}]

= q3
E

[(
s0(〈x1, x2〉) − 1

2

)(
s0(〈x2, x3〉) − 1

2

)(
s0(〈x3, x1〉) − 1

2

)]
.

By rotation invariance on the sphere, we may fix the direction of x1 to be e1.
Then,

E[s0(〈x1, x2〉)s0(〈x1, x3〉)] = P(〈x1, x2〉 ≥ 0, 〈x1, x3〉 ≥ 0)

= P(〈e1, x2〉 ≥ 0, 〈e1, x3〉 ≥ 0)

= P(〈e1, x2〉 ≥ 0)P(〈e1, x3〉 ≥ 0) =
1

2
· 1

2
=

1

4
.

Thus, by expanding the product in (A.1) and using the linearity of expectation,
we obtain

EG(n,1/2,d,q)[τ{1,2,3}] = q3

(
P(E∆) − 1

8

)
.

Inserting Lemma A.2 yields

1

2π
√

2π
· q3

√
d

≤ EG(n,1/2,d,q)[τ{1,2,3}] ≤ 1

4
√

π
· q3

√
d

. (37)

Since all signed triangle indicators are identically distributed,

EG(n,1/2,d,q)[τ3(G)] =
∑

{i,j,k}⊂V

EG(n,1/2,d,q)[τ{i,j,k}] =

(
n

3

)
EG(n,1/2,d,q)[τ{1,2,3}].

The claim directly follows.
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A.2. Estimating the variance

We perform similar analysis for each term of (32) in the special case when p =
1/2. The benefit is that by utilizing the symmetry, we obtain matching bounds
for the variance, hence showing that the estimates are tight up to constants.

Two signed triangles that do not share any vertices are independent, which
implies that

E[τ{1,2,3}τ{4,5,6}] = E[τ{1,2,3}]E[τ{4,5,6}].

Thus, we have that

V{1,2,3},{4,5,6} = 0.

For two signed triangles sharing a single vertex, by rotation invariance on
the sphere, if we fix the direction of the shared vertex to be e1, they are also
independent, which gives

E[τ{1,2,3}τ{1,4,5}] = E[E[τ{1,2,3}τ{1,4,5} | x1]] = E[E[τ{1,2,3} | x1]E[τ{1,4,5} | x1]]

= E[E[τ{1,2,3}]E[τ{1,4,5}]] = E[τ{1,2,3}]E[τ{1,4,5}].

Therefore,

V{1,2,3},{1,4,5} = 0.

For two signed triangles on exactly the same vertices,

E[(τ{1,2,3})2] = E[a2
1,2a2

2,3a2
3,1] = EX [E[a2

1,2 | X]E[a2
2,3 | X]E[a2

3,1 | X]].

When p = 1/2, a1,2 is either 1/2 or −1/2. Hence, a2
1,2 = 1/4 regardless of X

and other randomness of a1,2. Therefore,

E[(τ{1,2,3})2] =
1

64
,

which combined with (37) gives that for d ≥ 8/π,

1

128
≤ 1

64
− 1

16π
· q6

d
≤ V{1,2,3},{1,2,3} ≤ 1

64
− 1

8π3
· q6

d
≤ 1

64
.

That is, V{1,2,3},{1,2,4} is bounded between absolute constants.

As a last step, for a pair of triangles sharing exactly two vertices, the fol-
lowing lemma provides asymptotically tight bounds for the expectation of their
product.

Lemma A.4. The expectation of two signed triangles sharing two vertices in
G(n, 1/2, d, q) satisfies

1

16π2
· q4

d
≤ EG(n,1/2,d,q)[τ{1,2,3}τ{1,2,4}] ≤ 1

64
· q4

d
.
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Proof. By the definition of signed triangles and conditional independence of
edges given X,

E[τ{1,2,3}τ{1,2,4}] = E[a2
1,2a2,3a3,1a2,4a4,1] = EX [E[a2

1,2a2,3a3,1a2,4a4,1 | X]]

= EX [E[a2
1,2 | X]E[a2,3 | X]E[a3,1 | X]E[a2,4 | X]E[a4,1 | X]]

=
1

4
EX [E[a2,3 | X]E[a3,1 | X]E[a2,4 | X]E[a4,1 | X]].

Further by (27) and rotation invariance, we have

E[τ{1,2,3}τ{1,2,4}] =
q4

4
EX [s2,3s3,1s2,4s4,1]

=
q4

4
Ex1,x2 [Ex3,x4 [s2,3s3,1s2,4s4,1 | x1, x2]]

=
q4

4
Ex1,x2 [Ex3 [s2,3s3,1 | x1, x2]Ex4 [s2,4s4,1 | x1, x2]]

=
q4

4
Ex1,x2 [Ex3 [s2,3s3,1 | x1, x2]2].

(38)

The last equality holds since x3 and x4 are identically distributed. Recall that
θ(x1, x2) denotes the angle between x1 and x2. The conditional expectation
can be written as

Ex3 [s2,3s3,1 | x1, x2] = Ex3

[(
s0(〈x2, x3〉) − 1

2

)(
s0(〈x3, x1〉) − 1

2

)]

= P(〈x2, x3〉 ≥ 0, 〈x3, x1〉 ≥ 0 | x1, x2) − 1

4

=
π − θ(x1, x2)

2π
− 1

4
=

π/2 − θ(x1, x2)

2π
.

Therefore, we have

E[τ{1,2,3}τ{1,2,4}] =
q4

4
E

[(
π/2 − θ(x1, x2)

2π

)2]
. (39)

Using Proposition A.1, we can write

E

[(
π/2 − θ(x1, x2)

2π

)2]
=

∫ π

0

(
π/2 − θ

2π

)2

h(θ) dθ

=
1

ζ

∫ π

0

(π/2 − θ)2

4π2
sind−2 θ dθ

=
1

ζ

∫ π/2

−π/2

θ2

4π2
cosd−2 θ dθ

=
1

2π2ζ

∫ π/2

0

θ2 cosd−2 θ dθ,
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where the last line follows from a change of variables and the function inside
the integral being even. Applying (36), we have

1

2π2ζ

∫ π/2

0

sin2 θ cosd−2 θ dθ ≤ E

[(
π/2 − θ(x1, x2)

2π

)2]

≤ 1

8ζ

∫ π/2

0

sin2 θ cosd−2 θ dθ.

By the definition of ζ,

∫ π/2

0

cosd−2 θ =

∫ π/2

0

sind−2 θ =
ζ

2
=

√
πΓ

(
d−1

2

)

2Γ
(

d
2

) . (40)

Since

∫ π/2

0

sin2 θ cosd−2 θ dθ =

∫ π/2

0

(1 − cos2 θ) cosd−2 θ dθ

=

∫ π/2

0

cosd−2 θ dθ −
∫ π/2

0

cosd θ dθ,

by (40) and Γ(z + 1) = zΓ(z),

2

ζ

∫ π/2

0

sin2 θ cosd−2 θ dθ = 1 −
∫ π/2

0
cosd θ dθ

∫ π/2

0
cosd−2 θ dθ

= 1 − Γ
(

d+1
2

)

Γ
(

d+2
2

) · Γ
(

d
2

)

Γ
(

d−1
2

)

= 1 − d − 1

d
=

1

d
.

Putting them together, we obtain

1

4π2
· 1

d
≤ E

[(
π/2 − θ(x1, x2)

2π

)2]
≤ 1

16
· 1

d
. (41)

The claim directly follows from combining (39) and (41).

Lemma A.4 together with (37) shows that when q ≤ 1/2, for absolute con-
stants C, C ′ > 0,

Cq4

d
≤ V{1,2,3},{1,2,4} ≤ EG(n,1/2,d,q)[τ{1,2,3}τ{1,2,4}] ≤ C ′q4

d
.

Putting the estimates together, we conclude with the following lemma.

Lemma A.5. There exist absolute constants C, C ′ > 0 such that for d ≥ 8/π
and q ≤ 1/2,

C

(
n3 +

n4q4

d

)
≤ Var[τ3(G(n, 1/2, d, q))] ≤ C ′

(
n3 +

n4q4

d

)
.
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A.3. Concluding the proof for p = 1

2

Combining the estimates in Lemma A.3 and Lemma A.5, we establish that for
absolute constants C > 0 and C ′ < ∞,

E[τ3(G(n, 1/2))] = 0, E[τ3(G(n, 1/2, d, q))] ≥ Cn3q3

√
d

and

Vm := max{Var[τ3(G(n, 1/2))],Var[τ3(G(n, 1/2, d, q))]} ≤ C ′
(

n3 +
n4q4

d

)
.

Let ∆ := E[τ3(G(n, 1/2, d, q))]. Chebyshev’s inequality implies that for an abso-
lute constant C,

P

(
τ3(G(n, 1/2, d, q)) ≤ 1

2
∆

)
≤ 4Vm

∆2
≤ C

2

(
d

n3q6
+

1

n2q2

)

and

P

(
τ3(G(n, 1/2)) ≥ 1

2
∆

)
≤ 4Vm

∆2
≤ C

2

(
d

n3q6
+

1

n2q2

)
.

Therefore, we conclude that

TV(G(n, 1/2), G(n, 1/2, d, q))

≥ P

(
τ3(G(n, 1/2, d, q)) ≥ 1

2
∆

)
− P

(
τ3(G(n, 1/2)) ≥ 1

2
∆

)

≥ 1 − C

(
d

n3q6
+

1

n2q2

)
.

Theorem 1.1(b) in the case when p = 1/2 directly follows. Note that when
n3q6/d → ∞, we also have that n2q2 = (n3q3)2/3 ≥ (n3q3 · q3/d)2/3 → ∞, since
q3/d ≤ 1.

B. Detecting geometry using signed cliques

The method introduced in Section 4 proves an upper bound for detecting the
geometry in G(n, p, d, q), while providing an asymptotically powerful test that
is computationally efficient. However, the upper bound for detection does not
match the lower bound in Theorem 1.1(a). As a final remark, we explore whether
the possibility results for detection can be improved via generalizations of the
signed triangle statistic. Two families of extensions are studied: signed cliques
and signed cycles. We show by special examples of subgraphs on four vertices,
as well as those on a fixed number of vertices, that it is unlikely the detection
boundary can be improved with them.

A first generalization of the signed triangle is by increasing the number of
vertices in the set, resulting in the signed induced complete subgraphs of G,
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which we simply call signed cliques. Similar to the case of the signed triangle,
let S ⊂ V be a subset of vertices of G with cardinality |S| = k, where k ≤ n
is fixed. TS is again the indicator that the edges over the vertex set S form a
clique; namely, the induced subgraph is complete. Given the adjacency matrix
A of G, TS can be expressed by

TS =
∏

{i,j}⊂S

ai,j .

Then, the total number of cliques of size k in G, denoted by Tk(G), can be
written as

Tk(G) :=
∑

S∈(V

k
)

TS .

For a constant p ∈ [0, 1], define the signed indicator and its count in G by

τS :=
∏

{i,j}⊂S

(ai,j − p) and τk(G) :=
∑

S∈(V

k
)

τS .

We first compute the expectation and variance of the signed clique statistic
in G(n, p).

For G(n, p), since all edges are independent,

E[τ[k]] =
∏

{i,j}⊂[k]

E[ai,j − p] = 0.

Then, the expectation of the signed clique statistic satisfies

E[τk(G(n, p))] =

(
n

k

)
E[τ[k]] = 0. (42)

Consider two sets of vertices S and S′ of size k. If S = S′, we have

E[τSτS′ ] = E[(τS)2] =
∏

{i,j}∈V1

E[(ai,j − p)2] = (p(1 − p))(
k

2) = (p(1 − p))k(k−1)/2.

For S 
= S′, there is at least one signed edge that appears in τS but not in τS′ .
Suppose this edge is e. By the independence of edges in G(n, p),

E[τSτS′ ] = E[ae − p]E

[
τS′

∏

e′∈(S

2)\{e}

(ae′ − p)

]
= 0.

Therefore, the variance of the signed clique statistic in G(n, p) satisfies

Var[τk(G(n, p))] = E

[( ∑

S∈(n

k
)

τS

)2]
=

∑

S,S′∈(n

k
)

E[τSτS′ ] =

(
n

k

)
E[(τ[k])

2]

=

(
n

k

)
(p(1 − p))k(k−1)/2 ≥ Ck,pnk

(43)

for some Ck,p > 0 depending only on k and p.
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B.1. Signed quadruples

For G(n, p, d, q), we start with the special case when p = 1/2 and consider the
signed clique on four vertices, called the signed quadruple.

Theorem B.1. There exists an absolute constant C such that

|E[τ4(G(n, 1/2, d, q))]| ≤ Cn4q6

d
.

Theorem B.1 together with (42) shows that

|E[τ4(G(n, 1/2, d, q))] − E[τ4(G(n, 1/2))]| ≤ Cn4q6

d
.

As we shall see, a lower bound on the variance of the signed quadruple statistic
in G(n, 1/2, d, q) can be obtained from a more general argument in Lemma B.8,
which combined with (43) gives

min{Var[τ4(G(n, 1/2))],Var[τ4(G(n, 1/2, d, q))]} ≥ C ′n4

for some constant C ′ > 0. Therefore, there exists a constant C such that

(E[τ4(G(n, 1/2, d, q))] − E[τ4(G(n, 1/2))])2

min{Var[τ4(G(n, 1/2))],Var[τ4(G(n, 1/2, d, q))]} ≤ Cn4q12

d2
.

The above display implies that detecting geometry using the previous method
with a signed quadruple statistic is only possible if n2q6/d → ∞. We see that
this is stronger than the condition n3q6/d → ∞ given by the signed triangle.
Note that we use the lower bound on the minimum of the variances instead of
the maximum so that testing either hypothesis is not possible.

We prove Theorem B.1 in the following. A key estimation is that the expected
signed quadruple in G(n, 1/2, d) is at most of the order 1/d, formally stated as
the following lemma.

Lemma B.2. There exists an absolute constant C such that

|EG(n,1/2,d)[τ[4]]| ≤ C

d
.

The proof of Lemma B.2 is divided into estimating several quantities.

As computed before, for a sample from G(n, 1/2, d) with adjacency matrix
A = [ai,j ], by conditioning on x1 and rotation invariance,

E[a1,2a1,3] = E[E[a1,2a1,3 | x1]] = E[E[a1,2 | x1]E[a1,3 | x1]] =

(
1

2

)2

.

We also have E[a1,2] = 1
2 by definition.
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The expected signed quadruple in G(n, 1/2, d) can be written as

EG(n,1/2,d)[τ[4]] = E

[ 4∏

i<j

ai,j

]
= E

[ 4∏

i<j

(
ai,j − 1

2

)]
−

(
1

2
− 1

2

)6

=

(
6

6

)(
E[a1,2a1,3a1,4a2,3a2,4a3,4] −

(
1

2

)6)

︸ ︷︷ ︸
Q1

−
(

6

5

)(
1

2

)(
E[a1,2a1,3a2,3a1,4a2,4] −

(
1

2

)5)

︸ ︷︷ ︸
Q2

+

(
6

4

)
1

5

(
1

2

)2(
E[a1,3a2,3a1,4a2,4] −

(
1

2

)4)

︸ ︷︷ ︸
Q3

+

(
6

4

)
4

5

(
1

2

)2(
E[a1,2a2,3a3,1a1,4] −

(
1

2

)4)

︸ ︷︷ ︸
Q4

−
(

6

3

)
1

5

(
1

2

)3(
E[a1,2a2,3a3,1] −

(
1

2

)3)

︸ ︷︷ ︸
Q5

,

(44)

where the fractions are from simple combinatorial calculations. In the following
we compute and estimate Q1, . . . , Q5.

Following the definitions in the proof of Lemma A.2, we define the density

h(θ) :=
1

ζ
sind−2 θ,

where θ ∈ [0, π] and the normalization factor

ζ :=

∫ π

0

sind−2 θ dθ =

√
πΓ

(
d−1

2

)

Γ
(

d
2

) .

Let

γ :=

∫ π/2

0

π/2 − θ

2π
h(θ) dθ. (45)

By the computation in Lemma A.2, E[a1,2a2,3a3,1]−1/8 = γ. Hence, we have

Q5 =
1

2
γ.

The lemma also shows that

1

2π
√

2π
· 1√

d
≤ γ ≤ 1

4
√

π
· 1√

d
.
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By conditional independence of a1,4 and a1,2a2,3a3,1 and rotation invariance,

E[a1,2a2,3a3,1a4,1] = Ex1 [E[a1,2a2,3a3,1a1,4|x1]]

= Ex1 [E[a1,2a2,3a3,1|x1]E[a1,4|x1]] =
1

2
E[a1,2a2,3a3,1].

Hence, we have

Q4 =
3

2
γ.

Let

η :=

∫ π/2

0

(
π/2 − θ

2π

)2

h(θ) dθ. (46)

By (41),
1

4π2
· 1

d
≤ η ≤ 1

16
· 1

d
.

Lemma B.3. Let η be defined in (46). Then,

E[a1,3a2,3a1,4a2,4] =
1

16
+ 2η.

Proof. By conditional independence of a1,3a2,3 and a1,4a2,4,

E[a1,3a2,3a1,4a2,4] = E[E[a1,3a2,3a1,4a2,4 | x1, x2]]

= E[E[a1,3a2,3 | x1, x2]E[a1,4a2,4 | x1, x2]]

= E[E[a1,3a2,3 | x1, x2]2].

The last equality is because x3 and x4 are identically distributed.
Similar to the proof of Lemma A.2, we can fix the space spanned by x1 and

x2. The angle between them has the density h(θ) given in Proposition A.1. We
have that a1,3a2,3 = 1 if and only if the projection of x3 onto this plane lies in
[θ − π/2, π/2]. Therefore,

E[a1,3a2,3a1,4a2,4] =

∫ π

0

(
π − θ

2π

)2

h(θ) dθ

=

∫ π/2

0

(
π − θ

2π

)2

h(θ) dθ +

∫ π

π/2

(
π − θ

2π

)2

h(θ) dθ.

(47)

For the first integral in the above display,
∫ π/2

0

(
π − θ

2π

)2

h(θ) dθ =

∫ π/2

0

(
π/2 + π/2 − θ

2π

)2

h(θ) dθ =
1

32
+

1

2
γ + η.

For the second integral, by the symmetry of the sin function,
∫ π

π/2

(
π − θ

2π

)2

h(θ) dθ =

∫ π/2

0

(
θ

2π

)2

h(θ) dθ

=

∫ π/2

0

(
π/2 − (π/2 − θ)

2π

)2

h(θ) dθ =
1

32
− 1

2
γ + η.

The claim directly follows by adding them.
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By Lemma B.3, we have that

Q3 =
3

2
η.

Since

E[a1,2a1,3a2,3a1,4a2,4] =

∫ π/2

0

(
π − θ

2π

)2

h(θ) dθ,

which equals the first integral in (47), we directly have the following lemma.

Lemma B.4. Let γ and η be defined in (45) and (46) respectively. Then,

E[a1,2a1,3a2,3a1,4a2,4] =
1

32
+

1

2
γ + η.

Therefore, we have

Q2 =
3

2
γ + 3η.

Plugging the previous estimates into (42), we obtain that

E[τ[4]] = Q1 − Q2 + Q3 + Q4 − Q5 = Q1 − 1

2
γ − 3

2
η. (48)

An estimation for Q1 is provided in the following lemma.

Lemma B.5. Let γ and η be defined before. Then,

1

2
γ +

1

2
η +

1

16π2
· 1

d
≤ E

[ 4∏

i<j

ai,j

]
− 1

64
≤ 1

2
γ +

1

2
η +

1

8π
· 1

d
.

The proof of Lemma B.5 involves extending the argument in the proof of
Lemma A.2 to a three-dimensional subspace. Before proving Lemma B.5, we
show the following claim concerning the distribution of the angle between a
uniform random vector in Rd and an arbitrary two-dimensional plane.

Proposition B.6. Let x be a uniform random point in Sd−1. Let ϕ ∈ [0, π/2]
be the angle between the vector x and any fixed 2-dimensional subspace. Then,
the density g(ϕ) satisfies

g(ϕ) = (d − 2) sind−3 ϕ cos ϕ.

Proof. Let z ∼ N (0, Id) be a d-dimensional random vector. Then, ẑ := z/‖z‖ is
a uniform random point in S

d−1. By rotation invariance, we can fix the plane to
be that spanned by the first two vectors of the standard basis. The projection
of ẑ onto this plane is z̃ = (z1, z2, 0, . . . , 0)/‖z‖. Then, the angle between x

and the plane is equal to the angle between ẑ and z̃. Hence, the cumulative
distribution function satisfies

F (ϕ) = P

(
arccos

ẑ · z̃

‖z̃‖ ≤ ϕ

)
= P

(
ẑ · z̃

‖z̃‖ ≥ cos ϕ

)
= P

(
z2

1 + z2
2∑d

i=1 z2
i

≥ cos2 ϕ

)
.
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Since the zi’s are standard normal random variables, we have z2
1+z2

2 ∼ χ2(2) and∑d
i=3 z2

i ∼ χ2(d − 2), and these are independent. Therefore, (z2
1 + z2

2)/
∑d

i=1 z2
i

has a Beta(1, d−2
2 ) distribution. Hence, by the definition of the beta distribution,

P

(
z2

1 + z2
2∑d

i=1 z2
i

≥ cos2 ϕ

)
=

Γ
(

d
2

)

Γ
(

d−2
2

)
∫ 1

cos2 ϕ

(1 − x)d/2−2 dx

=
d − 2

2

∫ 1

cos2 ϕ

(1 − x)d/2−2 dx.

Taking the derivative with respect to ϕ, we obtain

g(ϕ) = −d − 2

2
(1 − cos2 ϕ)d/2−2(−2 cos ϕ sin ϕ) = (d − 2) sind−3 ϕ cos ϕ.

Proof of Lemma B.3. Consider the space spanned by x1, x2, x3. Without loss
of generality, we can fix the coordinates as follows:

x1 = (1, 0, 0, 0, . . . , 0),

x2 = (cos θ, sin θ, 0, . . . , 0),

x3 = (cos ϕ cos ψ, cos ϕ sin ψ, sin ϕ, 0, . . . , 0).

By symmetry on the sphere, we can constrain the parameters in the following
space:

θ ∈ [0, π],

ψ ∈ [−π, π],

ϕ ∈ [0, π/2].

Let f(θ, ψ, ϕ) be the probability density function. Then, by independence of
the vectors,

f(θ, ψ, ϕ) =
1

2π
h(θ)g(ϕ) =

d − 2

2πζ
sind−2 θ sind−3 ϕ cos ϕ.

Denoting by θ(x, y) ∈ [0, π] the angle between two d-dimensional vectors, we
also have

cos θ(x1, x2) = 〈x1, x2〉 = cos θ, (49)

cos θ(x1, x3) = 〈x1, x3〉 = cos ϕ cos ψ, (50)

cos θ(x2, x3) = 〈x2, x3〉 = cos ϕ cos ψ cos θ + cos ϕ sin ψ sin θ = cos ϕ cos(ψ − θ).
(51)

The event 1 ∼ 2 happens if and only if θ ∈ [0, π]. Vertex 3 is connected to
both 1 and 2 if and only if the projection of x3 onto the plane determined by x1

and x2 forms an angle no greater than π/2 with both x1 and x2. Therefore, we
have ψ ∈ [θ − π/2, π/2]. The last vertex is connected to all of them if and only
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if the direction of x4 falls in the spherical triangle determined by the three half
planes with normal vectors x1, x2, x3 respectively. As a well-known fact (see,
e.g., [42, proposition 99]), the surface area of the spherical triangle equals the
spherical excess defined by

S := 2π − θ(x1, x2) − θ(x1, x3) − θ(x2, x3)

=

(
π − θ

)
+

(
π

2
− θ(x1, x3)

)
+

(
π

2
− θ(x2, x3)

)
.

Since the surface area of the sphere is 4π, the probability that the four vertices
form a clique is

∫ π/2

0

∫ π/2

0

∫ π/2

θ−π/2

S

4π
f(θ, ψ, ϕ) dψ dθ dϕ

=

∫ π/2

0

∫ π/2

0

∫ π/2

θ−π/2

π − θ

4π
f(θ, ψ, ϕ) dψ dθ dϕ

︸ ︷︷ ︸
I1

+

∫ π/2

0

∫ π/2

0

∫ π/2

θ−π/2

π/2 − θ(x1, x3)

4π
f(θ, ψ, ϕ) dψ dθ dϕ

︸ ︷︷ ︸
I2

+

∫ π/2

0

∫ π/2

0

∫ π/2

θ−π/2

π/2 − θ(x2, x3)

4π
f(θ, ψ, ϕ) dψ dθ dϕ

︸ ︷︷ ︸
I3

.

(52)

We deal with the three integrals separately as follows.
By integrating over ψ and ϕ,

I1 =
1

2

∫ π/2

0

(
π − θ

2π

)2

h(θ) dθ =
1

2

∫ π/2

0

(
π/2 + (π/2 − θ)

2π

)2

h(θ) dθ

=
1

2

(
1

32
+

1

2
γ + η

)
.

Plugging (50) into I2, we have

I2 =
1

4π

∫ π/2

0

∫ π/2

0

∫ π/2

θ−π/2

(
π

2
− arccos(cos ϕ cos ψ)

)
f(θ, ψ, ϕ) dψ dθ dϕ

=
1

4π

∫ π/2

0

∫ π/2

0

∫ π/2

θ−π/2

arcsin(cos ϕ cos ψ)f(θ, ψ, ϕ) dψ dθ dϕ.

(53)

The Taylor expansion of arcsin gives

arcsin x =

∞∑

n=0

anx2n+1,
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where

an :=
(2n)!

4n(n!)2(2n + 1)
.

Hence, we get

arcsin(cos ϕ cos ψ) =

∞∑

n=0

an cos2n+1 ϕ cos2n+1 ψ. (54)

Inserting the expansion (54) into (53) and interchanging the summation and
integration, we have

I2 =
1

4π

∫ π/2

0

∫ π/2

0

∫ π/2

θ−π/2

∞∑

n=0

an(cos2n+1 ϕ)(cos2n+1 ψ)f(θ, ψ, ϕ) dψ dθ dϕ

=
1

8π2

∞∑

n=0

an

∫ π/2

0

g(ϕ) cos2n+1 ϕ dϕ

∫ π/2

0

h(θ)

∫ π/2

θ−π/2

cos2n+1 ψ dψ dθ.

Since

∫ π/2

θ−π/2

cos2n+1 ψ dψ =

∫ π/2

0

cos2n+1 ψ dψ +

∫ 0

θ−π/2

cos2n+1 ψ dψ, (55)

the integral I2 can also be split into two integrals accordingly:

I2 =
1

8π2

∞∑

n=0

an

∫ π/2

0

g(ϕ) cos2n+1 ϕ dϕ

∫ π/2

0

h(θ)

∫ π/2

0

cos2n+1 ψ dψ dθ

︸ ︷︷ ︸
I2(a)

+
1

8π2

∞∑

n=0

an

∫ π/2

0

g(ϕ) cos2n+1 ϕ dϕ

∫ π/2

0

h(θ)

∫ 0

θ−π/2

cos2n+1 ψ dψ dθ

︸ ︷︷ ︸
I2(b)

.

We deal with I2(a) and I2(b) separately.
Using the definition of g(ϕ) in Proposition B.6 and by a change of variables

x = sin2 ϕ, we have

∫ π/2

0

g(ϕ) cos2n+1 ϕ dϕ = (d − 2)

∫ π/2

0

cos2n+1 ϕ sind−3 ϕ cos ϕ dϕ

=
d − 2

2

∫ 1

0

(1 − x)n+1/2xd/2−2 dx

=
d − 2

2
B

(
d

2
− 1, n +

3

2

)
=

(d − 2)Γ
(

d
2 − 1

)
Γ

(
n + 3

2

)

2Γ
(
n + d

2 + 1
2

)

=
Γ

(
d
2

)
Γ

(
n + 3

2

)

Γ
(
n + d

2 + 1
2

) ,
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where the last equality is due to the identity xΓ(x) = Γ(x + 1).
By (40), ∫ π/2

0

cos2n+1 ψ dψ =

√
πΓ(n + 1)

2Γ
(
n + 3

2

) .

Combining them and rearranging the terms, we have

Γ
(

d
2

)
Γ

(
n + 3

2

)

Γ
(
n + d

2 + 1
2

) ·
√

πΓ(n + 1)

2Γ
(
n + 3

2

) =

√
πΓ

(
d
2

)

Γ
(

d−1
2

) · Γ
(

d−1
2

)
Γ(n + 1)

2Γ
(
n + d

2 + 1
2

)

=
π

ζ
· 1

2
B

(
d − 1

2
, n + 1

)
.

By the definition of the beta function,

1

2
B

(
d − 1

2
, n + 1

)
=

1

2

∫ 1

0

xd/2−3/2(1 − x)n dx =

∫ π/2

0

cos2n+1 θ sind−2 θ dθ.

Interchanging the summation and integration,

∞∑

n=0

an

∫ π/2

0

cos2n+1 θ sind−2 θ dθ =

∫ π/2

0

∞∑

n=0

an cos2n+1 θ sind−2 θ dθ

=

∫ π/2

0

arcsin(cos θ) sind−2 θ dθ

=

∫ π/2

0

(
π

2
− θ

)
sind−2 θ dθ = 2πζγ.

Further, by symmetry of sin θ,

∫ π/2

0

h(θ) dθ =
1

2
.

Putting them together, we obtain

I2(a) =
1

8π2
· 1

2
· π

ζ
· 2πζγ =

1

8
γ.

Now we turn to I2(b) and show upper and lower bounds on it.
By the symmetry of cos ψ and a change of variables x = sin ϕ,

∫ 0

θ−π/2

cos2n+1 ψ dψ =

∫ π/2−θ

0

cos2n+1 ψ dψ =

∫ π/2−θ

0

cos2n ψ d sin ψ

=

∫ cos θ

0

(1 − x2)n dx.

Since for x ∈ [0, cos θ],

sin2n θ ≤ (1 − x2)n ≤ 1,
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we have

sin2n θ cos θ ≤
∫ 0

θ−π/2

cos2n+1 ψ dψ ≤ cos θ.

Integrating over the density of θ gives

∫ π/2

0

h(θ) sin2n θ cos θ dθ =
1

ζ

∫ π/2

0

sin2n+d−2 θ cos θ dθ

=
1

ζ

∫ π/2

0

sin2n+d−2 θ d sin θ =
1

(2n + d − 1)ζ

and
∫ π/2

0

h(θ) cos θ dθ =
1

ζ

∫ π/2

0

sind−2 θ cos θ dθ =
1

ζ

∫ π/2

0

sind−2 θ d sin θ

=
1

(d − 1)ζ
.

We deal with the upper bound first. Interchanging the summation and inte-
gration yields

∞∑

0

an

∫ π/2

0

g(ϕ) cos2n+1 ϕ dϕ =

∫ π/2

0

∞∑

0

ang(ϕ) cos2n+1 ϕ dϕ

=

∫ π/2

0

g(ϕ) arcsin(cos ϕ) dϕ

= (d − 2)

∫ π/2

0

(
π

2
− ϕ

)
sind−3 ϕ cos ϕ dϕ.

We can derive an upper bound on the above display by the upper bound in (36).
Since ϕ ∈ [0, π/2],

π

2
− ϕ ≤ π

2
cos ϕ.

By a change of variables x = sin2 ϕ and the definition of the beta function,

∫ π/2

0

sind−3 ϕ cos2 ϕ dϕ =
1

2

∫ π/2

0

sind−4 ϕ cos ϕ d sin2 ϕ

=
1

2

∫ 1

0

(1 − x)1/2xd/2−2 dx =
1

2
B

(
d

2
− 1,

3

2

)

=
Γ

(
d
2 − 1

)
Γ

(
3
2

)

2Γ
(

d+1
2

) .

Therefore, I2(b) can be upper bounded by

I2(b) ≤ 1

8π2
· Γ

(
d
2

)

(d − 1)
√

πΓ
(

d−1
2

) · π(d − 2)Γ
(

d
2 − 1

)
Γ

(
3
2

)

4Γ
(

d+1
2

) =
1

64π

(
Γ

(
d
2

)

Γ
(

d+1
2

)
)2

≤ 1

16π
· 1

d
,
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where the last inequality is by (14).
For the lower bound on I2(b), we have

∫ π/2

0

1

2n + d − 1
g(ϕ) cos2n+1 ϕ dϕ

=
d − 2

2n + d − 1

∫ π/2

0

cos2n+1 ϕ sind−3 ϕ cos ϕ dϕ

=
d − 2

2n + d − 1
· 1

2
B

(
d

2
− 1, n +

3

2

)
=

d − 2

2n + d − 1
· Γ

(
d
2 − 1

)
Γ

(
n + 3

2

)

2Γ
(
n + d

2 + 1
2

)

≥ d − 2

2n + d + 1
· Γ

(
d
2 − 1

)
Γ

(
n + 3

2

)

2Γ
(
n + d

2 + 1
2

) =
Γ

(
d
2

)
Γ

(
n + 3

2

)

2Γ
(
n + d

2 + 3
2

) =
1

2
B

(
d

2
, n +

3

2

)
.

Hence, by the definition of beta function and a change of variables,

I2(b) ≥ 1

16π2ζ

∞∑

n=0

anB

(
d

2
, n +

3

2

)

=
1

8π2ζ

∞∑

n=0

an

∫ π/2

0

cos2n+1 ψ sind−1 ψ cos ψ dψ

=
1

8π2ζ

∫ π/2

0

∞∑

n=0

an cos2n+1 ψ sind−1 ψ cos ψ dψ

=
1

8π2ζ

∫ π/2

0

(
π

2
− ψ

)
sind−1 ψ cos ψ dψ.

Further, by the lower bound in (36), we obtain

I2(b) ≥ 1

8π2ζ

∫ π/2

0

sind−1 ψ cos2 ψ dψ =
1

16π2ζ
B

(
d

2
,

3

2

)
.

Inserting the definitions of ζ and the beta function gives

I2(b) ≥ 1

16π2
· Γ

(
d
2

)
√

πΓ
(

d−1
2

) · Γ(d
2 )Γ

(
3
2

)

Γ
(

d+3
2

) =
1

32π2
· d − 1

d + 1

(
Γ

(
d
2

)

Γ
(

d+1
2

)
)2

≥ 1

64π2

(
Γ

(
d
2

)

Γ
(

d+1
2

)
)2

.

Using (14), we have

I2(b) ≥ 1

32π2
· 1

d
.
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For the integral I3 in (52), by a change of variables ξ = θ − ψ,

I3 =

∫ π/2

0

∫ π/2

0

∫ π/2

θ−π/2

arcsin(cos ϕ cos(θ − ψ))h(θ, ψ, ϕ) dψ dθ dϕ

=

∫ π/2

0

∫ π/2

0

∫ θ−π/2

π/2

− arcsin(cos ϕ cos ξ)h(θ, ψ, ϕ) dξ dθ dϕ

=

∫ π/2

0

∫ π/2

0

∫ π/2

θ−π/2

arcsin(cos ϕ cos ψ)h(θ, ψ, ϕ) dψ dθ dϕ = I2.

Combining the estimates of I1, I2, I3 given above proves the claim.

Plugging Lemma B.5 into (48), we arrive at the claims in Lemma B.2.
Using Lemma 4.1 and Lemma B.2, we have

|EG(n,1/2,d,q)[τ[4]]| = q6|EG(n,1/2,d,q)[τ[4]]| ≤ Cq6

d
.

Then,

|E[τ4(G(n, 1/2, d, q))]| ≤
(

n

4

)
|EG(n,1/2,d,q)[τ[4]]| ≤ Cn4q6

d
.

Theorem B.1 is hence proved.

B.2. General signed cliques

We next turn to general signed cliques in G(n, p, d, q). Similarly, we start with
estimations in G(n, p, d). By the definition of the signed clique,

|EG(n,p,d)[τ[k]]| =

∣∣∣∣E
[ ∏

{i,j}⊂[k]

(ai,j − p)

]∣∣∣∣

=

∣∣∣∣E
[ ∏

{i,j}⊂[k]

(ai,j − p)

]
−

∏

{i,j}⊂[k]

(p − p)

∣∣∣∣

=

∣∣∣∣
∑

S∈2([k]
2

)

(P(S) − p|S|)(−p)(
k

2)−|S|
∣∣∣∣

≤
∑

S∈2([k]
2

)

|P(S) − p|S||p(k

2)−|S|.

The following corollary, derived from a result in Section 3.2 of the main
article, facilitates our calculations.

Corollary B.7. Let V = [k] be a set of vertices and E ⊂ V ×V be a set of edges.
Denote by |E| the cardinality of E. Then, we have that for a constant Ck,p,

|PG(k,p,d)(E) − p|E|| ≤ Ck,p√
d

.
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Proof. In (26), by setting q = 1, we have that

TV(G(n, p), G(n, p, d)) ≤ Cp
n

d
+ C

(√
n2

d
+

√
n3

d

)
.

By the definition of the distance,

|PG(k,p,d)(E) − p|E|| =
∣∣PG(k,p,d)(E) − PG(k,p)(E)

∣∣ ≤ TV(G(k, p), G(k, p, d))

≤ Cp

√
k3

d
.

The claim directly follows.

By Corollary B.7,

|EG(n,p,d)[τ[k]]| ≤ Ck,p√
d

. (56)

Therefore, for a constant Ck,p,

|E[τk(G(n, p, d, q))]| = q(k

2)|E[τk(G(n, p, d))]| ≤ q(k

2)
(

n

k

)
|E[τ[k]]|

≤ Ck,pnkqk(k−1)/2

√
d

.

(57)

Lemma B.8. There exists a constant Ck,p > 0, depending only on p and k,
such that

Var[τk(G(n, p, d, q))] ≥ Ck,pnk.

Proof. Consider two sets of vertices S and S′ of size k. Since (ai,j − p)2 equals
(1 − p)2 or p2, we have that (ai,j − p)2 ≥ p2(1 − p)2. Now if S = S′, then

E[τSτS′ ] = E[(τS)2] = E

[ ∏

{i,j}∈V1

(ai,j −p)2

]
≥ (p2(1−p)2)(

k

2) = (p(1−p))k(k−1).

By (56), there exists a C ′
k,p > 0, such that for d ≥ C ′

k,p,

E[τS ]2 ≤ 1

2
E[(τS)2].

For S 
= S′, let V ′ = S ∩ S′ be the set of overlapping vertices. Then, we have
that

E[τSτS′ ] = E[E[τSτS′ | V ′]] = E[E[τS | V ′]E[τS′ | V ′]] = E[E[τS | V ′]2] ≥ E[τS ]2,

where the inequality is by Jensen’s.
Therefore, there exists a Ck,p > 0, such that when d ≥ Ck,p,

Var[τk(G(n, p, d, q))] = E

[( ∑

S∈(n

k
)

τS

)2]
−

( ∑

S∈(n

k
)

E[τS ]

)2

≥
(

n

k

)
Var[τ[k]]

≥ Ck,pnk.
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Putting them together, we have that for some constant Ck,p,

(E[τk(G(n, p, d, q))] − E[τk(G(n, p))])2

min{Var[τk(G(n, p))],Var[τk(G(n, p, d, q))]} ≤ Ck,pnkqk(k−1)

d
.

The above display implies that the method used to derive the possibility of
detection does not work when nkqk(k−1)/d → 0, which suggests a certain bound-
ary of detection using general signed clique statistics. Note that for k ≥ 4 this
does not rule out the whole region where signed triangles are not able to dis-
tinguish. However, based on the computation of the expected signed quadruple
count, we see that the upper bound on the expectation in (57) is not precise;
in particular, the dependence on d can be improved. In general, we do not ex-
pect the detection boundary to be improved by signed cliques. Towards this, we
present the following conjecture.

Conjecture B.9. There exists a constant Ck,p such that

|EG(n,p,d)[τ[k]]| ≤ Ck,p

dk/6
.

We briefly argue why this bound should hold. In the proof of Theorem 1.1(b),
we see that the dominating term comes from the ratio between the variance
of the signed triangle count in G(n, p) and the squared expectation of the
signed triangle count in G(n, p, d, q). Suppose this still holds for general signed
cliques. Then, the dominating term if we use a signed clique statistic becomes
Ck,pnk/d2α, where Ck,p/dα is a lower bound for |EG(n,p,d)[τ[k]]|. Since n3/d is
the precise order for the phase transition in G(n, p, d), we must have k/(2α) ≤ 3,
which gives α ≥ k/6. Note that this argument does not give a tight bound on the
power of d, as witnessed by the case of k = 4, when we know from Lemma B.2
that |EG(n,1/2,d)[τ[4]]| decays as C/d.

In any case, assuming Conjecture B.9 holds, and by the same arguments
presented in this subsection, we obtain that detection is not possible with this
method if n3q3(k−1)/d → 0, and this bound gets worse as k grows.

C. Detecting geometry using signed cycles

Let S be a subset of V and denote k := |S|. Consider a cycle C ⊂
(

S
2

)
, which

is a set of edges forming a closed chain. There are (k − 1)!/2 possible Hamilton
cycles (each vertex is visited exactly once) on S; they are distributed identically
to C0 := {{1, 2}, {2, 3}, . . . , {k − 1, k}, {k, 1}}. Denote by KC the indicator that
the pairs in C form a cycle of G. Given the adjacency matrix A of G, KC can
be expressed by

KC =
∏

e∈C

ae.

Then, the total number of length k cycles in G, denoted by Kk(G), can be
written as

Kk(G) =
∑

C⊂(S

2),S∈(V

k
)

KC .
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We similarly define the signed cycle and its count by

κC =
∏

e∈C

(ae − p) and κk(G) =
∑

C⊂(S

2),S∈(V

k
)

κC .

We again start with estimating the expectation and variance of the signed
cycle statistic in G(n, p).

For G(n, p), again by independence of edges, a signed cycle has expectation
zero:

E[κC0 ] =
∏

e∈C0

E[ae − p] = 0.

Hence, the expectation of the signed length k cycle statistic in G(n, p) is also
zero:

E[κk(G(n, p))] =

(
n

k

)
(k − 1)!

2
E[κC0 ] = 0. (58)

Consider two cycles C and C ′ of length k. If C = C ′, then

E[κCκC′ ] = E[(κC)2] = E

[∏

e∈C

(ae − p)2

]
=

∏

e∈C

E[(ae − p)2] = (p(1 − p))k.

For C 
= C ′, there exists at least one edge e that is in C but not in C ′. Hence,

E[κCκC′ ] = E[ae − p]E

[
κC′

∏

e′∈C\{e}
(ae′ − p)

]
= 0.

Therefore, for some Ck,p > 0,

Var[κk(G(n, p))] = E

[( ∑

C⊂(S

2),S∈(V

k
)

κC

)2]
=

n!

(n − k)!2k
E[(κC0)2]

=
n!

(n − k)!2k
(p(1 − p))k ≥ Ck,pnk.

(59)

In order to estimate the mean of the signed cycle statistic in G(n, p, d, q), we
additionally need the following lemma concerning the probability of an open
path (i.e., an open chain of edges) in G(n, p, d).

Lemma C.1. In G(n, p, d), any open path of length k has probability pk.

Proof. We prove the claim by induction on the length. For each edge in G(n, p, d),
by definition we have P(i ∼ j) = E[ai,j ] = p. Suppose we have a path Pk+1 :=
{{1, 2}, {2, 3}, . . . , {k, k + 1}} on vertices [k + 1]. Then, the probability of the
path is

P(Pk+1) = E

[ k∏

i=1

ai,i+1

]
.
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By conditional independence of the edges and rotation symmetry on sphere,

E

[ k∏

i=1

ai,i+1

]
= E

[
E

[ k∏

i=1

ai,i+1

∣∣∣∣ xk

]]
= E

[
E

[k−1∏

i=1

ai,i+1

∣∣∣∣ xk

]
E[ak,k+1 | xk]

]

= pE

[k−1∏

i=1

ai,i+1

]
= pP(Pk).

Expanding the product of a signed cycle,

EG(n,p,d)

[
κC

]
=

∑

S∈2C

(−p)k−|S|
(
E

[∏

e∈S

ae

]
− p|S|

)
.

Since C is a cycle, all proper subsets of C are a union of independent paths. By
Lemma C.1,

E

[∏

e∈S

ae

]
= P(S) = p|S|

for all S ⊂ C except for S = C. Hence, the expectation of a signed length k
cycle in G(n, p, d) satisfies

EG(n,p,d)[κC ] = E

[∏

e∈C

ae

]
− pk. (60)

C.1. Signed quadrilaterals

We start with the expected number of signed cycles of length four, which are
called signed quadrilaterals. By (60), the expectation of a signed quadrilateral
C0 in G(n, 1/2, d) is

E[κC0 ] = E[a1,2a2,3a3,4a4,1] = E[a1,2a2,3a3,4a4,1] −
(

1

2

)4

.

Using Lemma B.3, we have that

E[κC0 ] = 2η.

Hence, by (41),
1

2π2
· 1

d
≤ EG(n,1/2,d)[κC0 ] ≤ 1

8
· 1

d
.

Therefore, for absolute constants C, C ′ > 0, we have that

Cn4q4

d
≤ E[κ4(G(n, 1/2, d, q))] ≤ C ′n4q4

d
.

Together with (58), we have that

|E[κ4(G(n, 1/2, d, q))] − E[κ4(G(n, 1/2))]| ≤ Cn4q4

d
.
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By (59), we also have that

max{Var[κ4(G(n, 1/2))],Var[κ4(G(n, 1/2, d, q))]} ≥ Var[κ4(G(n, 1/2))] ≥ Cn4

for an absolute constant C > 0.
Therefore, there is an absolute constant C such that

(E[κ4(G(n, 1/2, d, q))] − E[κ4(G(n, 1/2))])2

max{Var[κ4(G(n, 1/2))],Var[κ4(G(n, 1/2, d, q))]} ≤ Cn4q8

d2
.

This implies that if detection is possible using this method, then we should have
n2q4/d → ∞. This is worse than the condition n3q6/d → ∞ under which signed
triangles can detect.

C.2. General signed cycle

Next we estimate the signed length k cycle count in G(n, p, d, q) with the help
of Lemma C.1.

By Corollary B.7, the probability of a cycle satisfies

|P(C0) − pk| ≤ Ck,p√
d

.

Hence, by (60),

|EG(n,p,d)[κC0 ]| ≤ Ck,p√
d

. (61)

Thus,

|E[κk(G(n, p, d, q))]| = |qk
E[κ(G(n, p, d))]| ≤ qkn!

(n − k)!2k
|EG(n,p,d)[κC0 ]|

≤ Ck,pnkqk

√
d

for a constant Ck,p.
We cannot find an easy derivation for a lower bound of the variance in

G(n, p, d, q). However, Var[κk(G(n, p))] is already of order Ω(nk) which we be-
lieve is also the correct order of Var[κk(G(n, p, d, q))]. Using (59),

max{Var[κk(G(n, p))],Var[κk(G(n, p, d, q))]} ≥ Var[κk(G(n, p))] ≥ Ck,pnk.

Therefore, for some Ck,p > 0,

(E[κk(G(n, p, d, q))] − E[κk(G(n, p))])2

max{Var(κk(G(n, p))),Var(κk(G(n, p, d, q)))} ≤ Ck,pnkq2k

d
.

The above display implies that detection is not possible using the previous
method with a signed length k cycle statistic when nkq2k/d → 0. Note that
for k ≥ 4 this does not rule out all regions not detectable by signed triangles.
However, based on the computations for signed quadrilaterals, we believe that
the dependence on d in the bound in (61) is not tight. Analogously to Conjec-
ture B.9, we have the following conjecture.
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Conjecture C.2. There exists a constant Ck,p such that

|EG(n,p,d)[κC0 ]| ≤ Ck,p

dk/6
.

Assuming Conjecture C.2 holds, detection is not possible with this method
when n3q6/d → 0. This would imply that all signed cycles have the same detect-
ing power. However, as witnessed by signed quadrilaterals, the above conjecture
is not tight, suggesting that signed triangles yield the best bound.
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