
PHYSICAL REVIEW B 108, 245109 (2023)

Revisiting Bloch electrons in a magnetic field: Hofstadter physics via hybrid Wannier states
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We revisit the Hofstadter butterfly for a subset of topologically trivial Bloch bands arising from a continuum
free electron Hamiltonian in a periodic lattice potential. We employ the recently developed procedure, which
was previously used to analyze the case of topologically nontrivial bands [Wang and Vafek, Phys. Rev. B 106,
L121111 (2022)], to construct the finite-field Hilbert space from the zero-field hybrid Wannier basis states.
Such states are Bloch extended along one direction and exponentially localized along the other. The method
is illustrated for square and triangular lattice potentials and is shown to reproduce all the main features of the
Hofstadter spectrum obtained from a numerically exact Landau level expansion method. In the regime where
magnetic length is much longer than the spatial extent of the hybrid Wannier state in the localized direction we
recover the well-known Harper equation. Because the method applies to both topologically trivial and nontrivial
bands, it provides an alternative and efficient approach to moiré materials in magnetic field.
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I. INTRODUCTION

The discovery of superconductivity and correlated insu-
lating states in twisted bilayer graphene (TBG) [1,2] has
invigorated the study of various two-dimensional (2D) moiré
electronic materials [3–10]. The moiré superlattice is gener-
ated by stacking 2D layered structures either with a small
twist or via microscopic lattice mismatch. Despite the large
moiré unit cell containing as many as ∼10 000 atoms, the low-
energy physics is dominated by only a few isolated narrow
Bloch bands formed due to the moiré superlattice potential,
motivating theoretical studies that focus on these low-energy
degrees of freedom [11–22].

The large moiré unit cell has also enabled the study of
magnetic field effects in such systems in the regime with a
considerable fraction of one full magnetic flux quantum per
moiré unit cell. Electronic interaction effects intermixed with
strong magnetic fields have been studied in various moiré
materials, revealing not only Landau level degeneracies in-
dicative of the symmetry-breaking phases at zero magnetic
field but also novel field-induced insulating states that can
carry finite Chern numbers [23–32]. These experimental re-
sults in turn motivated further theoretical studies of Hofstadter
physics [33–38].

Traditionally, Bloch electrons in magnetic field B have
been studied either by solving the continuum Hamiltonian
Ĥ (r, p̂ + e

cA), where the magnetic vector potential satisfies
B = ∇ × A, or via Peierls phase substitution of hopping am-
plitudes [39–42]. The latter is justified if the subset of Bloch
bands of interest at zero field is amenable to a tight-binding
description, i.e., there is no topological obstruction to Wan-
nierization. In the first approach, one calculates the matrix
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elements of Ĥ , including the periodic lattice potential, in the
Hilbert space spanned by Landau level (LL) wave functions
(obtained without the periodic lattice potential) and diagonal-
izes the resulting matrix. To achieve numerical convergence
within an energy window W an upper LL index cutoff
Nc ∼ λW/h̄ωc is needed, where ωc = eB/mec is the cyclotron
frequency, me is the bare electron mass, and λ is a number
that increases with the strength of the periodic lattice poten-
tial V . For example, Ref. [33] pointed out that an upper LL
cutoff of Nc ∼ 25φ0/φ is needed to faithfully reproduce the
narrow-band Hofstadter spectrum of TBG, where φ0 = hc/e
is the magnetic flux quantum and φ is the magnetic flux per
moiré unit cell. This is a computationally intensive procedure,
especially at low B when Nc becomes large. In the second
approach, the magnetic field effects are accounted for via
Peierls substitution, i.e., by replacing the intersite hopping
amplitude ti j with ti j exp[−i e

h̄c

∫ r j
ri

dr · A(r)]. The Peierls sub-
stitution has been used extensively in the literature due to its
simplicity in addressing Hofstadter physics. However, it is
unclear how to generalize the Peierls substitution to a subset of
Bloch bands where 2D exponentially localized and symmetric
Wannier orbitals cannot be constructed [43–45].

In our earlier work [46], to address the Hofstadter physics
in TBG, we proposed a procedure for constructing the narrow-
band Hilbert space at a rational magnetic flux ratio φ/φ0 =
p/q by projecting the zero-field hybrid Wannier basis states
(hWSs) onto eigenstates of the magnetic translation group
(MTG). Such hWSs are Bloch extended along one direction
and exponentially localized along the other and can always be
constructed without topological obstruction [47–49]. The pair
of hWSs within a valley of TBG carries ±1 Chern numbers,
which are manifested in the intra-moiré-unit-cell shift of the
averaged position along the localization direction when the
Bloch wave number along the extended direction is changed
[50]. We demonstrated that the wave functions generated from
this projection procedure have a good overlap with the exact
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FIG. 1. Hybrid Wannier states wn0,k2 (r) of the lowest-energy Bloch band for (a) and (b) a square lattice and (c) and (d) triangular lattice
potential. In both cases we used the potential V (r) = −V0

∑
g e

ig·r. We set h̄2/mea2 = 1, where me is the bare electron mass and a is the lattice
constant. For the square lattice, g = ±g1, ±g2, whereas for the triangular lattice, g = ±g1, ±g2, ±(g1 + g2). The states are well localized on
the lattice sites, and their spatial support narrows with increasing lattice potential strength.

wave functions obtained using the LL approach at low B while
being a much more efficient numerical procedure than the LL
approach for addressing interaction effects [46].

In this work, we present a detailed discussion of the pro-
cedure developed in Ref. [46] and apply it to revisit the
noninteracting Hofstadter spectra for square and triangular
lattice potentials, where the lowest-energy Bloch bands at zero
field are topologically trivial. We make quantitative compar-
isons to the exact LL approach to demonstrate the projection
method’s regime of validity, as well as derive the Peierls
substitution and Harper equation studied extensively in the
literature. This paper is organized as follows: In Sec. II we
briefly discuss the LL approach and MTG eigenstates. In
Sec. III we elaborate on the hWSs and how to construct a
complete and orthonormal set of MTG eigenstates for a subset
of Bloch bands at a finite magnetic field. We derive the Peierls
substitution as a limiting case when the magnetic length [de-
fined below Eq. (1)] is much longer than the spatial support of
the hWS, and we rederive the Harper equation directly using
the hWS approach. A summary is provided in Sec. IV.

II. LANDAU LEVEL APPROACH

We begin with a brief review of the LL approach for ad-
dressing the magnetic field effects on electrons moving in
a 2D periodic lattice potential. For notational convenience,
we introduce the two lattice vectors as a1 and a2 and the
two reciprocal lattice vectors as g1 and g2. They satisfy the
relation ai · g j = 2πδi j . For a generic 2D lattice a1 and a2

are not required to be orthogonal [see, e.g., Fig. 1(d)]. We
further work with the Landau gauge A = Bxey, where B is
the magnetic field in the out-of-plane ez direction and ey (ex)
is along the direction parallel (perpendicular) to a2; ei=x,y,z are
unit vectors. The LL wave functions are given by

|ψn(ky)〉 = 1√
N2a2

eikyyT̂ (−ky�
2ex )|n〉, (1)

where N2a2 is the length of the system along the ey direction,

� ≡
√

h̄c
eB is the magnetic length, ky ∈ R is the momentum

quantum number such that p̂y|ψn(ky)〉 = h̄ky|ψn(ky)〉, and |n〉

is the nth eigenstate for a 1D harmonic oscillator,

〈r|n〉 = 1

π1/4
√

2nn!
e− x2

2�2 Hn

(x
�

)
, (2)

where Hn(x) is the Hermite polynomial. The operator T̂ (r0) =
e−ir0·p̂/h̄ generates a translation by −r0; that is, for a general
function f (r) we have

T̂ (r0) f (r) = f (r − r0). (3)

The LL degeneracy argument proceeds as usual: con-
sider a system of area N1a1 × N2a2, such that it extends
along ai=1,2 by Ni=1,2 ∈ Z unit cells. For open boundary
conditions along a1, the quantum number ky must satisfy
(ky�2)max − (ky�2)min = N1a1x. For periodic boundary condi-
tion along a2, the separation between adjacent wave vectors is
δky = 2π

N2a2
. The total LL degeneracy is then N = [(ky)max −

(ky)min]/δky = (N1N2) |a1×a2|
2π�2 , or equivalently, the LL degener-

acy per unit cell is given as

N
N1N2

= φ

φ0
, (4)

where φ0 = hc/e is the magnetic flux quantum and φ =
B|a1 × a2| is the magnetic flux through a unit cell.

A. Eigenstates of the magnetic translation group

The single-electron Hamiltonian Ĥ (r, p̂ + e
cA) is invari-

ant under discrete magnetic translations [Ĥ , t̂ (ai )] = 0, where
t̂ (ai=1,2) are discrete magnetic translation operators along the
ai=1,2 directions. In the Landau gauge, they are given as

t̂ (a1) = e−iqφ ·rT̂ (a1), (5)

t̂ (a2) = T̂ (a2), (6)

where we define the wave vector associated with magnetic
scattering as

qφ = 2π

a2

φ

φ0
ey = a1x

�2
ey. (7)

These operators satisfy

t̂ (a2)t̂ (a1) = ei2π
φ

φ0 t̂ (a1)t̂ (a2). (8)
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Therefore, if φ/φ0 = p/q, where p and q are coprime integers,

[t̂ (a1), t̂ q(a2)] = 0. (9)

As a result, eigenstates of Ĥ (r, p̂ + e
cA) can be chosen to be

simultaneous eigenstates of t̂ (a1) and t̂ q(a2).
It is straightforward to show that a complete and orthonor-

mal set of MTG basis states can be constructed from the LL
wave functions as

|	n,r (k)〉 = 1√
N

∞∑
s=−∞

ei2πk1st̂ s(a1)

∣∣∣∣ψn

(
2π

a2

(
k2 + r

q

))〉
,

(10)

where N is a normalization factor. The wave vector k =
k1g1 + k2g2 resides in the magnetic Brillouin zone, defined
as k1 ∈ [0, 1) and k2 ∈ [0, 1

q ), and the integer r labels the

magnetic strip [ r−1
q , r

q ) along the g2 direction. The indepen-
dent basis states are defined for r = 0, . . . , p− 1 because (see
Appendix A)

|	n,r+p(k)〉 = ei2π (k1−(k2+ r+p
q )

a1y
a2

)|	n,r (k)〉. (11)

It is straightforward to check that the states in Eq. (10) are
MTG eigenstates, i.e.,

t̂ (a1)|	n,r (k)〉 = e−i2πk1 |	n,r (k)〉, (12)

t̂ q(a2)|	n,r (k)〉 = e−i2πqk2 |	n,r (k)〉. (13)

They also satisfy the orthonormality condition:

〈	n1,r1 (k)|	n2,r2 (p)〉 = δn1,n2δr1,r2δk,p. (14)

In the absence of a periodic lattice potential, the LL
degeneracy per unit cell is given by p× 1 × 1

q , consistent

with Eq. (4). Here p comes from the degeneracy of quan-
tum number r, and a fully occupied magnetic Brillouin zone
corresponds to 1 × 1

q of the zero-field Brillouin zone being
occupied, i.e., the fraction of one particle per unit cell.

Note that t̂ (a2) acts nontrivially on the LL-based MTG
eigenstates, and because

t̂ (a2)|	n,r (k)〉 = e−i2π (k2+ r
q )

∣∣∣∣	n,r

(
k + p

q
g1

)〉
, (15)

t̂ (a2)|	n,r (k)〉 is an MTG eigenstate at wave vector k + p
qg1.

Without loss of clarity, from now on for convenience we
use |ψn(k2 + r

q )〉 to denote a LL wave function with wave

number 2π
a2

(k2 + r
q ).

B. Matrix elements of the Hamiltonian

We study the matrix elements of the continuum single-
electron Hamiltonian given by

Ĥ

(
r, p̂ + e

c
A

)
=

(
p̂ + e

cA
)2

2me
+V (r), (16)

where e > 0 is the electric charge and V (r) = ∑
gVge

ig·r is
the periodic lattice potential, where g = mg1 + ng2 are recip-
rocal lattice vectors, with m, n ∈ Z.

The matrix elements of the kinetic energy in the LL-based
MTG eigenstate basis [Eq. (10)] can be straightforwardly cal-
culated by rewriting π̂x = h̄√

2�
(a + a†) and π̂y = h̄

i
√

2�
(a† −

a), where 	̂π = p̂ + e
cA is the canonical momentum and a is

the harmonic oscillator lowering operator.
The matrix elements of a general operator of the form Ôq =

Oqeiq·r can be calculated as follows [46]:

(Ôq)nr1,mr2 (k,p) ≡ 〈	n,r1 (k)|Ôq|	m,r2 (p)〉

= Oqδp1,[k1−q1]1

∞∑
s=−∞

δp̃y−sqφ,k̃y−qye
i2π p1se−isp̃ya1y ei

s(s−1)
2 qφ ·a1e−iqx k̃y�2

e
i
2 qxqy�

2〈n|ec−a+c+a† |m〉, (17)

where we define c± = i �√
2
(qx ∓ iqy) and

k̃ = k + r1

q
g2, p̃ = p + r2

q
g2. (18)

k̃y and p̃y are defined as k̃ · ey and p̃ · ey, respectively. The notation [b]a represents b modulo a, with a > 0. The expression in
the last line is calculated as

〈n|ec−a+c+a† |m〉 =

⎧⎪⎨
⎪⎩
e

1
2 c+c−

√
m!
n! (c+)n−mLn−m

m (−c+c−) for n � m,

e
1
2 c+c−

√
n!
m! (c−)m−nLm−n

n (−c+c−) for n < m,
(19)

where

Lk
n (x) =

n∑
m=0

(−x)m
(n + k)!

(n − m)!(k + m)!m!

is the associated Laguerre polynomial. Note that any operator
of the form eiq·r is a dense matrix in the LL indices {m, n}.
This poses numerical challenges at low magnetic flux ratios
when the upper LL cutoff is large.

The eigenstates and eigenenergies of the single-electron
Hamiltonian in a magnetic field and periodic lattice potential
can now be solved by diagonalizing the matrix Hamiltonian in
the LL-based MTG basis. We briefly discuss the degeneracy
of energy levels. Consider an energy eigenstate at a momen-
tum k inside the magnetic Brillouin zone, such that

Ĥ |	̃n(k)〉 = εn,k|	̃n(k)〉. (20)
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Making use of the magnetic translation operator t̂ (a2), we
observe that

Ĥ (t̂ (a2)|	̃n(k)〉) = t̂ (a2)Ĥ |	̃n(k)〉
= εn,k(t̂ (a2)|	̃n(k)〉). (21)

The state t̂ (a2)|	̃n(k)〉 is therefore also an energy eigenstate
at εn,k, but at the wave vector k + p

qg1. As a result each energy
level is at least q-fold degenerate, and therefore, the dispersion
of the resulting magnetic subbands is effectively restricted to
the wave vector domain [0, 1

q ) × [0, 1
q ).

The LL approach is an exact method, limited in practice
only by the truncation of the upper LL index. In the free
electron case, retaining Nc LLs allows an accurate represen-
tation of the energetics up to W ≈ 1

λ
Nc

h̄2

me�2 , where λ > 1 is a
parameter dependent on the strength of the lattice potential, as
discussed in the Introduction. In the low-field limit, the LLs
become dense, and a larger LL index is therefore necessary
to describe the magnetic subbands emanating from the B = 0
Bloch bands up to the energyW . This makes the LL approach
both inefficient and not intuitive to study the low-field physics,
and an alternative approach that bridges the zero-field and
finite-field Hilbert space is preferable. As we show in the next
section, this is achieved by projecting the hWSs, which form
the basis of the B = 0 Hilbert space, onto representations of
the MTG.

III. HYBRID WANNIER APPROACH

A. Hybrid Wannier states at B = 0

In the absence of the magnetic field, the energy eigenstates
are given by the Bloch states

ψn,k(r) = 1√
A
eik·run,k(r), (22)

where A is the area of the 2D system, n is the band la-
bel, k = k1g1 + k2g2 is the crystal momentum in the first
Brillouin zone (for convenience we choose it to be k1, k2 ∈
[0, 1) × [0, 1)), and un,k(r) is periodic under discrete lattice
translations T̂ (ai=1,2). The notation ψn,k(r) should not be
confused with the LL wave functions discussed in the previous
section. One can construct spatially localized basis states by
performing unitary transformations on the (extended) Bloch
energy eigenstates. For a subset of Bloch bands of interest, we
can construct hWSs from the Bloch states even if these bands
have nontrivial topology, provided that the gap to the adjacent
bands does not close. hWSs are exponentially localized in one
direction (say, a1) and Bloch extended along the other (say,
a2). In Fig. 1 we show several examples of hWSs for the
lowest-energy Bloch band on square and triangular lattices.
These states can be constructed [48,50] by diagonalizing the
periodic version of the position operator exp(iδk · r) projected
onto the Bloch basis from the desired energy bands, where
δk = 1

N1
g1 hybridizes Bloch states at k and k + δk. The re-

sulting hWS that is exponentially localized near a column at
n0a1 can be expressed as

|wα (n0, k2)〉 = 1√
N1

∑
n∈subset

∑
k1

e−i2πk1n0Un,α (k)|ψn,k〉, (23)

where the summation over n is over a subset of Bloch bands of
interest andU (k) is a unitary matrix at every k. Under discrete
translations the hWSs satisfy

T̂ (a1)|wα (n0, k2)〉 = |wα (n0 + 1, k2)〉, (24)

T̂ (a2)|wα (n0, k2)〉 = e−i2πk2 |wα (n0, k2)〉. (25)

For topologically nontrivial bands, the hWSs contain in-
formation about the nonzero Chern number of the Bloch band,
which is manifested in the nontrivial evolution of the averaged
position 〈r · g1〉/|g1| within the hWSs when k2 is continuously
increased from 0 to 1. One example of such hWSs is the pair
of narrow bands in TBG for a given valley and spin. For more
details we refer interested readers to Refs. [46,50].

B. MTG eigenstates from hybrid Wannier states

The set of hWSs for all Bloch bands forms a complete basis
even in finite magnetic field. However, it is not useful if we are
interested in only the Hofstadter physics of a subset of Bloch
bands.

It is tempting, but wrong, to take the subset of the B = 0
Bloch bands as a basis of the corresponding subset of the
B �= 0 states. Note that the correct projector at B �= 0, P̂B =∑′

n

∑
k |	̃n(k)〉〈	̃n(k)| [see Eq. (20)], where n is summed

over the subset of magnetic subbands of interest, is invari-
ant under any integer multiple of magnetic translations, i.e.,
[P̂B, t̂ s1 (a1)t̂ s2 (a2)] = 0, where s1, s2 ∈ Z. However, the B =
0 projector, P̂ = ∑

n∈subset

∑
k |ψn,k〉〈ψn,k|, is not invariant

under t̂ s1 (a1) because

t̂ s1 (a1)P̂t̂−s1 (a1)

=
∑

mm′∈fullset

∑
k

|ψm,k〉〈ψm′,k|
∑

n∈subset

Umn(k)U †
nm′ (k).

(26)

Here we define

t̂ s1 (a1)|ψn,k〉 =
∑

m∈fullset

Umn(k)|ψm,k〉. (27)

Due to the restriction on n, the right-hand side of Eq. (26) is
not equal to P̂, the narrow-band projector at B = 0. In other
words, the y-dependent phase in t̂ (a1) takes the states outside
of the subset of the zero-field bands of interest. This problem
is severe even at low B for sufficiently large s1. Therefore, P̂
is not a projector onto the states of interest in finite magnetic
fields.

In order to construct the correct finite-field Hilbert space,
we first construct MTG eigenstates from the hWSs,

|Wα,r (k)〉 = 1√
N1

N1
2∑

s=− N1
2

ei2πk1st̂ s(a1)

∣∣∣∣wα

(
0, k2 + r

q

)〉
. (28)

Unlike in Sec. III A, here k2 ∈ [0, 1
q ), and r = 0, . . . , q − 1.

The choice of hWSs at n0 = 0 is motivated by the fact that the
vector potential in the Landau gauge vanishes at the origin.
Therefore, |wα (0, k2 + r

q )〉 must have a large overlap with the
subset of the B �= 0 Hilbert space with similar energy at small
B, i.e., with the magnetic subbands emanating from the B = 0
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FIG. 2. Typical absolute value of the matrix elements of the overlap matrix [Eq. (32)], calculated at flux φ/φ0 = 1/10 for (a) square and
(b) triangular lattice potentials with V0 = 3. We set the energy scale h̄2/mea2 = 1. (c) Eigenvalues of the overlap matrix. The axes in (a) and
(b) correspond to the basis indices r and r′, and in (c) they correspond to the ordered eigenvalue index. If the MTG basis states generated from
hWSs constitute a complete and orthonormal basis, the overlap matrix is an identity matrix, and all eigenvalues are equal to 1. While this is
true for the square lattice potential, there are small deviations from orthonormality for the case of the triangular lattice potential. As a result a
further orthonormalization procedure is needed, as outlined in the text.

bands of interest. The rest of the basis can be conveniently
obtained by using the magnetic translation operator which
moves hWSs along the a1 direction while also attaching a
phase due to the vector potential.

It is straightforward to check that |Wα,r (k)〉 are, indeed,
MTG eigenstates, i.e.,

t̂ (a1)|Wα,r (k)〉 = e−i2πk1 |Wα,r (k)〉, (29)

t̂ q(a2)|Wα,r (k)〉 = e−i2πqk2 |Wα,r (k)〉. (30)

To address the completeness and orthonormality of the
wave functions defined in Eq. (28), we define an overlap
matrix

�αr1,βr2 (k) ≡ 〈Wα,r1 (k)|Wβ,r2 (k)〉. (31)

Note that states with different k are automatically orthogonal
due to different eigenvalues under t̂ (ai=1,2). If these wave
functions represent a complete and orthonormal set, the over-
lap matrix should be an identity matrix. The overlap matrix
can be calculated as follows:

�αr1,βr2 (k) =
∑
s

ei2πk1s〈wα

(
0, k2 + r1

q

)
|t̂ s(a1)

∣∣∣∣wβ

(
0, k2 + r2

q

)〉

=
∑
s

ei2πk1sei
s(s−1)

2 qφ ·a1〈wα (0, k̃2)|e−isqφ ·r|wβ (s, p̃2)〉, (32)

where in the second line we define k̃2 = k2 + r1
q and p̃2 =

k2 + r2
q (k̃2, p̃2 ∈ [0, 1)) and use the operator identity in

Eq. (A1).
If the hWSs represent topologically trivial Bloch bands

(e.g., Fig. 1), the overlap of two hWSs is exponentially sup-
pressed unless they have the same localization center, i.e.,
unless s = 0 in Eq. (32). Therefore, 〈Wα,r1 (k)|Wβ,r2 (p)〉 ≈
δα,βδk,pδr1,r2 with exponential accuracy. This is illustrated in
Fig. 2 for the square and triangular lattice potentials. Even if
�(k) is not an identity matrix, a complete and orthonormal ba-
sis set can be generated by eigendecomposition, U †�U = D,
and redefining a new set of basis states as

|Va(k)〉 =
∑
α,r

|Wα,r (k)〉
(
U

1√
D

)
αr,a

. (33)

If hWSs represent topological bands with finite Chern
numbers, hWSs with different localization centers have a fi-
nite spatial overlap, and the overlap matrix in Eq. (32) strongly
deviates from an identity matrix. Importantly, as discussed
in Ref. [46], for hWSs with Chern numbers ±1, the number

of independent MTG eigenstates should increase or decrease
according to the Streda formula. This manifests in the rank
deficiency of the overlap matrix. A procedure that makes use
of a different choice of the localization center n0 (still close to
zero where the A is small) was proposed in Ref. [46], where
it was shown to resolve this issue.

The next question is how well these basis states describe
the finite-field Hilbert space of interest. To quantify the
amount of spillover into remote magnetic subbands, we can
expand Eq. (33) in the exact wave functions obtained based
on the LL approach,

|Va(k)〉 =
∑

n∈active

Mn,a(k)|	̃n(k)〉 +
∑

n′∈remote

Mn′,a(k)|	̃n′ (k)〉,

(34)

where |	̃n(k)〉 are the exact eigenstates obtained from the LL
approach and Mn,a(k) are the expansion coefficients. Define

ηa ≡ 1

N1

1

N2/q

∑
k

∑
n′∈remote

|Mn′,a(k)|2. (35)
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FIG. 3. The amount of spillover η of MTG basis states into the
Hilbert space of remote Hofstadter bands for square and triangular
lattice potentials. We set the energy scale h̄2/mea2 = 1. The spillover
decreases with increasing lattice potential strength and increases with
increasing magnetic flux.

Then ηa ∈ [0, 1] characterizes the amount of spillover into
remote magnetic subbands. In Fig. 3 we plot η = ηa=1 versus
φ/φ0 for the lowest-energy Bloch band for square and triangu-
lar lattice potentials. The amount of spillover decreases with
increasing strength of the lattice potential and remains small
even for reasonably large magnetic flux.

C. Peierls factor and MTG basis states

To gain better insight into the MTG basis states obtained
from zero-field hWSs, let us consider an example of an iso-
lated and topologically trivial band, where 2D Wannierization
can be achieved. The hWSs are related to 2D Wannier orbitals
via Fourier transform along the a2 axis, i.e.,

〈r|w(n0, k2)〉 = 1√
N2

∑
R

φR(r)δR·g1,2πn0e
ik2g2·R. (36)

φR(r) denotes a 2D localized Wannier orbital at
site R = ma1 + na2, with the normalization condition∫

d2rφ∗
R(r)φR′ (r) = δR,R′ . The MTG basis states can then be

written as

〈r|Wr (k)〉 = 1√
N1N2

∑
R

eik̃·R t̂ m(a1)t̂ n(a2)φ0(r), (37)

where we define k̃ = k1g1 + (k2 + r
q )g2. Compared to the

zero-field Bloch states, the MTG states are obtained by acting
on the 2D Wannier orbital at site R = 0 with noncommut-
ing magnetic translation operators instead of the usual lattice
translation operators.

We make a connection to the Peierls factor used in the
literature [40], where the phase exp[−i e

h̄c

∫ r
R dr′ · A(r′)] is

attached to the 2D (B = 0) Wannier orbital φR(r) with the
integration along the straight line from R to r. Expanding out
the magnetic translation operators in Eq. (37),

〈r|Wr (k)〉 = 1√
N1N2

∑
R

eik̃·Rei
m(m−1)

2 qφ ·a1e−imqφ ·rφR(r). (38)

If the Wannier orbitals are exponentially localized near the
lattice sites and the magnetic length is much longer than their

spatial extent, then we can take |r − R|/� � 1 and approxi-
mate

e−imqφ ·rφR(r) ≈ e−imqφ ·R[e−i e
h̄c

∫ r
R dr′ ·A(r′ )φR(r)], (39)

where we used

i
e

h̄c

∫ r

R
dr′ · A(r′)

= i

�2
Rx(y − Ry) + i

2�2
(x − Rx )(y − Ry)

= im
a1x

�2
(y − Ry) + i

2�2
(x − Rx )(y − Ry)

= imqφ · (r − R) + O(|r − R|2/�2). (40)

This explicitly demonstrates the link between the MTG basis
states and the Wannier orbitals with a Peierls factor.

D. Matrix elements of the Hamiltonian

Here we work out the matrix elements of the single-
electron Hamiltonian in the MTG basis states defined in
Eq. (28). Matrix elements with respect to the orthonormal
basis |Va(k)〉 can be obtained via the basis transformation in
Eq. (33). Specifically,

〈Wα,r1 (k)|Ĥ |Wβ,r2 (k)〉
=

∑
s

ei2πk1sei
s(s−1)

2 qφ ·a1〈wα (0, k̃2)|Ĥe−isqφ ·r|wβ (s, p̃2)〉,
(41)

where we define k̃2 = k2 + r1
q and p̃2 = k2 + r2

q (k̃2, p̃2 ∈
[0, 1)). This expression is obtained by expanding the MTG
basis states using Eq. (28) and making use of the operator
identity (see Appendix A):

t̂ s(a1) = ei
s(s−1)

2 qφ ·a1e−isqφ ·rT̂ s(a1). (42)

We hereby split the full single-electron Hamiltonian into
the zero-field component Ĥ0 and the finite-field component
ĤB = Ĥ − Ĥ0 and calculate each term separately.

1. Ĥ0

For the zero-field Hamiltonian, its matrix elements can be
straightforwardly studied as follows:

I1 =
∑
s,s0,γ

ei2πk1sei
s(s−1)

2 qφ ·a1〈wα (0, k̃2)|Ĥ0|wγ (s0, k̃2)〉

× 〈wγ (s0, k̃2)|e−isqφ ·r|wβ (s, p̃2)〉, (43)

where we have inserted the narrow-band projector∑
s0γ

|wγ (s0, k̃2)〉〈wγ (s0, k̃2)|. The second line can be
calculated by writing down hWSs in the Bloch band basis
using Eq. (23):

〈wα (0, k̃2)|Ĥ0|wγ (s0, k̃2)〉

= 1

N1

∑
k̃1,n

e−i2π k̃1s0 [U †
α,n(k̃)εn,k̃Un,γ (k̃)], (44)

where in this section we redefine k̃ = k̃1g1 + k̃2g2 (k̃1, k̃2 ∈
[0, 1)). It leads to one-dimensional (1D) hopping between
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hWSs at different localization centers with the same wave
vector k̃2. The last line in Eq. (43) can be calculated as

〈wγ (s0, k̃2)|e−isqφ ·r|wβ (s, p̃2)〉

= 1

N1

∑
k̃1, p̃1

ei2π k̃1s0e−i2π p̃1s

×
∑
n,m

U †
γ ,n(k̃)〈ψn(k̃)|e−isqφ ·r|ψm(p̃)〉Um,β (p̃). (45)

It represents scattering between Bloch eigenstates by wave
vector sqφ . Therefore, the matrix elements of the zero-field
Hamiltonian in the MTG basis represent a hop along the a1

direction, followed by magnetic scattering by wave vector
sqφ . Note that if a1 · a2 �= 0, i.e., we have nonorthogonal
unit cell vectors such as a triangular or honeycomb lattice,
magnetic scattering hybridizes Bloch states with wave vectors
k̃ = k̃1g1 + k̃2g2 and p̃ = p̃1g1 + p̃2g2 such that

p̃1 =
[
k̃1 + sp

q

a1y

a2

]
1

, r2 = [r1 + sp]q. (46)

2. ĤB

The finite-field term in the Landau gauge is given by
ĤB(r) = h̄x p̂y

me�2 + h̄2x2

2me�4 . It contains polynomials of the coordi-
nates and grows when moving away from the axes’ origin,
where x = 0. Below we work out the matrix elements for
the term h̄x p̂y

me�2 , and the second term can be calculated in an
analogous fashion. Specifically,

I2 =
∑
s

ei2πk1sei
s(s−1)

2 qφ ·a1

× h̄2

me�2
〈wα (0, k̃2)|x p̂y

h̄
e−isqφ ·r|wβ (s, p̃2)〉. (47)

We first note that since the hWSs are exponentially sup-
pressed away from their localization centers, for s � 0, the
term is exponentially small regardless of the operator. Us-
ing the estimate 〈x〉 ∼ a1x and 〈p̂y〉 ∼ 2π h̄/a2, I2 ∼ h̄2

me�2 , i.e.,
cyclotron frequency. At low fields such that p/q � 1, the
finite-field term is smaller than the zero-field term by the ratio
p/q. Therefore, unless there are further band flattening effects
for the zero-field term (e.g., TBG at the magic angle), the
finite-field term is negligible.

The second line of Eq. (47) can be calculated by expanding
in the Bloch basis:

h̄

me�2N1

∑
k̃1 p̃1

e−i2π p̃1s

×
∑
n,m

U †
α,n(k̃)Um,β (p̃)〈ψn(k̃)|x p̂y

h̄
e−isqφ ·r|ψm(p̃)〉, (48)

where the second line can be explicitly calculated in the plane
wave basis:

〈ψn(k̃)|x p̂y
h̄

e−isqφ ·r|ψm(p̃)〉

=
∑
g,g′

u∗
ng(k̃)umg′ (p̃)

1

A

∫
d2r

× e−i(g+k̃)·r[x(gy + k̃y)]e−isqφ ·rei(g
′+p̃)·r. (49)

Here we have expanded the periodic part of the Bloch
states in a Fourier series: unk̃(r) = ∑

g e
ig·rung(k̃), and A =

N1N2a1xa2y is the area of the system. It is important that the
real space integral

∫
d2r[· · · ] must be placed in a box to avoid

revivals of the hWSs along the ex direction at the boundary
of a torus. In practice we choose the integration domain to be
x ∈ [−N1a1x

2 ,−N1a1x
2 ) (see Appendix B for details).

E. Comparing Hofstadter spectra

In Fig. 4 we show a comparison of the Hofstadter spectra
for the lowest-energy Bloch band with square [Figs. 4(a)–
4(c)] and triangular [Figs. 4(d)–4(f)] lattice potentials, cal-
culated using the exact LL approach and the approximate
hWS approach. For the parameters used in the calculation, the
hWSs are well localized within a unit cell (see Fig. 1), and
there is good quantitative agreement of the Hofstadter spectra
up to φ/φ0 ≈ 0.2. At higher magnetic flux, the MTG states
generated from hWSs have a larger spillover onto remote
magnetic subbands and lead to an overall upward shift of the
Hofstadter spectra when compared to LL calculations. De-
spite the quantitative differences in the Hofstadter spectra, the
prominent magnetic subbands and the Chern numbers associ-
ated with gaps are correctly captured via the hWS method all
the way to φ/φ0 = 1, as indicated by the labels in Figs. 4(a),
4(b), 4(d), and 4(e).

F. Harper equation

Equation (41) gives a general procedure for calculating
the matrix elements of the single-electron Hamiltonian for a
subset of Bloch bands isolated from the rest by making use
of the hWSs at zero field and projecting onto representations
of the MTG at finite field. Here we elaborate on the case of
a square lattice potential and an isolated band with trivial
topology. As mentioned, in this case the hWSs are just the
1D Fourier transforms of the Bloch eigenstates with a smooth
gauge in the Brillouin zone, and the relation to 2D Wannier
orbitals is described in Eq. (36). Below we show that the
Harper equation of Hofstadter [42] is recovered as long as the
magnetic length � is much longer than the localization length
ξ of the Wannier orbitals. We express the left-hand side of
Eq. (45) using 2D exponentially localized Wannier orbitals,

〈w(s0, k̃2)|e−isqφ ·r|w(s, p̃2)〉

= 1

N2

∑
n1,n2

[∫
d2rφ∗

R1
(r)φR2 (r)e−isqφ ·(r−R2 )

]

× e−isqφ ·R2e−i2π k̃2n1ei2π p̃2n2 , (50)

where we define R1 = s0a1 + n1a2 and R2 = sa1 + n2a2.
Since Wannier orbitals are exponentially localized, s0 and
s1 have to be close to each other. Making the assumption
that the 1D hopping is short range, Eq. (44) forces s0 to be
near zero; therefore, s is also close to zero. As a result, the
factor e−isqφ ·(r−R2 ) slowly varies over the length scale ∼ξ , the
spatial extent of the exponentially localized Wannier orbital,
and can be Taylor expanded in the real space integration in
the brackets. The integral can therefore be expanded in power
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FIG. 4. Hofstadter spectra obtained using the exact LL approach (blue) and the hWS approach (red). Top panels are for the square lattice,
and bottom panels are for the triangular lattice. Lattice potential strength V0 = 3 is used. We set the energy scale as h̄2/mea2 = 1. For the
LL approach we studied the p/q sequence for q = 48 and p = 1, . . . , 48. For the hWS approach we studied the sequence q = 96 and p =
1, . . . , 96. The numbers in the plots label the Chern number of the corresponding energy gaps.

series of ξ/� as∫
d2rφ∗

R1
(r)φR2 (r)e−isqφ ·(r−R2 )

≈
∫

d2rφ∗
R1

(r)φR2 (r)[1 − isqφ · (r − R2) + · · · ]

= δs0,sδn1,n2 + O(a1xξ/�2). (51)

As a result, Eq. (50) becomes

〈w(s0, k̃2)|e−isqφ ·r|w(s, p̃2)〉 = δs0,sδ[r1+sp]q,r2 + O(a1xξ/�2),

(52)

where in the last line we have substituted k̃2 = k2 + r1/q
and p̃2 = k2 + r2/q. Keeping the leading-order term in the
above expression and combining it with Eq. (44), we get the
following simplification for Eq. (43):

I1 ≈ 1

N1

∑
s

ei2πk1s
∑
k̃1

e−i2π k̃1sεk̃δ[r1+sp]q,r2 . (53)

For well-localized Wannier states the dispersion can be
approximated by nearest-neighbor hoppings, i.e., εk̃ =

2E0[cos(2π k̃1) + cos(2π k̃2)], and as a result

I1 ≈ E0

⎡
⎣2 cos(2π k̃2)δr1,r2 +

∑
s=±1

ei2πk1sδ[r1+sp]q,r2

⎤
⎦. (54)

We compare the above expression to the Harper equa-
tion obtained in Ref. [42]:

g(m + 1) + g(m − 1) + 2 cos

(
2π p

q
m − 2πk1

)
g(m)

= E

E0
g(m), (55)

where we have replaced the notation ν used in Ref. [42] with
2πk1 and α with p/q. Performing Fourier series expansion
of the wave function g(m) = ∑

k2,r2
ei2π (k2+ r2

q )mgk2,r2 produces
the eigenequation:

Egk2,r1

=
∑
r2

E0

⎡
⎣2 cos(2π k̃2)δr1,r2 +

∑
s=±1

ei2πk1sδ[r1+sp]q,r2

⎤
⎦gk2,r2.

(56)
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The second line is precisely Eq. (54), explicitly recovering the
Harper equation as a limiting case of the finite magnetic field
problem when the magnetic length is much longer than the
spatial extent of the Wannier orbital.

In Appendix E, we go beyond the nearest-neighbor hop-
ping example discussed above and present a quantitative
comparison of the Hofstadter spectra calculated using the
Peierls substitution [39], the hWS approach, and the LL ap-
proach. As shown in Fig. 5, at lower magnetic flux ratios,
both Peierls substitution and the hWS approach yield quantita-
tively accurate Hofstadter spectra. However, as magnetic flux
is increased, the Peierls substitution approach becomes less
accurate than the hWS approach at capturing the qualitative
gap structures.

IV. SUMMARY

Using the magnetic translation group projection method
recently developed in Ref. [46] based on the B = 0 hybrid
Wannier states, we reexamined the Hofstadter physics of
the B �= 0 magnetic subbands corresponding to a subset of
energetically isolated and topologically trivial Bloch bands.
Employing the continuum electron moving in 2D square and
triangular lattice potentials as examples, we demonstrated that
the method works well up to moderate strengths of magnetic
flux per unit cell. Importantly, it naturally bridges the zero-
field and finite-field Hilbert spaces. We also recovered the
Harper equation [42] from the MTG states generated from

hWSs and showed that its regime of validity is determined
by the ratio of magnetic length to the size of exponentially
localized Wannier orbitals.

Although here we applied this projection method only
to the noninteracting Hamiltonians, the hWS procedure was
shown to be useful in studying the interacting Hofstadter
problem [46]. This is primarily due to two reasons: (1) At
low magnetic fields, the procedure can faithfully construct
the correct Hilbert space without having to increase the inter-
nal dimensions, unlike the conventional LL-based approach,
where the upper LL index cutoff increases with decreasing
field to achieve numerical convergence. (2) The plane wave
nature of the hWSs makes the matrix representation of op-
erators of the form Oqeiq·r sparse. By comparison they are
dense matrices in the LL wave function basis. This method
can therefore efficiently address the effects of Coulomb inter-
actions in a finite magnetic field in the presence of a periodic
potential.
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APPENDIX A: LANDAU GAUGE MAGNETIC TRANSLATION GROUP IDENTITIES

Here we derive an identity for t̂ s(a1), which is related to the zero-field discrete translation operator T̂ (a1). Note that

t̂ s(a1) = [e−iqφ ·rT̂ (a1)]s−2[e−iqφ ·rT̂ (a1)][e−iqφ ·rT̂ (a1)]

= [e−iqφ ·rT̂ (a1)]s−2eiqφ ·a1e−i2qφ ·rT̂ 2(a1)

= [e−iqφ ·rT̂ (a1)]s−3ei(1+2)qφ ·a1e−i3qφ ·rT̂ 3(a1)

= ei[1+2+···+(s−1)]qφ ·a1e−isqφ ·rT̂ s(a1)

= ei
s(s−1)

2 qφ ·a1e−isqφ ·rT̂ s(a1). (A1)

We also show the MTG basis states |	n,r (k)〉, expressed using LL wave functions, form a complete set for r = 0, . . . , p− 1.
It is sufficient to show that

|	n,r+p(k)〉 = e
i2π

(
k1−(k2+ r

q )
a1y
a2

)
|	n,r (k)〉, (A2)

namely, that states at r + p and r differ by a complex phase factor. Note that, by definition, in Eq. (10),

|	n,r+p(k)〉 = 1√
N

∞∑
s=−∞

ei2πk1st̂ s(a1)

∣∣∣∣ψn

(
2π

a2

(
k2 + r

q
+ p

q

))〉
, (A3)

and the LL wave function is expressed in Eq. (1) as∣∣∣∣ψn

(
k̃y + 2π

a2

p

q

))〉
= eik̃yyei

2π
a2

p
q yT̂

(
− 2π

a2

p

q
�2ex

)
T̂ (−k̃y�

2ex )|n〉. (A4)

Here we define k̃y ≡ 2π
a2

(k2 + r
q ) for notational convenience. Note that

2π

a2

p

q
�2ex = 1

a2

a1xa2

�2
�2ex = a1xex (A5)
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and that

T̂ (−a1xex )|n〉 = T̂ (−a1)|n〉. (A6)

Making use of the identity

t̂ (−a1) ≡ t̂†(a1) = T̂ †(a1)eiqφ ·r = ei
2π
a2

p
q a1y ei

2π
a2

p
q yT̂ (−a1), (A7)

we can rewrite Eq. (A4) as∣∣∣∣ψn

(
k̃y + 2π

a2

p

q

)〉
= e−i 2π

a2

p
q a1y eik̃yyt̂ (−a1)T̂ (−k̃y�

2ex )|n〉 = e
−i

(
k̃y+ 2π

a2

p
q

)
a1y t̂ (−a1)|ψn(k̃y)〉. (A8)

Here for the last equality we use eik̃yyt̂ (−a1) = e−ik̃ya1y t̂ (−a1)eik̃yy. Substituting this back into Eq. (A3),

|	n,r+p(k)〉 = e
−i 2π

a2

(
k2+ r+p

q

)
a1y 1√

N

∞∑
s=−∞

ei2πk1st̂ s(a1)t̂ (−a1)

∣∣∣∣ψn

(
2π

a2

(
k2 + r

q

))〉

= e
i2π

(
k1−(k2+ r+p

q )
a1y
a2

)
1√
N

∞∑
s=−∞

ei2πk1(s−1)t̂ s−1(a1)

∣∣∣∣ψn

(
2π

a2

(
k2 + r

q

))〉

= e
i2π

(
k1−(k2+ r+p

q )
a1y
a2

)
|	n,r (k)〉. (A9)

APPENDIX B: OVERLAP MATRIX

Here we show how to calculate the overlap matrix between MTG basis states generated from zero-field hybrid Wannier states,
Eq. (32). Specifically, we define the overlap matrix �αr1,βr2 (k1, k2), where k1 ∈ [0, 1), k2 ∈ [0, 1/q), and r1,2 = 0, . . . , q − 1. It
can be calculated by switching to the Bloch basis,

�αr1,βr2 (k1, k2) =
∑
s

ei2πk1sei
s(s−1)

2 qφ ·a1

〈
wα

(
0, k2 + r1

q

)∣∣∣∣e−isqφ ·r
∣∣∣∣wβ

(
s, k2 + r2

q

)〉

=
∑
s

ei2πk1sei
s(s−1)

2 qφ ·a1
1

N1

∑
k̄1 p̄1

e−i2π p̄1s

〈
ψα

(
k̄1, k2 + r1

q

)∣∣∣∣e−isqφ ·r
∣∣∣∣ψβ

(
p̄1, k2 + r2

q

)〉
. (B1)

In the second line we introduced the Bloch states |ψα (k)〉 = ∑
n Un,α (k)|ψn(k)〉, with the distinction that the subscript α labels

Fourier transforms of the hWS and n labels Bloch eigenstates. The second line is calculated in the plain wave basis by writing
down 〈r|ψα (k)〉 = ∑

g e
i(k+g)·rug(αk). We arrive at the following expression:

�αr1,βr2 (k1, k2) =
∑
s

ei2πk1sei
s(s−1)

2 qφ ·a1
1

N1

∑
k̄1 p̄1

∑
g,g′

e−i2π p̄1su∗
g

(
α, k̄1, k2 + r1

q

)
ug′

(
β, p̄1, k2 + r2

q

)

× 1

A

∫
d2re−i(k̄+g)·re−isqφ ·rei(p̄+g′ )·r. (B2)

The second line gives the constraint k̄ + g + sqφ = p̄ + g′, which is equivalent to

k̄1 + l1 + sp

q

a1y

a2
= p̄1 + l ′1,

r1

q
+ l2 + sp

q
= r2

q
+ l ′2. (B3)

APPENDIX C: REAL SPACE INTEGRATION OF x AND x2

The single-electron Hamiltonian in a finite magnetic field contains terms such as x p̂y and x2; we hereby give analytical
expressions for their real space integrations. In evaluating the matrix elements for the Hamiltonian, boundary terms do not
matter, as the exponential localization of the hWSs guarantees that the main contributing terms to

∑
s in Eq. (41) are restricted

to the vicinity of s = 0. We therefore choose the real space domain to contain N1 and N2 unit cells in the a1 and a2 directions
and place the origin of the coordinate system at the center of the real space domain. Specifically, the integral is performed in the
following manner:

1

A

∫
d2r[· · · ] = 1

N1N2

1

a1xa2

∫ N1
2 a1x

− N1
2 a1x

dx
∫ a1y

a1x
x+ N2

2 a2

a1y
a1x

x− N2
2 a2

dy[· · · ]. (C1)
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As a result,

1

A

∫
d2r

(
x

a1x

)
eiq·r = δqy,0(−i)

q̃x cos
(N1

2 q̃x
) − 2

N1
sin

(N1
2 q̃x

)
q̃2
x

, (C2)

and

1

A

∫
d2r

(
x

a1x

)2

eiq·r = δqy,0
4q̃x cos

(N1
2 q̃x

) + ( − 8
N1

+ N1q̃2
x

)
sin

(N1
2 q̃x

)
2q̃3

x

, (C3)

where we define q̃x ≡ qxa1x.

APPENDIX D: OVERLAP BETWEENMTG BASIS STATES GENERATED FROM LL APPROACH AND THE HWS APPROACH

To demonstrate the accuracy of the hWS approach we need to calculate its overlap with the exact wave functions, which can
be obtained using the LL approach, as discussed for Eq. (34). Here we calculate the following expression:

�	,W (nr1, αr2; k) ≡ 〈	n,r1 (k)|Wα,r2 (k)〉, (D1)

where n runs over LL indices, α runs over hWS indices, r1 = 0, . . . , p− 1, and r2 = 0, . . . , q − 1. Using the definitions (10)
and (28), we have

�	,W (nr1, αr2; k) =
∑
s

e−i2πk1s

〈
ψn

(
k2 + r1

q

)∣∣∣∣t̂−s
a1

∣∣∣∣wα

(
0, k2 + r2

q

)〉

=
∑
s

e−i2πk1se−i s(s−1)
2 qφ ·a1ei2π (k2+ r1

q )
a1y
a2

s 1√
N1

∑
k̄1

〈
ψn

(
k2 + r1

q
− sp

q

)∣∣∣∣ψα

(
k̄1, k2 + r2

q

)〉
. (D2)

We evaluate the overlap between a LL wave function with a Bloch wave function as follows:〈
ψn

(
k2 + r1

q
− sp

q

)∣∣∣∣ψα

(
k̄1, k2 + r2

q

)〉

= 1

N2a2

1√
N1a1x�

∑
g

uαg

∫
d2rφn

[
x

�
+ 2π

a2

(
k2 + r1 − sp

q

)
�

]
e−i 2π

a2
(k2+ r1−sp

q )yei(k̄+g)·r

= 1√
N1a1x�

∑
g

uαgδ r1−sp
q ,

r2
q +l2

∫
dxφn

[x
�

+ (k̄y + gy)�
]
ei(k̄x+gx )x

= 1√
N1a1x�

∑
g

uαgδ r1−sp
q ,

r2
q +l2

e−i(k̄x+gx )(k̄y+gy )�2
∫

dxφn

(x
�

)
ei(k̄x+gx )x

= 1√
N1

√
�

a1x

∑
g

uαgδ r1−sp
q ,

r2
q +l2

e−i(k̄x+gx )(k̄y+gy )�2√
2π (i)nφn[(k̄x + gx )�]. (D3)

Here we define k̄ = k̄1g1 + (k2 + r2
q )g2 ≡ k̄xex + k̄yey. In the second line we used the following definitions for the Bloch and LL

wave functions:

〈r|ψα (k)〉 = 1√
N2a2

1√
N1a1x

∑
g

uαg(k)ei(k+g)·r, (D4)

〈r|ψn(k2)〉 = 1√
N2a2

1√
�
φn

(
x

�
+ 2π

a2
k2�

)
ei

2π
a2
k2y, (D5)

where

φn

(x
�

)
= 1

π1/4
√

2nn!
e− x2

2�2 Hn

(x
�

)
. (D6)

APPENDIX E: TIGHT-BINDING MODEL AND PEIERLS SUBSTITUTION

Here we present a calculation of the Hofstadter spectrum for a tight-binding model on a square lattice with one orbital per
site and longer-range hoppings. The spectra are then compared to both the exact LL approach and the hybrid Wannier approach
discussed in the main text.
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The tight-binding Hamiltonian in zero magnetic field is given by

ĤTB =
∑
r1,r2

t (r1 − r2)c†
r1
cr2 + H.c., (E1)

where ri = mia1 + nia2 labels the positions of lattice sites, with {mi, ni} ∈ Z. t (r1 − r2) is the hopping amplitude between the
two sites and depends only on the relative coordinate due to discrete translation symmetry T̂ (ai ), i = 1, 2. Its Fourier transform
is the energy dispersion:

εk =
∑
r1−r2

t (r1 − r2)e−ik·(r1−r2 ), (E2)

where k = k1g1 + k2g2 is the wave vector in the Brillouin zone, with k1, k2 ∈ [0, 1). N1 and N2 are the numbers of lattice sites
along the a1 and a2 directions, respectively.

In a finite magnetic field, Peierls substitution [39] attaches a phase to the hopping amplitude:

t (r1 − r2)e−i e
h̄c

∫ r2
r1

dr′ ·A(r′ ) = t (r1 − r2)e− i
2�2 (r2y−r1y )(r2x+r1x )

, (E3)

where, on the right-hand side, we use the Landau gauge A = Bxey.
At rational magnetic flux ratios φ/φ0 = p/q, the phase factor in Eq. (E3) reduces to

−2π p

q
(n2 − n1)

m1 + m2

2
, ri=1,2 ≡ mia1 + nia2, mi, ni ∈ Z. (E4)

Therefore, the finite-field Hamiltonian is invariant under discrete translations T̂ (qa1) and T̂ (a2). As a result, the magnetic
unit cell is enlarged along the a1 direction by q times. We relabel the lattice sites as

r1 → R1 + 	τα, r2 → R2 + 	τβ, (E5)

where Ri=1,2 ≡ mi(qa1) + ni(a2) and 	τα ≡ αa1, with α = 0, . . . , q − 1. The Peierls substituted hopping amplitude is therefore
rewritten as

t (R1 + 	τα − R2 − 	τβ )e
−i2π p(n2−n1 )

(
m1+m2

2 + α+β

2q

)
. (E6)

We apply discrete Fourier transformation for the fermion annihilation operator:

cR1+	τα
= 1√

N1N2/q

∑
k1∈[0,1/q)

∑
k2∈[0,1)

cα,k1,k2e
i2πk1(qm1+α)ei2πk2n1 . (E7)

It is straightforward to show that the finite-field Hamiltonian is diagonal with respect to quantum numbers {k1, k2}, and

ĤTB(B) = q

N1N2

∑
α,β

∑
k1,k2

c†
α,k1,k2

cβ,k1,k2

1

N1N2

∑
p1,p2

εp1,p2

∑
m1,n1,m2,n2

ei2π p2(n1−n2 )ei2π p1[(m1−m2 )q+(α−β )]

× e
−i2π p(n2−n1 )

(
m1+m2

2 + α+β

2q

)
e−i2πk2(n1−n2 )e−i2πk1[(m1−m2 )q+(α−β )]. (E8)

Here p = p1g1 + p2g2 is defined in the zero-field Brillouin zone with p1, p2 ∈ [0, 1) × [0, 1). We define the center of mass and
relative coordinates as

M = m1 + m2

2
, m = m1 − m2, N = n1 + n2

2
, n = n1 − n2. (E9)

Summing over center of mass position Mqa1 + Na2 trivially leads to

ĤTB(B) = 1

N1N2

∑
α,β

∑
k1,k2

c†
α,k1,k2

cβ,k1,k2

∑
p1,p2

εp1,p2

∑
m,n

ei2π (p2−k2− p(α+β )
2q )nei2π (p1−k1 )[mq+(α−β )]. (E10)

Summing over n and m leads to

ĤTB(B) ≡
∑
α,β

∑
k1,k2

c†
α,k1,k2

T̂α,β (k1, k2)cβ,k1,k2 , (E11)

T̂α,β (k1, k2) ≡ 1

q

∑
r1,p2

εk1+ r1
q ,p2

ei2π
r1
q (α−β )

δp2,[k2+ p(α+β )
2q ]1

. (E12)

In Eq. (E12) we define p1 = [p1]1/q + r1
q , where r1 = 0, . . . , q, and k1 = [p1]1/q. At any given wave vector k ≡ k1g1 + k2g2,

T̂α,β (k1, k2) is a q × q matrix. Diagonalizing T̂α,β (k1, k2) gives the q Hofstadter subbands for a given flux ratio φ/φ0 = p/q.
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FIG. 5. Hofstadter spectrum for the square lattice potential used in Figs. 4(a)–4(c) in the main text, calculated using (a) the hybrid Wannier,
(b) Peierls substitution, and (c) Landau level methods. (d) and (e) show more detailed overlay comparisons. (f) shows a comparison of the
spectra calculated at wave vector k1 = k2 = 0 at magnetic flux ratio φ/φ0 = 11/48.

In Fig. 5 we compare the Hofstadter spectra computed using the above Peierls substitution method (green) to the Landau
level method (blue) and the hybrid Wannier method (red). The Peierls substitution method is in reasonably good agreement with
the two other approaches at lower magnetic flux ratios [Fig. 5(f)]. However, at higher fluxes, the method leads to qualitatively
different spectra. For example, at φ/φ0 = 1/2, the Peierls substitution shows a gapless spectrum at half filling, instead of gapped
spectra, as shown by both the Landau level and hybrid Wannier methods. Moreover, the Peierls substitution shows a periodic
spectrum when magnetic flux is increased by the unit flux quantum due to the omission of the energetic effects of magnetic
fields, i.e., ĤB in Sec. III D 2.
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