PHYSICAL REVIEW APPLIED 20, 064008 (2023)

Anisotropic resistivity tensor from disk geometry magnetoconductance
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Magnetotransport measurements on two-dimensional van der Waals heterostructures have recently
shown signatures of uniaxial anisotropy. Such measurements are almost exclusively performed in a Hall
bar geometry, which makes it difficult to extract the full resistivity tensor. The goal of this paper is to
theoretically analyze anisotropic magnetoconductance in a homogeneous disk geometry and to provide a
closed-form expression for the electrical potential anywhere on the disk if the current source and drain are
located somewhere on the circumference. This expression can then be used to experimentally extract the
full conductivity tensor, and by a simple inversion, the full resistivity tensor.
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I. INTRODUCTION

Two=dimensional van der Waals (vdW) heterostruc-
tures host a broad range of interesting physical phe-
nomena [1], including anisotropic magnetotransport. With
rare exceptions [2,3], the transport measurements are per-
formed in a Hall bar geometry, making it difficult to
extract the full resistivity tensor particularly if the trans-
port principal axis is misaligned with the current flow. For
example, the heterostructures can be subject to an unin-
tentional strain, in which case the misalignment is not
directly controlled in an experiment. Moreover, the ori-
entation of the electrical transport principal axis can be
carrier-concentration- (filling) dependent as was recently
shown [4] in numerical solutions of the Boltzman equation
for twisted bilayer graphene subject to heterostrain, even
if the strain tensor and the transport relaxation time are
momentum and filling independent. For open Fermi sur-
faces, the magnetoresistance is expected to grow with the
magnetic field B without saturation along one of the prin-
cipal axis, but to saturate with increasing B along the
perpendicular principal axis [5]. Direct measurement of the
full anisotropic resistivity tensor in the vdW heterostruc-
tures as a function of filling and B would therefore help in
understanding the complex transport phenomena in these
materials.

One recent suggestion is to make a “sunflower” device
[2,3] consisting of a circular disk with thin rectangular
petals symmetrically pointing out. In a typical imple-
mentation there are 8 (Ref. [3]) or 16 petals [2]. In the
experiment, the current can be injected along any one of
the petals and drained along any other petal. At the same
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time, the voltage differences can be measured across any
remaining pair of petals. Intuitively, if the source and the
drain are 180° apart, say north and south, and the voltage
drop is detected along the side, say northeast and south-
east, the resulting resistance will depend on some, possibly
complicated, admixture of the components of the conduc-
tivity tensor. Holding the relative orientation of the source,
the drain and the voltage detection leads fixed, the resis-
tance measurement can be performed for the four petals,
which are adjacent to the previous set, i.e., rotated relative
to them by 45° for 8 petals (the rotation would be by 22.5°
for 16 petals). If the system has anisotropic conductivity,
the measured resistance will be different for the rotated
configuration. This rotation can be continued until return-
ing to the original orientation. Such a measurement, as well
as a large combination of different source, drain, and probe
petal choices, contains information about the anisotropic
conductivity tensor. The challenge is to extract this tensor.

In this paper we derive an expression for the voltage
at an arbitrary location on the uniform disk of radius «
with the current / injected at the source and removed at
the drain. The source and drain are placed at an arbitrary
pair of points on the boundary. The expression is derived
for an arbitrary local conductivity tensor and can be used
to extract this tensor and its orientation from the sunflower
experiment; resistivity tensor follows from a trivial inver-
sion of conductivity tensor, a 2 x 2 matrix. The extraction
can be done as follows: for each source and drain location,
there are only four parameters, which determine the entire
electrical potential profile. They are the two values of the
conductivity tensor along the principal axes o, the Hall
conductivity oy and the orientation of the principal axes
relative to the lab axes; the dependence on [/ is trivial in
the linear /-V regime, it is just an overall scaling factor.
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The “sunflower” measurement yields many more com-
binations of the pair of voltage probes and source-drain
locations, therefore overconstraining the possible values of
the four parameters. So, in practice, the four parameters are
adjusted to match the measured resistances.

Inside the disk, the anisotropic conductivity tensor is
assumed to be homogeneous and local, while outside the
disk there is no conduction. Without loss of generality, we
choose the coordinate system with the x and y axes aligned
with the principal axes and adopt the dyadic product to
represent the conductivity tensor. The expression for the
electrical potential in the lab coordinate system, rotated in
the clockwise sense by an angle ¢ relative to the coordinate
system of the principal axes, can then be easily obtained
from a simple rotation of the axes. The results in both
frames are stated later in the introduction.

Thus,

o = D(x,) (0488 + 0_§9 + oy (3§ — §%)), (D)

where D(x,y) = ©(a®> — x> —y?) and O is the Heaviside
step function, restricting the conduction to the interior of

J

—2i0p O2+4n __ ,—ifp Z O2n
I+e Q e Q

the circle. Here oy are the two components of the longi-
tudinal conductivity along the principal axes and o is the
Hall conductivity. We express the longitudinal conductiv-
ities as 0. = 0 + Ao and without loss of generality take
the x axis to be along the principal axis with larger resis-
tivity, i.e., Ao /o < 0. Note that in the coordinate system
of the principal axes the term Xy + yX is absent and Eq. (1)
is the most general form of the conductivity tensor in two
dimensions.

The analysis spelled out in Sec. II then yields an expres-
sion in the form of a rapidly convergent series, which can
be used to extract the resistivity tensor for a point current
source and drain at rgp = a(cos6,,sin 6, ) as described
above. Equation (2) in the coordinate system of the prin-
cipal axes, and Eq. (3), which transforms it into the lab
coordinate system, constitute the main result of the paper.
They are stated upfront so that those who do not need all
the mathematical details presented in Sec. II can skip it and
continue to Sec. III.

In the coordinate system of the principal axes, the
expression for the electrical potential at x, y reads

o ‘1 1 Q2B QAN _ it Z. Z an

ot

1 Joso— i

V(x,y;rs,1p) =
T 0+o_+oH

7=02,4,...

—2i04O2+4n _ ,—ify Z_ Z 2n
I+e Q e Q

_|_
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n=135....

1 o > ) )
+ = H Z arg <1 + e—2193g22+4n _ —193 Q2n> — arg <1 + e—210A QZ+4n _ —19,4 Q2n>
7 00-+0j; n=0,24,... ot O
%)
+ Z arg (1 4 eZiQBQ2+4n _ 6103192”) — arg (1 4 eZiQA 92+4n _ eiOAEQZ") . (2)
oy o4

n=13,5,...

where the x, y position enters via the complex variable Z =
X+iY=x/J/1+ Ao/ +i(y)//1 —Ac /o, and the
parameters ay = a/2(1//T+ Ao/ +1//T—Ac/5)

and
o \/1—%—\/1+%

w—%+$+%'

The function arg is the argument of a complex number.
Note that because |Ao| < &, the parameter 0 < Q < 1
and therefore the above sum converges (the convergence
is rapid unless Q2 is very close to 1). Illustrative contour
plots of V(x,y;rs,rp) for several parameters are shown in
the Fig. 1.

Although the above expression is obtained for a point
current source and drain, the linearity of the differential

(

equation whose solution it is allows direct determination
of the formula for multiple points, as well as spatially
extended, current sources and drains. Such a formula is
presented in the discussion section.

In the coordinate system of the lab axes, which is rotated
clockwise by an angle ¢ relative to the coordinate sys-
tem of the principal axes, the expression for the electrical
potential at x’, y’ reads

V(s X, V6 Xpo V) = VX, 95 X5, V5, %D, ¥p)>  (3)

where x = x'cosg + ) sing, y =y’ cosp — x’ sing, and
similarly for xs p, ysp in terms ofoD,ySD

The paper is organized as follows: Sec. II provides
mathematical steps to arrive at the expression (2). First a
simple scaling transformation on the x, y variables is per-
formed, turning the disk domain into an ellipse in the X, Y
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FIG. 1.
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Equipotential contours computed using Eq. (2) in the coordinate system of the principal axes for isotropic conductivity tensor

(a) for oy = 0 and (b) for oy = 0.45; in each case the point source is at 6, = 7 /2 and the point drain at 8 = —x /2. Equipotential
contours for anisotropic conductivity tensor for oy = 0 and Ao = —0.76 for point drain at 6 = —x /2 and (c) point source at 04 =

/2 and (d) 84 = 7 /4; ten terms in the sum were kept.

variables. Second a conformal transformation is then per-
formed on the ellipse turning it into an annulus, allowing
the final solution. Section III is devoted to discussion and
generalization of our results.

II. ANALYSIS

The starting assumption is that Ohm’s law holds, i.e.,
j=o-E=—0-VV, 4)

where j is the current density, E is the electric field, and V'
is the electrical potential, all of which are assumed to be
position-dependent. For an idealized point current source
and drain, the continuity equation gives

V.j=1@@—ry —358(—rp), (5

where [/ is the current, its source is at r, its drain at rg, and
8(r) is the Dirac § function. Combining Egs. (1)}+5) gives

d v 0 oV d v
——\|\Doy— ) — —|(Do-— | — — | Doy—
x ox ay ay ox ay

3 (pg. 2V
+8y( JHax)
= T3 —14) — 3(r —1p). (6)

The solution to the above inhomogeneous linear partial
differential equation gives V" as a function of r.
Expressing the longitudinal conductivities as

0.=6 + A, (7)

it will be convenient to rescale the coordinate axes accord-
ing to

X=——" (8)
1+A&"

y=—2 ©)
] — Ao

so that Eq. (6) becomes
d av a v
= I|D=)+—=I|D—=
X 0X oY \' aY

o D (N _ 8 (07
foro- \axX \"ay) ary\ ax

(86X —X)8(Y — Yy)

JF
— 8(X — Xp)8(Y — Yp)). (10)
The domain, specified by D (J/T+Ac/(G)X,
VT=12Ac/()Y), is given by ©(a* — (1 + Ao /5) X? —
(1 — Ao /&) Y?), ie., it is an ellipse. If Ac/6 > 0, the
ellipse is elongated along the Y direction, if Ao/o < 0,
then the ellipse is elongated along the X direction. With-
out loss of generality we can choose the x axis to be along
the axis with larger resistivity, i.e., it will be assumed from
now on that

Aocjo < 0. (11)
Equation (10) can be expressed using complex coordinates
Z=X+1iY, (12)
when, after some simplification, it becomes
d v 0 v
—2(—=(p=)+—= (D=
0Z\ 9z 0Z \ 0Z
2ioy 0 av d v
— —(p=)-—= (D=
Joyo_\dZ \ 9Z 0Z\ 0z
1
= SX —X8(Y—7,
—a+a_( ( )8 ( 1)
— 83X —Xp)§(Y — Yp)). (13)

To avoid confusion, the right-hand side is kept in terms
of the real and imaginary parts of Z. This form makes it
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clear that inside the ellipse where D = 1, the solution can
be written in terms of a sum of a function of Z and a func-
tion of Z. The boundary conditions are determined from
the right-hand side and the derivatives of the boundary
function D.

A. Zhukovsky conformal mapping of the ellipse to
annulus

It will be convenient to perform a conformal map trans-
forming the boundary of the ellipse to the boundary of the
circle. This can be done using the Zhukovsky transforma-
tion

(14)
(15)

o_

Z=oaw+ —,
w

w=u-iv,

where u(X, Y) and v(X, Y) are purely real. To determine
the coefficients o, and o we demand that

A A
(1 + —“> X2+ (1 - —"> 2=d, (l6)
o o
implies
uf +v5 =1, (17

i.e., if Xp and Yy lie on the ellipse, then uy and v, are forced
to lie on the unit circle. From Eq. (14), we have

Xo + iYo = Ol+(u0 + iUo) + a,(uo — iUo), (18)

because, being on unit circle, 1/(ug + ivy) = uy — ivo.
Therefore,

Xo = (o +a_)u,

Yo = (4 —a_)vyg.

(19)
(20)

So, from Eq. (16)
A A
(1 + Ta> (C(++05—)2“(2) + (1 - TO) (a+—a_)2v§ =d,
o 5
2n

which implies

(22)

a 1 1
=72 \/1+¥i\/1—¥

This fixes the conformal map. Having established that the
ellipse in the (X, Y) plane maps onto the unit circle in the
(u, v) plane, we wish to know where does the interior of

the ellipse map. To this end, seek such w = 2 that would
give

@ Q= % € Re, 23)

for Ao /o < 0. This gives

o \/1—%—\/1+% o4

B A A '
JI-8+ iy s

So, letting w = Qe where ¢ is the polar angle in the u, v
plane and using Eq, (23) results in

o_ vV _2%

=a
Qei? 2
“ )

This means that the circle of radius €2 in u, v plane maps
onto the line segment connecting the foci of the ellipse in
the X, Y plane. For Ao /o < 0, the foci lie on the x axis.
Therefore, the ellipse in the X, Y plane, including its inte-
rior, maps onto an annulus in the u, v plane with the outer
radius 1 and the inner radius €2 as illustrated in Fig. 2.

Because Z = f (w), i.e., Z is a function of w, w is in turn
a function of Z, i.e., w = g(Z), the left-hand side of the
differential equation can be written as

ad av a 14
(2 (pZ )+ L (pZ
aZ 0z VA VA
2ioy a av a av
. 2 (pZ) - Z (piL
Joo-\oz \9z) 9z \" oz
aw ow a _dVv o _aV
0Z 97 ou Jdu Jdv dv

OH (%ﬂ/ _ %ﬂ/)> ) (26)

o Qe + cos ¢. (25)

+ Joro_ \ dv du  du dv
Using Cauchy-Riemann conditions, it can be readily
shown that
aw In ,
W _s(EY), 7)
0Z 0Z X,Y
where J (u,v/X,Y) is the Jacobian determinant.

Equation (13) therefore gives

a _dV o9 0 oy oDoV 9D a
—\|\=D—+—D—) + — -
ou du Jdv Jv Joiro_ \dv du  du dv

I S(X—X)8(Y—Y)—8(X —Xp)8(Y—Yp)

7 (%)

o /O+O0_—

(28)
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(a) v

(b) /

FIG. 2. For Ao/d < 0, (a) the interior of the circular device with radius a maps onto the interior of the ellipse after the coordinate
rescaling. (b) The interior of the ellipse in the X, Y plane conformally maps onto the annulus in the u, v plane with unit outer radius

and inner radius set by .

But, by the properties of the Dirac § function under
coordinate transformation, it follows that

o dV a9 0 on oDaV 0D9
—|=—D—+—D—)+ — -
ou du Jdv dv Joro_ \dv du  du dv

(29)

where D = © (1 — u*> — v?). Now, because X5, Y,z lie
on the ellipse, w43, v4p must lie on the unit circle. From
Eq. (18)

XA,B

JI+%

= (o4+a-) uyp, (30)

B = (04 —0—) Uy . (3D
J1 =42
Therefore, using Eq. (22),
X458 = alyp, (32)
V4,8 = AV4,p. (33)

B. Polar coordinates in the u, v plane

Switching to polar coordinates in the u, v plane

0 = Vu?+ 2, (34)

¢ =tan~' 2, (35)
u

gives
d ad i a
9 cosp L _Sme 9 (36)
ou ap p 0¢
ad . ) cos¢ d
— = — —. 37
R P P 37

Therefore, the derivatives of the boundary function are

aD

— = —cospd(p — 1), (38)
ou

0D .

— = —singd(p — 1), (39)
dv

and the differential Eq. (29) becomes

0 D 14 +D82V n
oo\ Cop) T pag?

1
O+0—

C. Homogeneous solution and the boundary conditions

oud(p — 1)V
NGl

8(p = 1) (8(¢p —04) — (¢ —0)). (40)

A general solution of Eq. (40) for p < 1 where the terms
containing 8(p — 1) vanish can be written as

Vip,¢) = Z (Am (g—z + %) cos me

m=1

pm Qm )
+ By ( - ,o_’"> smmqb) . “41)
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This form satisfies the homogeneous differential equation
and is continuous and differentiable across the line cut
joining the foci. To see this, notice that the points on the
circle of radius €2 in the u, v plane map onto the line seg-
ment joining the foci X € (—20,.Q,2a,Q), Y =0, as we
saw in Eq. (25). Therefore, the points on the inner circle
in the u, v plane, which are related by the mirror reflec-
tion about the v = 0 axis should be identified as the same
points. In other words, p = Q and ¢, and p = Q and —¢
map onto the same physical point in the X, ¥ and therefore

8V oy AV

Substituting Eq. (41) into the above results in

,/o+0 ¢ 9671 = JOOo_

x,y plane. We therefore want the potential at Q1 and ¢
to either be the same at —¢, which is accomplished by
(p™/Q™ 4+ Q™ / p™) cos m¢, or we want it to vanish at Q
with a continuous slope. Vanishing at Q2 is accomplished
by p"/Q" — Q" /p™, and the reason why only sinm¢ can
multiply it is that multiplying it by cos m¢ would introduce
a cusp across the line segment.

Integrating both sides of Eq. (40) over an infinitesimal
interval straddling p = 1 gives the boundary condition

——— (8(¢ —04) —8(¢ —6B)). (42)

—a V(al(,)o, ¢) |ﬂ=1 = Z (mAm (% - Qm) COS m¢ + mBm <$ + Qm) Sinm¢> ’ (43)

m=1

ee]

aV(p,d) 1 -
Tlp:l => (—mAm (@ +Q

m=1

and the differential Eq. (40) becomes

Z <mA (— — sz'"> cos me + mB,, (

) sinm¢ + mB,, (% — Q’”) cos md)) , (44)

1
Q") si
o + ) sin m¢>

o0
1
5o Z < mA,, ( + Qm> sinm¢ + mB,, (@ — Q’”) cos qu)

m=1
. 1i< ¢ (cos mh 0p) + sin mep (sinmé; — sin méy)) (45)
= — cos m¢ (cos mfy — cosm sinm¢ (sinméy — sinm ,
oo 7 A B A B
where the following identity was used for the right-hand side:
1 < . :
5 (¢ —Oas) = 5 :Z oM =i (46)
! 1 i ¢ 045 + ¢ 6.4,5) - (47)
= — in in
27[ . cosm COSmb4,p sinme Smmo4 p

m=1

Matching the coefficients of cos m¢ and sin m¢ and solving for 4,, and B,, gives

4 — 1 1 1 1 cos mb, — cos mBp oy sinmbO, — sinm0Oy 48)
" Joro_ T 1+ o} m Q—m — Qm Joro_ QT4 Qm ’
040—
B _ 1 1 1 1 oy cosmby —cosmby  sinmO, — sin mOy (49)
" Joso_m 14 off, m\Jojo_ QM —Qm Q™+ Qm
04 0—
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Thus,
I 1 1 .1 (cosmby — cos mby oy sinmf, — sinm0Op pm o Qr
V. @) = Joro-m of Z%( Q= — Qm - Jos0 Q™ 4 Qm @_}__’”)COS’M)
+&- 1+ U+Z_ m=1 -
I 1 1 2.1 (sinmb, — sinmb 0y — 6 mooQn
4 1 : Z 1 (smmAm s1nmm 5 + oH cosmiAm coim B) (,o_m B _m> sinm
Joro_m + UZZ_ —m Q"4 Q JOL0_ Q" —Q Q
— (4 — B). (50)

D. Summing over the angular momenta

The sum over m converges slowly. In order to convert it into a rapidly convergent sum, we first Taylor expand the
denominators involving " and 27", in powers of Q2 as

I 11 && (@ mo om
Vip,¢) = - 2 Z Z u cosmby — (—1)" on sin mOy L + cos m¢
JOLo- T NI/ b m JOOo_ Qm o pm
040.
I 11 &S & (et moQm
— Z Z g <(—1)” sinmf, + cos m6A> <'0— - —) sin me¢
JO+O_ T 1 + Ui]; =0 w1 m 040 Qm pm
— (4 — B). 51)

Then the resulting sum over m is related to the geometric series by integration, and since €2 < 1, the sum over n will be
rapidly convergent. Therefore, for C = A4, B, we have

Qm(1+2n) m Qm ) Q
Ze’m%em’q’ L) =i (1-ee i) Fin (1 - leqltn ), (52)
m Qo pn Q w

Adding longitudinal and Hall contributions finally gives Eq. (2).

I11. DISCUSSION

Because the differential equation is linear, it is straightforward to generalize the expression derived above to the case
with multiple sources and drains. In such a case the continuity equation reads

ns np
Voj=) I8 —rgy) — Y IPS(r —rp)), (53)
j=1 j=l1

where ng is the number of point sources and 7 is the number of point drains, and Z"S I s Zj”g | [J.D = [. The resulting
expression is

Vix,y;{ra;}, {ra,;})

o0 o0
U+O'_ 90, - _j
~ E [D E Inl1 +e 2i0p QZ+4n —e ZQBJ 92}1 + E
T n
U+G 04 2 n=0.2,4,... n=13.5,..

n|l4+ 62108,1 92-0-4}1 _ EZGB’/ —an
o

00 00
O'+O‘_ Y . 7 o 7
§ : S § In|l14e 2i04 92—0—4;1 —e 04, QZn 4 § : Inl1 +e216AJ Q2+4n —610’1?/ QZn
T o o
7 o0 +GH =1 \n=024,.. + n=13... +
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1 oy

o o 12
T O+0-F0; \ =024,

ng Z
_ Z[JS arg (1 + e*2i9AJ Q2+4n _ e*iQAJ _an>
j=1 *+

00 np
+ 2

n=13,5,... j=1

The expression for extended source and drain can be found

by treating IjS/ D as infinitesimal and then converting the
Riemann sum into an integral. The obtained expression
can now be used to fit measurements with multiple volt-
age probes for arbitrary current source and drain placed on
the perimeter of the disk.
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