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Anisotropic resistivity tensor from disk geometry magnetoconductance
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Magnetotransport measurements on two-dimensional van der Waals heterostructures have recently

shown signatures of uniaxial anisotropy. Such measurements are almost exclusively performed in a Hall

bar geometry, which makes it difficult to extract the full resistivity tensor. The goal of this paper is to

theoretically analyze anisotropic magnetoconductance in a homogeneous disk geometry and to provide a

closed-form expression for the electrical potential anywhere on the disk if the current source and drain are

located somewhere on the circumference. This expression can then be used to experimentally extract the

full conductivity tensor, and by a simple inversion, the full resistivity tensor.
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I. INTRODUCTION

Two=dimensional van der Waals (vdW) heterostruc-

tures host a broad range of interesting physical phe-

nomena [1], including anisotropic magnetotransport. With

rare exceptions [2,3], the transport measurements are per-

formed in a Hall bar geometry, making it difficult to

extract the full resistivity tensor particularly if the trans-

port principal axis is misaligned with the current flow. For

example, the heterostructures can be subject to an unin-

tentional strain, in which case the misalignment is not

directly controlled in an experiment. Moreover, the ori-

entation of the electrical transport principal axis can be

carrier-concentration- (filling) dependent as was recently

shown [4] in numerical solutions of the Boltzman equation

for twisted bilayer graphene subject to heterostrain, even

if the strain tensor and the transport relaxation time are

momentum and filling independent. For open Fermi sur-

faces, the magnetoresistance is expected to grow with the

magnetic field B without saturation along one of the prin-

cipal axis, but to saturate with increasing B along the

perpendicular principal axis [5]. Direct measurement of the

full anisotropic resistivity tensor in the vdW heterostruc-

tures as a function of filling and B would therefore help in

understanding the complex transport phenomena in these

materials.

One recent suggestion is to make a “sunflower” device

[2,3] consisting of a circular disk with thin rectangular

petals symmetrically pointing out. In a typical imple-

mentation there are 8 (Ref. [3]) or 16 petals [2]. In the

experiment, the current can be injected along any one of

the petals and drained along any other petal. At the same

*vafek@magnet.fsu.edu

time, the voltage differences can be measured across any

remaining pair of petals. Intuitively, if the source and the

drain are 180◦ apart, say north and south, and the voltage

drop is detected along the side, say northeast and south-

east, the resulting resistance will depend on some, possibly

complicated, admixture of the components of the conduc-

tivity tensor. Holding the relative orientation of the source,

the drain and the voltage detection leads fixed, the resis-

tance measurement can be performed for the four petals,

which are adjacent to the previous set, i.e., rotated relative

to them by 45◦ for 8 petals (the rotation would be by 22.5◦

for 16 petals). If the system has anisotropic conductivity,

the measured resistance will be different for the rotated

configuration. This rotation can be continued until return-

ing to the original orientation. Such a measurement, as well

as a large combination of different source, drain, and probe

petal choices, contains information about the anisotropic

conductivity tensor. The challenge is to extract this tensor.

In this paper we derive an expression for the voltage

at an arbitrary location on the uniform disk of radius a

with the current I injected at the source and removed at

the drain. The source and drain are placed at an arbitrary

pair of points on the boundary. The expression is derived

for an arbitrary local conductivity tensor and can be used

to extract this tensor and its orientation from the sunflower

experiment; resistivity tensor follows from a trivial inver-

sion of conductivity tensor, a 2 × 2 matrix. The extraction

can be done as follows: for each source and drain location,

there are only four parameters, which determine the entire

electrical potential profile. They are the two values of the

conductivity tensor along the principal axes σ±, the Hall

conductivity σH and the orientation of the principal axes

relative to the lab axes; the dependence on I is trivial in

the linear I -V regime, it is just an overall scaling factor.
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The “sunflower” measurement yields many more com-

binations of the pair of voltage probes and source-drain

locations, therefore overconstraining the possible values of

the four parameters. So, in practice, the four parameters are

adjusted to match the measured resistances.

Inside the disk, the anisotropic conductivity tensor is

assumed to be homogeneous and local, while outside the

disk there is no conduction. Without loss of generality, we

choose the coordinate system with the x and y axes aligned

with the principal axes and adopt the dyadic product to

represent the conductivity tensor. The expression for the

electrical potential in the lab coordinate system, rotated in

the clockwise sense by an angle ϕ relative to the coordinate

system of the principal axes, can then be easily obtained

from a simple rotation of the axes. The results in both

frames are stated later in the introduction.

Thus,

σ = D(x, y)
(

σ+x̂x̂ + σ−ŷŷ + σH

(

x̂ŷ − ŷx̂
))

, (1)

where D(x, y) = �(a2 − x2 − y2) and � is the Heaviside

step function, restricting the conduction to the interior of

the circle. Here σ± are the two components of the longi-

tudinal conductivity along the principal axes and σH is the

Hall conductivity. We express the longitudinal conductiv-

ities as σ± = σ̄ ± �σ and without loss of generality take

the x axis to be along the principal axis with larger resis-

tivity, i.e., �σ/σ̄ < 0. Note that in the coordinate system

of the principal axes the term x̂ŷ + ŷx̂ is absent and Eq. (1)

is the most general form of the conductivity tensor in two

dimensions.

The analysis spelled out in Sec. II then yields an expres-

sion in the form of a rapidly convergent series, which can

be used to extract the resistivity tensor for a point current

source and drain at rS,D = a(cos θA,B, sin θA,B) as described

above. Equation (2) in the coordinate system of the prin-

cipal axes, and Eq. (3), which transforms it into the lab

coordinate system, constitute the main result of the paper.

They are stated upfront so that those who do not need all

the mathematical details presented in Sec. II can skip it and

continue to Sec. III.

In the coordinate system of the principal axes, the

expression for the electrical potential at x, y reads

V(x, y; rS, rD) = I

π

√
σ+σ−

σ+σ−+σ 2
H

⎛

⎝

∞
∑

n=0,2,4,...

ln

∣

∣

∣
1 + e−2iθB�2+4n − e−iθB Z

α+
�2n

∣

∣

∣

∣

∣

∣
1 + e−2iθA�2+4n − e−iθA Z

α+
�2n

∣

∣

∣

+
∞

∑

n=1,3,5,...

ln

∣

∣

∣
1 + e2iθB�2+4n − eiθB Z

α+
�2n

∣

∣

∣

∣

∣

∣
1 + e2iθA�2+4n − eiθA Z

α+
�2n

∣

∣

∣

⎞

⎠

+ I

π

σH

σ+σ−+σ 2
H

⎛

⎝

∞
∑

n=0,2,4,...

arg

(

1 + e−2iθB�2+4n − e−iθB
Z

α+
�2n

)

− arg

(

1 + e−2iθA�2+4n − e−iθA
Z

α+
�2n

)

+
∞

∑

n=1,3,5,...

arg

(

1 + e2iθB�2+4n − eiθB
Z

α+
�2n

)

− arg

(

1 + e2iθA�2+4n − eiθA
Z

α+
�2n

)

⎞

⎠ . (2)

where the x, y position enters via the complex variable Z =
X + iY = x/

√
1 + �σ/σ̄ + i(y)/

√
1 − �σ/σ̄ , and the

parameters α+ = a/2
(

1/
√

1 + �σ/σ̄ + 1/
√

1 − �σ/σ̄
)

and

� =

√

√

√

√

√

√

√

1 − �σ
σ̄

−
√

1 + �σ
σ̄

√

1 − �σ
σ̄

+
√

1 + �σ
σ̄

.

The function arg is the argument of a complex number.

Note that because |�σ | < σ̄ , the parameter 0 ≤ � < 1

and therefore the above sum converges (the convergence

is rapid unless � is very close to 1). Illustrative contour

plots of V(x, y; rS, rD) for several parameters are shown in

the Fig. 1.

Although the above expression is obtained for a point

current source and drain, the linearity of the differential

equation whose solution it is allows direct determination

of the formula for multiple points, as well as spatially

extended, current sources and drains. Such a formula is

presented in the discussion section.

In the coordinate system of the lab axes, which is rotated

clockwise by an angle ϕ relative to the coordinate sys-

tem of the principal axes, the expression for the electrical

potential at x′, y ′ reads

Vlab(x′, y ′; x′
S, y ′

S, x′
D, y ′

D) = V(x, y; xS, yS, xD, yD), (3)

where x = x′ cos ϕ + y ′ sin ϕ, y = y ′ cos ϕ − x′ sin ϕ, and

similarly for xS,D, yS,D in terms of x′
S,D, y ′

S,D.

The paper is organized as follows: Sec. II provides

mathematical steps to arrive at the expression (2). First a

simple scaling transformation on the x, y variables is per-

formed, turning the disk domain into an ellipse in the X , Y
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(a) (b) (c) (d)

FIG. 1. Equipotential contours computed using Eq. (2) in the coordinate system of the principal axes for isotropic conductivity tensor

(a) for σH = 0 and (b) for σH = 0.4σ̄ ; in each case the point source is at θA = π/2 and the point drain at θB = −π/2. Equipotential

contours for anisotropic conductivity tensor for σH = 0 and �σ = −0.7σ̄ for point drain at θB = −π/2 and (c) point source at θA =
π/2 and (d) θA = π/4; ten terms in the sum were kept.

variables. Second a conformal transformation is then per-

formed on the ellipse turning it into an annulus, allowing

the final solution. Section III is devoted to discussion and

generalization of our results.

II. ANALYSIS

The starting assumption is that Ohm’s law holds, i.e.,

j = σ · E = −σ · ∇V, (4)

where j is the current density, E is the electric field, and V

is the electrical potential, all of which are assumed to be

position-dependent. For an idealized point current source

and drain, the continuity equation gives

∇ · j = I (δ(r − rA) − δ(r − rB)) , (5)

where I is the current, its source is at rA, its drain at rB, and

δ(r) is the Dirac δ function. Combining Eqs. (1)–(5) gives

− ∂

∂x

(

Dσ+
∂V

∂x

)

− ∂

∂y

(

Dσ−
∂V

∂y

)

− ∂

∂x

(

DσH

∂V

∂y

)

+ ∂

∂y

(

DσH

∂V

∂x

)

= I (δ(r − rA) − δ(r − rB)) . (6)

The solution to the above inhomogeneous linear partial

differential equation gives V as a function of r.

Expressing the longitudinal conductivities as

σ±=σ̄ ± �σ , (7)

it will be convenient to rescale the coordinate axes accord-

ing to

X = x
√

1 + �σ
σ̄

, (8)

Y = y
√

1 − �σ
σ̄

, (9)

so that Eq. (6) becomes

−
(

∂

∂X

(

D
∂V

∂X

)

+ ∂

∂Y

(

D
∂V

∂Y

))

− σH√
σ+σ−

(

∂

∂X

(

D
∂V

∂Y

)

− ∂

∂Y

(

D
∂V

∂X

))

= I
√

σ+σ−
(δ(X − XA)δ(Y − YA)

− δ(X − XB)δ(Y − YB)) . (10)

The domain, specified by D
(√

1 + �σ/(σ̄ )X ,√
1 − �σ/(σ̄ )Y

)

, is given by �(a2 − (1 + �σ/σ̄ ) X 2 −
(1 − �σ/σ̄ ) Y2), i.e., it is an ellipse. If �σ/σ̄ > 0, the

ellipse is elongated along the Y direction, if �σ/σ̄ < 0,

then the ellipse is elongated along the X direction. With-

out loss of generality we can choose the x axis to be along

the axis with larger resistivity, i.e., it will be assumed from

now on that

�σ/σ̄ < 0. (11)

Equation (10) can be expressed using complex coordinates

Z = X + iY, (12)

when, after some simplification, it becomes

− 2

(

∂

∂Z

(

D
∂V

∂Z̄

)

+ ∂

∂Z̄

(

D
∂V

∂Z

))

− 2iσH√
σ+σ−

(

∂

∂Z̄

(

D
∂V

∂Z

)

− ∂

∂Z

(

D
∂V

∂Z̄

))

= I
√

σ+σ−
(δ(X − XA)δ(Y − YA)

− δ(X − XB)δ(Y − YB)) . (13)

To avoid confusion, the right-hand side is kept in terms

of the real and imaginary parts of Z. This form makes it
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clear that inside the ellipse where D = 1, the solution can

be written in terms of a sum of a function of Z and a func-

tion of Z̄. The boundary conditions are determined from

the right-hand side and the derivatives of the boundary

function D.

A. Zhukovsky conformal mapping of the ellipse to

annulus

It will be convenient to perform a conformal map trans-

forming the boundary of the ellipse to the boundary of the

circle. This can be done using the Zhukovsky transforma-

tion

Z = α+w + α−
w

, (14)

w = u + iv, (15)

where u(X , Y) and v(X , Y) are purely real. To determine

the coefficients α+ and α− we demand that

(

1 + �σ

σ̄

)

X 2
0 +

(

1 − �σ

σ̄

)

Y2
0 = a2, (16)

implies

u2
0 + v2

0 = 1, (17)

i.e., if X0 and Y0 lie on the ellipse, then u0 and v0 are forced

to lie on the unit circle. From Eq. (14), we have

X0 + iY0 = α+(u0 + iv0) + α−(u0 − iv0), (18)

because, being on unit circle, 1/(u0 + iv0) = u0 − iv0.

Therefore,

X0 = (α++α−)u0, (19)

Y0 = (α+−α−)v0. (20)

So, from Eq. (16)

(

1 + �σ

σ̄

)

(α++α−)2u2
0 +

(

1 − �σ

σ̄

)

(α+−α−)2v2
0 = a2,

(21)

which implies

α± = a

2

⎛

⎝

1
√

1 + �σ
σ̄

± 1
√

1 − �σ
σ̄

⎞

⎠ . (22)

This fixes the conformal map. Having established that the

ellipse in the (X , Y) plane maps onto the unit circle in the

(u, v) plane, we wish to know where does the interior of

the ellipse map. To this end, seek such w = � that would

give

α+� = α−
�

∈ Re, (23)

for �σ/σ̄ < 0. This gives

� =

√

√

√

√

√

√

√

1 − �σ
σ̄

−
√

1 + �σ
σ̄

√

1 − �σ
σ̄

+
√

1 + �σ
σ̄

. (24)

So, letting w = �eiφ where φ is the polar angle in the u, v

plane and using Eq, (23) results in

α+�eiφ + α−
�eiφ

= a

√

−2�σ
σ̄

√

1 −
(

�σ
σ̄

)2
cos φ. (25)

This means that the circle of radius � in u, v plane maps

onto the line segment connecting the foci of the ellipse in

the X , Y plane. For �σ/σ̄ < 0, the foci lie on the x axis.

Therefore, the ellipse in the X , Y plane, including its inte-

rior, maps onto an annulus in the u, v plane with the outer

radius 1 and the inner radius � as illustrated in Fig. 2.

Because Z = f (w), i.e., Z is a function of w, w is in turn

a function of Z, i.e., w = g(Z), the left-hand side of the

differential equation can be written as

− 2

(

∂

∂Z

(

D
∂V

∂Z̄

)

+ ∂

∂Z̄

(

D
∂V

∂Z

))

− 2iσH√
σ+σ−

(

∂

∂Z̄

(

D
∂V

∂Z

)

− ∂

∂Z

(

D
∂V

∂Z̄

))

= ∂w

∂Z

∂w̄

∂Z̄

(

−
(

∂

∂u
D

∂V

∂u
+ ∂

∂v
D

∂V

∂v

)

+ σH√
σ+σ−

(

∂D

∂v

∂V

∂u
− ∂D

∂u

∂V

∂v

))

. (26)

Using Cauchy-Riemann conditions, it can be readily

shown that

∂w

∂Z

∂w̄

∂Z̄
= J

(

u, v

X , Y

)

, (27)

where J (u, v/X , Y) is the Jacobian determinant.

Equation (13) therefore gives

−
(

∂

∂u
D

∂V

∂u
+ ∂

∂v
D

∂V

∂v

)

+ σH√
σ+σ−

(

∂D

∂v

∂V

∂u
− ∂D

∂u

∂V

∂v

)

= I
√

σ+σ−

δ(X −XA)δ(Y−YA)−δ(X −XB)δ(Y−YB)

J
(

u,v
X ,Y

) .

(28)
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a

1 -
Δσ

σ
_

a

1 +
Δσ

σ
_

X

Y(a)

1Ω
u

v
(b)

FIG. 2. For �σ/σ̄ < 0, (a) the interior of the circular device with radius a maps onto the interior of the ellipse after the coordinate

rescaling. (b) The interior of the ellipse in the X , Y plane conformally maps onto the annulus in the u, v plane with unit outer radius

and inner radius set by �.

But, by the properties of the Dirac δ function under

coordinate transformation, it follows that

−
(

∂

∂u
D

∂V

∂u
+ ∂

∂v
D

∂V

∂v

)

+ σH√
σ+σ−

(

∂D

∂v

∂V

∂u
− ∂D

∂u

∂V

∂v

)

= I
√

σ+σ−
(δ(u−uA)δ(v−vA)−δ(u−uB)δ(v−vB)) ,

(29)

where D = �
(

1 − u2 − v2
)

. Now, because XA,B, YA,B lie

on the ellipse, uA,B, vA,B must lie on the unit circle. From

Eq. (18)

xA,B
√

1 + �σ
σ̄

= (α++α−) uA,B, (30)

yA,B
√

1 − �σ
σ̄

= (α+−α−) vA,B. (31)

Therefore, using Eq. (22),

xA,B = auA,B, (32)

yA,B = avA,B. (33)

B. Polar coordinates in the u, v plane

Switching to polar coordinates in the u, v plane

ρ =
√

u2 + v2, (34)

φ = tan−1 v

u
, (35)

gives

∂

∂u
= cos φ

∂

∂ρ
− sin φ

ρ

∂

∂φ
, (36)

∂

∂v
= sin φ

∂

∂ρ
+ cos φ

ρ

∂

∂φ
. (37)

Therefore, the derivatives of the boundary function are

∂D

∂u
= − cos φδ(ρ − 1), (38)

∂D

∂v
= − sin φδ(ρ − 1), (39)

and the differential Eq. (29) becomes

−
(

∂

∂ρ

(

Dρ
∂V

∂ρ

)

+ D

ρ

∂2V

∂φ2

)

+ σHδ(ρ − 1)
√

σ+σ−

∂V

∂φ

= I
√

σ+σ−
δ(ρ − 1) (δ(φ − θA) − δ(φ − θB)) . (40)

C. Homogeneous solution and the boundary conditions

A general solution of Eq. (40) for ρ < 1 where the terms

containing δ(ρ − 1) vanish can be written as

V(ρ, φ) =
∞

∑

m=1

(

Am

(

ρm

�m
+ �m

ρm

)

cos mφ

+ Bm

(

ρm

�m
− �m

ρm

)

sin mφ

)

. (41)
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This form satisfies the homogeneous differential equation

and is continuous and differentiable across the line cut

joining the foci. To see this, notice that the points on the

circle of radius � in the u, v plane map onto the line seg-

ment joining the foci X ∈ (−2α+�, 2α+�), Y = 0, as we

saw in Eq. (25). Therefore, the points on the inner circle

in the u, v plane, which are related by the mirror reflec-

tion about the v = 0 axis should be identified as the same

points. In other words, ρ = � and φ, and ρ = � and −φ

map onto the same physical point in the X , Y and therefore

x, y plane. We therefore want the potential at �+ and φ

to either be the same at −φ, which is accomplished by

(ρm/�m + �m/ρm) cos mφ, or we want it to vanish at �+

with a continuous slope. Vanishing at � is accomplished

by ρm/�m − �m/ρm, and the reason why only sin mφ can

multiply it is that multiplying it by cos mφ would introduce

a cusp across the line segment.

Integrating both sides of Eq. (40) over an infinitesimal

interval straddling ρ = 1 gives the boundary condition

∂V

∂ρ
|ρ=1 + σH√

σ+σ−

∂V

∂φ
|ρ=1 = I

√
σ+σ−

(δ(φ − θA) − δ(φ − θB)) . (42)

Substituting Eq. (41) into the above results in

∂V(ρ, φ)

∂ρ
|ρ=1 =

∞
∑

m=1

(

mAm

(

1

�m
− �m

)

cos mφ + mBm

(

1

�m
+ �m

)

sin mφ

)

, (43)

∂V(ρ, φ)

∂φ
|ρ=1 =

∞
∑

m=1

(

−mAm

(

1

�m
+ �m

)

sin mφ + mBm

(

1

�m
− �m

)

cos mφ

)

, (44)

and the differential Eq. (40) becomes

∞
∑

m=1

(

mAm

(

1

�m
− �m

)

cos mφ + mBm

(

1

�m
+ �m

)

sin mφ

)

+ σH√
σ+σ−

∞
∑

m=1

(

−mAm

(

1

�m
+ �m

)

sin mφ + mBm

(

1

�m
− �m

)

cos mφ

)

= I
√

σ+σ−

1

π

∞
∑

m=1

(cos mφ (cos mθA − cos mθB) + sin mφ (sin mθA − sin mθB)) , (45)

where the following identity was used for the right-hand side:

δ
(

φ − θA,B

)

= 1

2π

∞
∑

m=−∞
eimφe−imθA,B (46)

= 1

2π
+ 1

π

∞
∑

m=1

(

cos mφ cos mθA,B + sin mφ sin mθA,B

)

. (47)

Matching the coefficients of cos mφ and sin mφ and solving for Am and Bm gives

Am = I
√

σ+σ−

1

π

1

1 + σ 2
H

σ+σ−

1

m

(

cos mθA − cos mθB

�−m − �m
− σH√

σ+σ−

sin mθA − sin mθB

�−m + �m

)

, (48)

Bm = I
√

σ+σ−

1

π

1

1 + σ 2
H

σ+σ−

1

m

(

σH√
σ+σ−

cos mθA − cos mθB

�−m − �m
+ sin mθA − sin mθB

�−m + �m

)

. (49)

064008-6



ANISOTROPIC RESISTIVITY TENSOR... PHYS. REV. APPLIED 20, 064008 (2023)

Thus,

V(ρ, φ) = I
√

σ+σ−

1

π

1

1 + σ 2
H

σ+σ−

∞
∑

m=1

1

m

(

cos mθA − cos mθB

�−m − �m
− σH√

σ+σ−

sin mθA − sin mθB

�−m + �m

) (

ρm

�m
+ �m

ρm

)

cos mφ

+ I
√

σ+σ−

1

π

1

1 + σ 2
H

σ+σ−

∞
∑

m=1

1

m

(

sin mθA − sin mθB

�−m + �m
+ σH√

σ+σ−

cos mθA − cos mθB

�−m − �m

) (

ρm

�m
− �m

ρm

)

sin mφ

− (A → B). (50)

D. Summing over the angular momenta

The sum over m converges slowly. In order to convert it into a rapidly convergent sum, we first Taylor expand the

denominators involving �m and �−m, in powers of � as

V(ρ, φ) = I
√

σ+σ−

1

π

1

1 + σ 2
H

σ+σ−

∞
∑

n=0

∞
∑

m=1

(

�1+2n
)m

m

(

cos mθA − (−1)n σH√
σ+σ−

sin mθA

) (

ρm

�m
+ �m

ρm

)

cos mφ

+ I
√

σ+σ−

1

π

1

1 + σ 2
H

σ+σ−

∞
∑

n=0

∞
∑

m=1

(

�1+2n
)m

m

(

(−1)n sin mθA + σH√
σ+σ−

cos mθA

) (

ρm

�m
− �m

ρm

)

sin mφ

− (A → B). (51)

Then the resulting sum over m is related to the geometric series by integration, and since � < 1, the sum over n will be

rapidly convergent. Therefore, for C = A, B, we have

∞
∑

m=1

eimθCeimφ �m(1+2n)

m

(

ρm

�m
± �m

ρm

)

= − ln
(

1 − eiθC
w

�
�1+2n

)

∓ ln

(

1 − eiθC
�

w̄
�1+2n

)

. (52)

Adding longitudinal and Hall contributions finally gives Eq. (2).

III. DISCUSSION

Because the differential equation is linear, it is straightforward to generalize the expression derived above to the case

with multiple sources and drains. In such a case the continuity equation reads

∇ · j =
nS

∑

j =1

I S
j δ(r − rA,j ) −

nD
∑

j =1

I D
j δ(r − rB,j ), (53)

where nS is the number of point sources and nD is the number of point drains, and
∑nS

j =1 I S
j =

∑nD
j =1 I D

j = I . The resulting

expression is

V(x, y; {rA,j }, {rB,j })

= 1

π

√
σ+σ−

σ+σ−+σ 2
H

nD
∑

j =1

I D
j

⎛

⎝

∞
∑

n=0,2,4,...

ln

∣

∣

∣

∣

1 + e−2iθB,j �2+4n − e−iθB,j
Z

α+
�2n

∣

∣

∣

∣

+
∞

∑

n=1,3,5,...

ln

∣

∣

∣

∣

1 + e2iθB,j �2+4n − eiθB,j
Z

α+
�2n

∣

∣

∣

∣

⎞

⎠

− 1

π

√
σ+σ−

σ+σ−+σ 2
H

nS
∑

j =1

I S
j

⎛

⎝

∞
∑

n=0,2,4,...

ln

∣

∣

∣

∣

1+e−2iθA,j �2+4n −e−iθA,j
Z

α+
�2n

∣

∣

∣

∣

+
∞

∑

n=1,3,5,...

ln

∣

∣

∣

∣

1+e2iθA,j �2+4n −eiθA,j
Z

α+
�2n

∣

∣

∣

∣

⎞

⎠
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+ 1

π

σH

σ+σ−+σ 2
H

⎛

⎝

∞
∑

n=0,2,4,...

nD
∑

j =1

I D
j arg

(

1 + e−2iθB,j �2+4n − e−iθB,j
Z

α+
�2n

)

−
nS

∑

j =1

I S
j arg

(

1 + e−2iθA,j �2+4n − e−iθA,j
Z

α+
�2n

)

+
∞

∑

n=1,3,5,...

nD
∑

j =1

I D
j arg

(

1 + e2iθB,j �2+4n − eiθB,j
Z

α+
�2n

)

−
nS

∑

j =1

I S
j arg

(

1 + e2iθA,j �2+4n − eiθA,j
Z

α+
�2n

)

⎞

⎠ . (54)

The expression for extended source and drain can be found

by treating I
S/D
j as infinitesimal and then converting the

Riemann sum into an integral. The obtained expression

can now be used to fit measurements with multiple volt-

age probes for arbitrary current source and drain placed on

the perimeter of the disk.
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