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The primary aim of this research paper is to enhance the effectiveness of a two-level infra-
structure-based control framework utilized for traffic management in expansive networks.
The lower-level controller adjusts vehicle velocities to achieve the desired density deter-
mined by the upper-level controller. The upper-level controller employs a novel Lyapu-
nov-based switched Newton extremum seeking control approach to ascertain the optimal
vehicle density in congested cells where downstream bottlenecks are unknown, even in
the presence of disturbances in the model. Unlike gradient-based approaches, the
Newton algorithm eliminates the need for the unknown Hessian matrix, allowing for
user-assignable convergence rates. The Lyapunov-based switched approach also ensures
asymptotic convergence to the optimal set point. Simulation results demonstrate that the
proposed approach, combining Newton’s method with user-assignable convergence rates
and a Lyapunov-based switch, outperforms gradient-based extremum seeking in the hierar-
chical control framework. [DOI: 10.1115/1.4064088]
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1 Introduction
In the realm of freeway traffic, congestion frequently occurs at

bottleneck locations, where multiple bottlenecks can simulta-
neously arise in a network during peak rush hours [1]. Many
traffic management techniques, encompassing infrastructure-based
and vehicle-based strategies, have been developed to optimize
traffic flow and enhance road safety [2]. Vehicle-oriented control
algorithms focus on designing control systems for individual vehi-
cles, while infrastructure-centric algorithms employ macroscopic
models of traffic networks to improve the collective behavior of
traffic, including overall traffic flow. The development of traffic
controllers for large-scale traffic networks presents notable chal-
lenges stemming from the variability in control characteristics and
critical parameters among vehicles.
To mitigate these concerns, research efforts have been directed

toward developing control approaches that necessitate minimal or
no information regarding the dynamics of the traffic network.

Examples of such approaches include extremum seeking (ES)
control and filtered feedback linearization (FFL) techniques [3].
Filtered feedback linearization is a renowned control technique

recognized for its remarkable parameter-stabilizing properties, ren-
dering it a potent approach for realizing local asymptotic stability of
the zero dynamics [4]. Compared to the conventional FL approach,
the FFL controller demands minimal dynamic model information,
namely the dynamic-inversion matrix and the relative degree
vector. Moreover, FFL has the advantageous capability of achiev-
ing arbitrarily small L∞ commands following error, even in the
presence of unknown disturbances [5].
In our recent study [6], we employed the FFL approach for the

first time in a non-signalized traffic network to achieve the
desired density in the target cell. The desired densities were deter-
mined based on simulation data, where they were set equal to the
critical density of each vehicle class. However, it should be noted
that the critical density may not always be the optimal choice due
to the intricate dynamics of large-scale traffic networks. Conse-
quently, to address this issue, a hierarchical control framework
was introduced in our subsequent publication [7]. Our innovative
approach entailed the utilization of gradient-based ES at the upper
level, coupled with FFL at the lower level, to mitigate congestion
in a traffic network effectively. Specifically, the FFL technique
was utilized to modify the communicated velocity to the vehicles,
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with the ultimate objective of attaining the target density as deter-
mined by the ES. The conventional gradient-based ES control is a
model-free optimization approach that focuses on enhancing the
steady-state performance of dynamic systems. An ES controller
adaptively adjusts the system input to optimize the steady-state
output, such as cost or performance, with minimal prior knowledge
about the underlying system dynamics [8].
In this study, we enhance the performance of the novel hierarchical

control framework by incorporating Lyapunov-based switched
Newton extremum seeking (LSNES) at the upper level of the
control hierarchy and FFL at the lower level. One of the key distinc-
tions between the Newton algorithm and the gradient algorithm is that
the convergence of the former is not solely contingent on the second
derivative (Hessian) of the map. In fact, the convergence of the
Newton algorithm can be arbitrarily assigned without relying on
the properties of the Hessian [9]. This characteristic of the Newton
algorithm becomes especially significant in non-model-based algo-
rithms, such as ES, where the Hessian is unknown.
Hence, addressing the limit cycle and achieving asymptotic con-

vergence to the optimal set point is one of the main challenges in the
NES. To overcome this challenge, we introduced a Lyapunov-based
switched approach that ensures asymptotic convergence to the
optimal set point [10]. This ensures stable and robust convergence
behavior of the control system, even in the presence of uncertain-
ties. The use of a Lyapunov-based switch provides a rigorous math-
ematical framework for stability analysis, which enhances the
reliability and robustness of the control system. The switched
approach allows for adaptability and flexibility in selecting the
appropriate control action based on the system’s current state,
which can be beneficial in complex and dynamic systems such as
traffic networks.
Section 2 provides an overview of the traffic dynamics model.

Section 3 elaborates on the development of a multi-level control
platform for the purpose of realizing desirable traffic dynamics.
Section 4 details the simulation results of the hierarchical control
framework. Finally, Sec. 5 summarizes the research’s key findings,
and presents suggestions for future research directions.

2 Dynamic Modeling of Homogeneous Traffic Network
In the discretized traffic network, as depicted in Fig. 1, each cell

is denoted as Ci, where i∈ 1, 2,… , n, and is characterized by three
essential parameters: vehicle density (ρi), the average velocity (vi),
and total average flowrate (qi). In this paper, the METANET model,
as proposed by Ref. [11], is adopted to capture the high-level
dynamics of the traffic network, utilizing ρi and vi as traffic state
variables.
The behavior of Ci is characterized by

ρ̇i(t) =
1
λiLi

(qi−1(t) − qi(t) + di(t)) (1a)

v̇i(t)=
1
τi

(
Ui(t)− vi(t)

)
+
1
Li

vi(t)
(
vi−1(t)−vi(t)

)[
−
εi
τi

ρi+1(t)−ρi(t)
ρi(t)+κi

]

(1b)

qi(t)=ρi(t)vi(t) (1c)

λi denotes the lane count, while Li represents the length of each indi-
vidual cell (for simplicity, we assumed Li= L). di(t) is uncontrolled
flow (disturbance), including the ramp flows, and Ui(t)= (1−

βi(t))Vi(t) is regarded as the recommended speed within each

cell, where Vi(t)=v fexp
−1
am,i

ρi(t)
ρcr

( )am,i
[ ]

depicts the relationship

between velocity and density in a steady-state condition [12].
ρcr is the critical density, and vf is the free-flow. Also, εi, κi, τi,
and am, i are METANET model parameters that are dependent on
the states of each cell. We introduce the control command βi(t),
where 0≤ βi(t)≤ 1, as a means to adjust the suggested (recom-
mended) velocity of each cell. In the absence of any control,
denoted by βi(t)= 0, the system operates without intervention,
and its macroscopic dynamics conform to the steady-state velocity-
density behavior. Conversely, when βi(t)= 1, it indicates that the
controller recommends the vehicles come to a complete stop as
per the prescribed control action.
Traffic dynamics in Eqs. (1a)–(1b) can be mathematically

expressed as

ẋ(t) = f (x(t)) + B(x(t))u(t) +D(t) (2a)

y(t) = G(x(t)) (2b)

where t≥0; y(t) = [ρs(t), · · · , ρm(t)]T ∈ Rm−s+1 where s≥2 andm≤
n is the output vector, x(t) = [ρ1(t) · · · ρn(t) v1(t) · · · vn(t)]T ∈ R2n

is the state vector, u(t) = [βs−1(t) · · · βm(t)]
T ∈ Rm−s+2 is the control

input vector, f (x(t))= [ρ̇1(t) · · · ρ̇n(t) v̂1(t) · · · v̂n(t)]T ∈ R2n where

v̂i(t) =
1
τ

(
Vi(t) − vi(t)

)
+
vi
L
(t)
(
vi−1(t) − vi(t)

)
−

ε

Lτ

ρi+1(t) − ρi(t)
ρi(t) + κ

,

B(x(t))=
[
[0](m−s+2×n) [0](m−s+2×s−2) [B̂](m−s+2×m−s+2) [0](m−s+2×n−m)

]T
where B̂=−

1
τ
diag{Vs−1,...,Vm}, andD(t)=[D1(t) ··· D2n(t)]T∈R2n

is the disturbance. The dimensionality of the input vector u(t) is greater
than that of the output vector y(t) due to the constraints imposed on the
control command (0≤β(t)≤1). Efficient regulation of vehicle density
in cell Ci requires two control inputs for recommended velocities in
Ci−1 (upstream cell) and Ci (target cell). These commands can be
adjusted to modify inflow and outflow, enabling dynamic density
control within Ci based on the controllability matrix from Ref. [13].

3 Hierarchical Control Framework Design
This section is dedicated to the design of a distributed multi-level

macroscopic traffic control framework (LSNES-FFL) with the
objective of enhancing the mobility of congested traffic. The
primary aims of this control strategy are to (i) optimize the perfor-
mance of the overall system by mitigating congestion, (ii) proac-
tively prevent the retrograde propagation of congestion, and (iii)
consistently maintain the desired density set-point values.

3.1 Lower-Level Controller: Filtered Feedback
Linearization. Within the envisioned hierarchical traffic manage-
ment framework design, the lower-level utilizes an FFL approach
to dynamically modify the communicated recommended velocities
for the vehicles. The objective is to attain the desired density values
as determined by the infrastructure or the upper-level controller.
The utilization of the FFL controller in this framework depends
on the understanding of the dynamic-inversion matrix and relative
degree, as explained in Ref. [5]. More specifically, for a given
cell Ci, the FFL design assumes a relative degree (�r) of 2 for ui
and ui−1 with respect to yi. Now consider the following assumptions
which are necessary for FFL control design:
ASSUMPTION 1. The input of the reference model, denoted as

ρd(t), is assumed to be bounded and possesses differentiability
properties up to �rth order.
ASSUMPTION 2. The disturbance term D(t) is assumed to exhibit

continuity and differentiability up to the (�r − 1)th order.
The error term is E(t)= y(t)− ym(t). The primary goal is to design

u that achieves asymptotic stabilization of the closed-loop system

Fig. 1 Discretized traffic network in the METANET model
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while simultaneously minimizing the square root of the average

power of the density error PE = 1
t1−t0


t1
t0
ET(τ)E(τ) dτ

[ ]1
2
to arbitrarily

small levels. In pursuit of this objective, the desired FL control input
is expressed as follows [4]:

ud(x, Φr , ΦD) = −M−†
u (MuM

−†
u )−1(ν(x, Φr , ΦD) +Ψ(x, ΦD)) (3)

where Φr = [ρd ρ̇d ρ̈d]T, ΦD = [D Ḋ]TΨ(x, ΦD) = C
∂f
∂x

(f (x) +D),

+CḊ. Furthermore, ν(x, Φr , ΦD) = ρ̈d + ζ1ρ̇
d + ζ0ρ

d − α1ẏm −
α0ym where ym is the local reference model and α0, α1, ζ0, ζ1 are

constants. Mu = C
∂f (x(t))

∂x
B(x(t)) and M−†

u is the pseudo inverse

of it. The ideal control input ud is not feasible for implementation
due to its dependency on the knowledge of the underlying
dynamic f (x(t)), measurement of the full state x(t), and unknown
disturbancesD(t). To tackle this challenge, we make an assumption
that the desired input ud gained from FL possesses sufficient
smoothness, as represented as follows:

ASSUMPTION 3. For i∈N,
∂
∂x

[udi (x, ΦD, Φr)] and
∂

∂ΦD
[udi (x, ΦD, Φr)] exist and are continuous.

The control input u for implementation is derived by filtering the
desired control input ud using the designed filter. Specifically,

[p�ϱz(p)I + ϱz(0)M
′
uMu]u = ϱz(0)M

′
uMuu

d (4)

whereM′
u is the transpose ofMu, p= d/dt, ϱz(s) is a polynomial with

a degree q≥ 2 which must satisfy specific conditions as outlined in
Ref. [4]. Therefore, the FFL control input is

p�ϱz(p)u = ϱz(0)M
′
u[ρ̈

d + ζ1ρ̇
d + ζ0ρ

d − ÿ − α1ẏ − α0y] (5)

Mathematically, the controllers (3) and (5) are equivalent. However,
FFL control input in Eq. (5) does not require Ψ(x, ΦD), D, or Ḋ,
unlike the FL control input in Eq. (3).
PROPOSITION 1. Under the Assumptions 1–3, the minimum phase

system, as described by Eqs. (2)–(5), demonstrates asymptotic

stability when the filter polynomial ϱz possesses a sufficiently
large z value.
Proof. The proof can be found in Refs. [4,5]. ▪
Remark 1. Choosing a suitably large value of z in the filter polyno-
mial ϱz allows for the performance index PE to be minimized to
arbitrarily small levels.

3.2 Upper-Level Controller: LSNES. In Ref. [7], we imple-
mented a gradient-based ES at the upper level of the hierarchical
control framework. In this study, in order to achieve faster conver-
gence and improve the performance of the hierarchical control
framework, an LSNES is employed at the upper level to compute
the optimal density of target cells, denoted as ρdi . The results
obtained from our research in Ref. [7] reveal two significant
insights: (i) the ES algorithm, which relies on gradient-based opti-
mization, exhibits local convergence and (ii) the speed of conver-
gence is impacted by the Hessian matrix denoted as H which is
unknown. One noteworthy feature of the Newton-based algorithm
is its capacity to reduce dependence on the unknownH when deter-
mining the rate of convergence. Furthermore, several existing
methods often tend to converge to a limit cycle around the
desired state, instead of achieving precise convergence to it. There-
fore, a significant challenge in utilizing the NES is to eliminate the
limit cycle behavior and achieve asymptotic convergence to the
optimal set point. To address this challenge, we incorporated a
Lyapunov-based switch into the NES approach, which enables
asymptotic convergence to the optimal set point.

3.2.1 Newton Extremum Seeking Algorithm. The Newton-
based algorithm encompasses two critical elements: N (t), which
represents the perturbation matrix and gives us an approximation
of the Hessian matrix, and the Riccati equation, which yields an
estimation of the inverse of H, even in scenarios where the estima-
tion of the H is singular. In Ref. [9], it has been shown that by
carefully choosing an appropriate matrix denoted as N (t) and cal-
culating the average value of Ĥ =N (t)y over a period denoted as
π, which is associated with the perturbation frequencyΩi, an estima-
tion of the Hessian matrix can be obtained.

Fig. 2 Comprehensive schematic of the control framework design for Ci consisting of the Newton
ES, Lyapunov-based switch, FFL, and METANET model
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Subsequently, we shall establish the definition of the cost func-
tion and formulate the optimization problem in the following
manner:

max
ρi

Ji(t) = �wi,1(t)Q2
i (t) − �wi,2(t)[Qi(t) −Qi−1(t)]

2 (6)

The weights denoted by wi,1(t) and wi,2(t) in the cost function, along
with the term Qi(t) = ρi(t)Vi(t). It should be noted that Qi(t) is
subject to the dynamics described in Eqs. (2) and (5), resulting in
the following expression for the lower-level dynamics:

ẊLL = FLL
(
XLL, G(XLL, ρd)

)
(7)

where XLL = [x u u̇ . . . u(b−1)].
To tackle the optimization problem presented in Eq. (6), we

propose an LSNES controller. The LSNES controller, as depicted
in Fig. 2, employs sinusoidal signals defined as S(t) =

Ãi(t) sin (Ωi.t + ϕ) andM(t) =
2

Ãi(t)
sin (Ωi.t + ϕ). As a result, a fea-

sible choice for N (t), which satisfies all necessary constraints, can
be obtained as proposed in Ref. [9].

N (t) =
16

Ã(t)2
sin2 (Ωi.t) −

1
2

( )
(8)

The computation of the inverse of the Hessian matrix, denoted as Γ,
can pose difficulties in cases where the matrix Ĥ is in close proxim-
ity to singularity. To tackle this challenge, we employ a dynamic
estimator that calculates the inverse of Ĥ utilizing a Riccati equa-
tion, as exemplified as follows:

Γ̇ = ωr − ωrΓĤΓ (9)

where ωr is a positive value and the equilibria of the Riccati in Eq.

(9) is Γ*= 0 (unstable) and Γ = Ĥ−1
(exponentially stable), pro-

vided Ĥ to a constant. To ensure that the underlying dynamics
exhibit a static nonlinearity when viewed from the NES loop per-
spective, it is crucial to select a perturbation frequencyΩi that is suf-
ficiently small, as discussed in Ref. [8]. Specifically, we consider
Ωi =O(ω), where ωi,H =O(Δω) and ωi,L =O(Δω), with O denot-
ing statistical order, and ω and Δ representing small positive
constants.
Remark 2. It is noteworthy that the convergence time of the NES to
the desired density is substantially slower in comparison to the
response time of the inner loop. Consequently, it is justifiable to
assume that the density reference remains relatively constant in con-
trast to the dynamics of the inner loop.

In order to uphold the stability of the NES controller, a series of
assumptions must be satisfied, as posited in the literature [9].
ASSUMPTION 4. Smooth mapping function ℓ :Rn → Rm−s+1 is

assumed, such that the FLL
(
XLL, G(XLL, ρd)

)
= 0 holds if and

only if XLL = ℓ(ρd).
ASSUMPTION 5. The equilibrium x= ℓ(ρd) of the system ẊLL =

FLL
(
XLL, G(XLL, ρd)

)
is locally exponentially stable, with

uniform stability across ρd ∈ Rm−s+1.
ASSUMPTION 6. The existence of a ρd ∈ Rm−s+1 is assumed, such

that
∂
∂ρ

J(ρd) = 0 and
∂2

∂2ρ
J(ρd) < 0.

Assumptions 4 and 5 are supported by the assured asymptotic sta-
bility of the lower-level dynamics by the FFL controller, as stated in
Proposition 1. Furthermore, Assumption 6 is met due to the qua-
dratic nature of the cost function in Eq. (6), which is derived
from the macroscopic fundamental diagram (MFD).
The proposition presented below provides a summary of the sta-

bility and convergence characteristics of the upper-level NES
controller:
PROPOSITION 2. Under Assumptions 4–6, the closed-loop feed-

back system shown in Fig. 2 achieves exponential convergence for
any solution starting from a neighborhood of the point (x, ρd,
ξ, η) =

(
ℓ(ρd), ρd, 0, J(ρd)

)
. This holds for a given ω ∈ (0, �ω),

where �ω, �Δ, and �A are positive constants. Furthermore, the
output y(t) also converges to an O(ω + Δ + |Ã|)-neighborhood of
J(ρd), for any Δ ∈ (0, �Δ) and |Ã| ∈ (0, �A). It’s worth noting that
Remark 2 is applicable in this context.
Proof. The proof can be found in Ref. [9]. ▪

Fig. 3 I-485, Charlotte, NC (between Mallard Creek and Harrisburg Road). Congested cells are
highlighted.

Fig. 4 Target cell 5 density changes using ES-FFL (dotted line),
NES-FFL (dash-dotted line), and LSNES (solid line). The Newton-
based ES has 48% faster convergence rate in comparison to
gradient-based ES.
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3.2.2 Lyapunov-Based Switch. To address the potential loss in
optimality that may arise due to continuous sinusoidal perturbations
around the optimal point, we propose a switched control scheme to
be added to the NES structure. The proposed switched control
scheme involves reducing the amplitude of perturbations after con-
vergence, specifically within a neighborhood around the desired
state. The switch proposed by Ref. [10] is determined by utilizing
a Lyapunov function that is based on an averaged model of the
ES feedback system. This Lyapunov function is designed to approx-
imate the proximity to the desired state, and based on this estimate,
the switch is activated to reduce the perturbation size.
The Lyapunov function utilized in the LSNES is a function of an

averaged state variable, which is obtained by taking the average
over one oscillation period. This Lyapunov function is given by

x̃a =
Ω
2π

∫t
t−2π

Ω

x̃(τ) d(τ) (10)

where x̃ = [ρ̃d, ξ, η̃]T as shown in Fig. 2. The switching mechanism
illustrated in Fig. 2 utilizes a quadratic Lyapunov function denoted
as V(x̃a), which serves as a metric for gauging the closeness of the
averaged values (computed over one NES period) of ρd and η to
their estimated desired values.

V(x̃a) =
1
2
x̃T�Jx̃ (11)

The construction of V involves solving the following Lyapunov
equation for �J considering Q=QT > 0:

�JJa + JTa �P = −Q (12)

where the Jacobian matrix Ja is utilized to approximate the system
dynamics near the equilibrium [10] as follows:

Ja =
0 K̂

′
0

ω′
ℓh

′′(0)A0 −ω′
ℓ 0

ω′
hh

′(0) 0 −ω′
h

⎡
⎣

⎤
⎦ (13)

where K̂ =
K

Ω
, ω′

ℓ =
ωL

Ω
, ω′

h =
ωH

Ω
, h′(0)= J′(ρd), and h′′(0)= J′′(ρd)

< 0. When the value of V(x̃a) is small enough, the perturbation
signal, A(t), will decay in size. However, if V(x̃a) is not sufficiently
small, the perturbation signal will remain at its full size. The follow-
ing relationship dictates how the size of A(t) changes over time.

A(t) =
A0 if V(x̃a) > ε

−γ
∫t
tsw

A(τ) d(τ) if V(x̃a) ≤ ε

⎧⎨
⎩ (14)

where tsw is the switching time and γ determines the rate at which
the perturbation amplitude shrinks in the proposed control scheme.
Remark 3. In scenarios where the optimal density (ρd) and its cor-
responding cost function value (J(ρd)) are not known a priori, an
estimation procedure is employed to approximate these values, as
well as h′ and h′′, for use in Eq. (12). This estimation process
involves numerically differentiating J and J′ based on the current
and previous values to estimate h′ and h′′ at the current density. Sub-
sequently, extrapolation is utilized to estimate ρd using the values of
J′ and J′′ at the current density. Previous studies [10] have demon-
strated the algorithm’s robustness to estimation errors.

Fig. 5 Density behavior for cells 4, 5, and 6 in both no active controller and active LSNES controller
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4 Simulation Results and Discussion
Here, we evaluate the effectiveness of the novel hierarchical

control framework design. The schematic of the section used in
the conducted case studies is depicted in Fig. 3. The freeway
section under consideration has an approximate length of 10
miles, a speed limit of 70 mph, and consists of four lanes. The
network is discretized into 10 cells, as illustrated in Fig. 3.
The METANET model parameters are selected to be

ε = 38mile2/h, κ= 18 veh/mile.h, τ= 2.5 s, λ= 4, and am= 3.8.
Furthermore, ρc= 31 veh/mile.lane, the jam density is ρJ=
162 veh/mile.lane, vf= 70 mph, and q0= 2200 veh/h. Model
parameters for the target cells (2, 5, 6, and 9) are obtained from
PTV-VISSIM simulations using traffic flow data from I-485 N of
Exit 28 on Tuesday, Dec. 22, 2020, during the peak time period
of 4–5 p.m. Measured states from the simulations are compared
with the METANET model to determine the parameters. Finally,
we have wi,1=wi,2= 1, A0= 5, ε = 1 Ωi= 0.01π rad/s, ωi,L=
0.1Ωi, ωi,H= 0.2Ωi, Ki= 1.35, and z= 1.
In Ref. [7], we compared our designed hierarchical control frame-

work (ES-FFL) with a common large-scale traffic control algorithm,
the PID mainstream traffic flow control (PID-MTFC) approach. It
was shown that the ES-FFL has a better performance in terms of
congestion reduction and preventing congestion back-propagation
with respect to the PID-MTFC and also has a faster convergence
rate. In this section, we begin by comparing the performance of
the designed LSNES-FFL control with that of the ES-FFL control
to show the effectiveness of the improved upper-level controller
in large-scale traffic control. The quadratic map in Eq. (6) is used
to compare the gradient-based and Newton-based ES methods.
All parameters are kept the same except for the gain matrix to
ensure a fair comparison. For the Newton-based method, the con-
vergence rate is governed by −KNΓ(t)H, while the gradient-based
scheme depends on the eigenvalues of KGH. Therefore, to ensure
fairness, KG is selected as −KNΓ0.
Here, the target cell 5 is considered, and different controllers

(ES-FFL, NES-FFL, LSNES-FFL) in three different simulation
runs are active to control the traffic, reduce the congestion, and
prevent congestion back-propagation. As shown in Fig. 4, the
Newton ES has a faster convergence to the desired density with
respect to the gradient-based ES approach (48% improvement).
By adding the Lyapunov-based switch, the perturbation size is
reduced after entering the neighborhood around the desired
density to control the traffic better and increase its robustness.
Subsequently, we validate the effectiveness of the LSNES-

FFL controller in alleviating congestion and mitigating back-
propagating congestion through a numerical example. The case
study entails a comparison of two scenarios: the first scenario,
where no active infrastructure controller is present in the traffic
network, and the second scenario, where a local LSNES-FFL con-
troller is deployed for target cells in the traffic network. Specifically,
target cells 2, 5, 6, and 9 are identified as being prone to heavy
congestion due to an unknown downstream bottleneck. In Fig. 5,
the density profiles of cells 5 and 6, as well as upstream cell 4,
are displayed for both the “LSNES-FFL” and “No-Control” scenar-
ios. It is evident that in the absence of control, congestion begins to
back-propagate, resulting in more severe congestion as density
increases. However, by activating the local “LSNES-FFL” control-
ler, which estimates and tracks optimal densities, the target cells
effectively avoid jam conditions.

5 Conclusions and Future Work
The primary focus of this paper is to enhance the performance of

a hierarchical control framework for large-scale traffic networks.
We designed and implemented LSNES at the upper level of the
hierarchy to feed the optimal density of congested cells to the lower-

level controller (FFL). The Newton algorithm eliminates the need
for the unknown Hessian matrix, allowing for user-assignable
convergence rates. Additionally, the Lyapunov-based switched
approach ensures asymptotic convergence to the optimal set
point. The simulation results showed that the LSNES-FFL has a
48% faster convergence rate with respect to the conventional
ES-FFL method. In the future, to capture the traffic system’s realis-
tic nature and have a high-fidelity model, the uncertainties associ-
ated with the unmodeled dynamics, which can intrinsically be
state-dependent, will be learned using online data-driven modeling
approaches.
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