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We study the correlated insulating phases of twisted bilayer graphene (TBG) in the absence of lattice strain
at integer filling ν = ±3. Using the self-consistent Hartree-Fock method on a particle-hole symmetric model
and allowing translation symmetry breaking terms, we obtain the phase diagram with respect to the ratio of AA
interlayer hopping (w0) and AB interlayer hopping (w1). When the interlayer hopping ratio is close to the chiral
limit (w0/w1 � 0.5), a quantum anomalous Hall state with Chern number νc = ±1 can be observed consistent
with previous studies. Around the realistic value w0/w1 ≈ 0.8, we find a spin and valley polarized, translation
symmetry breaking, state with C2zT symmetry, a charge gap and a doubling of the moiré unit cell, dubbed the
C2zT stripe phase. The real-space total charge distribution of this C2zT stripe phase in the flat band limit does
not have modulation between different moiré unit cells, although the charge density in each layer is modulated,
and the translation symmetry is strongly broken. Other symmetries, including C2z, C2x , particle-hole symmetry
P, and the topology of theC2zT stripe phase, are also discussed in detail. We observed braiding and annihilation
of the Dirac nodes by continuously turning on the order parameter to its fully self-consistent value, and provide
a detailed explanation of the mechanism for the charge gap opening despite preserving C2zT and valley U(1)
symmetries. In the transition region between the quantum anomalous Hall phase and the C2zT stripe phase, we
find an additional competing state with comparable energy corresponding to a phase with a tripling of the moiré
unit cell.
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I. INTRODUCTION

Twisted bilayer graphene (TBG) at magic angle hosts a
wealth of correlated insulating and superconducting phases,
and as such is one of the most significant experimental
discoveries in the recent years [1–25]. It also triggered a
number of theoretical studies, in particular for the emerg-
ing strongly interacting insulating phases at integer fillings
[26–54]. Among them, a particularly interesting case corre-
sponds to filling one of the eight active flat bands of TBG,
namely, the filling ν = −3 (or its analog for holes, namely,
ν = +3). There is a rich variety of candidate states for ν =
±3 depending on factors such as the strength of interlayer
hoppings, strain of the lattice, or external fields. The ex-
perimental results at this filling factor also depend on the
specific setup; the quantum anomalous Hall (QAH) effect was
observed when the sample is aligned to the hexagonal boron
nitride (hBN) substrate [16] or subject to an external magnetic
field [9,19,23,25], but not without the hBN alignment and at
zero magnetic field [10,11].

The nature of the insulating phase at ν = ±3 has been stud-
ied by various theoretical and numerical methods, including
strong coupling expansion [28,47], mean-field approximation

[29,32,34,40,50,54], DMRG [40,41], and exact diagonaliza-
tion [45,49], in which multiple types of candidate states are
proposed. These theoretical studies have shown that the insu-
lating states are close to Slater determinant wave functions
with Chern number νC = ±1 [32,34,40,41,45,47,49] when
the interlayer hoppings satisfy w0/w1 � 0.5, in which w0

and w1 are related to the values of AA and AB interlayer
hoppings. However, the nature of the ground state at a larger—
and perhaps more realistic—value of w0/w1 ≈ 0.8 [55–58]
at ν = −3, where the Chern insulator with νC = ±1 disap-
pears, is still a matter of debate [28,32,40,41,48–50]. For
instance, the charge neutral excitations found in Ref. [48]
by perturbing the Chern insulator wave function with such
larger values of w0/w1 contain states with negative energy
at nonzero momentum, in agreement with exact diagonal-
ization results [49]. Condensation of such charge neutral
modes at finite momentum would lead to states with broken
translation symmetry. In Ref. [50], a mean-field study also
suggested Kekulé spiral state with broken translation sym-
metry in the presence of lattice heterostrain, although—in
contrast to this work—no translation symmetry breaking insu-
lating state with zero Chern number was found without strain.
In addition, semimetal states with broken rotation symmetry
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were also found to be highly energetically competitive in
Refs. [40,41].

To settle this question, we calculate the phase diagram of
interacting TBG at integer filling ν = −3 by varying the ratio
w0/w1 in the absence of strain by using the self-consistent
Hartree-Fock method. The self-consistent mean-field order
parameter allows hybridization between states with different
momenta, which in turn allows translation symmetry breaking
with enlarged unit cells. When the value ofw0/w1 is small, we
observe a QAH state, consistent with the results discussed in
Refs. [34,40,41,45,47,49]. Near a realistic value of w0/w1, we
find an energetically preferred phase with broken translation
symmetry and a large charge gap, which, although similar, dif-
fers in detail from the previous proposals by Refs. [28,40,54].
This phase strongly hybridizes states whose momenta differ
by (π, 0) (M point of the moiré Brillouin zone). Therefore it
has a stripe shape in real space, and the new unit cell con-
tains two moiré unit cells. Similar to Refs. [28,40], the total
charge density distribution is identical in every moiré unit cell
when the dispersion of noninteracting flat bands is neglected,
despite translation symmetry being strongly broken. While
the charge density distribution in one layer has modulation
between different moiré unit cells, it is exactly compensated
by the charge in the other layer, canceling the modulation of
the total density. Unlike the QAH phase, this stripe phase
does not break the C2zT symmetry and therefore it cannot
lead to an anomalous Hall effect. We verify this explicitly by
computing the Wilson loops of the mean-field bands, finding
that the stripe phase does not carry a Chern number. We
also study the process of the gap opening without breaking
C2zT symmetry by gradually turning the interaction induced
self-energy and moving away from the gapless noninteracting
state. Depending on the path toward the fully interacting case,
we can observe the Dirac points braiding and annihilation,
which was first conjectured in Refs. [40,59,60], and elaborate
on the mechanism of the gap opening and the topology of the
resultingC2zT stripe state. Between theC2zT stripe phase and
the QAH phase, we also find a range of values of w0/w1 with
multiple candidate states with comparable energies, including
another translation symmetry breaking phase tripling the unit
cell.

This paper is organized as follows. In Sec. II, we briefly
review the projected interacting Hamiltonian of TBG. We also
discuss the folded moiré Brillouin zones which correspond
to translation symmetry breaking considered in this paper.
Section III introduces the notations and concepts which are re-
quired to depict the Hartree-Fock mean-field solutions. Then
in Sec. IV, we present the broken symmetries, band structures
and topology of the various phases emerging at different val-
ues of w0/w1. We provide a detailed study of the C2zT stripe
phase in Sec. V. Finally, we summarize and discuss the results
in Sec. VI.

II. MODEL

In this section, we briefly introduce the notations of the
interacting Hamiltonian of TBG projected into the flat bands.
We also present the folded moiré Brillouin zones correspond-
ing to enlarged unit cells that will be considered in this paper.

A. Noninteracting Hamiltonian

We start with a short review of the noninteracting Hamil-
tonian of TBG [61]. We will use the same notations as
Refs. [46,47,49]: c†k,α,s,� denotes the electron creation oper-
ator, in which k is the electron momentum measured from
the single-layer graphene � point, α = A,B is the graphene
sublattice, s =↑, ↓ is the electron spin and � = ±1 refers to
the graphene layer. The low-energy behavior of electrons in
single-layer graphene is well-captured by the states around
the two Dirac points K and K ′. Thus it is reasonable to use the
basis of the Bistritzer-MacDonald model. By focusing on one
valley K , we define vectors q j = C j−1

3z (K− − K+), which rep-
resent the difference between Dirac points in top and bottom
layers due to the twisting. The vector K� is the momentum
of the Dirac point K in layer �, and |K�| = 1.703 Å−1. The
reciprocal vectors of the moiré lattice, denoted by Q0, are
spanned by basis vectors b̃1 = q2 − q3 and b̃2 = q2 − q1. The
momenta lattices Q± = Q0 ± q1 form a hexagonal lattice in
momentum space, which stand for the copies of Dirac points
from the top and bottom layers in repeated moiré Brillouin
zone, respectively.

Parameterizing the electron operators as follows:

c†k,Q,η,α,s = c†ηKη·�+k−Q,α,s,η·� if Q ∈ Q�, (1)

in which η = ± stands for the valley index, the second quan-
tized noninteracting Hamiltonian of TBG can be written as

Ĥ0 =
∑

k∈MBZ
Q,Q′∈Q±

ηsαβ

[
h(η)QQ′ (k)

]
αβ
c†k,Q,η,α,sck,Q′,η,β,s, (2)

where MBZ stands for moiré Brillouin zone. The “first quan-
tized” single-body Hamiltonians of TBG h(η)(k), which is also
known as Bistritzer-MacDonald (BM) Hamiltonian [61], is
given by the following equations:

h(+)
QQ′ (k) = vFσ · (k − Q)δQ,Q′ +

3∑
j=1

TjδQ−Q′,±q j , (3)

h(−)
QQ′ (k) = −vFσ∗ · (k − Q)δQ,Q′ +

3∑
j=1

σxTjσxδQ−Q′,±q j ,

(4)

in which σ = (σx, σy) and σ∗ = (σx,−σy), and Fermi velocity
vF = 6104.5 meVÅ. The matrices Tj , which describe the
strength of the interlayer hoppings, are given by the following
equation:

Tj = w0σ0 + w1

[
cos

2π ( j − 1)

3
σx + sin

2π ( j − 1)

3
σy

]
.

(5)
Here w0 and w1 are proportional to the interlayer tunneling
amplitudes in the AA and AB stacking regions in moiré unit
cell, respectively. In this paper, we fix the value of AB hop-
ping w1 = 110 meV and twist angle θ = 1.07◦, and we use
w0/w1 ∈ [0, 1] as a tunable parameter of our noninteracting
Hamiltonian H0. A realistic value of w0/w1 is expected to be
around 0.7–0.8 due to the lattice corrugation [55–58].

By diagonalizing the single-body Hamiltonian, we can ob-
tain the band structure εk,m,η and single-body wave functions
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uQα,mη(k) of TBG:∑
Q′β

h(η)Qα,Q′β (k)uQ′β,mη(k) = εk,m,ηuQα,mη(k), (6)

where m is the energy band index. The noninteracting Hamil-
tonian can be written in the eigenstate basis:

Ĥ0 =
∑

k∈MBZ

∑
η,s

∑
m 	=0

εk,m,ηc
†
k,m,η,sck,m,η,s. (7)

These electron operators in the energy band basis c†k,m,η,s are
given by

c†k,m,η,s =
∑
Qα

uQα,mη(k)c
†
k,Q,η,α,s, (8)

c†k,Q,η,α,s =
∑
m

u∗
Qα,mη(k)c

†
k,m,η,s. (9)

We fix the gauge choice of the single body wave functions
uQα,mη(k) as described in Refs. [46–49], such that the sewing
matrix ofC2zT symmetry is given by identity matrix. Thus the
operators c†k,m,η,s will not change under C2zT transformation:

(C2zT )c†kmηs(C2zT )−1 = c†kmηs. (10)

Except forC2zT , the single valley noninteracting Hamiltonian
also has C3z, C2x and a particle hole symmetry P. These
symmetries are discussed in detail in Appendix B.

As discussed in Ref. [61], there are two flat bands around
the first magic angle at charge neutrality per spin and valley,
separated by a gap from other remote bands. Therefore we can
project the noninteracting Hamiltonian Eq. (7) into these eight
total flat bands:

H0 =
∑

k∈MBZ,ηs

∑
m=±1

εk,m,ηc
†
k,m,η,sck,m,η,s. (11)

B. Interacting Hamiltonian

We consider the density-density interaction projected into
the TBG flat bands. The projected interacting Hamiltonian
reads [46]

HI = 1

2
tot

∑
G∈Q0,q∈MBZ

V (q + G)δρq+Gδρ−q−G, (12)

in which V (q) is the Fourier transform of screened Coulomb
potential. In this paper, we consider double gated TBG,
leading to a Fourier transform interaction given by V (q) =
πξ 2Uξ tanh(ξq/2)/(ξq/2), where ξ = 10 nm is the distance
between the two gates and Uξ = 24 meV. The operator δρq+G
represents the relative electron density measured from charge
neutrality, after being projected into the TBG flat bands:

δρq+G =
∑

k∈MBZ

∑
mnηs

M (η)
mn (k,q + G)

×
(
c†k+q,m,η,sck,n,η,s − 1

2
δq,0δm,n

)
, (13)

M (η)
mn (k,q + G) =

∑
Qα

u∗
Qα,mη(k + q + G)uQα,nη(k), (14)

where uQα,mη(k) is the wave function of the BM Hamiltonian
defined in Eq. (6). Since δρq+G is defined as the relative

density measured from the charge neutrality, the interacting
Hamiltonian in Eq. (12) has a many-body particle-hole sym-
metry, which leads to identical phases at ν and −ν. As such,
our results at ν = −3 will also be valid for ν = 3. These
wave functions depend on the interlayer hopping parameter
w0/w1. Thus the interacting Hamiltonian HI will also depend
on w0/w1.

By adding the noninteracting term in Eq. (11), we obtain
the total Hamiltonian:

H = tH0 + HI . (15)

Here we introduce a parameter t ∈ [0, 1] to control the relative
strength of the flat band kinetic energy. In this paper, we
will mostly focus on the flat band limit, i.e., t = 0, unless
otherwise stated.

C. Folded moiré Brillouin zone

As suggested by the presence of Fermi pockets of charge
±1 excitations, and negative excitations in the charge neutral
spectra for a range of values of w0/w1 away from the chiral
limit [48,49], it is reasonable to expect that the system will
host translation symmetry breaking ground states. Therefore
we account for translation symmetry breaking orders by con-
sidering enlarged unit cells, or folded moiré Brillouin zones.
Each type of translation symmetry breaking order is associ-
ated with a specific pair of momenta Q1,2. Any two momenta
that differ by an integer multiple of these vectors should be
identified as the same point in the folded Brillouin zone:

k1 − k2 = l1Q1 + l2Q2 l1, l2 ∈ Z. (16)

The vectors Q1,2 are the basis vectors of folded moiré Bril-
louin zone. We define the following quantity:

NF = |b̃1 × b̃2|/|Q1 × Q2|, (17)

as the number of times the moiré Brillouin zone is folded,
with b̃1,2 the reciprocal vectors of the original moiré lattice.
Therefore every momentum k ∈ MBZ can always be repre-
sented by a momentum value κ in the folded (small) moiré
Brillouin zone (FMBZ) together with an integer b (dubbed
subband index):

k = κ + Qb, κ ∈ FMBZ, b = 1, 2, . . . ,NF , (18)

in which Qb = l1Q1 + l2Q2 stand for all the NF reciprocal
vectors of the FMBZ in the 1st MBZ. We focus on the eight
simplest (i.e., the smallest NF values, up to NF = 4) types of
Brillouin zone folding vectors Q1,2, and their notations and
factor of Brillouin zone folding NF are shown in Table I.

III. HARTREE-FOCK

In this section, we provide an overview of the concepts and
notations that will be required to describe the Hartree-Fock
results in Sec. IV. We perform the numerical Hartree-Fock
mean-field calculation on a C3z rotation symmetric discrete
NL×NL momentum lattice in the unfolded MBZ. For conve-
nience, we define the total amount of momentum points in
MBZ as NM = N2

L . Hence, the momentum values in MBZ are
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TABLE I. The enlarged unit cell choices. The first column shows
the notation we use for each type of enlarged unit cells. The second
and third columns provide the basis vectors of the folded moiré
Brillouin zones. The fourth column gives the factor of folding NF ,
which represents the amount of moiré unit cells in each enlarged unit
cell.

notations Q1 Q2 NF

(2×1) 1
2 b̃1 b̃2 2

(1×2) b̃1
1
2 b̃2 2

(3×1) 1
3 b̃1 b̃2 3

(1×3) b̃1
1
3 b̃2 3

(2×2) 1
2 b̃1

1
2 b̃2 4

(4×1) 1
4 b̃1 b̃2 4

(1×4) b̃1
1
4 b̃2 4

(
√
3×√

3) 1
3 (b̃1 + b̃2) 1

3 (b̃1 − b̃2) 3

given by the following set:

MBZ =
{
k|k = k1

NL
b̃1 + k2

NL
b̃2; k1, k2 = 0, 1, . . . ,NL − 1

}
.

(19)

Thus there will beNM states in each energy band. In this paper,
we mostly focus on the integer filling factor ν = −3. At this
filling factor, the total number of electrons in the narrow bands
is N = NM .

As shown in Eq. (18), for a given choice of enlarged unit
cell, the FMBZ is a subset of MBZ, and each momentum
k ∈ MBZ can be represented by a momentum κ ∈ FMBZ and
a subband index b. Thus a single body state can be represented
by five quantum numbers: momentum κ ∈ FMBZ, subband
index b = 1, 2, . . . ,NF , energy band index m = ±1, valley
η = ± and spin s =↑↓.

The Hartree-Fock order parameter with broken translation
symmetry has the following form:

�bmηs;b′nη′s′ (κ) =〈
c†κ+Qb,mηscκ+Qb′ ,nη′s′

〉
− 1

2
δbb′δmnδηη′δss′ , κ ∈ FMBZ. (20)

For each momentum κ, the order parameter �(κ) is
a 8NF×8NF matrix. The Hartree-Fock Hamiltonians
H(HF )

bmηs;b′nη′s′ (κ), which are also 8NF×8NF matrices, can
be written as functions of momentum κ and the order
parameter �(κ). The explicit expression of the Hartree-Fock
Hamiltonians and the iterative self-consistent method are
discussed in detail in Appendix A. By diagonalizing the
Hartree-Fock Hamiltonian, we obtain the Hartree-Fock band
dispersion Ei(κ) and its corresponding HF wave function
φbmηs,i(κ):

Ei(κ)φbmηs,i(κ) =
∑
b′nη′s′

H(HF )
bmηs;b′nη′s′ (κ)φb′nη′s′,i(κ). (21)

To characterize a given Hartree-Fock mean-field solution,
we define several quantities. The first quantity is the transla-
tion symmetry breaking strength T which is defined as the
norm of the off-diagonal elements of the order parameter in

the subband indices. It can be written as

T = 1

NM

∑
κ∈FMBZ

∑
b	=b′

∑
mn,ηη′,ss′

|�bmηs;b′nη′s′ (κ)|2. (22)

For a translation symmetric solution, the off-diagonal ele-
ments in b, b′ vanish and T = 0. When T 	= 0, the solution
breaks the translation symmetry by one moiré unit cell.

We can also define a quantity to measure the strength of
C2zT symmetry breaking. The projected interacting Hamilto-
nian is written by fermion operators with fixed C2zT sewing
matrices. Thus the creation/annihilation operators are invari-
ant under the C2zT transformation as shown in Eq. (10). It is
also an antiunitary transformation. Hence, a mean-field state
is invariant under C2zT only when its order parameter has
no imaginary part. However, the C2zT symmetry is defined
from the noninteracting TBG Hamiltonian for single spin and
valley, it is actually a spinless operation. Due to the spin
and valley U(4) symmetry at the flat band limit [28,30,46],
imaginary parts can be introduced into the spin and valley
components of the order parameter under certain U(4) rota-
tion without breaking C2zT . Therefore we first do a partial
trace over the spin, valley and subband indices of the order
parameter, and then we use the norm of the imaginary part
of this reduced order parameter to measure the strength of
C2zT symmetry breaking. It can be defined as the following
equation:

C = 1

NMNF

∑
κ∈FMBZ

∑
mm′

(
Im

∑
bηs

�bmηs;bm′ηs(κ)

)2

. (23)

If the solution does not break the C2zT symmetry, then the
reduced order parameter will be real, and thus we have C = 0.

Another quantity we use to describe the mean-field solu-
tion is the charge gap EG. For integer filling ν = −3, once
the moiré Brillouin zone is folded by NF times, there will
be NF bands occupied in the folded Brillouin zone. For these
symmetry breaking solutions, we define the charge gap as the
difference between the bottom of the lowest conduction band
[(NF + 1)th band from bottom] and the top of the highest
valence band (NF th band from bottom).

IV. PHASE DIAGRAM

In Sec. IVA, we discuss the ground states appearing with
different values of w0/w1, their broken symmetry and the
band structures. We also study the C2zT symmetry and the
topology of these states in Sec. IVB.

A. Ground states and band structures

By performing the mean-field calculation using the
Hartree-Fock Hamiltonians with different choices ofQ1,2 vec-
tors shown in Table I, and comparing the energy of different
solutions, we are able to obtain a phase diagramwith a varying
value of w0/w1. In the following paragraphs, we ignore the
effect of the flat band dispersion (t = 0) and assume our order
parameter �(κ) is polarized in valley η = +, unless otherwise
stated. More precisely, we assume that the order parameter
satisfies the following condition:〈

c†κ+Qbmηscκ+Qb′m′η′s′
〉 = 0, if η = − or η′ = −. (24)
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FIG. 1. (a) We provide the energy difference per moiré unit cell (E − Esym ) of density wave states with different possible enlarged unit
cell choices as a function of w0/w1, calculated on 12×12 momentum lattice, in which Esym is the energy of translation symmetric solution.
The shaded colors in the background represent different phases when the value of w0/w1 changes. In the region labeled by light blue, the
mean-field solution does not break the translation symmetry. In the purple region, the state we obtained with the lowest energy has enlarged
unit cell (

√
3×√

3). However, the energy with (2×1) unit cell is only slightly higher, which means the purple region has competing states with
different enlarged unit cells. In the red region, the ground states we obtained has enlarged unit cell (2×1), which is a stripe phase in real space.
(b) The strength of the translation symmetry breaking T of the two types of enlarged unit cells as a function of w0/w1. (c) The Hartree-Fock
band gap EG of the two types of enlarged unit cells [(

√
3×√

3) and (2×1)] as a function of w0/w1. (d) The energy difference per moiré unit
cell of density wave states with enlarged unit cell choices (2×1), (3×1) and (

√
3×√

3) as a function of w0/w1 on a 18×18 momentum lattice.
In (e) and (f), we also show the Hartree-Fock band gap EG and the symmetry breaking strength T and C as functions of w0/w1 on the 18×18
momentum lattice with two enlarged unit cell choices (2×1) and (

√
3×√

3).

For each enlarged unit cell choice and value of w0/w1,
we choose ten random initial conditions and perform self-
consistent iterations to ensure the solutions are converging
properly.

1. Ground states

In Fig. 1(a), we show the energy (compared to the solu-
tion without translation symmetry breaking) as a function of
w0/w1 ∈ [0.4, 1] for different choices of enlarged unit cells
on a 12×12 momentum lattice, which are represented by
using different colors. We are able to identify three different
regions, which are labeled by light blue, purple and red in
Fig. 1(a). When w0/w1 � 0.5 (represented by light blue),
the ground state corresponds to the Chern insulator Slater
determinant state, i.e., with no translation symmetry breaking
and Chern number νC = ±1 (see Sec. IVB), in agreement
with Refs. [32,34,40,41,45,47,49]. While it is not shown,
this region actually extends to the chiral limit w0/w1 = 0. In
the interval 0.5 � w0/w1 � 0.65 (represented by purple), the
energies of translation symmetry breaking solutions with en-
larged unit cells such as (

√
3×√

3) and (2×1) become lower
than the energy of the translation invariant solution. We also
notice that the solutions with enlarged unit cell (

√
3×√

3) is
usually energetically preferred: its energy is around 0.01 meV

per moiré unit cell lower than the states with enlarged unit
cell (2×1). Note that the Chern insulator solution without
translation symmetry breaking still remains competitive in
this intermediate region with an energy difference of only
0.05 meV per moiré unit cell. Therefore competing states may
coexist in the purple region of the phase diagram, and it is
difficult to conclude what is the exact nature of this phase from
Hartree-Fock, as already hinted by the exact diagonalization
[49] and DMRG results [40].

If we further increase the value of w0/w1 to the interval
0.7 � w0/w1 � 0.9 (represented by red), the (2×1) enlarged
unit cell solution [or solution with (1×2) which can be related
byC3z rotation] clearly has the lowest ground state energy. The
unit cell (2×1) implies that it breaks the translation symmetry
of the original moiré unit cell (see Sec. VB), and therefore
we call the red region as C2zT stripe phase, whose properties
will be discussed in Sec. V. Except for thisC2zT stripe phase,
another state with (3×1) unit cell also has a lower energy
than the state with (

√
3×√

3) enlarged unit cell. The energy
difference between the state with (3×1) enlarged unit cell and
the C2zT stripe state is ≈0.08 meV per moiré unit cell, which
is clearly larger than the energy difference between the (2×1)
and (

√
3×√

3) enlarged unit cell states in the purple (inter-
mediate) region. Therefore the C2zT stripe phase in the red
region is unambiguously preferred, as opposed to the situation
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FIG. 2. The Hartree-Fock band structures obtained on 18×18 momentum lattice at flat band limit. (a) The HF band structure without
translation symmetry breaking at w0/w1 = 0.4. (b) The HF band structure with enlarged unit cell (

√
3×√

3) at w0/w1 = 0.6. (c) The HF
band structure with enlarged unit cell (2×1) at w0/w1 = 0.6. (d) The HF band structure with enlarged unit cell (2×1) at w0/w1 = 0.8. The
definitions of high-symmetry points of these folded moiré Brillouin zones are shown in Fig. 3.

in the intermediate (purple) region. When w0/w1 � 0.9, the
energies with different enlarged unit cells become comparable
again, which leads to strong competition between the states
with (

√
3×√

3) unit cells and (2×1) unit cells.
We also notice that the solutions using (1×2), (4×1), and

(1×4) unit cells always have the same ground state energy,
implying that they are all equivalent solutions under certain
C3z rotation or moiré unit cell translation. For the enlarged unit
cell choice (2×2), we obtained a solution whose energy per
moiré unit cell is only 0.003 meV (0.0013%) lower than the
(2×1) solution at w0/w1 = 0.6, and the difference is barely
visible in Fig. 1(a). However, for all the other values of w0/w1

that we have considered, the enlarged unit cell (2×2) gives us
the same solution as (2×1), (1×2), (4×1), or (1×4) unit cell
choices.

Among the eight types of enlarged unit cells defined in
Table I, we found (2×1) and (

√
3×√

3) are energetically
preferred in our phase diagram. Moreover, the state with
(3×1) enlarged unit cell is also a relevant candidate in the
red region. For this reason, we solely focus on these three
foldings to study the finite size effect, by solving the energies
of self-consistent equations on a larger momentum lattice
(18×18) in Fig. 1(d). The phase diagram on the 18×18 lattice
is qualitatively similar to the results on the 12×12 momentum
lattice. The QAH state can still be observed in the light blue
region (w0/w1 � 0.5), and multiple competing states in the
purple region (0.5 � w0/w1 � 0.65). The C2zT stripe phase
is still clearly preferred in the red region. The state with
(3×1) enlarged unit cell, although having a relatively low
energy in the red region (0.7 � w0/w1 � 0.9), is still around
≈0.1 meV higher than the C2zT stripe phase. Thus the C2zT
stripe phase is indeed the best candidate ground state when
0.7 � w0/w1 � 0.9.

In spite of the fact that the phase diagrams obtained on
12×12 and 18×18 lattices are qualitatively similar, the details
of these phases are slightly different, especially in the purple
region. For example, the state with (

√
3×√

3) enlarged unit
cell has a lower energy than the translation invariant solution

on the 18×18 lattice, but no translation symmetry breaking is
observed on the 12×12 lattice.

2. Translation symmetry breaking, charge gap,
and band structures

From now on, we will only consider the two favored
foldings (

√
3×√

3) and (2×1). We calculate the values of
translation symmetry breaking strength T using the solutions
on 12×12 and 18×18 momentum lattices, which can be found
in Figs. 1(b) and 1(e). In the intermediate regime and in the
stripe phase (purple and red regions), the translation symmetry
breaking T becomes nonzero and increases with increasing
w0/w1. The values of the charge gap EG of the solutions
on 12×12 and 18×18 momentum lattice can be found in
Figs. 1(c) and 1(f). In the QAH phase (blue region), the charge
gap descreases with the increasing w0/w1, while in the stripe
phase (red region), the gap increases with increasing w0/w1.
In the intermediate region (purple), these competing states all
have small gaps.

In Fig. 2, we provide several Hartree-Fock bands in the
folded Brillouin zones obtained from the simulation on 18×18
momentum lattices to illustrate the typical HF band structure
in the different regions of the phase diagram. The band struc-
ture of the quantum anomalous Hall state at w0/w1 = 0.4
is shown in Fig. 2(a), which agrees with the result obtained
in Refs. [48,51]. Indeed, the charge excitations shown in
Fig. 11(b) of Ref. [48] also has 3 particle bands. The QAH
state does not break the translation symmetry, thus the HF
bands are shown along the high-symmetry lines in the moiré
Brillouin zone. Figures 2(b) and 2(c) are the Hartree-Fock
bands in the purple region both obtained at w0/w1 = 0.6 with
enlarged unit cell choices (

√
3×√

3) and (2×1), respectively.
The corresponding high-symmetry points are represented us-
ing red and blue greek letters, whose definitions can be found
in Fig. 3. We observe that these two competing states both
have small gap, and they also have similar band widths. In
Fig. 2(d), we show the HF band structure in the stripe phase
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FIG. 3. The moiré Brillouin zone (black), the folded Brillouin
zone with (2×1) unit cell choice (blue), and the folded Brillouin zone
with (

√
3×√

3) unit cell (red). The high-symmetry points of these
different Brillouin zones are also represented by different colors,
namely, �, K , K ′, and M for the MBZ, γ , x, μ and y for the FMBZ
of (2×1) unit cell, and γ , κ , κ ′, and μ for the FMBZ of (

√
3×√

3)
unit cell. Vectors b̃1 and b̃2 are the reciprocal lattice basis.

(red region) at w0/w1 = 0.8 with folded moiré Brillouin zone
of unit cell (2×1). Clearly, the charge gap in the stripe
phase is much larger than the intermediate competing region
(purple).

We also studied the spin texture of the occupied bands of
the stripe phase—and as discussed below, relaxed the assump-
tion of valley polarization and exact flat bands (t = 0)—which
shows that the stripe phase is fully spin and valley polarized.
In other words, the order parameter satisfies the following
conditions under a proper spin SU(2) rotation:〈

c†κ+Qb,m,η,scκ+Qb′ ,n,η′,s′
〉 = 0,

if (η, s) 	= (+,↑) or (η′, s′) 	= (+,↑). (25)

We provide detailed numerical results of the spin distribution
of several solutions in Appendix F 1.

As mentioned previously, these calculations were per-
formed assuming valley polarization and in the flat band limit.
To test these hypotheses, we also performed Hartree-Fock
calculation without these assumptions at the representative
values of the phase diagram w0/w1 = 0.4, 0.6, and 0.8,
albeit on a smaller momentum lattice. We obtain iden-
tical phases at these w0/w1 values, ensuring that these
assumptions are valid. A detailed study is also provided in
Appendix F 1.

B. C2zT symmetry and topology

We also evaluated the value of C as a function of w0/w1

for the solutions obtained with enlarged unit cell choices
(2×1) and (

√
3×√

3) on a 18×18 momentum lattice. The

FIG. 4. The strength of the C2zT symmetry breaking C of the
two types of enlarged unit cells (

√
3×√

3) and (2×1) as a function
of w0/w1. We also show the value of C for translation symmetric
solution in black. This figure is obtained on a 18×18 momentum
lattice at flat band limit.

results can be found in Fig. 4. In the light blue region with
small w0/w1 � 0.5, the C2zT symmetry is strongly broken,
which is an important property of Chern insulator states.
Whenw0/w1 gets larger, theC2zT breaking of both (

√
3×√

3)
and (2×1) enlarged unit cell solutions become significantly
smaller. More interestingly, for the solution with unit cell
choice (2×1), the C2zT breaking strength drops to zero in the
stripe phase.

Restoration ofC2zT symmetry implies that the Chern num-
ber must vanish in the stripe phase. In addition to checking
the strength of C2zT symmetry breaking, we are also able
to study the topological winding numbers directly from the
mean-field solutions. By using the Hartree-Fock eigenvectors
φbmηs,i(κ) and single body wave functions of BM Hamiltonian
uQα,mη(κ + Qb), we are able to rewrite the wave function of an
eigenstate in Hartree-Fock band structure in the plane wave
basis �Qα,b,η,s;i(k). For enlarged unit cell choices (2×1) and
(
√
3×√

3), we use the following notation to parametrize the
FMBZ: κ = κ1

2π Q1 + κ2
2π b̃2. And we evaluate the Wilson loop

along the direction ofQ1 in the NF occupied HF bands, which
we denote byW (κ2). We also provide a detailed discussion of
Wilson loops in Appendix C.

The Wilson loop matrixW (κ2) is unitary and its eigenval-
ues are always given by e−iχ , χ ∈ [−π, π ). We numerically
calculate the Wilson loop eigenvalue exponents χ on 18×18
momentum lattice. The Wilson loop eigenvalue exponents at
w0/w1 = 0.4, 0.6, and 0.8 can be found in Fig. 5. Figure 5(a)
shows the Wilson loop in the light blue region at w0/w1 =
0.4. The nontrivial winding number confirms that the light
blue region is indeed a quantum anomalous Hall phase, which
has already been widely studied previously [34,40,41,49].
Figures 5(b) and 5(c) show the Wilson loops of the two low-
energy states at w0/w1 = 0.6 with enlarged unit cell choices
(
√
3×√

3) and (2×1), respectively. We found that the nonzero
Chern number has already vanished in this competing region.
Finally in Fig. 5(d), we present the Wilson loop for the C2zT
stripe phase at w0/w1 = 0.8. The eigenvalues of Wilson loop
spectrum in theC2zT stripe phase is completely flat, which is a
consequence of theC2zT symmetry [59,62,63] and the transla-
tion symmetry breaking along ã1, as discussed in Appendix D.
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FIG. 5. Wilson loop eigenvalue exponents of mean-field energy bands evaluated on 18×18 momentum lattices. Top panel: (a) the Wilson
loops of the lowest HF band at w0/w1 = 0.4. At this value of w0/w1, the translation symmetry is not broken, and the nontrivial winding
number shown by the Wilson loop indicates that this state is a quantum anomalous Hall state. (b) The Wilson loop of the three lowest bands
with enlarged unit cell (

√
3×√

3) at w0/w1 = 0.6. (c) The Wilson loop of the two lowest bands with enlarged unit cell (2×1) at w0/w1 = 0.6.
(d) The Wilson loop eigenvalues of the two lowest bands with enlarged unit cell (2×1) at w0/w1 = 0.8. The perfectly flat Wilson loop is an
important property of theC2zT symmetry in the C2zT stripe phase.

As we mentioned in Sec. IVA, the charge gap of the mean-
field solutions is small in the competing region between the
QAH and C2zT stripe phases. Therefore the wave functions
are varying fast around the γ point in the FMBZ. Hence,
we should use a denser momentum mesh for calculating the
Wilson loops in the competing region. We evaluated the Wil-
son loops of the mean-field solutions with enlarged unit cell
(
√
3×√

3) on 24×24 momentum lattice at w0/w1 = 0.5 and
0.55, which can be found in Fig. 6. Both the solutions at these
two values of w0/w1 have nonvanishing break the transla-
tion symmetry (T 	= 0). We find that the Hartree-Fock bands
still carry nonzero winding number at w0/w1 = 0.5, but the
winding number vanishes at w0/w1 = 0.55. This observation
implies that the disappearance of Chern number happens in
the competing region of the phase diagram.

V. C2zT STRIPE PHASE

In this section, we discuss the C2zT symmetric stripe
phase that we obtained for w0/w1 � 0.65. As mentioned in
Sec. IVA2 and discussed in Appendix F 1, the C2zT stripe
phase is spin and valley polarized regardless of whether the
flat band kinetic energy is taken into account or neglected.
Therefore we are able to perform the mean-field calculation on
a even larger momentum lattice by assuming that the system
is fully polarized in valley η = + and spin s =↑, and the
following discussion is based on our numerical solution on
a 36×36 momentum lattice. We characterize this phase by
studying its symmetries and real-space charge distributions.

FIG. 6. Wilson loop eigenvalue exponents of mean-field energy
bands evaluated on 24×24 momentum lattice with enlarged unit cell
(
√
3×√

3) at w0/w1 = 0.5 (a) and 0.55 (b).

Moreover, we propose a mechanism based on Dirac nodes
motion to understand the development of charge gap in the
C2zT stripe phase.

A. Symmetry

First, we analyze the real-space lattice symmetries of the
self-consistent Hartree-Fock solution. Since the C2zT stripe
phase at around w0/w1 = 0.8 is spin and valley polarized as
observed in the numerical simulation, we only focus on the
lattice symmetries for the single valley Hamiltonian: C2zT ,
C3z, C2x, and P (particle-hole symmetry). Notice that C2zT ,
C3z, and C2x commute with both the kinetic Hamiltonian H0

and the interacting part of the Hamiltonian HI , while the
particle-hole symmetry P only commutes with HI but an-
ticommutes with H0. In addition to these symmetries, the
Hamiltonian also has moiré lattice translation symmetry T̂ã1 .
However, since we fold the moiré Brillouin zone along b̃1,
the moiré unit cell will be enlarged along ã1 direction, and it
could lead to the spontaneous breaking of T̂ã1 . In Table II, we
summarize the commutation properties of these symmetries,
and their actions in real space, momentum space, sublattice
and layer indices.

In order to measure the symmetry breaking of a given
symmetry g, we define the following quantity for a momentum
point κ ∈ FMBZ:

G(g, κ) =
∑

bm,b′m′

∣∣〈c†κ+Qb,m,+,↑cκ+Q′
b,n,+,↑

〉

− 〈
gc†κ+Qb,m,+,↑g

−1gcκ+Q′
b,n,+,↑g−1

〉∣∣2, (26)

which actually measures how much the order parameter �(κ)
changes through certain transformation g. We provide a de-
tailed discussion about the transformations of the electron
operators in Appendix B. Note that the translation symmetry
breaking strength defined in Eq. (22) can also be written as

T = 1

4NM

∑
κ∈FMBZ

G(T̂ã1 , κ). (27)

Thus G(T̂ã1 , κ) gives a more detailed description of the trans-
lation symmetry breaking than T .

We numerically calculated the symmetry breaking strength
G(g, κ) of the five symmetries mentioned above, i.e., C2zT ,
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TABLE II. Six types of lattice symmetries of the projected in-
teracting Hamiltonian of TBG: C2zT , C2x , C3z, P, and T̂ã1 and T̂ã1P
for the spin and valley and polarized mean-field solutions. The first
and second rows indicate whether a given symmetry g is commuting
(+, [H, g] = 0) or anticommuting (−, {H, g} = 0) with the kinetic
and interacting Hamiltonian. The third to sixth rows show how the
real-space coordinate r, momentum k, sublattice α, and graphene
layer � change under the given symmetries. The seventh to tenth rows
show whether this symmetry is conserved in the mean-field solutions
for C2zT stripe and QAH phases without and with kinetic energy,
respectively.

g C2zT C3z C2x T̂ã1 P T̂ã1P

[H0, g]ζ + + + + − −
[HI , g]ζ + + + + + +
coordinate r −r C3zr C2xr r + ã1 −r −r − ã1
momentum k k C3zk C2xk k −k −k
sublattice α −α α −α α α α

layer � � � −� � −� −�

stripe w0
w1

= 0.8, t = 0
√

✗
√

✗ ✗
√

stripe w0
w1

= 0.8, t = 1
√

✗
√

✗ ✗ ✗

QAH w0
w1

= 0.4, t = 0 ✗
√

✗
√ √ √

QAH w0
w1

= 0.4, t = 1 ✗
√

✗
√

✗ ✗

C3z, C2x, T̂ã1 and P, and another combined symmetry T̂ã1P
on a 36×36 lattice at the flat band limit with w0/w1 = 0.8.
In Fig. 7, we provide the values of G(C3z, κ), G(T̂ã1 , κ), and
G(P, κ) in the FMBZ. The peak of translation breaking is
around μ point in its FMBZ, showing a strong hybridization
between the twoM points in the MBZ. However, the values of
G(C2zT, κ), G(C2x, κ), and G(T̂ã1P, κ) are equal to zero for any
κ ∈ FMBZ up to machine precision (<10−15). Thus the stripe
phase at flat band limit does not break C2zT , C2x and T̂ã1P
symmetries, although both T̂ã1 and P symmetries are broken.
The list of the conserved symmetries of the stripe phase with
t = 0 can be found in the 8th line of Table II. As a reference,
we also provide the list of conserved symmetries of the stripe
phase with kinetic energy (t = 1), the QAH phase with and
without kinetic energy (t = 0 and t = 1) in the 9th to 11th

FIG. 7. The symmetry breaking strength values G(C3z, κ),
G(T̂ã1 , κ), and G(P, κ) calculated from the Hartree-Fock solution at
w0/w1 = 0.8 at flat band limit on a 36×36 lattice. We also numer-
ically checked the values of G(C2zT, κ), G(C2x, κ), and G(T̂ã1P, κ)
are equal to zero up to machine precision (<10−15) in the FMBZ.
Although both T̂ã1 and P symmetries are broken, their product T̂ã1P
is still conserved.

FIG. 8. Total charge distribution in real space at flat band limit
and w0/w1 = 0.8. The numbers are the total charge in the corre-
sponding unit cell Q defined in Eq. (31).

lines of Table II. Appendix F 2 provides a detailed discussion
of these solutions.

B. Real-space charge distribution

We now turn to study the real-space distribution of the
electron density from the mean-field order parameter. The
electron operators in real space can be written as

c†α�s(r) = 1√

tot

∑
k∈MBZ
η,Q∈Qη�

m

c†k,m,η,suQα,mη(k)e−i(k−Q+ηK)·r,

(28)
in which the vector K is the momentum of K point in the
Brillouin zone of single-layer graphene. Thus the real-space
electron density distribution of a spin and valley polarized
state (η = +, s =↑) is given by the following equation:

ρα�(r) = 〈c†α�↑(r)cα�↑(r)〉

= 1


tot

∑
κ∈FMBZ
bb′mm′

∑
Q,Q′∈Q�

〈
c†κ+Qb,m,+,↑cκ+Qb′ ,m′,+,↑

〉

× u∗
Qα,m+(κ + Qb)uQ′α,m′+(κ + Qb′ )

× e−i[(Qb−Qb′ )−(Q−Q′ )]·r, (29)

where the summation over κ is in the folded moiré Brillouin
zone. Since the solutions are spin and valley polarized at fill-
ing factor ν = −3, we drop the spin indices s for convenience
in the following discussion.

By using the order parameter �(κ) solved at w0/w1 = 0.8
with flat bands (t = 0) on the 36×36 lattice, we are able to
calculate the electron density in real space. Figure 8 provides
the total density in real space over several moiré unit cells,
which is defined as

ρtot (r) =
∑
α�

ρα�(r). (30)
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FIG. 9. The electron density distribution in real space at the flat band limit and w0/w1 = 0.8, obtained on a 36×36 momentum lattice.
� = t represents the top graphene layer and � = b represents the bottom layer. The two red arrows represent the Bravais lattice basis of the
moiré lattice, and white dashed lines depict moiré unit cells centered around AA stacking regions, and the red/blue numbers represent the
integral of the corresponding component of density in the unit cell Qα� [see Eq. (32)] in each moiré unit cell. The blue and red numbers are
only differed by 10−9 numerically.

The moiré unit cells are chosen to be the hexagon region
around AA stacking sites, represented by white dashed lines.
We can also define the total charge in each unit cell as follows:

Q =
∫
c
d2r ρtot (r), (31)

and the values of Q in each unit cell is labeled by blue and red
numbers in Fig. 8. In Sec. VA, we have shown that the or-
der parameter �(κ) has strong translation symmetry breaking
along ã1 direction. However, the total electric charge in every
moiré unit cell Q has the same value Q = 1. We also find that
the total charge density satisfies ρtot (r + ã1) = ρtot (r) (up to
numerical accuracy). There are still one electron per moiré
unit cell, thus this state does not modulate the total charge
on AA stacking regions [28,40]. From Table II, we know
this translation symmetry breaking solution has C2zT , C2x,
and T̂ã1P symmetries. Consequently, the wave function of the
C2zT stripe phase is invariant under the product of C2zT and
T̂ã1P. This combined symmetryC2zT T̂ã1P transforms the real-
space coordinate as r → r + ã1, and flips both the graphene
layer index � and the sublattice index α. Thus the symmetry
C2zT T̂ã1P ensures that the charge density ρα�(r) is invariant
under coordinate translation r → r + ã1 when both α and �

are flipped, letting the total charge density unchanged under
the translation along ã1.

We also study the charge density components for each
sublattice and layer index. We provide the values of ρα�(r) in
Fig. 9. The red/blue numbers represent the charge Qα� in the
two types of nonequivalent moiré unit cells in the enlarged
unit cell:

Qα� =
∫
c
d2rρα�(r). (32)

We notice that Qα� for a given sublattice α and layer � in the
unit cell around r = 0 (red) and r = ã1 (blue) are the same
(differ by 10−9 numerically). However, the charge distribu-
tions differ. For example, in the top layer with α = A, the
charge center in the unit cell around r = 0 is in the lower half
of the unit cell, while in the unit cell around r = ã1, the charge
center is in the upper half of the unit cell. Moreover, we also

numerically confirmed that the charge distribution of layer
� = t, sublattice α = A and layer � = b, sublattice α = B
are identical with a real-space translation r → r + ã1, as we
concluded fromC2zT T̂ã1P symmetry in the last paragraph.

To quantify the charge modulation between two moiré unit
cells, we first define the following dimensionless quantity:

D1(r) = 
c

√∑
α�

|ρα�(r) − ρα�(r + ã1)|2, (33)

in which
c is the volume of one moiré unit cell. This quantity
equals zero only when all of the four components of ρα�(r)
are not changed under translation r → r + ã1. It also has the
same periodicity as the original moiré superlattice by defini-
tion, therefore we only have to calculate the values within a
single moiré unit cell. In Fig. 10(a), we provide the values of
D1(r) in a moiré unit cell. As can be observed, the charge
density components per sublattice and layer are not invariant
under the translation.

Similarly, we can also define the following quantity to
quantify the charge density modulation in a single layer (for
example, the top layer) under the translation r → r + ã1:

D2(r) = 
c

∣∣∣∣∣
∑

α

ρα�=t (r) −
∑

α

ρα�=t (r + ã1)

∣∣∣∣∣. (34)

D2(r) = 0 only when the top layer charge density distribu-
tions are the same in two moiré unit cells. A plot of D2(r) is
provided in Fig. 10(d). It shows that charge distribution for a
single layer is not invariant under r → r + ã1. Therefore it is
still possible to observe a charge density wave by experiments
such as scanning tunneling microscope, which mostly detects
signals from a single layer, although the total charge density
does not have any modulation in AA stacking regions.

We also solved the real-space charge distribution of the
C2zT stripe phase at t = 1, i.e., with the kinetic term. As
shown in Table II, this term anticommutes with P, thus the so-
lution does not have the T̂ã1P symmetry. As a consequence, the
total charge no longer has the same periodicity as the moiré
lattice. However, since the T̂ã1P symmetry is only weakly
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FIG. 10. The translation symmetry breaking of the density distribution at flat band limit and w0/w1 = 0.8. (a) The value of D1(r), which
equals zero only when all the four sublattice and layer components are invariant under the translation T̂ã1 . (b) The value of D2(r), which
measures the electron charge density change in the top layer when shifted by r → r + ã1. The average value of D2(r) in a moiré unit cell is
around 0.026.

broken, the modulation of total charge between different unit
cells is less than 0.2%. A detailed study of this solution is
provided in Appendix F 2.

C. The motion of Dirac nodes

For any two-band system, theC2zT symmetry can be repre-
sented by complex conjugation K under proper basis choice.
Therefore aC2zT symmetric Hamiltonian will not contain any
σy terms, and a single Dirac node cannot be gapped locally by
any perturbation which respects the C2zT symmetry. Instead,
such a perturbation can only change the position of the Dirac
node in momentum space. The noninteracting TBG flat bands
have two Dirac nodes protected by C2zT symmetry with the
same chirality, while the C2zT stripe phase does not have any
Dirac nodes. However, Dirac nodes can annihilate only when
two nodes carry opposite chirality. The gap opening of the
C2zT stripe phase is seemingly at odds with the Dirac nodes’
chirality of the noninteracting TBG bands.

In this section, we study this process and focus on the
C2zT stripe solution with flat band kinetic energy (t = 1) at
w0/w1 = 0.8 on a 36×36 momentum lattice. To analyze the
gap opening within the C2zT stripe phase, we first introduce
the interpolation Hamiltonian with parameters λ1 and λ2:

Hbmηs;b′nη′s′ (k, λ1, λ2)

= εk+Qb,m,ηδbb′δmnδηη′δss′

+ λ1δbb′ (H(H )(κ) + H(F )(κ))bmηs,b′nη′s′

+ λ2(1 − δbb′ )(H(H )(κ) + H(F )(κ))bmηs,b′nη′s′ , (35)

in which λ1 stands for the interpolation coefficients for the
translation symmetry preserving part of the self-consistent HF
Hamiltonian, and λ2 the translation symmetry breaking part
of the HF Hamiltonian. Thus the Hamiltonian at λ1 = λ2 = 0
gives us the band structure of the noninteracting bands, while
λ1 = λ2 = 1 gives us the HF bands of the C2zT stripe phase.
In Fig. 11(a), we show the value of the band gap between
the second and third bands of the Hamiltonian H (κ, λ1, λ2).
Clearly, the gap opens when both the λ1 and λ2 exceed a

critical value. However, different path choices in the (λ1, λ2)
space can correspond to different mechanisms of gap opening.
In the following paragraphs, we illustrate how the gapless
noninteracting TBG bands become theC2zT stripe phase with
a large charge gap along three different paths in this (λ1, λ2)
parameter space: one path with nonabelian braiding, one path
with annihilation of Dirac nodes from the strong interacting
bands, and one path with Dirac nodes annihilation when cross-
ing the Brillouin zone border due to the π Berry phase as
discussed in Sec. IVB [59].

1. Non-Abelian Dirac node braiding

The first path we study is along the following direction:
(λ1, λ2) = (0, 0) → (0, 1) → (1, 1). The direct gaps between
the second and third bands in the FMBZ at (λ1, λ2) = (0, 0)
and (0, 1) are shown in Figs. 11(b) and 11(c). The Dirac nodes
are labeled by red ⊕ and � symbols in these figures. Along
this first segment of the path, these two Dirac nodes labeled on
the figure move to a region around the γ point [see Figs. 11(b)
and 11(c)]. By using the non-self-consistent-field method dis-
cussed in Appendix A 2, we can solve the band structures
of H (κ, λ1, λ2) in a small patch around the γ point with a
45 times higher resolution than the original 36×36 lattice,
without solving the self-consistent solution on such a dense
momentum lattice. We are also able to evaluate the chirality of
Dirac nodes by the method discussed in Appendix E 1, and we
provide a detailed numerical study about the chirality of Dirac
nodes in Appendix E 2 a.We now focus on the second segment
of the path. In Fig. 12, we show the position and the chirality
of the Dirac nodes between the first and the second bands,
and between the second and third bands at λ1 = 0, 0.03, 0.06
and λ2 = 1. Figure 12(a) shows the zoom-in direct gap plot
around the γ point of Fig. 11(a), and the two Dirac nodes with
the same chirality becomes clearly visible. When the value of
λ1 is increased to 0.03, one of the nodes flipped its chirality.
And these two Dirac nodes annihilate with each other and the
charge gap opens when λ1 > 0.055, as shown in Figs. 12(b)
and 12(c). Meanwhile, another pair of Dirac nodes are created
between the first and the second bands, which can be observed
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FIG. 11. (a) The minimum direct charge gap between the second and third bands of the hamiltonian H (κ, λ1, λ2) as a function of λ1 and
λ2. (b) The direct gap between the second and third bands in the FMBZ when λ1 = λ2 = 0. The direct gaps between the second and third
bands in the FMBZ at λ1 = 0, λ2 = 1 and at λ1 = 1, λ2 = 0 are also shown in (c) and (d). The red symbols ⊕ and � represent the Dirac
nodes and their chiralities in (b)–(d). Due to the finite 36×36 mesh in the Brillouin zone, the minimum direct gap is in general not strictly
equal to zero (at machine precision). Nevertheless we have checked at several places of the phase diagram by refining the mesh with the
non-self-consistent-field method discussed in Appendix A 2 near the nodes that we indeed have direct gap closing, for example, two Dirac
nodes can be observed near the γ point at (λ1, λ2) = (0, 1). In (b)–(d), the values of the direct gap are represented in meV in the color bars.

in Figs. 12(d)–12(f). The two nodes carry opposite chiralities
when λ1 = 0.03, and one of them flips the chirality when
λ1 is increased to 0.06. The chirality change of Dirac nodes
in different bands is a signature of the nonAbelian nature
of the braiding between Dirac nodes in multiband systems
[40,59,60].

2. Strong correlated bands

The second path is along the direction: (λ1, λ2) =
(0, 0) → (1, 0) → (1, 1). When λ1 continuously increases
from 0 to 1, the Hamiltonian does not break the translation

symmetry, and thus we can still study the bands in the MBZ.
Since the Coulomb interaction dominates over the kinetic
energy of the narrow bands, the Hamiltonian is in the strong
coupling limit when λ1 is large enough, especially at λ1 = 1.
As discussed in Ref. [51] and Appendix E 2 b, the bands are
degenerate at the high-symmetry points, �, M, and K . The
degeneracy at � is protected by theC2zT and the particle-hole
symmetry, carrying the winding number of +3. The MBZ
contains three different M points, related by C3z symmetry.
Similar to the � point, the degeneracy at M is also protected
by C2zT and particle-hole, but carries the winding number of

FIG. 12. [(a)–(c)] The direct gap between the second and third bands ofH (κ, λ1, λ2) in the FMBZ patch around γ point (see Appendix E 2)
with λ1 = 0, 0.03, 0.06 and λ2 = 1. [(d)–(f)] The direct gap between the first and the second bands in same the FMBZ patch. The chiralities
of the Dirac nodes in the dashed circles are represented by red symbols ⊕ and �. The values of the direct gap are represented in meV in the
colorbars.
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FIG. 13. (a) The direct gap between the second and third bands of H (κ, λ1, λ2) in the FMBZ patch around the x point at λ1 = λ2 = 0.035.
(b) The direct gap between the second and third bands in the FMBZ patch around γ point at λ1 = λ2 = 0.058. Dirac nodes and their chiralities
are represented by the red ⊕ and � symbols in (a) and (b). (c) The motion of Dirac nodes in the FMBZ along the third path in the (λ1, λ2)
plane. The three Dirac nodes represented by blue dots will merge into one node and move leftward, while the Dirac node represented by red dot
moves rightward. The two blue dashed squares represent the FMBZ patches shown in (a) and (b). The values of the direct gap are represented
in meV in the color bars.

−1. The degeneracy at K and K ′ points, however, is protected
byC2zT andC3z symmetry, and carries the winding number of
1. So the total winding number is 2, reflecting the nontrivial
topological properties of the flat bands around the charge
neutral point.

For the second part of the path, i.e., (1, 0) → (1, 1), the
starting point is the previously described strong interacting
band structure of H (κ, 1, 0), but folded into the FMBZ.
There, the two Dirac nodes originally at different M points
are moved to the μ point. In contrast, the thirdM point will be
moved to the γ point, and it becomes a Dirac node between
the first and second bands. Therefore there are four Dirac
nodes between the second and third bands. The two nodes at
the μ point carry opposite chirality from the nodes at K and
K ′ points. When increasing λ2, these four nodes move towards
y point in FMBZ and annihilate with each other. Thus the
Brillouin zone folding is also necessary along the second path
for gap opening between the second and third bands, although
there is no nonAbelian braiding involved. We also provide
detailed discussion of the motion and chirality of these nodes
in Appendix E 2 b.

3. Brillouin zone border

Our third path is a linear interpolation along the direction
(λ1, λ2) = (0, 0) → (1, 1). As soon as we move away from
(0, 0), the two Dirac nodes of the noninteracting Hamilto-
nian between the second and third bands start moving in the
FMBZ. Around λ1 = λ2 = 0.03, the two nodes with the same
chirality move to the proximity of x point of the FMBZ (see
Fig. 3). Another pair of Dirac nodes with opposite chiralities
are also created in this region. As shown in Fig. 13(a), there
are four Dirac nodes around the x point when λ1 = λ2 =
0.035. By using the method discussed in Appendix E 1, we
are able to evaluate the chiralities of these Dirac nodes. The
three nodes on the left will merge into one node once the
values of λ1 and λ2 are increased to 0.04 (see Appendix E 2 c).
Thus there will be two nodes with both +1 chirality moving
leftward and rightward from the x point when increasing the
values of λ1 and λ2. The path of these nodes wrap around

the FMBZ along the axis b̃1, and they move towards the
proximity of γ point around λ1 = λ2 = 0.05. In Fig. 13(b),
we observe these nodes in the FMBZ patch near the γ point
at λ1 = λ2 = 0.058. The relative chirality of different Dirac
nodes is well-defined on local patches in the FMBZ. For nodes
far apart from each other, finding such a single large patch is
problematic (see Appendix E 1), which is why we resort only
to local patches once they contain the two nodes. Interestingly,
as implied by the analysis in Appendix D, the relative chirality
of a Dirac node can flip once it encircles the FMBZ (see
also Ref. [59] for a simple example of a checkerboard lattice
with C2T symmetry and unobstructed single quadratic band
touching). As shown in Fig. 13(b), the two Dirac nodes carry
the opposite chiralities when they meet near the γ point in
FMBZ, which is different from the +2 chirality when they
were in the proximity of x point. The nodes annihilate with
each other at around λ1 = λ2 = 0.06, and the gap between
the second and third bands is opened. We also demonstrate the
paths of these nodes wrapping around the FMBZ in Fig. 13(c),
where the blue (red) dots and arrows stand for the motion of
left (right) moving Dirac nodes. Detailed numerical results
about the Dirac nodes and chiralities along this path can also
be found in Appendix E 2 c.

VI. CONCLUSION

Using the translation symmetry breaking Hartree-Fock cal-
culation, we have mapped the phase diagram of TBG at filling
factor ν = −3 (or ν = +3 thanks to the particle-hole sym-
metry) as a function of w0/w1. Our results show that the
quantum anomalous Hall state obtained at the chiral limit is
still the self-consistent solution when the interlayer hopping
ratio w0/w1 is smaller than a critical value of 0.5. Around the
more experimentally realistic value w0/w1 ≈ 0.8, a transla-
tion symmetry breaking phase withC2zT symmetry, a doubled
moiré unit cell and a large charge gap, which we dub as C2zT
stripe phase, becomes energetically preferred. By computing
its Wilson loop, we also found the C2zT stripe phase carries
zero Chern number, which is different from the quantum
anomalous Hall phase. The vanishing Chern number and the
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large charge gap imply that thisC2zT stripe phase could depict
the insulating state at ν = +3 filling observed in experiments
[10,11]. In the region between the quantum anomalous Hall
and the C2zT stripe phases with an intermediate value 0.5 �
w0/w1 � 0.65, we also find that these states and another
phase with a tripling of the moiré unit cell all have competitive
energy. The candidate states in this intermediate region have
small charge gaps, whereas large charge gaps can be observed
away from the intermediate region.

Compared to the states proposed in previous studies, the
C2zT stripe phase we obtained does not require any strain [50].
ThisC2zT stripe phase is invariant under T̂ã1P transformation,
and, although similar, it is different from the translation break-
ing phase in Ref. [40], which has the T̂ã1C2x symmetry that
does not enforce the invariance of the total charge density
ρtot (r) at each r when translating by a moiré unit cell. The
real-space charge distribution in this C2zT stripe phase is also
evaluated from the mean-field order parameter. We discov-
ered that the total charge density in the flat band limit does
not have modulation in different moiré unit cells because of
a new nonsymmorphic symmetry T̂ã1P symmetry, although
the C2zT stripe phase itself strongly breaks the translation
symmetry T̂ã1 . This nonsymmorphic symmetry is no longer
fulfilled when the flat band kinetic terms are considered, yet
it is only weakly violated. Meanwhile, the charge density in a
single layer still has a clear modulation even in the flat band
limit, and it is experimentally testable by scanning tunneling
microscope, which only detects the electron states from a
single layer. We also analyze how the noninteracting TBG
flat bands with two Dirac nodes with the same chirality are
deformed into the C2zT stripe phase with a large charge gap.
The gap opening mechanism depends on the path selected to
connect these two extreme cases. In particular, moving to the
strongly correlated bands regime first and then breaking the
translation symmetry unveils the nonAbelian nature of Dirac
nodes’ charge in multi-band systems.

The existence of theC2zT stripe phase at ν = −3 naturally
raises the question of a similar phase at integer filling ν = −1.
Indeed, this filling factor shares similarities with ν = −3,
with only quantum anomalous Hall states in the chiral flat
band limit, as opposed to even integer fillings which have
exact eigenstates with zero Chern number [28,30,47]. We did
solve the self-consistent equation at another odd integer filling
ν = −1 andw0/w1 = 0.8, and translation symmetry breaking
is not observed. We leave the search for possible symmetry

breaking phases at ν = −1 filling and perturbations which
would stabilize them to further works.
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APPENDIX A: HARTREE-FOCKMETHOD

In this Appendix, we discuss the details of Hartree-
Fock mean-field theory with folded moiré Brillouin zones in
Appendix A 1. We also show a method to obtain a smooth
visualization of a mean-field band structure along high-
symmetry lines in Appendix A 2.

1. Hartree-Fock Hamiltonian with folded moiré Brillouin zone

Here, we provide the explicit expression for the Hartree-
Fock Hamiltonian with folded moiré Brillouin zones that was
sketched in Sec. III. We first rewrite the projected interacting
Hamiltonian using the following alternative form:

HI = 1

2
tot

∑
k,k′,q∈MBZ

∑
ηη′,ss′mnm′n′

U (ηη′ )
mn;m′n′ (q; k,k′)

(
c†k+q,mηsck,nηs − 1

2
δq,0δmn

)(
c†k′−q,m′η′s′ck′,n′η′s′ − 1

2
δq,0δm′n′

)
, (A1)

in which the interacting elements U(ηη′ )
mn′m′n′ (q; ,k,k′) are defined as

U (ηη′ )
mn;m′n′ (q; k,k′) =

∑
G∈Q0

V (q + G)M (η)
mn (k,q + G)M (η′ )

m′n′ (k′,−q − G). (A2)
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Here M (η)(k,q + G) is the form factor defined in Eq. (14) in the main text. By using the mean-field approximation, the
interacting Hamiltonian can be written into the Hartree and Fock terms:

H (H ) =
∑

κ∈FMBZ

∑
bb′,mn,ηs

H(H )
bmηs;bnηs(κ)

(
c†κ+Qb,mηscκ+Qb′ ,nηs − 1

2
δbb′δmn

)
, (A3)

H (F ) =
∑

κ∈FMBZ

∑
bb′,ηη′,mn,ss′

H(F )
bmηs;bnη′s′ (κ)

(
c†κ+Qb,mηscκ+Qb′ ,nη′s′ − 1

2
δbb′δmnδηη′δss′

)
. (A4)

The matrices H(H )(κ) and H(F )(κ) can be written as

H(H )
bmηs;b′nη′s′ (κ) = 1


tot

∑
κ′∈FMBZ

∑
bb′b′′b′′′

∑
η′′s′′

∑
mnm′n′

UH
bmηs,b′nηs;b′′m′η′′s′′;b′′′n′η′′s′′ (κ, κ′)�b′′m′η′′s′′;b′′′n′η′′s′′ (κ

′)δηη′δss′ (A5)

H(F )
bmηs;b′nη′s′ (κ) = − 1


tot

∑
κ′∈FMBZ

∑
bb′b′′b′′′

∑
mnm′n′

UF
bmηs,b′nη′s′;b′′m′η′s′;b′′′n′ηs(κ, κ′)�b′′m′η′s′;b′′′n′ηs(κ

′), (A6)

in which the matrices �(κ) is the order parameter defined in Eq. (20) in the main text. We can also use the interaction elements
U(ηη′ )

mn;m′n′ (q; k,k′) to represent the coefficients UH (κ, κ′) and UF (κ, κ′) as follows:

UH
bmηs,b′nηs;b′′m′η′s′;b′′′n′η′s′ (κ, κ′) = U (ηη′ )

mn;m′n′ (Qb − Qb′ ; κ + Qb′ , κ′ + Qb′′′ )
∑
G∈Q0

δQb−Qb′+Qb′′ −Qb′′′ ,G, (A7)

UF
bmηs,b′nη′s′;b′′m′η′s′;b′′′n′ηs(κ, κ′) = U (η′η)

m′n;mn′ (κ′ − κ + Qb′′ − Qb′ ; κ + Qb′ , κ′ + Qb′′′ )
∑
G∈Q0

δQb−Qb′+Qb′′−Qb′′′ ,G. (A8)

We can also write down the total mean-field Hamiltonian by
adding the kinetic term:

H(0)
bmηs;b′nη′s′ (κ) = εκ+Qb,m,η δbb′δmnδηη′δss′ , (A9)

HHF(κ) = tH(0)(κ) + H(H )(κ) + H(F )(κ). (A10)

For convenience, we have introduced a parameter t to go from
the flat band limit (t = 0) to the full fledged kinetic term (t =
1). As discussed in Sec. III, we use φbmηs,i(κ) to represent the
eigenstates of the Hamiltonian HHF(κ). By using φbmηs,i(κ),
we can also obtain the self-consistent condition for the order
parameter:

�bmηs;b′nη′s′ (κ) =
∑

i∈occupied
(φ∗

bmηs,i(κ)φb′nη′s′,i(κ))

− 1

2
δbb′δmnδηη′δss′ . (A11)

Since we solely focus on the filling factor ν = −3, only
the NM states with the lowest eigenvalues Ei(κ) among all
eigenstates are counted as occupied states. We start from a
randomized initial order parameter, and we buildHHF(κ) from
this order parameter. We can then solve the new order param-
eter from the self-consistent condition Eq. (A11) until both
the order parameter and Hamiltonian converge. For a given
self-consistent solution, the total energy can be evaluated by
the following equation:

Etot=
∑

κ∈FMBZ

Tr

[(
H(0)(κ)+1

2
(H(H )(κ) + H(F )(κ))

)
�T(κ)

]
.

(A12)

2. Band structure along high-symmetry lines

In this section, we discuss the non-self-consistent-field
method we use to obtain a smooth visualization of the HF
band structure without solving the self-consistent equation on

a dense momentum lattice. Solving the self-consistent equa-
tion on a dense momentum lattice discretizing the (folded)
moiré Brillouin zone requires a large amount of computing
resources. The storage requirement for saving the coefficients
UH,F (κ, κ′) also grows quadratically with the lattice size.
Thus our mean-field solutions are obtained on relatively small
lattices, such as 12×12, 18×18, up to 36×36. However, there
are only a few points of this discretized mesh that are along the
high-symmetry lines on such small momentum lattice. These
points are not dense enough to obtain a smooth visualization
of the mean-field band structure along these high-symmetry
lines.

We choose our C2zT stripe phase solution at w0/w1 = 0.8
on 18×18 momentum lattice as an example. As shown in
Fig. 14(a), we simply diagonalize the HamiltonianHHF(κ) on
this momentum lattice, and we show the energy spectra for κ

along the high-symmetry lines. Albeit the shape of the bands
and the charge gap can be roughly observed in this plot, the de-
tails, such as band crossing points, cannot be easily identified
due to the large distances between these momentum points.

In order to solve the energy spectra for any given mo-
mentum κ along the high-symmetry lines, we can still use
Eqs. (A5) and (A6). These equations show that the Hartree
Fock Hamiltonian HHF(κ) has a summation for κ′ ∈ FMBZ.
For an arbitrary value of κ, we can enforce that the summation
of κ′ is always on the sparse momentum lattice. Therefore, for
the purpose of building the HF Hamiltonian along a dense
high-symmetry line, we have to know the order parameter
�(κ′), and the HF coefficients UH,F (κ, κ′) with κ along these
dense high-symmetry lines and κ′ on this sparse lattice. To
obtain all of these coefficients, we only need to solve the
single body wave functions of the BM model on the sparse
lattice and along the dense high-symmetry line, instead of
the wave functions on a dense momentum lattice. The storage
requirement for saving these HF coefficients becomes linear
with the lattice size, and thus we are able to enhance the
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FIG. 14. The Hartree-Fock band structure of the C2zT stripe
phase along the high-symmetry lines. (a) The HF band structure
obtained directly from the solution on 18×18 momentum lattice.
(b) The “continuum” HF band structure along the high-symmetry
lines. We used the order parameter on the same 18×18 momentum
lattice as in subfigure (a) to calculate the HF Hamiltonians along
these high-symmetry lines.

point density along the high-symmetry lines at a moderate
cost. Once we obtain the HF Hamiltonian, we are also able to
get its eigenstate φbmηs,i(κ) and order parameter �(κ) along
the dense high-symmetry line. Figure 14(b) shows the HF
band structure we calculated using the order parameter on the
18×18 momentum lattice, which is the same as the one we
used in Fig. 14(a). The band structure plot in Fig. 14(b) has
the same shape qualitatively as in Fig. 14(a), while it also
provides more details like the band crossing point along the
γ -x line. The plots in Fig. 2 in the main text have also been
obtained by this method.

This method is not limited to studying the band structure
along high-symmetry lines. We can also replace the momen-
tum points κ along the high-symmetry lines by momentum
points on a small patch in the FMBZ. Thus we are also able to
study the band structure and the HF wave functions in a small
region of the FMBZ without solving the self-consistent equa-
tion on a dense lattice. This technique was used in Sec. VC
to get an accurate result for the Dirac nodes motions around
the γ point in the C2zT stripe phase. The HF Hamiltonians
HHF(κ) built in the small FMBZ patch retain the symmetries
of the order parameter �(κ′) on the sparse momentum lattice.
Therefore the Dirac nodes in the FMBZ patch, which are
protected by the C2zT symmetry, should be well-captured by
the non-self-consistent-field method.

APPENDIX B: SYMMETRIES AND SEWING MATRICES

In this Appendix, we review the representation of several
symmetries of the single valley TBG Hamiltonian, which is
mentioned in Sec. II and used in Sec. VA in the main text. As
discussed in Refs. [46,59,62], the single valley TBG Hamilto-
nian hasC2zT ,C3z,C2x and P symmetries. The representations
of these symmetries are given by

DQ,Q′ (C2zT ) = σxδQ,Q′ , (B1)

DQ,Q′ (C3z ) = exp

(
i
2πη

3
σz

)
δQ,C3zQ′ , (B2)

DQ,Q′ (C2x ) = σxδQ,C2xQ′ , (B3)

DQ,Q′ (P) = ζQδQ,−Q′ , (B4)

where ζQ = 1 when Q ∈ Q+, and ζQ = −1 when Q ∈ Q−.
Both C3z and C2x are unitary symmetries which commute
with the noninteracting Hamiltonian. In contrast, particle hole
symmetry P is a unitary symmetry which anticommute with
the noninteracting Hamiltonian. Unlike the other three, C2zT
is an antiunitary symmetry, which also contains a complex
conjugation operation. These representation matrices describe
the transformation of electron operators in plane wave basis
under these transformations:

g−1c†k,Q,η,α,sg =
∑
Q′β

D∗
Qα,Q′β (g)c

†
gk,Q′,η,β,s. (B5)

Therefore the noninteracting Hamiltonian will transform as
follows under these symmetries:

D(C2zT )−1h(η)∗(k)D(C2zT ) = h(η)(k), (B6)

D(C3z )
−1h(η)(k)D(C3z ) = h(η)(C3zk), (B7)

D(C2x )
−1h(η)(k)D(C2x ) = h(η)(C2xk), (B8)

D(P)−1h(η)(k)D(P) = −h(η)(−k). (B9)

Notice that on the left-hand side of Eq. (B6), we transform the
complex conjugation of the Hamiltonian by matrix D(C2zT )
because of the antiunitary nature of C2zT transformation. For
each unitary symmetry g, we can define the sewing matrix
Bg(k) as

Bg
mn(k) =

∑
Qα,Q′β

u∗
Qα,mη(k)DQα,Q′β (g)uQ′β,nη(gk), (B10)

and this matrix has the following property:∑
m

uQα,mη(k)Bg
mn(k) =

∑
Q′β

DQα,Q′β (g)uQ′β,nη(gk). (B11)

Similarly, for antiunitary symmetry C2zT , we can define its
sewing matrix as

BC2zT
mn (k) =

∑
Qα,Q′β

u∗
Qα,mη(k)DQα,Q′β (C2zT )u∗

Q′β,nη(k).

(B12)
For each given unitary symmetry, the electron operators will
transform as their sewing matrices:

g−1c†k,mηsg =
∑
Qα

uQα,mη(k)g−1c†k,Q,η,α,sg

=
∑
Qα

uQα,mη(k)
∑
Q′β

D∗
Qα,Q′β (g)c

†
gk,Q′,η,β,s

=
∑
Q′β

∑
n

uQ′β,nη(gk)Bg∗
mn(k)c

†
gk,Q′,η,β,s

=
∑
n

Bg∗
mn(k)c

†
gk,n,η,s. (B13)

Similar result can also be derived for antiunitary symme-
try C2zT . As mentioned in Refs. [46–49], we fix the gauge
choice of the wave functions such that the sewing matrices
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BC2zT
mn (k) = δmn. Thus the electron operators are transformed

as
(C2zT )−1c†k,mηs(C2zT ) = c†k,mηs. (B14)

Except for these symmetries, this Hamiltonian also has
the translation symmetries along the basis vectors ã1,2 of the
moiré superlattice, which we denote by T̂ã1,2 . For each electron
operator, it will gain a phase factor under such translation
transformation as shown:

T̂−1
ã1,2 c

†
k,m,η,sT̂ã1,2 = eik·ã1,2c†k,m,η,s. (B15)

We obtained the values of G(g, κ) shown in Fig. 7 in the main
text by applying Eqs. (B13)–(B15) to its definition Eq. (26).

APPENDIX C: WILSON LOOPS IN FOLDED MBZ

In this Appendix, we discuss the method to represent the
HF wave functions using the plane wave basis and we derive
the expression of the nonAbelian Wilson loops, which is used
in Sec. IVB in the main text. We start with the mean-field
HamiltonianHHF(κ) = H(H )(κ) + H(F )(κ). By diagonalizing
this Hamiltonian, we can obtain the eigenvectors:∑

b′m′η′s′
H(HF )

bmηs;b′m′η′s′ (κ)φb′m′η′s′,i(κ) = Ei(κ)φbmηs,i(κ). (C1)

where φbmηs,i(κ) is the Hartree-Fock band wave function of
the ith mean-field band. We can write the wave function into
the following format:

|φi(κ)〉 =
∑
bmηs

φbmηs,i(κ)c
†
κ+Qbmηs|0〉. (C2)

In order to compute the Wilson loops or Berry connection of
these Bloch wave functions, we have to rewrite these states
using the plane wave basis of the continuum model [61]:

|φi(κ)〉 =
∑
bmηs

φbmηs,i(κ)

×
∑

Q∈Q±,α

uQα,mη(κ + Qb)c
†
κ+Qb,Q,η,α,s|0〉. (C3)

Therefore, to represent the Bloch wave function of the
mean-field bands by the plane wave basis, we introduce the
coefficients �Qα,b,η,s;i(κ):

�Qα,b,η,s;i(κ) =
∑
m

φbmηs,i(κ)uQα,mη(κ + Qb), (C4)

|φi(κ)〉 =
∑

Q∈Q±,α

∑
bηs

�Qα,b,η,s;i(κ)c
†
κ+Qb,Q,η,α,s|0〉. (C5)

The eigenvectors φbmηs,i(κ) are not periodic in the FMBZ.
When the momentum κ ∈ FMBZ is shifted by a recipro-
cal vector of FMBZ (κ → κ + g), the subband index b of
φbmηs,i(κ) will be transformed by the embedding matrix Vg
as follows:

φbmηs,i(κ + g) =
∑
b′
(Vg)bb′φb′mηs(κ), (C6)

in which the matrix Vg is given by

(Vg)bb′ =
∑
G∈Q0

δg+Qb,Qb′+G. (C7)

Therefore the subband index b in the Bloch wave function
coefficients �Qα,b,η,s;i(κ) also has to be shifted accordingly:

�Qα,b,η,s;i(κ + g)

=
∑
m,b′

∑
G∈Q0

δg+Qb,Qb′+Gφb′mηs,i(κ)uQα,mη(κ + g + Qb).

(C8)

We also use �i(κ) to denote the vector made of the co-
efficients �Qα,b,η,s;i(κ). Thus we are able to define the
nonAbelian Wilson loop of the mean-field bands. For the two
types of favored foldings (

√
3×√

3) and (2×1), we represent
the momentum in FMBZ by κ = κ1

2π Q1 + κ2
2π b̃2, in which Q1

is the basis vectors of the reciprocal lattices of the folded
Brillouin zones defined in Table I and b̃2 is the reciprocal
vector of the original moiré Brillouin zone. We evaluate the
Wilson loops along the direction of Q1 with the lowest NF

bands:

Wi j (κ2) =
NF∑

i1,i2,...,in−1=1

[�†
i (κ1 = 0, κ2)�i1 (κ1 = δκ, κ2)�

†
i1
(κ1 = δκ, κ2) · · ·

�in−1 (κ1 = 2π − δκ, κ2)�
†
in−1

(κ1 = 2π − δκ, κ2)� j (κ1 = 2π, κ2)],

δκ = 2π

n
. (C9)

Here the integer n is the number of points along the direction
of Q1 on the discretized momentum lattice in the FMBZ. The
winding of Wilson loop eigenvalue exponent, computed by
this expression, contains the information of the band topol-
ogy, as discussed for the plots in Figs. 5 and 6 in the main
text.

APPENDIX D: WILSON LOOP OF THE STRIPE PHASE

In this Appendix, we derive the properties of the Wilson
loop for theC2zT symmetric stripe phase that was numerically

evaluated in Sec. IVB. For that purpose, we focus on the
simple limiting case of a gapped C2zT stripe with effective
Hamiltonian given in Eq. (69) of Ref. [40]. This Hamiltonian
has a gap between the band 2 and band 3, and because it
is a special case, band 1 is degenerate with band 2, as is
band 3 with band 4. This model is enough to understand the
topology of these special subspaces, because, as long as the
gap between 1-2 and 3-4 does not close, the topology must
remain, i.e., we cannot change the sign of the determinant of
the Wilson loops detW under continuous deformations which
do not close the 2-3 gap.
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1. Simple effective Hamiltonian for theC2zT stripe

For convenience, the Chern states in this
Appendix (Appendix D) are chosen to be the Bloch state
basis and their gauge is fixed as in Ref. [40], i.e., the
constructed Chern states are continuous in momentum, but
not periodic. To be more specific, these Chern states satisfy
the following boundary conditions:

|ψμ,η,s(k)〉 = |ψμ,η,s(k + b̃1)〉,
|ψμ,η,s(k)〉 = e−iμk·ã1 |ψμ,η,s(k + b̃2)〉, (D1)

where the subscript μ = ±1 is the Chern number of the as-
sociated states, η and s are the indices for valley and spin,
respectively, and ãi are the moiré lattice vectors defined in
Fig. 8. In addition, these Chern states transform under C2zT
as follows:

C2zT |ψμ,η,s(k)〉 = |ψ−μ,η,s(k)〉. (D2)

Note that the gauge choice in Eq. (D1) is different from the
gauge choice that we used for numerical calculations, which
was discussed in Refs. [46–49].

Since the C2zT stripe phase is both spin and valley po-
larized, we can focus only on a particular spin and valley,

and thus drop the spin and valley indices in the rest of
this Appendix. In the C2zT phase, with the four-component
Chern basis {|ψ+1(κ)〉, |ψ+1(κ + b̃1/2)〉, |ψ−1(κ)〉, |ψ−1(κ +
b̃1/2)〉}, the effective Hamiltonian Eq. (69) of Ref. [40] can
be written as

HC2zT
eff (κ)=

⎛
⎜⎜⎝

ε(κ) 0 0 �2(κ)
0 ε(κ + b̃1/2) �2(κ) 0
0 �∗

2(κ) ε(κ) 0
�∗

2(κ) 0 0 ε(κ + b̃1/2)

⎞
⎟⎟⎠,

(D3)

where the matrix elements satisfy the nontrivial periodicity
conditions (with the proper gauge choice listed in Eq. (D1)
and Ref. [40]):

�2(κ + b̃1/2) = �2(κ), (D4)

�2(κ + b̃2) = −e2iκ·ã1�2(κ), (D5)

ε(κ + b̃1) = ε(κ). (D6)

The corresponding single particle states for the smooth Chern
gauge states built in Eq. (13) of Ref. [40] are:

upper doublet: |φ4(κ)〉 = cos
θ (κ)

2
|ψ+1(κ)〉 + sin

θ (κ)

2
e−iϕ2(κ)|ψ−1(κ + b̃1/2)〉, (D7)

|φ3(κ)〉 = sin
θ (κ)

2
eiϕ2(κ)|ψ+1(κ + b̃1/2)〉 + cos

θ (κ)

2
|ψ−1(κ)〉, (D8)

lower doublet: |φ2(κ)〉 = − sin
θ (κ)

2
eiϕ2(κ)|ψ+1(κ)〉 + cos

θ (κ)

2
|ψ−1(κ + b̃1/2)〉, (D9)

|φ1(κ)〉 = cos
θ (κ)

2
|ψ+1(κ + b̃1/2)〉 − sin

θ (κ)

2
e−iϕ2(κ)|ψ−1(κ)〉. (D10)

The quantities θ (κ) and ϕ2(κ) are defined by

eiϕ2(κ) = �2(κ)

|�2(κ)| , (D11)

cos θ (κ) = ε′(κ)√
ε′(κ)2 + |�2(κ)|2

, (D12)

ε′(κ) = 1

2
(ε(κ) − ε(κ + b̃1/2)). (D13)

Under C2zT , we have |ψ±(k)〉 → |ψ∓(k)〉 which follows from Eq. (D2). Thus |φ4(κ)〉 and |φ3(κ)〉 get interchanged by C2zT
(and similarly for |φ1(κ)〉 and |φ2(κ)〉). Now, we are able to construct states which have a diagonal C2zT sewing matrix:

upper doublet: |φ′
4(κ)〉 = |φ4(κ)〉 + e−iϕ2(κ)|φ3(κ)〉√

2
(D14)

= 1√
2

(
cos

θ (κ)

2
|ψ+1(κ)〉 + sin

θ (κ)

2
|ψ+1(κ + b̃1/2)〉

+ e−iϕ2(κ)

(
sin

θ (κ)

2
|ψ−1(κ + b̃1/2)〉 + cos

θ (κ)

2
|ψ−1(κ)〉

))
, (D15)

|φ′
3(κ)〉 = |φ4(κ)〉 − e−iϕ2(κ)|φ3(κ)〉√

2
(D16)

= 1√
2

(
cos

θ (κ)

2
|ψ+1(κ)〉 − sin

θ (κ)

2
|ψ+1(κ + b̃1/2)〉

+ e−iϕ2(κ)

(
sin

θ (κ)

2
|ψ−1(κ + b̃1/2)〉 − cos

θ (κ)

2
|ψ−1(κ)〉

))
, (D17)
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lower doublet: |φ′
2(κ)〉 = |φ1(κ)〉 + e−iϕ2(κ)|φ2(κ)〉√

2
(D18)

= 1√
2

(
cos

θ (κ)

2
|ψ+1(κ + b̃1/2)〉 − sin

θ (κ)

2
|ψ+1(κ)〉

+ e−iϕ2(κ)

(
− sin

θ (κ)

2
|ψ−1(κ)〉 + cos

θ (κ)

2
|ψ−1(κ + b̃1/2)〉

))
, (D19)

|φ′
1(κ)〉 = |φ1(κ)〉 − e−iϕ2(κ)|φ2(κ)〉√

2
(D20)

= 1√
2

(
cos

θ (κ)

2
|ψ+1(κ + b̃1/2)〉 + sin

θ (κ)

2
|ψ+1(κ)〉

+ e−iϕ2(κ)

(
− sin

θ (κ)

2
|ψ−1(κ)〉 − cos

θ (κ)

2
|ψ−1(κ + b̃1/2)〉

))
. (D21)

2. Periodicity of wave functions |φ′
i (κ)〉

We now study the periodicity of the eigenstates |φ′
i (κ)〉

along the both directions of the FMBZ. We start our discus-
sion with the direction along b̃1/2 axis. In order to understand
what happens to |φ′

i (κ)〉 under κ → κ + b̃1/2, where i = 1,
2, 3, and 4, we first note that

eiϕ2(κ+b̃1/2) = eiϕ2(κ), (D22)

which follows from the definition of ϕ2 in Eq. (D11) and the
property of �2(κ) given by Eq. (D4). Now, from Eq. (D13),
we clearly have

ε′(κ + b̃1/2) = −ε′(κ) ⇒ cos θ (κ + b̃1/2) = − cos θ (κ).

(D23)

The spherical polar coordinate is defined in θ ∈ [0, π ). There-
fore the angle θ (κ) will transform as

θ (κ + b̃1/2) = π − θ (κ), (D24)

cos

[
θ (κ + b̃1/2)

2

]
= sin

[
θ (κ)

2

]
,

sin

[
θ (κ + b̃1/2)

2

]
= cos

[
θ (κ)

2

]
. (D25)

The wave functions |φ′
i (κ)〉 will transform accordingly:

upper doublet: |φ′
4(κ + b̃1/2)〉 = |φ′

4(κ)〉, (D26)

|φ′
3(κ + b̃1/2)〉 = −|φ′

3(κ)〉, (D27)

lower doublet: |φ′
2(κ + b̃1/2)〉 = −|φ′

2(κ)〉, (D28)

|φ′
1(κ + b̃1/2)〉 = |φ′

1(κ)〉. (D29)

We see that one component is periodic (|φ′
1(κ)〉 and |φ′

4(κ)〉)
and one antiperiodic (|φ′

2(κ )〉 and |φ′
3(κ)〉) in each doublet.

To adopt the same boundary conditions, say periodic, we
multiply the antiperiodic state with a smooth phase eiχ (κ) such
that χ (0) = 0 and χ (κ + b̃1/2) = χ (κ) + π . For example, we
can choose this gauge phase factor as

χ (κ) = κ · ã1. (D30)

So, finally, we define the periodic single particle states along
κ → κ + b̃1/2 as follows:

upper doublet: |φ′′
4 (κ)〉 = |φ′

4(κ)〉, (D31)

|φ′′
3 (κ)〉 = eiχ (κ)|φ′

3(κ)〉, (D32)

lower doublet: |φ′′
2 (κ)〉 = eiχ (κ)|φ′

2(κ)〉, (D33)

|φ′′
1 (κ)〉 = |φ′

1(κ)〉. (D34)

These states transform as follows under C2zT transformation:

upper doublet: C2zT |φ′′
4 (κ)〉 = eiϕ2(κ)|φ′′

4 (κ)〉, (D35)

C2zT |φ′′
3 (κ)〉 = e−2iχ (κ)ei(ϕ2(κ)+π )|φ′′

3 (κ)〉,
(D36)

lower doublet: C2zT |φ′′
2 (κ)〉 = e−2iχ (κ)eiϕ2(κ)|φ′′

2 (κ)〉,
(D37)

C2zT |φ′′
1 (κ)〉 = ei(ϕ2(κ)+π )|φ′′

1 (κ)〉. (D38)

The C2zT sewing matrices for the upper and lower doublets
can be written as

BC2zT
upper(κ) =

(
eiϕ2(κ) 0
0 e−2iχ (κ)ei(ϕ2(κ)+π )

)
, (D39)

BC2zT
lower(κ) =

(
e−2iχ (κ)eiϕ2(κ) 0

0 ei(ϕ2(κ)+π )

)
. (D40)

These sewing matrices with this gauge choice can be used to
calculate the determinant of the Wilson loop operator along
the b̃1/2 direction.

Next, we study the periodicity of the wave functions
|φ′

i (κ)〉 under transformation κ → κ + b̃2. The states |φ′′
i (κ)〉

defined in previous paragraphs are periodic along κ → κ +
b̃1/2, but they are not periodic along κ → κ + b̃2. In order to
evaluate the Wilson loop along b̃2 direction, we have to find
the states which are periodic along κ → κ + b̃2, which are not
necessary to be periodic along κ → κ + b̃1/2. From Eq. (D5),
we notice that the phase ϕ2(κ) will transform as follows:

eiϕ2(κ+b̃2 ) = −eiϕ2(κ)e2iκ·ã1 , (D41)

and the angle θ (κ) is not changed when κ → κ + b̃2. Then,
by using Eq. (D1), we can obtain the wave functions
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|φ′
i (κ + b̃2)〉:

upper doublet: |φ′
4(κ + b̃2)〉 = e−iκ·ã1 |φ′

3(κ)〉, (D42)

|φ′
3(κ + b̃2)〉 = e−iκ·ã1 |φ′

4(κ)〉, (D43)

lower doublet: |φ′
2(κ + b̃2)〉 = −e−iκ·ã1 |φ′

1(κ)〉, (D44)

|φ′
1(κ + b̃2)〉 = −e−iκ·ã1 |φ′

2(κ)〉. (D45)

Similar to the case along b̃1/2 direction, these wave functions are not periodic along b̃2 as well. In order to obtain periodic wave
functions, we define the following superposition states for both the upper and lower doublet states:

upper doublet: |φ′′′
4 (κ)〉 = eiκ·ã2( 14 + κ·ã1

2π )

(
cos

κ · ã2
4

|φ′
4(κ)〉 − i sin

κ · ã2
4

|φ′
3(κ)〉

)
, (D46)

|φ′′′
3 (κ)〉 = eiκ·ã2( 14 + κ·ã1

2π )

(
−i sin

κ · ã2
4

|φ′
4(κ)〉 + cos

κ · ã2
4

|φ′
3(κ)〉

)
, (D47)

lower doublet: |φ′′′
2 (κ)〉 = eiκ·ã2(− 1

4 + κ·ã1
2π )

(
cos

κ · ã2
4

|φ′
2(κ)〉 − i sin

κ · ã2
4

|φ′
1(κ)〉

)
, (D48)

|φ′′′
1 (κ)〉 = eiκ·ã2(− 1

4 + κ·ã1
2π )

(
−i sin

κ · ã2
4

|φ′
2(κ)〉 + cos

κ · ã2
4

|φ′
1(κ)〉

)
. (D49)

It can be easily proved that these states satisfy the periodic condition |φ′′′
i (κ + b̃2)〉 = |φ′′′

i (κ)〉. Thus by applying the C2zT
operator, these states will transform as the following equations:

upper doublet: C2zT |φ′′′
4 (κ)〉 = eiϕ2(κ)e−2iκ·ã2( 14+ κ·ã1

2π )|φ′′′
4 (κ)〉, (D50)

C2zT |φ′′′
3 (κ)〉 = ei(ϕ2(κ)+π )e−2iκ·ã2( 14 + κ·ã1

2π )|φ′′′
3 (κ)〉, (D51)

lower doublet: C2zT |φ′′′
2 (κ)〉 = eiϕ2(κ)e−2iκ·ã2(− 1

4 + κ·ã1
2π )|φ′′′

2 (κ)〉, (D52)

C2zT |φ′′′
1 (κ)〉 = ei(ϕ2(κ)+π )e−2iκ·ã2(− 1

4+ κ·ã1
2π )|φ′′′

1 (κ)〉. (D53)

And consequently, the C2zT sewing matrices can be written as follows:

BC2zT
upper(κ) =

(
eiϕ2(κ)e−2iκ·ã2( 14+ κ·ã1

2π ) 0

0 ei(ϕ2(κ)+π )e−2iκ·ã2( 14 + κ·ã1
2π )

)
, (D54)

BC2zT
lower(κ) =

(
eiϕ2(κ)e−2iκ·ã2(− 1

4 + κ·ã1
2π ) 0

0 ei(ϕ2(κ)+π )e−2iκ·ã2(− 1
4 + κ·ã1

2π )

)
. (D55)

Similar to Eqs. (D39) and (D40), we will use these sewing
matrices when evaluating the determinant of the Wilson loop
operators along the b̃2 direction.

3. Computing the determinant of the Wilson loop operatorW

The determinant of the Wilson loop operator can be
evaluated following the derivation provided in Sec. VC
of Ref. [63]. We first evaluate the Wilson loop along
b̃1/2. As defined previously, the basis |φ′′

4 (κ)〉, |φ′′
3 (κ)〉 and

|φ′′
2 (κ)〉, |φ′′

1 (κ)〉 is periodic under κ → κ + b̃1/2. It can been
proved that the C2zT sewing matrix of a two band system
is deeply related tp its nonAbelian Berry connection. If the
sewing matrix BC2zT (κ) can be written as

BC2zT (κ) =
(
eiϑ1(κ) 0
0 eiϑ2(κ)

)
, (D56)

then the nonAbelian Berry connection has the following form:

A(κ) =
(

1
2∂κϑ1(κ) ia(κ)ei

1
2 (ϑ1(κ)−ϑ2(κ))

−ia(κ)e−i 12 (ϑ1(κ)−ϑ2(κ)) 1
2∂κϑ2(κ)

)
.

(D57)

As we have mentioned in the main text, we use κ1 and κ2 to
parametrize the momentum κ in the FMBZ as κ = κ1

2π
b̃1
2 +

κ2
2π b̃2. We choose the path of the Wilson loop c along the
direction of b̃1/2 with a fixed value of κ2. The nonAbelian
Wilson loop can be written as

W (κ2) = P exp

(
−i

∮
c
dκ · A(κ)

)

= P exp

(
−i

∫ 2π

0
dκ1A1(κ1, κ2)

)
. (D58)
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FIG. 15. TheWilson loops of the two occupied HF bands evaluated from theC2zT stripe phase obtained atw0/w1 = 0.8 at t = 0. (a)Wilson
loop along the b̃1/2 direction. This figure is similar to Fig. 5(d) but with a mesh in momentum space doubled in both directions (36×36 as
opposed to 18×18) and assuming spin and valley polarization. (b) Wilson loop along the b̃2 direction. The results are as expected from the
derivation of presented in Appendix D 3.

Therefore the determinant of the lower doublet Wilson loop
will be given by

detW (κ2) = exp

(
−i

∫ 2π

0
dκ1 TrA1(κ1, κ2)

)

= e− i
2 (ϕ2(b̃1/2)−ϕ2(0)+ϕ2(b̃1/2)−ϕ2(0)−2χ (b̃1/2)+2χ (0))

= ei(χ (b̃1/2)−χ (0))

= −1. (D59)

The C2zT symmetry also requiresW (κ2) andW ∗(κ2) to have
the same eigenvalue spectrum [63]. Therefore the only possi-
ble eigenvalues ofW are +1 and −1 independent of κ2 for the
lower doublet. This is identical to the numerical evaluation of
the Wilson loop of the C2zT stripe phase shown in Fig. 5(d)
of Sec. IVB [see also Fig. 15(a)]. Similarly, we are also able
to show that the two eigenvalues of the upper doublet Wilson
loop are±1, leading to flat Wilson loops for both the occupied
and unoccupied bands.

We can also evaluate the Wilson loop along the other di-
rection. The path of the Wilson loop c is chosen along b̃2 with
a fixed value of κ1, and we choose the basis |φ′′′

i (κ)〉, which is
periodic along b̃2 direction. Thus the determinant of the lower
doublet Wilson loop can be expressed as:

detW (κ1) = exp

(
−i

∫ 2π

0
dκ2 TrA2(κ1, κ2)

)

= e−i(ϕ2(b̃2 )−ϕ2(0))ei4π (− 1
4 + κ·ã1

2π )

= −e−2iκ·ã1e−iπe2iκ·ã1

= +1. (D60)

Thus the two eigenvalues of W (κ1) are complex conjugation
of each other at each κ1 value. This also agrees with the nu-
merical result we obtained from the self-consistent HF state,
as shown in Fig. 15(b). We can also show that the determinant
of upper doublet Wilson loop is +1 as well.

APPENDIX E: DIRAC NODES IN THE C2ZT STRIPE PHASE

1. Chirality of Dirac nodes

For a two band system, C2zT transformation can be repre-
sented by complex conjugation operator K with proper basis
choice. With this basis choice, the σy terms are forbidden in
the Hamiltonian. Thus the chirality of a Dirac node can be
defined by the winding number of the state on the xz plane of
the Bloch sphere, along a circle surrounding the Dirac node.

To identify the chirality of several Dirac nodes between
the ith and (i + 1)th Hartree-Fock bands, we have to study
the wave functions of the HF states around these nodes. We
start with finding a patch � in the Brillouin zone, in which
the two bands are completely gapped from other bands, while
also containing all the Dirac nodes between them. Writing
these two bands as an effective two-band Hamiltonian which
satisfies C2zT symmetry will help us determine the chirality
of the Dirac nodes. We first represent the HF states wave
functions as vectors �i(κ) in the plane wave basis defined in
Eq. (C8) of Appendix C. Next, we choose a point κ0 in � as
the reference point, and we use the two band wave functions
at κ0 as the basis for our effective two-band model on �. To
determine whether κ0 is a good choice as the reference point,
we can define the following quantity Ni(κ) to quantify the
wave function overlap between the momentum point κ and
the reference point κ0 in the ith and (i + 1)th bands:

Ni(κ) = 1

2

∑
j,k=0,1

|�†
i+ j (κ)�i+k (κ0)|2. (E1)

If the value of Ni(κ) is close to 1 on the chosen patch �,
the Hilbert space spanned by the two bands over � will also
be close to the Hilbert space spanned by the two bands at the
reference point κ0. Therefore it is reasonable to choose �i(κ0)
and �i+1(κ0) as momentum independent basis, and we can
project the wave function �i(κ) onto these two states. The
two coefficients α and β for such a projection are given by the
following equations:

α(κ) = �
†
i (κ)�i(κ0), (E2)

β(κ) = �
†
i (κ)�i+1(κ0). (E3)
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Because of the C2zT symmetry, both coefficients are real.
Thus the vector (α, β ) will lie in the xz plane of the Bloch
sphere if |α(κ)|2 + |β(κ)|2 = 1. This is usually a reasonable
assumption when κ is not far from the reference point κ0,
and it will be checked numerically in the following calcula-
tion. Under this assumption, the effective two-band model can
be captured by the Hamiltonian h(κ) = (α2(κ) − β2(κ))σz +
2α(κ)β(κ)σx. We now use the angle ϕi,i+1

xz (κ) to describe the
direction of this Hamiltonian:

ϕi,i+1
xz (κ) = arg[(α(κ) + iβ(κ))2]. (E4)

This quantity measures the angle between the +z axis and
the direction on Bloch sphere. The winding number of this
angle around a Dirac point measures the “chirality” of this
node between i-th band and (i + 1)th band.

In the following Appendixes E 2 b and E 2 a, we use the
method discussed in this section to study the chiralities of the
Dirac nodes.

2. Motion of Dirac nodes

In this section, we provide additional information about the
motion and the chirality of the Dirac nodes in the C2zT stripe
phase obtained with flat band kinetic energy (t = 1) and at
w0/w1 = 0.8 as completing our discussion in Sec. VC of the
main text.

a. Non-Abelian braiding of Dirac nodes

We first study the Dirac nodes motion in detail along
the first path introduced in Sec. VC [(λ1, λ2) = (0, 0) →
(0, 1) → (1, 1)], where the parameters λ1 and λ2 are defined
in Eq. (35) in the main text. As mentioned in the main text,
we start from the noninteracting bands at λ1 = λ2 = 0, which
has two Dirac nodes connecting the second and third bands
with the same chirality at K and K ′ points. When λ1 = 0 and
λ2 is increased from 0 to 1, the two Dirac nodes are moved
into a small region around γ point in the FMBZ, and no other
Dirac node between the second and third bands are generated.
Hence, we choose a patch around γ point as shown in Fig. 16,
and we use the method described in Appendix A 2 to compute
the HF bands and wave functions in this patch with a higher
resolution. With the increasing value of λ1, the two Dirac
nodes move towards each other and annihilated at around
λ1 ≈ 0.05. Meanwhile, we also observed that there are other
pairs of Dirac nodes between the first and second bands, and
between the third and fourth bands, which can be observed in
Figs. 18 and 19.

To determine the chiralities of these Dirac nodes between
different bands, we choose κ0 = γ as the reference point,
and we computed the values of Ni(κ) and ϕi,i+1

xz (κ) with i =
1, 2, and 3 at λ1 = 0, 0.03, 0.06, and λ2 = 1. The results
are shown in Figs. 17–19. As shown in Fig. 17(c), the two
Dirac nodes between the second and third bands carry the
same chirality when λ2 = 0. However, one of these two Dirac
nodes flipped its chirality if λ2 is raised to 0.03 as shown
in Fig. 17(f). Finally, the two Dirac nodes annihilate with
each other as shown in Figs. 17(g)–17(i), and thus the charge
gap can be created between the second and third HF bands.
In the meantime, another pair of Dirac nodes with opposite
chiralities are created between the first and the second bands,

FIG. 16. The patch (blue square) around the γ point used to
evaluate the Dirac nodes chirality. Data shown in Figs. 12, 18, and
19 are computed in this patch.

which are shown in Figs. 18(a) and 18(d). And in Figs. 18(g)–
18(i), we can also observe that one of the nodes also flipped
its chirality with the increased value of λ1. Another pairs of
nodes can also be observed between the first and the second
bands. They carry opposite chiralities when λ1 = 0, and one
of them also changed the chirality when λ1 is increased to
0.06, as can be seen in Figs. 18(a), 18(d), and 18(g). We
also notice similar phenomenon between the third and four
bands. In Fig. 19(a), two nodes with opposite chiralities can
be found when λ1 = 0. And in Fig. 19(g), they carry the same
chirality when the value of λ1 increases to 0.06. The change
of chiralities demonstrated the nonAbelian nature of the Dirac
node charges inC2zT symmetric multiband systems.

b. Four Dirac nodes annihilation

We also study the Dirac nodes motion and annihilation
along the second path introduced in Sec. VC [(λ1, λ2) =
(0, 0) → (1, 0) → (1, 1)]. As mentioned in the main text,
when the value of λ1 is increased from 0 to 1, the noninteract-
ing TBG bands is turned into the “strong interacting bands”.
In this case, we will show that the Dirac nodes are located at
the high-symmetry momenta �, M, and K (and K ′) [51] and
calculate the associated winding numbers. For convenience,
the Chern states |ψμ,η,s(k)〉 are chosen to be the Bloch state
basis and their gauge is fixed as in Ref. [40] (also see Sec. D).
Under the transformationC2zT ,

C2zT |ψμ,η,s(k)〉 = |ψ−μ,η,s(k)〉. (E5)

Under the particle-hole transformation,

P|ψμ,η,s(k)〉 = eiθμ(k)|ψμ,η,s(−k)〉. (E6)
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FIG. 17. (a) The direct gap between the second and third HF bands at λ1 = 0 and λ2 = 1. The symbols ⊕ and � in red represent the Dirac
nodes with opposite chiralities. (b) The wave function overlap of the first and second HF bands between a given momentum κ and the reference
point κ0 at λ1 = 0 and λ2 = 1. (c) The angle ϕ2,3

xz (κ) computed in the same FMBZ patch. The black symbols ⊕ and � stand for the chirality of
the corresponding Dirac nodes. Similarly, (d)–(f) are computed at λ1 = 0.03 and λ2 = 1, and (g)–(i) are computed at λ1 = 0.06 and λ2 = 1.

Since P commutes with C2zT , we have θ+1(k) = −θ−1(k).
In addition, because P2 = −1, θμ(k) = π − θμ(−k). When
k = � or M, k = −k, and these constraints lead to
eiθμ(k) = −e−iθμ(−k). Numerically, we found eiθ+1(�) = −i and
eiθ+1(M ) = i. Similar to the main text, we introduce the cre-
ation and annihilation operators d†

k,μ,η,s (dk,μ,η,s) so that

d†
k,μ,η,s|∅〉 = |ψμ,η,s(k)〉. Notice that they can be expressed in

terms of the creation/annihilation operators of the eigenstate
basis introduced in Eq. (7):

d†
k,+1,η,s = 1√

2
eiϑ (k)(c†k,1,η,s + ic†k,2,η,s) and

d†
k,−1,η,s = 1√

2
e−iϑ (k)(c†k,1,η,s − ic†k,2,η,s), (E7)

where the phase factor eiϑ (k) is inserted to guarantee the con-
structed Chern states are smooth in k and satisfy the boundary
conditions (D1).

Next, we consider the properties of the Dirac nodes when
the system is in the strong coupling limit without breaking

the translation symmetry. As we have mentioned in the main
text, when λ1 in Eq. (35) increases from 0 to 1 and λ2 is
kept to be 0, the noninteracting TBG bands are turned into
the “strong interacting bands” without breaking the translation
symmetry. Because both the spin and valley are polarized for
the C2zT stripe phase, H(H ) and H(F ) in Eq. (35) are diagonal
in spin and valley indices. Furthermore, in the strong coupling
limit, we neglect the dispersion of the narrow bands, i.e.,
εk = 0.

Now, we focus on the translationally invariant part of the
Hamiltonian in the strong coupling limit, i.e., δbb′ (H(H )(κ) +
H(F )(κ))bmηs,b′nη′s′ in Eq. (35). As opposed to Sec. II in the
main text, here we use the Chern basis described above to
study the properties of this part of the Hamiltonian. Since it
does not break the translation symmetry, we can remove the
b subscript and replace the label κ for momentum in FMBZ
by k that ranges over the whole MBZ. For particular spin
s and valley η, (H(H )(k) + H(F )(k))mηs,nηs becomes a 2×2
matrix. Thus in the basis of Chern states, the effective Hamil-
tonian containing only this translationally invariant part can be
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FIG. 18. Similar to Fig. 18, subfigure (a)–(c) provide the direct gap E 1,2
G (κ), the wave function overlaps N1(κ) and the angle ϕ1,2

xz (κ)
between the second and third HF bands at λ1 = 0 and λ2 = 1. (d)–(f) are obtained at λ1 = 0.03, λ2 = 1, and (g)–(i) are obtained at λ1 = 0.06,
λ2 = 1.

written as

Heff =
∑

k∈MBZ,η,s

∑
μν

d†
k,μ,η,s�n(k) · �σμνdk,ν,η,s. (E8)

For simplicity, we drop the valley and spin indices from the
vector �n. Since the Chern basis is continuous but not periodic
in k, the same is true for the vector �n(k). Because Heff is in-
variant under C2zT transformation, �n(k) = (n1(k), n2(k), 0),
i.e., the third component of �n(k) must vanish.

Here, we outline the argument for the winding numbers at
the high-symmetry momenta, while the details can be found
in the Appendix of Ref. [51].

When k is near �, we expand the two components of �n(k)
to the powers of k:

ni(k ≈ �) = n(0)i +
∑
a

n(1)i,a ka +
∑
a,b

n(2)i,abkakb

+
∑
abc

n(3)i,abckakbkc + O(k4). (E9)

Since Heff is the effective Hamiltonian in the strong coupling
limit, it is particle-hole symmetric. Under the particle-hole
transformation P, d�,μ,η,s −→ i(σ3)μνd�,ν,η,s and k −→ −k.
As a consequence, n(0)i = 0 and thus a Dirac node appears at
�. In addition, the particle-hole symmetry also gives n(2)i,ab = 0.
Furthermore, the Bloch states at � are invariant under C3

transformation, leading to n(1)i,a = 0. This implies that the ef-
fective Hamiltonian close to � is dominated by k3 terms,
giving the winding of ±3 for the Dirac node at �.

Similarly, due to the particle-hole symmetry, the winding
number of the Dirac node at M can be shown to be ±1.
Additionally, the Dirac node at K also has a winding number
of ±1 by C3 symmetry. However, we emphasize that this
argument does not give the sign of the winding numbers at
these high-symmetry momenta. With the Chern basis con-
structed in Ref. [40], the winding numbers of Dirac nodes
can be numerically obtained. Since the detailed calculation
has already been presented in Ref. [40], here we will only
summarize the results in Fig. 20. In Fig. 20(a), we plotted
the phase ϕ(k) = arg(n1(k) + in2(k)) with −π < ϕ(k) � π .
Figure 20(b) shows the colored curves along which n1(k) = 0
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FIG. 19. (a)–(c) provide the direct gap E 3,4
G (κ), the wave function overlaps N3(κ) and the angle ϕ3,4

xz (κ) between the third and the fourth
HF bands at λ1 = 0 and λ2 = 1. (d)–(f) are obtained at λ1 = 0.03, λ2 = 1, and (g)–(i) are obtained at λ1 = 0.06, λ2 = 1.

FIG. 20. (a) The phase ϕ(k) of n1(k) + in2(k) over the first and extended MBZs. (b) the contours where (red) n1(k) and (blue) n2(k)
vanish and their signs in different region. The two bands become degenerate and a Dirac node appears at the intersection point of the ed and
blue curves. The winding numbers of the Dirac nodes are shown in dark green.
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FIG. 21. The band gap between the second and third bands of the interpolated Hamiltonian H (κ) for λ1 = 1 and λ2 = 0, 0.05, 0.1, and
0.15. The color code represents the gap between the second and third bands. Red symbols ⊕ and � stand for the Dirac nodes with opposite
chiralities. As shown by the red dashed circle in subfigure (c), the four Dirac nodes are in a patch around y point, and they move towards a
point close to y with an increasing λ2.

and n2(k) = 0. Figure 20 has demonstrated clearly that the
Dirac nodes at �,M, and K have the winding numbers of +3,
−1, and +1, respectively.

As we have just shown, the band structure at λ1 = 1 and
λ2 = 0 resembles these strong interacting bands. By folding
this band structure into the FMBZ, we can get four Dirac
nodes between the second and third bands. Nodes at K and
K ′ points with the same chirality in the original MBZ are
folded into the FMBZ, which are also labeled by K and K ′
in Fig. 21(a). The other two nodes are close to the μ point on
the corner of the FMBZ, which comes from the two different
M points in the original MBZ. The third M point is folded
together with the � point, which becomes a Dirac node be-
tween the first and the second bands. In Figs. 21(b)–21(d), we
provide the band gap between the second and third bands in
the FMBZ when λ1 = 1 and λ2 = 0.05, 0.1, and 0.15. It can
be observed that the four Dirac nodes move away from K , K ′,
and μ points towards a point close to (but not exactly at) y
point when the value of λ2 is increased. The four Dirac nodes
will meet with each other and annihilate, and the band gap
between the two will open at around λ2 = 0.14.

We also used the method discussed in Appendix E 1 to
determine the chirality of these Dirac nodes. Since the nodes
annihilate around the point y, it is natural to choose κ0 = y as
the reference point of the basis. In Fig. 22(a), we computed
the values of N2(κ) over the FMBZ using y as the reference
point at λ2 = 0.1. It can be seen that the value of N2(κ)
is relatively large around y, including the four Dirac nodes
represented by black crosses. Therefore as we have discussed
in Appendix E 1, we can represent the wave functions of the
states around these Dirac nodes by the wave functions at κ0. In
Fig. 22(b), we calculated the direction of the wave functions
on the Bloch sphere ϕ2,3

xz (κ) on a rectangular patch around the
reference point. This patch is also represented by the black
solid line in Fig. 22(a). As shown by the winding direction
of ϕ2,3

xz (κ), we find that the two Dirac nodes along γ -x carry
the same chirality, while the other two nodes close to K , K ′
points carry the opposite chirality. This result agrees with the
strong interacting bands picture we discussed previously in
this Appendix.

Thus the four nodes can annihilate when they meet with
each other. We also computed the value of N2(κ) and ϕ2,3

xz (κ)

FIG. 22. (a) The middle two bands’ wave function overlap between a given momentum κ and the reference point κ0 = y at λ1 = 1 and
λ2 = 0.1. (b) The angle ϕ2,3

xz (κ) at λ1 = 1 and λ2 = 0.1 in a rectangular patch around y in the FMBZ. The patch � is represented by the black
rectangle in (a). Black symbols ⊕ and � represent the Dirac nodes. (c) and (d) are calculated at λ1 = 1 and λ2 = 0.15.
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FIG. 23. (a)–(c) provide the direct gap E 2,3
G (κ), the wave function overlapsN2(κ) and the angle parameter ϕ2,3

xz (κ) between the second and
third bands at λ1 = λ2 = 0.035 in the proximity region of x point. (d)–(f) are obtained at λ1 = λ2 = 0.04 in the same FMBZ patch around the
x point. The results in (g)–(i) are obtained in another FMBZ patch around the γ point at λ1 = λ2 = 0.058. The FMBZ patch choices are shown
in Fig. 13(c) in the main text.

at λ2 = 0.15, which can be found in Figs. 22(c) and 22(d). All
the four Dirac nodes are gapped at this point, and there is no
winding of ϕ2,3

xz (κ).

c. Brillouin zone border

In this section, we provide detailed numerical results about
the Dirac nodes motion along the third path introduced in
Sec. VC, namely, the direct path [(λ1, λ2) = (0, 0) → (1, 1)].
We have mentioned in the main text that the two nodes of
the noninteracting bands move into the proximity of the x
point in the FMBZ around λ1 = λ2 = 0.035, while another
pair of nodes are also created in this region at the same time.
Similar to Appendix E 2 a, we use the method described in
Appendix E 1 to evaluate the chiralities of these nodes. As
shown in Fig. 23(c), we observe this pair of nodes created
around the x point with opposite chiralities along the γ -x line.
One of these two nodes with −1 chirality is close to the other
nodes with the same chirality +1. The other node with +1
chirality is on the right of x point. With increasing values of
λ1 and λ2, the three left-moving nodes merge into one node

with chirality +1, and the right moving mode also carries +1
chirality, which can be seen in Fig. 23(f). These two nodes
move apart from each other as λ1 and λ2 get larger. Their
path wrap around the FMBZ and they approach each other
again around γ point when λ1 = λ2 ≈ 0.055. In Fig. 23(i),
we provide the value of ϕ2,3

xz (κ) in a FMBZ patch around the
γ point at λ1 = λ2 = 0.058, and we find that these two Dirac
nodes carry opposite chiralities after they went across the
FMBZ along the b̃1 axis. Thus band gap between the second
and third bands can be opened after these two nodes annihilate
with each other.

APPENDIX F: ADDITIONAL NUMERICAL RESULTS

In this Appendix, we provide additional numerical results
that were mentioned in Secs. IV and V. In particular, we
discuss the spin and valley polarization in various phases in
Appendix F 1, and symmetries and real-space charge distribu-
tions in C2zT stripe and QAH phases in Appendix F 2.
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FIG. 24. The HF band structure and spin valley polarizations close to flat band limit (t = 0.01). [(a)–(d)] The spin polarization si,z(κ) of
each HF band state. [(e)–(h)] The valley polarization vi(κ) of each HF band states. We use “◦” to represent the states with sz,i(κ) or vi(κ) > 0
and “×” to represent states with sz,i(κ) or vi(κ) < 0, such that the degenerate states with opposite spin or valley indices become visible.

1. The effect of kinetic energy and spin and valley polarization

In Sec. IV of the main text, we have shown the phase
diagram and the representative Hartree-Fock band structures
by assuming valley polarization and flat band limit (t = 0). In
this section, we will provide the self-consistent solutions of
various phases without assuming flat band limit or any spin
or valley polarization, albeit these solutions are obtained on
a slightly smaller 12×12 momentum lattice. The spin and
valley polarization of these states can also be computed. We
found that all these states are spin and valley fully polarized,
including the QAH phase, the C2zT stripe phase, and the
competing states with intermediate values of w0/w1.

For each state in the HF bands φbmηs;i(κ), we can calculate
its spin and valley polarization. The spin vector is given by

�si(κ) =
∑
bmη

∑
ss′

(�s)ss′φ∗
bmηs;i(κ)φbmηs′;i(κ), (F1)

in which �s = (sx, sy, sz ) are the Pauli matrices of spin indices.
Similarly, we can also define the valley polarization as fol-
lows:

vi(κ) =
∑
bms

∑
ηη′

(τz )ηη′φ∗
bmηs;i(κ)φbmη′s;i(κ), (F2)

in which τz is the Pauli z matrix acting in valley indices. By
studying the values of �si(κ) and vi(κ) of the occupied states,
we can determine whether the solution is spin and valley fully

polarized or not, and validate the polarization assumptions in
Secs. IV and V.

Since the interacting Hamiltonian of TBG has the spin
SU(2) symmetry, the spins of the self-consistent solutions
could be along any direction due to the random initial con-
ditions. For that reason, we rotate the direction of the spin of
the lowest energy band at � (when considering the MBZ) or
γ (for the FMBZ) point to +z direction. We also add a small
term �Hbmηs;b′nη′s′ (κ) = ε δbb′δmnδηη′ (sz )ss′ with ε ≈ 10−6 to
lift the degenerate bands with opposite spins when evaluating
the values of si,z(κ) for each band. Similarly, we also add a
term �Hbmηs;b′nη′s′ = ε δbb′δmn(τz )ηη′δss′ to lift the degeneracy
of bands from opposite valleys when solving the values of
vi(κ).

In the flat band limit, the symmetry of the interacting
Hamiltonian is enhanced to U(4) [28,30,46]. Thus the spin
and valley indices could be mixed together due to the ran-
domized initial condition. We solve the self-consistent equa-
tion without assuming spin and valley polarization at both t =
0 and t = 0.01. With the kinetic energy being slightly turned
on, we can lift the spin and valley degeneracy due to the U(4)
symmetry, while the band structures are not strongly affected.
Numerical solutions also shows that the energy of the HF en-
ergy bands are only changed by 0.014 meV at most. In Fig. 24,
we provide the HF band structures at w0/w1 = 0.4, 0.6 and
0.8 with t = 0.01. More precisely, the color code represents
the spin of each state sz,i(κ) in Figs. 24(a)–24(d). It can be
observed that the NF occupied bands are fully spin polarized
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FIG. 25. The HF band structure and spin valley polarizations with kinetic energy considered (t = 1). [(a)–(d)] The spin polarization si,z(κ)
of each HF band state. [(e)–(h)] The valley polarization vi(κ) of each HF band states. We use “◦” to represent the states with sz,i(κ) or vi(κ) > 0
and “×” to represent states with sz,i(κ) or vi(κ) < 0, such that the degenerate states with opposite spin or valley indices become visible.

in the QAH phase, C2zT stripe phase and intermediate states.
Similarly, the values of valley polarization vi(κ) are repre-
sented by the color code in Figs. 24(e)–24(h), and we also
found that the valley is fully polarized in all these three phases.

We also solved the self-consistent solutions with the ki-
netic energy considered (t = 1) atw0/w1 = 0.4, 0.6, and 0.8.
The HF band structures and the spin valley polarization of
these states are shown in Fig. 25. Similar to the solutions
in the flat band limit, the NF occupied bands are all spin
and valley fully polarized as can be seen by the color code.
Moreover, the energy of the states with (

√
3×√

3) enlarged

unit cell is still slightly lower than the state with (2×1) enlarge
unit cell by ≈0.013 meV per moiré unit cell at w0/w1 =
0.6, which is comparable to the results in the competing
region at flat band limit. Furthermore, the energy (per moiré
unit cell) of C2zT stripe phase at w0/w1 = 0.8 and t = 1 is
≈0.21 meV lower than the translation symmetric solution,
and ≈0.13 meV lower than the (

√
3×√

3) enlarged unit cell
state, which also echo the values shown in Fig. 1(a). In con-
clusion, the self-consistent solutions at t = 1 demonstrate the
stability of theC2zT stripe phase against the perturbation from
the kinetic energy.

FIG. 26. The symmetry breaking strength of six types of lattice symmetries G(g, κ) calculated from the Hartree-Fock solution at w0/w1 =
0.8 on 36×36 momentum lattice. Unlike Fig. 7, the kinetic Hamiltonian is considered here. The maximum value of G(T̂ã1P, κ) is around 0.006
in subfigure (f). Note that (a), (c), and (f) use log scale for G(g, κ).
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FIG. 27. The total charge distribution in real space at w0/w1 =
0.8, with kinetic energy considered. The numbers are total electron
numbers in each moiré unit cell, in which we observe a charge
“density wave.” The modulation of total charge between difference
unit cells is less than 0.2%.

2. Symmetries and real-space charge distributions
ofC2zT stripe and QAH phases

a. C2zT stripe phase

As shown in Appendix F 1, the C2zT stripe phase is spin
and valley polarized. Therefore we can perform the self-
consistent mean-field solution in the presence of kinetic term
H0 (i.e., when t = 1) at w0/w1 = 0.8 on a much larger 36×36
momentum lattice by assuming spin and valley polarization to
study the properties of the C2zT stripe phase.

In Fig. 26, we first present the symmetry breaking strength
G(g, κ) for the six types of lattice symmetries given in Table II.
Similar to the flat band results, bothC2zT andC2x symmetries
are preserved. However, since the kinetic Hamiltonian satis-
fies [H0,P] 	= 0 and {H0,P} = 0, the total Hamiltonian does
not commute with the particle-hole transformation, therefore

there is no particle-hole symmetry. In Fig. 26(f), we find that
the presence of kinetic energy also breaks T̂ã1P symmetry, al-
though the symmetry breaking is very weak [maximum value
of G(T̂ã1P, κ) is around 0.006]. We expect that some properties
of the real-space density distribution which requires T̂ã1P sym-
metry are no longer strictly correct, but will be approximately
satisfied.

Similar to Fig. 8 in main text, Fig. 27 presents the total
electron density in real space. We can already notice that the
total charge Q in the unit cell around r = 0 is different from
the Q in the unit cell around r = ã1. The charge on every AA
stacking site is slightly modulated, although the total charge
difference between two moiré unit cells are differed by less
than 0.2%. This could also be observed in the charge density
for different sublattice and layer components in Fig. 28. In-
deed, the electron density in sublattice A top layer ρα=A,�=t (r)
is not equal to the density distribution in the sublattice B
bottom layer ρα=B,�=b(r + ã1) due to the weakly breaking
T̂ã1P, although these two values are very close to each other.

To quantify the change of charge density distribution under
translation transformation r → r + ã1, we evaluate the values
of the functions D1(r) and D2(r) defined in Eqs. (33) and
(34) for the C2zT stripe phase solution with kinetic energy.
Since the symmetry T̂ã1P symmetry is broken, this state is
not invariant under the transformationC2zT T̂ã1P, and the total
charge density will no longer be the same under translation
r → r + ã1, as we have discussed in Sec. VB. To measure
the change of the total charge density under such translation,
we can also define the following quantity:

D3(r) = 
c

∣∣∣∣∣
∑
α�

[ρα�(r) − ρα�(r + ã1)]

∣∣∣∣∣. (F3)

Clearly D3 = 0 when the total charge distribution is exactly
the same in two moiré unit cells. We evaluate the values of
D1(r), D2(r) and D3(r) over a moiré unit cell, and the results
can be found in Fig. 29. From Figs. 29(b) and 29(c), we
find that both the total charge density and single-layer charge
density are changed notably after the real-space translation.
The maximum value of total charge density change between
moiré unit cells as measured by D3(r) is around 0.016, as
expected by the weak breaking of the P symmetry due to the
kinetic term.

FIG. 28. The electron density distribution in real space at w0/w1 = 0.8, and the kinetic energy is considered. Similar to Fig. 9, the numbers
represent the total electron charge for each component Qα� in each moiré unit cell.
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FIG. 29. The translation symmetry breaking of the density distribution at w0/w1 = 0.8 when the kinetic Hamiltonian is included. The
definition of each quantity shown in the three [D1(r), D2(r), and D3(r), respectively] are given by Eqs. (33), (34), and (F3). Note that (b) and
(c) use a color logarithmic scale.

FIG. 30. The symmetry breaking strength of four types of single valley symmetries (C2zT , C3z, C2x and P) calculated from the QAH state
solution at flat band limit (t = 0) and w0/w1 = 0.4 on 36×36 momentum lattice. The black dashed line stands for the moiré Brillouin zone.
Note that we use a logarithmic scale for G(C3z, k) (b) and G(P, k) (d). We found that this QAH state has broken C2zT and C2x symmetries,
while it is still invariant under C3z and P transformations.

FIG. 31. The symmetry breaking strength of four types of symmetries calculated from the QAH state solution with kinetic energy terms
(t = 1) at w0/w1 = 0.4 on 36×36 momentum lattice. Similar to Fig. 30, we use a logarithmic scale in (b) and (d). When the kinetic terms are
considered, the QAH state breaks the P symmetry, and the maximum value of G(P, k) is about 0.35.

FIG. 32. The electron density distribution of the QAH state in real space at flat band limit and w0/w1 = 0.4. The numbers represent the
total electron charge of the corresponding component Qα� in each moiré unit cell.
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FIG. 33. The electron density distribution of the QAH state at t = 1 and w0/w1 = 0.4. The numbers represent the total electron charge of
each component Qα� in every moiré unit cell.

b. QAH phase

We have also analyzed the symmetries and the real-space
charge distributions of the quantum anomalous Hall states at
t = 0, 1 and w0/w1 = 0.4 on a 36×36 momentum lattice.
Similar to the C2zT stripe phase, this state is also spin and
valley polarized as shown in Appendix F 1.

The QAH state does not break the translation symmetry.
Therefore, we use k to represent the momentum in moiré
Brillouin zone, instead of κ. Equation (26) in the main text can
also be defined for the MBZ. In Figs. 30 and 31, we provide
the values of the symmetry breaking strength of the state in
the flat band limit (Fig. 30) and at t = 1 (Fig. 31). Here we
consider four types of single valley symmetries: C2zT , C3z,
C2x and P. As shown in Fig. 30, the QAH state in the flat band
limit breaks C2zT and C2x symmetries, while it is invariant
under C3z and P transformation. If the kinetic term is added
into consideration (Fig. 31), theC3z symmetry is still fulfilled,
but all other three symmetries are broken. It is reasonable to

observe strong C2zT symmetry breaking in both Figs. 30(a)
and 31(a), since the breaking of C2zT is a property of states
with nonzero winding numbers. Besides, the P transformation
commutes with the projected interacting Hamiltonian HI and
anti-commutes with the kinetic Hamiltonian H0, and therefore
the total Hamiltonian at t = 1 does not commute with P.
Hence, the QAH state at t = 1 is not symmetric under the P
transformation, as shown in Fig. 31(d).

We can also apply Eq. (29) to these QAH states to obtain
the charge distributions in real space. In Figs. 32 and 33,
we provide the numerical results of ρα�(r) of each sublattice
and layer components for the QAH states at t = 0 and t = 1,
respectively. The white numbers represent the total charge of
each component in every moiré unit cell Qα�, which is defined
in Eq. (32) in the main text. In both of the cases, the electrons
can be found on A sublattices with a much higher probability
than on B sublattices, since the Chern band wave functions in
TBG has a substantial sublattice polarization, as discussed in
Ref. [30].
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