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Towards Consensus: Reducing Polarization
by Perturbing Social Networks

Miklos Z. Rácz and Daniel E. Rigobon

Abstract—This article studies how a centralized planner can
modify the structure of a social or information network to reduce
polarization. First, polarization is found to be highly dependent
on degree and structural properties of the network – including
the well-known isoperimetric number (i.e., Cheeger constant). We
then formulate the planner’s problem under full information, and
motivate disagreement-seeking and coordinate descent heuristics.
A novel setting for the planner in which the population’s innate
opinions are adversarially chosen is introduced, and shown to be
equivalent to maximization of the Laplacian’s spectral gap. We
prove bounds for the effectiveness of a strategy that adds edges
between vertices on opposite sides of the cut induced by the spectral
gap’s eigenvector. Finally, these strategies are evaluated on six
real-world and synthetic networks. In several networks, we find
that polarization can be significantly reduced through the addition
of a small number of edges.

Index Terms—Network consensus and synchronization, opinion
dynamics, social influence and recommendations, social network
design and architecture.

I. INTRODUCTION

IN RECENT years there has been a substantial increase in
sociopolitical polarization – it is clear that our society does

not agree on issues in politics, science, healthcare, and beyond.
Counter-intuitively, this has been accompanied by the growth of
social media platforms; individuals are connecting with others
and sharing information more than ever before. How is it that
“bringing the world closer together”1 resulted in our opinions
drifting further apart?

This phenomenon is a byproduct of the structure of our social
networks; a greater number of connections does not necessarily
reflect a closeness to consensus. It is possible for the proliferation
of social media to reduce one’s exposure to other opinions, and
thereby entrench them in a community of like-minded users.
This feature is known as an “echo chamber,” and has been
found to emerge through the incentives of recommender systems
rewiring the network [1]. Furthermore, confirmation bias and
structural similarity have been found to contribute to increases
in polarization as the structure of the network evolves [2], [3].
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Therefore, how the population is connected – as opposed to how
connected the population is – may be most important to the
emergence of polarization.

In this article, we seek an understanding of how a network
planner can reduce polarization by changing the structure of
a population’s social or information network. To that end, we
present a model of budgeted network perturbation, where the
planner is given a small budget with which to modify the
structure of a given network. We study the planner’s problem
in two different settings, and evaluate simple heuristics on both
real-world and synthetic networks.

There has been a significant research effort towards reducing
polarization in networks [4], [5], [6], [7], [8]. In contrast to
both [7] and [8], we hold fixed the population’s opinions –
while allowing the network structure to be modified. This article
differs from [5] and [6] in both our use of a distinct measure of
polarization and incorporating opinion dynamics. Finally, we
improve upon the closely related work of [4] through more de-
tailed theoretical analysis, consideration of weighted networks,
and use of larger datasets.

A very similar article to our own is recent work by [9],
where the authors present a variation of the problem studied
in [10]. Both these studies aim to minimize the sum of polar-
ization and disagreement by changing the network structure,
but [9] impose a budget that ensures only a small number
of edges can be changed. These authors use a similar budget
constraint to our own, but their polarization-disagreement index
varies greatly with the edge density of the graph. Although
it is convenient for analysis and computation, their index is
inadequate for capturing the dynamics of polarization alone.
Nonetheless, we believe the formulation in this article and [9]
to be practical. The network structure is not assumed to be
completely malleable, but small changes are permitted. For
instance, while social media platforms such as Facebook or
Twitter cannot dictate who an individual chooses to ‘friend’
or ‘follow,’ these platforms can curate an individual’s feed to
change one’s relative exposure levels to certain content. This
process perturbs the structure of external influence on an individ-
ual, so that it differs from their endogenously created network of
‘friends’ or ‘follows’. If, instead, any of these platforms suddenly
decided to completely rewire their social networks, users may be
upset.

It is then natural to consider the questions in this article: how
does the network planner decide to allocate their budget? How
much of an impact can be made? How large of a budget is needed
to achieve a significant reduction in polarization?
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We begin by first establishing a relationship between struc-
tural properties of a social network and its level of polarization.
We find that both the degree profiles and the strength of in-
formation bottlenecks – quantified by the well-known Cheeger
constant in spectral graph theory – are closely tied to polariza-
tion. This result naturally captures the intuition and dangers of
echo chambers in real-world networks.

Next, we focus on the formulation and analysis of two set-
tings for network optimization. In the first, the planner has full
information of the population’s opinions. We provide theoretical
motivation for two heuristics: coordinate descent and a stepwise
disagreement-seeking algorithm. The former is standard in op-
timization, while the latter is the antithesis of confirmation bias.
Existing research has shown that addition of edges between like-
minded individuals contributes to increasing polarization [2].
Moreover, according to [11] it is ‘costly’ for individuals to be
connected to others who disagree with them, and recommender
systems can be designed to minimize disagreement [1]. There-
fore, the incentives of both individuals and social media plat-
forms may naturally lead to polarization growing over time. In
contrast, we show that a simple disagreement-seeking approach
taken by the planner leads to substantial reductions in polar-
ization. This result is closely tied to our choice of the opinion
dynamics model. In this article, interactions between individuals
are always attractive – bringing opinions closer together. In
reality, this is not the case (see [12], [13]). This simplification,
however, will facilitate theoretical results – which we believe can
be leveraged for partial understanding of polarization-reduction
strategies in a richer class of models.

This article also presents a novel setting for the network
planner, wherein the population’s opinions are chosen adversar-
ially. In several articles from the literature (see, for instance [7],
[8], [14], [15]), an adversary is able to change the individuals’
opinions – seeking to maximize polarization. The setting we
study represents a planner whose network design must be robust
to the adversary’s disruption. We show that this setting for
the planner’s problem is intimately related to maximizing the
spectral gap of the graph’s Laplacian, which is a well-studied
problem [16], [17], [18]. We provide theoretical guarantees for
a heuristic that connects vertices on opposite sides of the cut
corresponding to the spectral gap.

We then evaluate several natural heuristics on real-world and
synthetic networks. There are significant reductions in polar-
ization for networks with strong initial community structures.
Furthermore, we study how the spectral gap and homophily
are affected by the planner’s modifications. We find that the
largest reductions in polarization are accompanied by reductions
in homophily. In many cases, however, one of our heuristics
effectively reduces polarization with little effect on homophily.
We also observe that two heuristics lead to vertices with ex-
treme opinions becoming more central in the graph structure. In
many of the networks studied, a small budget yields substantial
reductions in polarization.

The article is organized as follows. Section II reviews re-
cent and related work. Section III introduces relevant notation,
definitions, and preliminaries. Section IV provides theoretical
ground for three heuristics, which are described and evaluated

on several networks in Section V. Finally, Section VI concludes
and discusses directions for future work.

II. RELEVANT LITERATURE

The articles most similar to our own are recent studies
by [4], [15], [1], and [9]. [15] motivates our adversarial disrup-
tion of the population’s opinions, while both [4] and [9] aim to
modify a social network’s structure by adding a small number of
edges. [1] impose a constraint on the edge weight modified – but
not the number of edges. In particular, they focus on changing
a large number of edges by a small amount, whereas we seek
to do the converse. Our work differs from [4] through greater
emphasis on theory and generalization to weighted graphs. The
objective function in [9] fundamentally differs from our own,
and represents a different research problem.

In addition, this article is broadly tied to the literature on
opinion dynamics, perturbation of network structures, and in-
fluencing polarization. Relevant studies in each of these areas
are discussed in the following.

1) Opinion Dynamics: The study of consensus-forming be-
gins with the seminal work of [19], where under weak conditions
on the social network, the opinions eventually converge to a
perfect consensus. This model was expanded by [20] (and more
recently by [21]), so that the long-term opinions are heteroge-
neous. Because of this feature and its simplicity, the Friedkin-
Johnsen (FJ) model has appeared in several recent studies on
opinion polarization and disagreement – see for instance, [1],
[4], [7], [9], [10], [14], [15]. In this article, we will also use
the FJ model. Not only is it standard in the literature, but it is
mathematically convenient for analysis. There are also rich areas
of work which justify and extend the FJ model. For instance, [11]
show that the expressed opinions of this model correspond to the
Nash equilibrium of a network game.

There are a few notable extensions to the FJ model, in which
individuals have more complex behavior. For example, a recent
survey by [22] presents several generalizations and (relevantly)
assesses if polarization can occur in each. A fundamental feature
of the FJ model is that individuals are always drawn toward
the opinions of their neighbors – but experimental evidence of
this feature is inconclusive and contextual [12], [13]. Motivated
by this observation, new models have been developed in which
individuals have bounded confidence [23] or even experience
repulsion [8], [24]. It is also possible to incorporate geomet-
ric structures into the dynamics, such as recent work by [25]
and [26]. Finally, we note that there are several related studies
within the controls literature, which focus on consensus dynam-
ics on a network, for instance, when agents have antagonistic
dynamics [27], or are stubborn [28] – see [29] for a more
complete survey.

2) Optimizing Network Structures: This article formulates
an optimization problem over network structures, aiming to
reduce a particular definition of polarization. There are sev-
eral related works in the literature. For example, [10] allows
unconstrained rewiring of the social network to reduce the
polarization-disagreement index, which is defined as the sum of
polarization and disagreement. A recent article of [9] optimizes
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the same index via addition of a limited number of edges. This
index is analytically and computationally convenient because
of its monotonicity and convexity, but it is highly sensitive to
the edge density of the graph.2 We instead focus exclusively on
minimizing polarization, which is shown to be neither convex
nor monotone in Section IV-B. However, this article restricts
edge modifications similarly to [9].

A more closely related work by [4] presents several definitions
of ‘conflict’ in social networks, and studies how they can be
minimized through iterative perturbations to the graph. One
such measure of conflict equals polarization. We expand on
the authors’ work by providing a detailed theoretical analysis
of edge perturbations on polarization, generalizing the analy-
sis to weighted graphs, and conducting simulations on larger
real-world and synthetic networks.

The aforementioned articles share with ours a definition of
polarization. However, it is possible to optimize for other notions
of ‘cohesiveness’ or ‘consensus’. For instance, [5] and [6]
both present measures of polarization based on random walks,
and propose algorithms for reducing it via edge addition. The
greatest similarity between their work and ours lies in the use of a
greedy, stepwise approach to an optimization problem. However,
the authors’ definitions of polarization do not directly incor-
porate opinion dynamics.3 Moreover, in [6], nodes represent
webpages, not individuals.

Another definition of cohesiveness, which does not depend
on any node opinions or labels, is the spectral gap of a graph.
The spectral gap controls the synchronizability of dynamical
systems and mixing times of Markov chains [16], and therefore
its maximization is of great interest. For instance, [18] seek
to increase the spectral gap by removing nodes. Unlike these
authors, we focus on changes to a graph’s edges. More rele-
vantly, [17] study how the algebraic connectivity (i.e., spectral
gap) can be increased by adding edges. The authors present
two strategies for doing so, one of which is derived from the
eigenvector corresponding to the spectral gap. In this article,
we show that the adversarial setting of the planner’s problem is
closely related to their work, and provide bounds on polarization
using this eigenvector-based strategy.

3) Natural Network Dynamics: A different branch of re-
search aims to understand how polarization is shaped by rewiring
dynamics in the network. For instance, a recent article by [2]
studies how individuals’ local rewiring rules can lead to higher
polarization. The authors conclude that confirmation bias and
friend-of-friend behavior are critical for this result. However,
their theoretical results focus on the polarization-disagreement
index. Moreover, we derive an improved upper bound for po-
larization in Section IV-A. A similar article by [3] shows that
allowing individuals’ rewiring decisions based on structural sim-
ilarity leads to polarization, although the authors use a distinct
model of opinion dynamics.

2The polarization-disagreement index consists of adding polarization, which
is on the order of n (the number of vertices), and disagreement, which is of order
m (the number of edges). Therefore this index is dominated by disagreement
for dense graphs (specifically, if m � n).

3We note that the Friedkin-Johnsen model has a random walk interpretation
of the long-term opinions, see [30].

It is also possible to study the dynamics driven by a network
administrator. [1] present a setting in which a network adminis-
trator rewires the network over time by providing ‘recommen-
dations’ to users based on minimizing disagreement. They show
that without a regularization term in the optimization problem,
the administrator greatly increases polarization. The authors’
result contrasts with one of the main findings of this article,
namely that connecting disagreeing individuals is effective for
reducing polarization.

4) Optimizing Opinion Profiles: While less relevant to this
article, a complimentary line of work assumes that the network
structure remains fixed, but the innate opinions are subject to
change. For instance, [30] establish NP-Hardness of an opinion
maximization problem, in which an administrator takes over a
small set of individuals and sets their opinions to the largest
possible value. Articles by [7] (resp. [31]) seek to minimize
polarization (resp. maximize diversity, i.e., disagreement) by
choosing a small subset of individuals to have neutral opinions.
Finally, the work of [8] aims to minimize polarization in an
extension of the FJ model by slightly shifting individuals’ opin-
ions.

These studies have generally taken the perspective of a benev-
olent network planner. It is also possible to consider the perspec-
tive of an adversary, who takes over a small number of individ-
uals and seeks to maximize polarization or disagreement [14].
A more powerful adversary in [15] chooses the opinions of the
entire population to the same end. In particular, [15] present a
problem of defending the network from this adversary by making
some opinions more resistant to change. In this article, we will
consider a similar setting, but where the network is defended by
altering its structure instead. Nonetheless, the adversary faced
is modeled on their work.

III. MODEL

An undirected graphG(V,E,W ) is defined by a set of vertices
V given by [n] := {1, . . . , n}, a set of edges E ⊂ V × V con-
sisting of unordered pairs of vertices, and symmetric edge weight
matrix W ∈ [0, w̄]n×n. W is assumed to satisfy wij > 0 if and
only if (i, j) ∈ E, and w̄ < ∞ indicates the maximum possible
edge weight. For a graph G, its degree matrix D is diagonal,
and satisfies Dii = di, where di =

∑
j wij is the (weighted)

degree of vertex i. Let L = D −W denote the combinatorial
graph Laplacian, andL = D−1/2LD−1/2 denote the normalized
Laplacian. Finally, N(i) := {j ∈ [n] : (i, j) ∈ E} denotes the
neighbors of vertex i.

Vertices are given innate opinions s ∈ [0, 1]n, which represent
a continuum between two extreme positions on an issue. For in-
stance, an individual who is totally in favor of strict firearm laws
may have an opinion of 0, whereas one extremely against any
such regulations would have an opinion of 1. The population’s
opinions evolve over time, beginning from the innate opinions
s. The evolution of opinions follows the dynamics of [20] (see
below), and the opinions converge to a fixed point – denoted
z and called the expressed opinions of the population. In this
article, we are interested in modifications to the underlying
graph G, and therefore take the innate opinions s to be fixed.
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Consequently, we write z and z′ for the expressed opinions
corresponding to the social networks G and G′, respectively.
Occasionally, to emphasize the underlying graphG, we will write
zG .

A. Opinion Dynamics

In the seminal model of [19], the population’s expressed
opinions converge to a perfect consensus under weak condi-
tions. A notable extension of the DeGroot model is by [20],
whose model preserves long-term heterogeneity of opinions. In
particular, z = c�1 if and only if s = c�1. This model is convenient
for analysis because the expressed opinions can be written
explicitly. Furthermore, several recent works in the literature
have leveraged this model – see Section II for more.

The Friedkin-Johnsen (FJ) opinion dynamics model is spec-
ified by the discrete-time mapping s(t) → s(t+ 1) as follows.
We initialize s(0) = s, and iterate

si(t+ 1) =
si(0) +

∑
j∈N(i) wijsj(t)

1 +
∑

j∈N(i) wij
,

where wij is the weight associated with edge (i, j), and is non-
zero if and only if j ∈ N(i). The expressed opinions z are the
fixed point of this mapping, given by

z = (I + L)−1s,

where I denotes the n× n identity matrix. Notice that I + L �
I is necessarily invertible. Thus, there exist unique expressed
opinionsz for any givenG and s. Moreover, since the eigenvalues
of (I + L)−1 are no greater than 1, the expressed opinions of
the FJ dynamics are a contraction of the innate opinions. This
observation also follows from the fact that the FJ model is purely
attractive – opinions of connected individuals are always drawn
to each other over time. One of the heuristics in this article will
depend on this feature of the dynamics. However, exposure to
substantially differing opinions in the real-world may yield no
effect, or even strengthen one’s original position. In Section VI
we discuss how our results might be leveraged for such a class
of richer opinion dynamics models, and relevant directions for
future work.

B. Polarization and Disagreement

In practice, a perfect consensus is rare; therefore, we seek
to understand “closeness” to consensus. Accordingly, we define
polarization to be proportional to the variance of the expressed
opinions. Large polarization indicates that the population is far
from achieving a consensus, and vice-versa. Formally:

Definition 1 (Polarization): Given a vector of opinions x =
(x1, . . . , xn) and the mean of its entries x := 1

n

∑n
i=1 xi, the

polarization of x is

P (x) :=

n∑
i=1

(xi − x)2 = ‖x̃‖2 ,

where x̃ := x− x�1 are the mean-centered opinions.
In particular, P (z) is expressed polarization, and P (s) is

innate polarization.

It is useful to define disagreement, which captures distance
from consensus on a local scale. Intuitively, if two vertices have
very distinct opinions, their disagreement is large.

Definition 2 (Disagreement): For any vector of opinions x =
(x1 . . . xn), the disagreement between vertices i and j is given
by:

Dij(x) := (xi − xj)
2.

Again, between vertices i and j, Dij(z) is the expressed
disagreement, while Dij(s) is the innate disagreement. The two
quantities above have been studied in several recent articles on
social and information networks; see [1], [2], [3], [4], [7], [8],
[9], [10], [14], [15] and references therein.

IV. THEORETICAL RESULTS

We now present several theoretical results on polarization. We
study how its magnitude depends on structural properties of the
graph, and how it can vary as edges are modified.

A. Opinion Contraction and Polarization

This article is primarily concerned with polarization of ex-
pressed opinions, P (z). However, the relationship between ex-
pressed and innate polarization depends on G. Since the opinion
dynamics model performs a contraction on the opinions, it
follows that P (z) ≤ P (s). In fact, more is true: the contraction
ratio is controlled by structural properties of G.

To present this result, we must introduce some notation. For
any two disjoint subsets of vertices B1 and B2, let E(B1, B2)
denote the set of edges with one incident vertex in B1 and the
other in B2. The conductance of X ⊂ V is defined as

hG(X) :=

∑
(i,j)∈E(X,XC) wij

min{∑v∈X dv,
∑

u∈XC du} .

The isoperimetric number (also known as the Cheeger constant)
of a graph G is given by

hG := min
X⊂V,0<|X|<|V |

hG(X), (1)

as in [32], and will appear in the results. Note that hG ≤ 1,
since hG(X) = 1 when X consists of a single vertex, and G
is disconnected if and only if hG = 0. The isoperimetric number
of a graph indicates the presence of bottlenecks – it is small when
there exists a large subset of vertices that are sparsely connected
to others.

We now arrive at a first result on the contraction properties of
the FJ model on polarization.

Proposition 3: Let dmin and dmax be the minimum and max-
imum weighted degrees in G, and let hG be its isoperimetric
number. Then,

P (s)

(1 + (2dmax) ∧ (w̄n))2
≤ P (z) ≤ P (s)(

1 + 1
2dminh2

G
)2 .

Proposition 3 quantifies the effects of the FJ model on polar-
ization. In particular, ifG has strong expander properties (i.e.,hG
is large), then we expect the expressed polarization to be small,
relative to the innate polarization. The proof of this result can
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be found in Appendix A, and follows from simple eigenvalue
bounds and a version of Cheeger’s inequality.

This result provides a tighter upper bound on polarization
than that of [2]. The tightening is achieved by observing that the
mean-centered innate opinions s̃ are orthogonal to the eigen-
vector of (I + L)−2 that has corresponding eigenvalue 1. In
addition, we can use Proposition 3 to show that the complete
graph Kn, with all edge weights equal to the maximal w̄, is a
global minimum for polarization.

Corollary 4: Fix innate opinions s, and let G be any graph on
n vertices with maximal edge weight w̄. Let zKn

and zG denote
the expressed opinions on Kn and G, respectively. Then,

P (zKn
) ≤ P (zG).

Moreover, P (zKn
) = P (s)

(1+w̄n)2 .
The key observation in the proof of Corollary 4 is that all

non-zero eigenvalues of LKn
= w̄(nI − �1�1T ) (the Laplacian

of the complete graph) are equal to w̄n. Therefore, for any G, the
value of polarization on Kn achieves with equality the smallest
lower bound from Proposition 3. This result also provides a
useful reference point for closeness to global optimality.

B. Given Opinions

We now turn to studying how the planner can decrease polar-
ization by modifying the graph.

In a first setting, we assume that the innate opinions are known.
If the planner can change (by adding or removing) the edge
weight between at most k pairs of vertices, what is the least
polarization they can achieve? Given a graph G, innate opinions
s, and integer budget k > 0, we have

min
G′

P (z′)

s.t. ||W −W ′||0 ≤ 2k, (2)

where the expressed opinions z′ correspond to G′, which must
also be an undirected graph with maximal edge weight w̄. The
factor of two in the constraint of (2) follows from our assump-
tion of undirected graphs. The constraint naturally captures the
assumption that it is costly for the planner to modify an edge,
but upon committing to doing so, they may freely change the
edge weight.4

Problem (2) may be challenging to solve efficiently since it is
non-convex. Beyond the fact that the �0 norm gives a non-convex
feasible set, the objective function is also not convex – see Fig. 1
for a small example. Therefore, relaxing the �0 constraint to
�1 still yields a non-convex optimization problem. Instead of
seeking an optimal set of k edges to add, we propose a greedy
stepwise approach where the weight of k edges are saturated
iteratively, one at a time. This simpler setting is tractable for
analysis.

It seems intuitive that adding edge weight to G promotes the
flow of information, and thereby reduces polarization. However,

4The constraint could also bound the absolute difference in edge weights
(�1 norm). This is a different problem – more similar to [1] – but an interesting
direction for future work. In this case, we believe that the planner would distribute
edge weight to maximize the least marginal return of polarization.

Fig. 1. A simple example of the non-convex objective function. With innate
opinions s = [0, 0.4, 1], it can be seen that P ( 12 [L1 + L2]) >

1
2 [P (L1) +

P (L2)]. (Note the abuse of notation to illustrate P (·)’s dependence on only the
Laplacian.) In this particular example, the addition of any amount of weight to
edge (1,3) increases polarization. (a) Simple graph G1. (b) Simple graph G2.

this is not the case in general. We will see that for most non-
saturated edges, there exist some innate opinions for which the
addition of weight to that edge will increase polarization. The
exact expression for the change in polarization when adding
edge weight is given in the following.

Lemma 5: Let G(V,E) be an undirected graph yielding
expressed opinions z, and (i, j) be a pair of vertices with
non-maximal weight, that is, wij < w̄. Let vij := ei − ej . For
δ ∈ (0, w̄ − wij ], we construct G+(V,E+,W+) according to
w+

ij = wij + δ, and E+ = {(i, j) : w+
ij > 0}. If the expressed

opinions on G+ are given by z+ := (I + L+)−1s, then

P (z)− P (z+) = Dij(z)

[
2δz̃T (I + L)−1vij

z̃Tvij

(
1 + δvT

ij(I + L)−1vij

)
− δ2vT

ij(I + L)−2vij(
1 + δvT

ij(I + L)−1vij

)2
]
. (3)

The proof of this result can be found in Appendix A. To discuss
this result, it is useful to define the following.

Definition 6 (∂wij
P (L)): Fix some innate opinions s. Let zL

denote the resulting expressed opinions when the underlying
graph G has Laplacian L. We write:

∂wij
P (L) = lim

t→0+

P (zL+tLij
)− P (zL)

t
(4)

where Lij = vijv
T
ij .

This definition allows us to analyze the first-order effects
of edge modifications on polarization. Notice that even if a
graph were unweighted, we can define this derivative for its
equivalent weighted graph, where the weight of each existing
edge equals one. In the following proposition, we derive a closed
form expression for these partial derivatives.

Proposition 7: For fixed innate opinions s, we have

∂wij
P (L) = −2s̃T (I + L)−2 Lij (I + L)−1 s̃

= −2z̃T (I + L)−1 Lij z̃.

This result allows us to re-write the right-hand side of (3):

−δ∂wij
P (L)

1 + δvT
ij(I + L)−1vij

− δ2vT
ij(I + L)−2vij(

1 + δvT
ij(I + L)−1vij

)2 (zi − zj)
2.
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Therefore, the necessary and sufficient condition for a reduction
in polarization due to adding weight δ to edge (i, j) is:

−∂wij
P (L) > (zi − zj)

2
vT
ij(I + L)−2vij

δ−1 + vT
ij(I + L)−1vij

,

which amounts to a steep enough first derivative.
Lemma 5 also allows us to study when polarization in-

creases after adding weight to edge (i, j). In particular, if
z̃T (I+L)−1vij

z̃Tvij
= 0, then P (z+) ≥ P (z). Notice that if vij is

not an eigenvector of L, then this modification can increase
polarization when the mean-centered innate opinions s̃ lie on
the (n− 1)-dimensional subspace orthogonal to (I + L)−2vij .
This condition is sufficient but not necessary – the example in
Fig. 1 illustrates this point. Therefore, the planner cannot add
edge weight arbitrarily and expect polarization to be reduced –
the innate opinions can determine the effect’s sign.

However, there are special cases in which polarization is
always reduced, such as the following.

Corollary 8: If G, i, and j satisfy N(i) = N(j), then polar-
ization is always reduced by adding weight δ to the edge (i, j),
and the difference is

P (z)− P (z+) = (zi − zj)
2 2δ(1 + δ + di − wij)

(1 + 2δ + di − wij)2
.

This result follows from proving that Lvij = (di − wij)vij

under the assumptions; see Appendix A for full details.
Corollary 8 is somewhat counter-intuitive – if we strengthen

connections between individuals who share the same set of
neighbors, we may expect to form an ‘echo chamber’. However,
the opinion dynamics show that the addition of weight to such
an edge (i, j) will only affect the expressed opinions of vertices
i and j. While this edge fails to have any global effect, it does
indeed bring the opinions of its incident vertices closer together
– hence reducing polarization. The limitation of these effects to
only its incident vertices suggests that in practice, the return on
polarization may be small.

Lemma 5 is also used for arriving at one of our main results.
Theorem 9: Let z, z+, δ, and vij be as before. Then,

P (z)− P (z+) ≤ 1 + λn(L)

1 + 2δ + λn(L)

(−δ∂wij
P (L)

)
.

Furthermore, if there exists ε > 0 for which

z̃T (I + L)−1vij

z̃Tvij
≥ ε+

δ

2δ + (1 + λ2(L))2
,

then we also have

P (z)− P (z+) ≥ 2δε(zi − zj)
2

1 + 2δ
.

Theorem 9 directly motivates two heuristics for the planner.
First, we see that the largest possible reduction in polarization is
proportional to the first order effect −δ∂wij

P (L). Therefore, it
is natural for the planner to iteratively add maximal edge weight
along the direction of steepest descent – a heuristic well-known
as a coordinate descent. Additionally, for fixed ε, the lower
bound grows with the expressed disagreement. Therefore, edges

with large (zi − zj)
2 are also good candidates for the planner to

add weight to; we name this strategy disagreement-seeking.
The upper bound in Theorem 9 implies that there are di-

minishing returns with adding more weight to a single edge,
as 1+λn(L)

1+2δ+λn(L) < 1. Although P (z) is not globally convex, this
shows that it is convex along the direction wij .

C. Adversarial Opinions

In some cases, the planner may not reliably use the innate or
expressed opinions. For instance, they may be difficult (even im-
possible) to measure, or vertices may be susceptible to takeovers;
see [7], [8], [14], [15], [30], [31] for examples of the latter.
Moreover, individuals’ opinions may be multidimensional –
capturing many distinct issues (e.g., firearm regulation, universal
basic income, healthcare, etc.), all of which are shaped by the
network’s structure. Such cases may require the planner to take
a robust approach: they seek to design a network structure
that minimizes polarization for any possible vector of innate
opinions.5 Formally, they aim to solve:

min
G′

max
s∈Rn:‖s‖22≤R

s̃T (I + L′)−2
s̃

s.t. ||W −W ′||0 ≤ 2k. (5)

Polarization in the resulting graph G′ will be robust to the choice
of innate opinions, and this optimization problem yields different
graph structures than problem (2). Again, the factor of two in
the constraint follows from having undirected graphs.

This optimization problem can be interpreted as a game –
an adversary selects s from the n-dimensional sphere of radius
R, and the planner evaluates polarization on this choice of s.
A similar problem appears in [15], who studies a ‘network
defender’ that decreases vertices’ susceptibility to the adversary.
In contrast, we consider defending the network through modifi-
cation of its structure. However, both our defender and theirs face
the same adversary. This choice allows us to directly compare the
effectiveness of these two defensive strategies. Although such
an adversary may not be realistic, we believe this setting has
numerous other justifications.

Note that the innate opinions now lie in the n-dimensional
sphere, as opposed to the hypercube. This formulation allows
us to relate the adversary’s problem to spectral properties of
the resultant graph G′. In fact, problem (5) is equivalent to
maximizing λ2, the spectral gap of the Laplacian.

Proposition 10: The optimal solution G′ to (5) is the same as
that of

max
G′

λ2(L
′)

s.t. ||W −W ′||0 ≤ 2k, (6)

If the optimal solution to (6) is L∗, then the optimal value of (5)
is R

(1+λ2(L∗))2 .
For two graphs G and G′, if W ≤ W ′ elementwise, then

L � L′, and therefore λ2(L) ≤ λ2(L
′). Therefore, the planner

5There is one other possible justification for this formulation – a robust (or
minimax) optimization problem arises when the decision-maker is ambiguity
averse, as is shown axiomatically by [33].
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must only add edge weight to G, as reducing weights cannot
increase the spectral gap.6 The spectral gap of the Laplacian
is intimately tied to the synchronizability of various types of
dynamical systems and the mixing time of Markov chains [16]
and hence several studies seek to maximize it [17], [18]. In this
article, where perfect synchronization is impossible, the spectral
gap controls the best achievable consensus.

The proof of Proposition 10 follows from solving the inner
maximization problem, for which the optimal solution is the
eigenvector of L′ corresponding to the second-smallest eigen-
value. This eigenvector is called the Fiedler vector of G′, and
describes a partition of vertices that approximates the normal-
ized sparsest cut of G [32].

For a graph with Laplacian L, Proposition 10 indicates that
the worst-case polarization is equal to P (L) = R

(1+λ2(L))2 .
The adversary achieves this by choosing s̃ along the span
of the Fiedler vector. The planner’s effectiveness in (5) is
controlled by P (L)− P (L′), the difference in worst-case
polarization.

As in the previous setting, we approach this problem by
iteratively choosing edges to saturate – starting from the initial
graph until no further budget remains. Therefore, the principal
results address how increasing an edge’s weight affects the
spectral gap and thereby polarization. This is quantified in Theo-
rem 11, which relates changes in the spectral gap to elementwise
differences in the Fiedler vector.

Theorem 11: Let G be an undirected graph, and (i, j) be an
edge with non-maximal weight, that is, wij < w̄. Let also v be
the Fiedler vector of G of unit magnitude with corresponding
eigenvalue λ2(L). Recall that λ3(L) is the third smallest eigen-
value of L, and define β = λ3(L)− λ2(L).

For some δ ∈ (0, w̄ − wij ], let G+ be constructed by adding
weight δ to edge (i, j). If α = |vi − vj |, then we have that

max

{
1− 2δ

β
, 0

}
δα2 ≤ λ2(L

+)− λ2(L) ≤ δα2. (7)

The proof follows from adapting the result of [35]. The bounds
are tightest when β is largest, equivalently when λ2(L) is the
sole small eigenvalue of L.

This result motivates a simple heuristic for (6), which appears
in [17]. The planner can iteratively compute the Fiedler vector
and add weight to non-saturated edges whose incident vertices
have large absolute difference in v.

Corollary 12 quantifies the effects on polarization induced by
the perturbation in Theorem 11.

Corollary 12: Let P (L) = R
(1+λ2(L))2 be the worst-case po-

larization on a graph with Laplacian L. In the setting of Theo-
rem 11, we have

P (L)− P (L+) ≥ 2Rδ

(1 + 2δ + λ2(L))
3 max

{
1− 2δ

β
, 0

}
α2

P (L)− P (L+) ≤ 4R
(
δ ∨ δ2

)
(1 + λ2(L))

3α
2.

6We remark that this monotonicity of the spectral gap in the edge set does not
hold for the normalized Laplacian L, see for instance [34].

In contrast to the setting with full information, the worst-case
polarizationP (L) cannot increase when the planner increases an
edge’s weight. Recall that this follows from the monotonicity of
the spectral gap in W . However, it is possible that the resulting
graph G+ has greater polarization for some particular innate
opinions. The settings in (2) and (5) are distinct, and therefore
the quantities compared before and after edge-weight addition
are fundamentally different.

V. EMPIRICAL SIMULATIONS

If we solved problems (2) or (6) naively, it would be necessary

to test all
∑k

i=1

((n2)
i

)
possibilities. Given that computing polar-

ization (or the spectral gap) requires O(n3) time, we obtain a
crude upper bound of O(kn2k+3). Note that for fixed k, this
rate is polynomial in n – albeit still not scalable. However,
in subsequent experiments we choose k to grow linearly with
n, which results in superexponential runtime. It is therefore
extremely impractical to compute the optimal solution, and we
resort to theoretically motivated heuristics.

In Sections IV-B and IV-C, we briefly discussed three heuris-
tics for solving the planner’s problem in a greedy, iterative fash-
ion. Our theoretical results studied how polarization is reduced
by addition of weight to a single edge. Therefore, all of the
following heuristics are based on increasing edge weights. These
are presented below – detailing the edge to be saturated (i.e.
setting edge weight to w̄) at every step and briefly discussing
the time complexity of each iteration. We will compare these
approaches with a random baseline.
� Random: Add an edge from EC chosen uniformly at

random; this has runtime of O(log(n)).
� Disagreement Seeking (DS): argmax

(i,j)∈EC

(w̄ − wij)(zi − zj)
2.

It takesO(n3) time to compute the expressed opinions, and
O(|EC |) time to check all non-saturated edges.

� Coordinate Descent (CD): argmax
(i,j)∈EC

− (w̄ − wij)

∂wij
P (z) Requires O(n3) runtime to perform a matrix

inversion and multiplication, and O(|EC |) to find the
maximizing pair.7

� Fiedler Difference (FD): argmax
(i,j)∈EC

(w̄ − wij)|vi − vj |,
where λ2v = Lv
Takes O(n3) time to compute the eigendecomposition of
L, and O(|EC |) to find the argmax.

Notice two effects at play: the maximal weight that can be
added (w̄ − wij), and some measure of effectiveness per unit
weight (disagreement, partial derivative, or absolute difference
in Fiedler vector). Naturally, each heuristic attempts to maximize
the two’s product.

In addition, note that the three non-random heuristics have
total runtime of O(k(n3 + |EC |)). The random baseline has
runtime of onlyO(k log(n)), but computing polarization at each

7Naively, one might think we need O(n3|EC |) time to find the optimum, as
we perform a matrix multiplication to compute the gradient of every candidate
edge. However, the matrix multiplication is extremely sparse, and can be reduced
to operating on four entries of a fixed, pre-computed matrix.
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TABLE I
INITIAL NETWORKS FOR EVALUATION OF POLARIZATION-REDUCING

HEURISTICS

step (for purposes of comparison) comes with an additional cost
of O(kn3). We believe that the random heuristic is useful for
two reasons. First, it captures a totally naive recommendation
system, which does not curate a user’s content exposure based
on their opinions. Second, in two of the random graph models
we study – Erdős-Rényi and stochastic block – the result of the
random heuristic is another graph from the same model, but with
slightly higher edge density. Therefore, this heuristic allows us
to study how much additional polarization is reduced by adding
edges in an informed, targeted, manner.

We now study the performance of these heuristics on six
unweighted graphs. First we look at three real-world networks –
sourced from Twitter, Reddit, and political blogs – and then three
synthetic networks with different characteristics: the Erdős-
Rényi, stochastic block, and preferential attachment models.
Table I provides basic information about the graphs studied.
In what follows, the planner’s budget is given by k = �n

2 �, such
that on average each vertex receives one new edge. We plot the
value of polarization with the planner’s budget, along with the
reference point P (zKn

), which represents the global minimum
of polarization.

Table II shows three quantities: expressed polarization, spec-
tral gap, and assortativity of innate opinions. Expressed polar-
ization is the principal concern of this study, and through Propo-
sition 10 is closely related to the spectral gap. Assortativity is
introduced by [36], and captures homophily in a network – which
has been shown to control the speed of consensus-forming [37].
In particular, assortativity lies in [−1, 1], and measures the
correlation of an attribute across edges. In this article, this metric
is evaluated for the innate opinions.

In general, the random baseline decreases polarization the
least, and both the DS and CD heuristics outperform the Fiedler
vector-based strategy. This is expected, as the FD heuristic is
blind to the innate opinions, and uses strictly less information.
However, we observe that DS and CD tend to result in negative
values of homophily, while the FD heuristic does not share this
tendency. As an interesting implication, it does not appear that a
reduction in polarization requires negative values of homophily.
Namely, it may not be necessary to directly connect the most
polarized individuals in a society to reduce its level of polariza-
tion.

In the figures that follow, vertices are colored according to
their innate opinions. Graphs are plotted using the python mod-
ule networkx [38]. Vertices are placed in two-dimensional
space using force-directed algorithms, in which vertices repel
each other and edges behave like springs in tension. Therefore,

Fig. 2. Evaluation of the planner’s heuristics on the Twitter network. Panel
(a) shows the reduction achieved as the planner gradually adds edges. Panel (b)
shows the initial network, while (c)-(f) visualize the network after the planner
has exhausted their budget according to each heuristic.

the vertex layout reflects their relative attraction. The same
random seed for initial node placement is used for every graph
type studied. All code and data is publicly available here.

A. Real-World Networks

The Twitter and Reddit datasets used in this section were first
collected by [39], and used by both [14] and [10] in recent work.
An additional dataset comprised of political blogs was collected
by [40] and used in [7], [31].

a) Twitter: This network reflects individuals who tweeted
about a Delhi assembly debate in 2013. The network is shown
in Fig. 2(b), and mainly consists of two communities.

Fig. 2(a) shows the reduction in polarization achieved by the
planner when applying each of the heuristics. Notably, all heuris-
tics outperform our simple baseline. For the two best-performing
heuristics, the first 50 edges modified reduce polarization by
about a factor of two, and the subsequent 50 achieve a similar
fractional reduction. This highlights both the substantial effect of
minimal modifications to the graph, and the diminishing returns.

The networks resulting from the planner’s heuristics are
shown in Fig. 2(c)–(f). There are notable reductions in the
strength of community structures. While less effective in reduc-
ing polarization, the Fiedler vector-based heuristic (FD) appears
to smooth out communities the most.

b) Reddit: This network was generated by following Reddit
users who posted in a politics forum. Three isolated vertices
are removed in preprocessing. Fig. 3(b) shows that the initial
network appears to be tightly clustered, and Table II shows that
it exhibits an extremely small level of polarization.

For any non-baseline heuristic, the full budget reduces po-
larization by almost a factor of four. For the best-performing
heuristics, this reduction is by nearly an order of magnitude. We
observe greatly diminishing returns, with the most significant
reduction achieved with the first few edges modified. Moreover,
the best-performing heuristics come close to achieving the glob-
ally optimal solution with the full budget.
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TABLE II
VALUES FOR EXPRESSED POLARIZATION, SPECTRAL GAP, AND INNATE ASSORTATIVITY COMPUTED BEFORE AND AFTER THE PLANNER APPLIES EACH HEURISTIC

TO SIX NETWORKS. THE PLANNER ADDS k = �n
2 � EDGES – AN AVERAGE OF ONE NEW EDGE PER VERTEX. THE BEST-PERFORMING HEURISTICS

ARE HIGHLIGHTED IN BOLD. APPENDIX B CONTAINS ADDITIONAL FIGURES SHOWING CHANGES IN THE SPECTRAL GAP

AND ASSORTATIVITY WITH THE PLANNER’S BUDGET

Fig. 3. Evaluation of the planner’s heuristics on the Reddit network. Panel
(a) shows the reduction achieved as the planner gradually adds edges. Panel (b)
shows the initial network, while (c)–(f) visualize the network after the planner
has exhausted their budget according to each heuristic.

Only minor changes are observed in the resulting graph struc-
tures. Fig. 3(c), (d), and (e) look almost identical to the initial
network. In contrast, the graph in Fig. 3(f) does not have as dense
a core, and appears to be more evenly connected. Since maxi-
mizing the spectral gap results in the graph behaving similarly
to an expander, which (informally) is equally well-connected
across all cuts, this is to be expected.

c) Blogs: This network was collected by aggregating online
directories of political blogs around the 2004 US elections. Note
that vertices in this network represent blogs – not individuals
as in the previous datasets. Each blog was identified as either
‘conservative’ or ‘liberal,’ which we encode by innate opinions
of 0 or 1, respectively. Observe in Table II that this network
exhibits extremely large values of polarization and homophily,
and a small spectral gap.

Fig. 4. Evaluation of the planner’s heuristics on the political blogs network.
Panel (a) shows the reduction achieved as the planner gradually adds edges.
Panel (b) shows the initial network, while (c)–(f) visualize the network after the
planner has exhausted their budget according to each heuristic.

We find consistent reductions in polarization with all heuris-
tics – including the baseline. This network is unique in that the
community structure largely mirrors the innate opinions. That
is, the mean-centered innate opinions vector is highly collinear
with the Fiedler vector. Hence, both the DS and FD heuristics
will choose to add inter-community edges. Since a large fraction
of the non-edges span the two communities, a randomly chosen
edge is also likely to bridge the two.

Fig. 4(c) shares with Fig. 4(b) a tightly-knit core, with a
few vertices at the extremities. In contrast, Figs. 4(d)–(f) depict
networks that are more uniformly connected. As before, we find
feature this to be most observable with the FD heuristic.

B. Synthetic Datasets

These heuristics are also applied to three canonical models
of random graphs. In the first two models, the number of edges
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Fig. 5. Evaluation of the planner’s heuristics on the Erdős-Rényi graph. Panel
(a) shows the reduction achieved as the planner gradually adds edges. Panel (b)
shows the initial network, while (c)–(f) visualize the network after the planner
has exhausted their budget according to each heuristic.

grows quadratically in the number of vertices (for fixed parame-
ters). However, in our final model, the number of edges is always
linear in the number of vertices. Therefore, one may expect that
the impact of the planner’s O(n) edges is greatest in the sparser
model – but we will see that this is not the case.

a) Erdős-Rényi: A graph from this model connects each pair
of vertices independently with a fixed probability p ∈ [0, 1].
We take n = 1000 and p = 0.02, although the results are qual-
itatively similar for different values. The innate opinions are
independent uniform random variables in [0,1].

This model produces homogeneous, well-connected net-
works, which are good spectral approximations of the complete
graphKn [41]. This can be seen through the large initial spectral
gap in Table II. Therefore, according to Proposition 3 it is natural
to expect polarization to be small. Nonetheless, all heuristics
fail to significantly reduce polarization. A comparison with the
random baseline is particularly interesting in this model, as it
results in another Erdős-Rényi graph, but with a slightly larger
value of p.

Few changes can be seen among Figs. 5(c)–(f). However, there
are few vertices with extreme opinions in the fringes of Fig. 5(d).
Instead, these vertices tend to be concentrated in the center of
the graph. This aligns with the most negative assortativity seen
in Table II. Notably, this is not seen in Fig. 5(f) or (c).

b) Stochastic Block Model: A graph drawn from a stochas-
tic block model can replicate community structures, and is
shown in Fig. 6(b). This random graph on n = 1000 vertices
with two equal-sized communities is generated by mirroring
the methodology in [14]. Specifically, the probability of inter-
community edges is given by q = 0.005, and the probability
of intra-community edges is p = 0.05. Since p > q, we expect
to see strong communities. The innate opinions of vertices in
each community are drawn independently from either Beta(1, 5)
or Beta(5, 1), such that the distribution of opinions mirrors the
graph’s community structure.

Fig. 6. Evaluation of the planner’s heuristics on the stochastic block model
graph. Panel (a) shows the reduction achieved as the planner gradually adds
edges. Panel (b) shows the initial network, while (c)–(f) visualize the network
after the planner has exhausted their budget according to each heuristic.

In Fig. 6(a), a nearly identical reduction in polarization can
be seen for all non-random heuristics. This occurs because the
mean-centered innate opinions are highly collinear with the
Fiedler vector, which partitions the graph into its two communi-
ties. Therefore, both the DS and FD strategies will add edges
between the two communities. Similarly to the Erdős-Rényi
setting, the random baseline yields another stochastic block
graph, but with slightly larger parameters p and q.

Qualitatively, all three heuristics can be seen to bring the two
communities closer together. However, in Fig. 6(d) and (e), the
vertices with extreme opinions are brought closer to the center.
As before, this is not observed in Fig. 6(f).

c) Preferential Attachment Model: This model generates
graphs with power-law degree distribution, often known as
scale-free or Barabási-Albert networks [42]. Again, we follow
a similar procedure to [14], with n = 1000 vertices added se-
quentially. Each incoming vertex connects to at most m = 5
vertices, where the likelihood of connecting to a particular vertex
is proportional to its degree.

This graph tends to exhibit a small, highly interconnected
core, and many vertices with low degree. This structure is not
conducive to low polarization, as we see in Fig. 7(a). The
best-performing heuristics manage to reduce polarization by
just over a factor of two, whereas the others see only negligible
fractional reductions. Notably, the FD heuristic only slightly
outperforms the baseline. These observations are a result of
the Friedkin-Johnsen model – higher-degree nodes experience
the smallest marginal effects of increased edge weight. Since
the preferential attachment model yields a heavy-tailed degree
distribution, a larger fraction of nodes are resilient to the plan-
ner’s modifications. These nodes will also exert large amounts
of influence on their neighbors due to their high degree. These
structural properties of the preferential attachment graph may
dampen the planner’s effectiveness.

Qualitatively, Fig. 7(d)–(f) appear similar to the original
network in Fig. 7(b). We do not see strong changes in the
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Fig. 7. Evaluation of the planner’s heuristics on the preferential attachment
graph. Panel (a) shows the reduction achieved as the planner gradually adds
edges. Panel (b) shows the initial network, while (c)–(f) visualize the network
after the planner has exhausted their budget according to each heuristic.

structure, which aligns with the minor differences in homophily
and spectral gap in Table II.

VI. DISCUSSION AND CONCLUSION

In this article, we analyze the connection between structures
of social and information networks and polarization.

First, we establish a relationship between the ratio of ex-
pressed to innate polarization. This ratio is controlled by struc-
tural properties of the graph, such as the degree profile and
isoperimetric number (i.e. Cheeger constant). In particular, the
worst-case polarization depends directly on the spectral gap of
the Laplacian. Consequentially, we show that the complete graph
achieves the global minimum for polarization. This result aligns
with one’s intuition – bottlenecks in the graph are liabilities to
a consensus.

Next, this article presents two variations of the planner’s
problem – one in which the innate opinions of the population
are known, and another in which they are chosen adversarially.
In the first, an expression is derived for the exact difference in
polarization when weight is added to a single edge. We find
that strengthening the connections between vertices with large
expressed disagreement reduces polarization. However, it is seen
as costly for individuals to interact with differently-minded
others [11]. Therefore, reaching a consensus, while arguably
beneficial for the population, may prove costly to individuals.
We also present a second setting wherein the planner defends the
network against adversarially-controlled innate opinions. Here,
we prove that the planner aims to maximize the spectral gap. We
then show the effectiveness of a strategy based on the Fiedler
vector v – the eigenvector corresponding to the spectral gap.
Intuitively, this vector partitions the graph based on the signs of
its elements, and the planner should strengthen edges across the
cut.

Finally, we evaluate the performance of four heuristics on
several real-world and synthetic networks. We find that all

strategies may smooth out community structures – often re-
ferred to as ‘echo-chambers’. Furthermore, when there are no
strong communities present, the Fiedler vector-based strategy
is able to reduce polarization without simultaneously reducing
homophily. With this approach, a reduction in polarization did
not necessitate direct connections between opposite-minded in-
dividuals. However, this strategy performed significantly worse
in several networks. We believe that the difference reflects how
much of the polarization is driven by the particular values of
opinions. For instance, all three heuristics perform similarly
when the profile of opinions mirrors the graph structure, and
therefore both contribute similarly to the level of polarization.
Specifically, all heuristics behave similarly when the mean-
centered innate opinions s̃ are highly aligned with the Fiedler
vector – this observation can be seen most easily in the blogs
and stochastic block model networks.

There are several interesting directions for future theoretical
work. First, this article has only derived bounds for single-edge
modifications. It is an open problem to characterize the effects
on polarization of more substantial perturbations to the graph
structure. Furthermore, it may be possible to study the planner’s
effectiveness within various classes of random graph models.
For instance, what fraction of non-edges in an Erdős-Rényi graph
reduce polarization when added?

At first glance, the results article are severely limited by
the model of opinion dynamics. Experimental research has
shown that exposure to differing opinions may increase po-
larization [12]. Motivated by these observations, many models
incorporate non-attractive forces between opinions – see [8],
[24] for extensions of the FJ model, and [23], [25], [26] for
geometrically-inspired approaches. Within the broader problem
of understanding how social network structures relate to polar-
ization, this article provides only a first step – the analytical
tractability of the FJ model comes at the expense of express-
ibility. Nonetheless, we believe the results in this article may
be generalizable to a wider class of opinion dynamics models
that exhibit attraction – which includes all of the above exam-
ples. For instance, one could modify a ‘disagreement-seeking’
heuristic to only consider non-saturated edges between indi-
viduals within each others’ radius of attraction. The study of
polarization-reducing strategies in these more complex models
of opinion interaction is a rich and fruitful area for future
work.

Several networks showed large reductions in polarization
with a small number of edge modifications. However, in the
Erdős-Rényi and preferential attachment networks, this article’s
heuristics did not have as strong of a performance. Beyond
our speculation, it remains to be understood what properties
of these networks may limit the planner’s effectiveness, or what
minimal budget is necessary for a fixed fractional reduction in
polarization. Moreover, it is not yet clear if this observation is
a feature of the heuristics or the graph itself – are we closely
approximating the true optimal solution?

In this study, we have shown that strengthening ties be-
tween disagreeing individuals is an effective strategy for re-
ducing social polarization. Therefore, if polarization is instead
increasing as society becomes increasingly connected, then both
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individuals and social media platforms may be failing to con-
tribute to discourse between opposing perspectives.

APPENDIX A
PROOFS

First, we specify notation. Let I denote the identity matrix, �1
the all-ones vector, and ei the i-th standard basis vector – all of
appropriate dimension. Additionally, for x ∈ Rn, we write x :=
1
n

∑n
j=1 xj to denote the mean of its entries and x̃ := x− x�1 for

the mean-centered version of x. For a square matrix A ∈ Rn×n,
we write Ai for the i-th column of A. The eigenvalues of A
in descending order are given by λn(A) ≥ λn−1(A) ≥ . . . ≥
λ1(A)). We frequently use the notation λmax(A) = λn(A) and
λmin(A) = λ1(A) for the largest and smallest eigenvalues.

Given an initial graph G and any other graph G′, define T ≡
T (G′;G) ∈ Rn×n to be

T := (I + L)−1(I + L′), (8)

where L and L′ denote the combinatorial Laplacians of G and
G′, respectively. The dependence of T on G and G′ will be clear
from context and hence omitted. The expressed opinions z′ can
be computed in terms of T and the original expressed opinions
as follows:

z′ = T−1z.

This matrix is also useful in allowing us to express the new value
of polarization in terms of the expressed opinions on the initial
graph. After some algebra, we have that

P (z′) = z̃T (T−1)TT−1z̃, (9)

where we used (8). The spectrum of T will be critical for
theoretical results.

Recall the definition of the isoperimetric number (also known
as the Cheeger constant) of a graph from (1). The following
simple Lemma is useful in subsequent proofs.

Lemma 13: Let dmax and dmin denote the maximum and
minimum weighted degrees of G. Additionally, let L be the
combinatorial Laplacian of G, and let λn ≥ λn−1 ≥ . . . ≥ λ2 ≥
λ1 = 0 denote its eigenvalues in decreasing order. Then, we have
both

1

2
dminh

2
G ≤ λ2 ≤ 2dmaxhG , (10)

and

λn ≤ (2dmax) ∧ (w̄n). (11)

Proof: For the normalized Laplacian L, the well-known
Cheeger inequality (see, e.g., [32]) gives that

h2
G
2

≤ λ2(L) ≤ 2hG .

Notice that the eigenvalues of L = D1/2LD1/2 are equal to
those of LD. Additionally, the ordered eigenvalues of D are
simply the degrees of G in descending order. Since both L and
D are positive semidefinite and Hermitian, we can apply a Weyl
multiplicative inequality from [43] for both of

λi+j−n(LD) ≤ λi(L)λj(D), if i+ j − n ≥ 1 (12)

λi(L)λj(D) ≤ λi+j−1(LD), if i+ j − 1 ≤ n. (13)

Choosing i = 2 and j = n in (12) gives that

λ2(LD) ≤ λ2(L)dmax ≤ 2hGdmax.

With i = 2 and j = 1 in (13), we have that

λ2(LD) ≥ λ2(L)dmin ≥ 1

2
h2
Gdmin.

Combining the previous two displays gives (10).
The inequality (11) can be proved using the triangle inequality.

The largest eigenvalue of L is equal to the operator norm of
D −A. Since the norm of both D and A are upper bounded by
dmax, we conclude that λn(L) ≤ 2dmax.

Let LKn
= w̄(nI − �1�1T ) denote the combinatorial Lapla-

cian of the complete graph, where all edge weights are equal to
w̄. Since for any L we have LKn

� L, then w̄n = λn(LKn
) ≥

λn(L). �

A. Proofs of Section IV-A

Proof of Proposition 3: We seek to write P (z) in a way that
P (s) appears. Recall that z = (I + L)−1s and also z̃ = (I +
L)−1s̃. Therefore

P (z) = z̃T z̃ = s̃T (I + L)−2s̃. (14)

Towards the lower bound in the claim, we may use an eigenvalue
bound to obtain that

P (z) ≥ λmin((I + L)−2)s̃T s̃ = (1 + λmax(L))
−2P (s).

From (11) we have that λmax(L) ≤ (2dmax) ∧ w̄n; plugging
this into the display above we obtain the claimed lower bound.

For the upper bound, first note that the eigenvector corre-
sponding to the largest eigenvalue of (I + L)−2 is �1. Since s̃ is
orthogonal to �1, we have from (14) that

P (z) ≤ λn−1((I + L)−2)s̃T s̃ = (1 + λ2(L))
−2P (s).

From (10) we have that λ2(L) ≥ (1/2)dminh
2
G ; plugging this

into the display above we obtain the desired upper bound. �
Proof of Corollary 4: Take any graph G and innate opinions

s. Proposition 3 implies that

P (zG) ≥ P (s)(1 + (2dmax) ∧ (w̄n))−2 ≥ P (s)(1 + w̄n)−2.

Turning to the complete graph Kn, recall that the spectrum
of its Laplacian has 0 as an eigenvalue with eigenvector �1. It
also has eigenvalue w̄n with multiplicity n− 1 and eigenspace
containing all vectors orthogonal to �1. Since s̃T�1 = 0, we
have (I + LKn

)−1s̃ = (1 + w̄n)−1s̃. Recalling the definition of
polarization, we obtain P (zKn

) = ‖(I + LKn
)−1s̃‖2 = (1 +

w̄n)−2‖s̃‖2 = (1 + w̄n)−2P (s). Comparing with the display
above, we see that Kn minimizes polarization over all graphs
with maximal weight w̄. �

B. Proofs of Section IV-B

Proof of Lemma 5: To obtain the claim, we expand P (z+)
in a way that P (z) appears. First, note that L+ = L+ δLij

and Lij = vijv
T
ij , and hence we have that T = I + δ(I +

L)−1vijv
T
ij . The Sherman-Morrison formula thus gives that
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T−1 = I − δ
1+δvT

ij(I+L)−1vij
(I + L)−1vijv

T
ij . Plugging this

into (9), we obtain

P (z+) =

∥∥∥∥∥
(
I− δ

1+δvT
ij(I + L)−1vij

(I+L)−1vijv
T
ij

)
z̃

∥∥∥∥∥
2

= z̃T z̃− 2δz̃T (I + L)−1vijv
T
ij z̃

1 + δvT
ij(I + L)−1vij

+ (z̃Tvij)
2

δ2vT
ij(I + L)−2vij(

1 + δvT
ij(I + L)−1vij

)2 .
Noting that P (z) = z̃T z̃, and Dij(z) = (z̃Tvij)

2 leads to the
desired expression after rearranging. �

Proof of Proposition 7: For simplicity of notation, let A =
I + L. Then, for any t > 0, we have

P (zL+tLij
)− P (zL)

t
=

s̃T
[(
A+ tvijv

T
ij

)−2 −A−2
]
s̃

t

Using the Sherman-Morrison formula, we can compute that[(
A+ tvijv

T
ij

)−1
]2

=

[
A−1 − tA−1vijv

T
ijA

−1

1 + tvT
ijA

−1vij

]2

= A−2 − 2t
A−2vijv

T
ijA

−1

1 + tvT
ijA

−1vij
+ o(t)

(15)

where o(t)
t = o(1) →t→0 0. Plugging (15) into (4) and taking

the limit concludes. �
Proof of Corollary 8: Recall that vij = ei − ej . Since

N(i) = N(j), a direct computation gives Lvij = (di −
wij)vij . Consequently, we have (I + L)−1vij =

1
1+di−wij

vij .
Plugging this into Lemma 5 and simplifying yields the desired
result. �

Proof of Theorem 9: The proof of this Theorem follows from
bounding the terms in Lemma 5.

First, we show the upper bound. Notice that
δ2vT

ij(I+L)−2vij

1+δvT
ij(I+L)−1vij

≥ 0, so this term can be dropped. Through an

eigenvalue bound we also find that

1

1 + δvT
ij(I + L)−1vij

≤ 1 + λn(L)

1 + 2δ + λn(L)
.

Plugging these two observations into (3) and rearranging to find
∂wij

P (L) concludes.
For the lower bound, we have the following inequalities.

δvT
ij(I + L)−2vij

1 + δvT
ij(I + L)−1vij

≤ δvT
ij(I + L)−2vij

1 + δvT
ij(I + L)−2vij

≤ 2δ

2δ + (1 + λ2(L))2
.

Therefore, by assumption and Lemma 5, we have that

P (z)− P (z+)≤ δ(zi − zj)
2

1 + δvT
ij(I + L)−1vij

[2ε]≤ 2δε(zi − zj)
2

1 + 2δ
,

where we used vT
ij(I + L)−1vij ≤ 2. �

C. Proofs of Section IV-C

Proof of Proposition 10: This proof requires only that we
solve explicitly the adversary’s optimization problem.

By construction, s̃ is orthogonal to �1. As a result, the optimal
solution for the adversary is

√
Rv2, where v2 is the eigenvector

corresponding to λ2(L
′), and the optimal value is:

max
s∈Rn:‖s‖22≤R

s̃T (I + L′)−2
s̃ =

R

(1 + λ2(L′))2
.

To minimize this quantity, it follows that the planner maximizes
the spectral gap of L′. �

Proof of Theorem 11: This proof uses a variation of a result
by [35]. The original result states that if a simple (unweighted,
undirected) graph G+

s is constructed by adding a non-edge (i, j)
to another simple graph Gs, we have

λ2(L
+
s ) ≥ min

{
λ2(Ls) +

εα2

ε+ (2− α2)
, λ3(Ls)− ε

}
λ2(L

+
s ) ≤ min{λ2(Ls) + α2, λ3(Ls)},

where α2 = (vi − vj)
2, and v is the eigenvector of L corre-

sponding to λ2(L).
It is possible to adapt the original proof to consider the case

where weight δ is added to edge (i, j). This result would yield:

λ2(L
+) ≥ min

{
λ2(L) +

εδα2

ε+ δ(2− α2)
, λ3(L)− ε

}
λ2(L

+) ≤ min{λ2(L) + δα2, λ3(L)},
The tightest lower bound is achieved by choosing

ε∗ =
β − 2δ

2
+

((
β − 2δ

2

)2

+ βδ(2− α2)

)1/2

,

where β = λ3(L)− λ2(L), so that both terms in the minimum
are equal. First, we note that ε∗ ≥ β − 2δ, with equality when
α = 2. Additionally, the first term in the minimum is increasing
in ε, so therefore we have

β − 2δ

β
δα2 ≤ (β − 2δ)δα2

β − 2δ + δ(2− α2)
≤ λ2(L

+)− λ2(L) ≤ α2,

as claimed since α2 ≥ 0. Finally, note that λ2(L
+) ≥ λ2(L) as

L+ − L = δLij � 0. �
Proof of Corollary 12: Recall that we defined P (L) =

R
(1+λ2(L))2 . We first prove the upper bound by using (7):

P (L)− P (L+)

R
≤ 1

(1 + λ2(L))
2 − 1

(1 + λ2(L) + δα2)2

≤ δ2α4 + 2(1 + λ2(L))δα
2

(1 + λ2(L))
2 (1 + λ2(L) + δα2)2

.

Since δα2 ≥ 0 and α2 ≤ 2 ≤ 2(1 + λ2(L)), we write α4 ≤
2(1 + λ2(L))α

2, and arrive at the desired

1

(1 + λ2(L))
2 − 1

(1 + λ2(L+))2
≤ 4α2

(
δ ∨ δ2

)
(1 + λ2(L))

3 .
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Fig. 8. The planner’s effect on the Twitter network.

Fig. 13. The planner’s effect on the preferential attachment graph.

Fig. 9. The planner’s effect on the Reddit network.

The lower bound follows similarly by (10). For simplicity of
notation, let c = max{1− 2δ

β , 0}. Then,

P (L)− P (L+)

R
≥ 1

(1 + λ2(L))
2 − 1

(1 + λ2(L) + cδα2)2

≥ c2δ2α4 + 2cδα2(1 + λ2(L))

(1 + λ2(L))
2 (1 + λ2(L) + cδα2)2

.

Observe that c2δ2α4 ≥ 0, so this term can be dropped. Fur-
thermore, cδα2 ≤ 2δ, which gives us the result:

P (L)− P (L+)

R
≥ 2cδα2

(1 + 2δ + λ2(L))
3 ,

�

APPENDIX B
ADDITIONAL FIGURES

In this short section, Figs. 8–13 show how homophily
(i.e., assortativity of innate opinions) and the spectral gap
are affected by the planner’s modifications. These provide
greater detail than the initial and final values found in
Table II.

Fig. 10. The planner’s effect on the political blogs network.

Fig. 11. The planner’s effect on the Erdős-Rényi graph.

Fig. 12. The planner’s effect on the stochastic block graph.
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