2022 IEEE/RS) International Conference on Intelligent Robots and Systems (IROS) | 978-1-6654-7927-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/IR0S47612.2022.9981159

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 23-27, 2022, Kyoto, Japan

Skeleton-based Adaptive Visual Servoing for Control of Robotic
Manipulators in Configuration Space

Abhinav Gandhi', Sreejani Chatterjee !, and Berk Calli!

Abstract—This paper presents a novel visual servoing
method that controls a robotic manipulator in the configuration
space as opposed to the classical vision-based control methods
solely focusing on the end effector pose. We first extract
the robot’s shape from depth images using a skeletonization
algorithm and represent it using parametric curves. We then
adopt an adaptive visual servoing scheme that estimates the
Jacobian online relating the changes of the curve parameters
and the joint velocities. The proposed scheme does not only
enable controlling a manipulator in the configuration space, but
also demonstrates a better transient response while converging
to the goal configuration compared to the classical adaptive
visual servoing methods. We present simulations and real
robot experiments that demonstrate the capabilities of the
proposed method and analyze its performance, robustness, and
repeatability compared to the classical algorithms.

I. INTRODUCTION

Vision-based control algorithms have been utilized for
robotic manipulators to accomplish various positioning, nav-
igation and manipulation tasks [1]-[4]. Defining the con-
trol error using visual information allows to measure and
incorporate task-relevant information which is useful for
robots operating in unstructured environments; closing the
control loop in the task space enables the robot to account
for errors in the robot model and calibration [1]. Adaptive
control schemes are also applied to vision-based control,
allowing to estimate, in an online manner, the relation
between corresponding visual features and the robot motion,
and controlling the robot even without knowing the robot
Jacobian a priori [S]-[7].

Our work focuses on image-based visual servoing (IBVS)
for eye-to-hand arrangements [8], in which the robot motion
is controlled via an external camera observing the robot.
Such algorithms in the literature utilize image features corre-
sponding to the end effector of the robot, and servo the robot
so that these features converge to the desired goal locations
(obtained from a goal image). Accordingly, these algorithms
only focus on the control of robot’s end effector pose. In
this work, we propose a novel visual servoing algorithm that
can control the robot in the configuration space by modeling
the robot’s shape (‘skeleton’), fitting a parametric curve to
it, and servoing the robot so that the the curve representing
the current robot shape converges to the curve representing
the goal configuration (Fig. 1). Specifically, we use the
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Fig. 1. The proposed skeleton-based adaptive visual servoing method is
utilized to make the robot’s modeled skeleton (shown with the green curves)
converge to a goal configuration (shown with a red dashed curve).

skeletonization algorithm in [9], model the robot skeleton
via B-splines [10], and design an adaptive visual servoing
algorithm that provides convergence to the goal configuration
while estimating the Jacobian between the robot motion and
the change in curve features in an online manner. To the best
of our knowledge, this algorithm is the first one in literature
that allows visual servoing of robotic manipulators in their
configuration space.

Being able to control the robot in configuration space
brings several advantages:
1) Resolving Configuration Ambiguities: We are able
to define goal poses and control the robot for specific
configurations that correspond to the same end-effector
position and/or orientation. For example, such an algorithm
can specifically choose to servo the robot to an elbow-up,
elbow-down, shoulder-right, or shoulder-left configuration
of the same end-effector pose. The classical visual servoing
algorithms do not have this ability and would servo to the
goal position in a configuration that is closest to the initial
configuration of the robot.
2) Better transient response: We experimentally observed
that our adaptive visual servoing approach performs better
than classical adaptive visual servoing schemes as it employs
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more visual information regarding the robot motion.

3) Better robustness: Typically, visual servoing algorithms
operate in the kinematics level: essentially, they are velocity
reference generators that rely on an inner joint space
velocity control loop for executing these references [8].
The more accurate this inner control loop is, the better
the visual servoing performance becomes. The accuracy
of the inner control loop is especially important for the
adaptive visual servoing algorithms to converge to a
Jacobian that relates the image feature motions to the robot
motion. We experimentally show that our skeleton-based
algorithm provides a better transient response in the face
of inner control loop deficiencies. While such robustness is
important for all visual servoing applications, it would be
even more crucial for compliant (low impedance) robots,
since accurately controlling them is challenging.

4) Leveraging redundancy: Since our algorithm can servo
the robot to a given goal configuration, it can fully utilize
the redundancy of the robot. This would especially be
useful for controlling highly redundant robots or soft robotic
manipulators such as [11], allowing them to avoid obstacles
or navigate in complex environments. Classical visual
servoing approaches do not have this ability, since they only
consider the end effector pose of the robot.

The Scope and Assumptions of This Paper:

In this work, we focus on 2D implementations of the
skeleton-based visual servoing. We provide a thorough anal-
ysis for the capabilities, robustness, and repeatability of the
proposed algorithm. Specifically, we provide results demon-
strating the algorithm’s ability to control the robot to different
configurations (while also showing its singularities), perform
repeated experiments to show its repetability, and present its
performance in low impedance case. We also compare these
aspects to a classical adaptive visual servoing algorithm.
While several 3D skeletonization algorithms exist in the
literature [12]-[14] and the methodology has a potential to
be expanded to the 3D case, we leave the implementation
and analysis of that for the future work.

Our inspiration stems from the success of the skeleton-
based human pose tracking algorithms in the literature [15]—
[17]. Recent machine learning-based algorithms provide real
time pose tracking that is robust to external occlusions (by
other objects in the scene) and self-occlusions. In this work,
we use an algorithmic skeletonization method [9] and assume
that there is no occlusion in the scene. Nevertheless, we
believe that adopting the skeleton-based human-pose tracking
algorithms to the robots has a great potential to achieve robot
configuration control that is robust to occlusions. This aspect
is discussed in the last section.

II. BACKGROUND

Apart from traditional visual servoing approaches [1], [8]
that rely on the knowledge of the robot Jacobian, adaptive
algorithms such as [18]-[20] estimate the image and robot
Jacobian online and require minimum prior knowledge of

the system’s kinematics. All these methods describe image
errors for the end-effector and consequently assert control in
the task space of the robotic manipulator.

Using curve features from observed objects is another
popular practice for visual servoing. In [21], an image
Jacobian is derived for the polar description of an object’s
contour. Points on the viewed object’s boundary are used
as features for servoing the robot to its target location. The
target location is defined by target image positions for each
point on the object boundary. This allows the use of unknown
objects in the robot’s workspace for the visual servoing task.
This approach is found computationally inefficient due to the
large number of features used. In [22] shapes are represented
by algebraic curves. The curve is decomposed into a sum
of product of line factors which are used to derive image
features. A point feature interaction matrix is deployed in
the control law. Similarly, in [23] the authors use Bezier and
Non-Uniform Rational B-Spline (NURBS) curves to model
the object’s contour and derive image features for an eye-
in-hand adaptive IBVS scheme. These methods use the eye-
in-hand setup that servos the robot relative to the observed
object. To the best of our knowledge our algorithm is the only
approach that utilizes robot skeleton and servos the robot in
the configuration space using an eye-to-hand arrangement.

Recently, there has been interest in deforming soft bodies
into target shapes using visual servoing techniques. Authors
in [24] show how shape features can be used to estimate
online an adaptive deformation model for a soft body that
is deformed with a robotic manipulator. This adaptive model
is then applied in the IBVS control law to deform the soft
body into a target shape. In [25], B-Splines are used to
represent the shape of deformable wires. The deformation
matrix is adaptively estimated online to deform the wire into
its target shape. These works provide us inspiration to design
an approach that utilizes shape representations to control the
robot in its configuration space.

III. SKELETON-BASED ADAPTIVE VISUAL SERVOING

The overall skeleton-based adaptive control scheme is
provided by the diagram in Fig. 2. The feature extraction and
control system design aspects are explained and discussed in
this section.

A. Obtaining Skeletons and Corresponding Features

In this work, we propose to use a representation of robot’s
shape for visual servoing in configuration space. While there
are various options that can be utilized for representing the
shape of the robot, e.g. contours [26] and volumetric methods
[27], we chose to use a skeleton-based representation, which
is more compact compared to these methods, but still gives
us the required information about the robot’s configuration.
In our implementation, we use an RGB-D camera, and first
segment the robot’s silhouette by distance filtering the depth
image. The skeleton is then obtained by applying medial axis
transform and thinning methods to this silhouette as in [9].
The extracted skeleton is a single pixel wide curve which
closely approximates the robot’s shape. As an example,
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Fig. 2. Block diagram of the Skeleton-based Adaptive Visual Servoing algorithm. Orange boxes are related to obtaining skeletons and the related features.
Green blocks comprise the adaptive vision-based control rule. Blue blocks are representing the camera, the robot and the robot’s controller.

Fig. 3. Skeleton (blue curve) and approximated B-spline (red curve) for the
robot configuration shown in the image. The yellow points denote control
points of the curve.

Fig. 3 shows the robot’s skeleton with a blue curve for
the given configuration after the skeletonization algorithm
is applied (the thickness of the skeleton is exaggerated for
visibility in the figure).

We then generate a mathematical model of this curve.
Among the implicit, explicit, and parametric methods for
curve modelling, the parametric methods are the most suit-
able type for our case: Implicit and explicit representations
(in the form of y — f(xz) = 0 and y = f(x) respectively
in the 2D case) require to have a single = value for each

y value of the skeleton pixels, which significantly limits the
robot configurations that can be represented. The parametric
methods model the 2(t) and y(t) coordinates of the skeleton
separately with a common ¢ parameter, and therefore, do not
limit the possible configurations in the robot’s workspace.
Among the parametric curve modelling options, we use
Normalized B-splines [10] due to the following reasons.
B-splines constitute multiple polynomial segments that are
linearly combined with smoothness constraints. This piece-
wise nature of B-splines helps our method represent complex
shapes (configurations) with a collection of relatively low
degree polynomials. The individual polynomial pieces are
determined by a control polygon formed by control points.
As such, the control points uniquely represent the shape of
the B-spline that is used to approximate the robot skeleton
[10]. We use these control points as features in our visual
servoing scheme.

It is also important to note that B-splines provide a spatial
curve model, which allows to represent robot configurations
in 3D space. Furthermore, they are invariant to translation,
rotation, scaling and perspective projection, and therefore
there is a one-to-one correspondence between the features
(control points) in 3-D space and the image plane [23], [28].
These properties enable using B-splines and their control
points to servo the robot in 3-D space using image-based
visual servoing. While all the implementations in this paper
are 2D planar visual servoing, we believe that utilizing B-
splines will allow us to extend our implementation to 3D
configurations in the future.

Fig. 3 shows the B-spline curve in red, which is fitted to
the skeleton of the robot in blue. In this figure, we model the
skeleton using a B-spline with two segments, each of which
are parameterized by third degree polynomials. This B-spline
is represented by five control points which are shown in
yellow color.
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B. Adaptive Visual Servoing

As mentioned in Section III-A, we use control points of
the B-spline (that is fitted to the skeleton of the robot) as
features for visual servoing. Our feature error vector e is
defined in the image space as the difference between the
goal feature vector c*, which contains image co-ordinates
of the control points ¢ for the robots desired configuration,
and the current feature vector ¢, which contains the image
co-ordinates of the control points c¢; in the robots current
configuration. Here, ¢ and c* € R?P where p is the number
of control points used to compute e as shown in (1). Each
control point ¢; and ¢} (in ¢ and c* respectively) € R

e=c—c" (1)

This image error is utilized in a vision-based control loop
in [8] as follows:

Ve = —/\J;ne, 2)

where v. is the desired velocity for the control points
in Cartesian space, which would make the current control
points converge to their goal locations in the acquired image.
J;{n is the pseudo inverse of the image Jacobian. This
desired Cartesian space velocity is converted to desired joint
velocities, g, € R™ (m is the number of controllable joints
in the robot), using the robot Jacobian, J,, as follows:

‘jr = ijc (3)

Combining eq. (2) and eq. (3) results in

Gr = —NJJ} e 4)

In our adaptive visual servoing scheme, we estimate the
combined image-robot Jacobian, J = JFJ: . This estima-
tion is performed by using the last n collected samples of the
input joint velocities to the robot (Q € R™*™) and observed
feature velocities from the acquired images (C' € R"™?P) as
follows:

Q=1[dlk —n+1], 4k —n+2], ..., glk" (5
C=ék—n+1], élk—n+2], ..., ek]" (6

Here, k is the iteration number of the control loop, and n
is also called the “window size” of the adaptation. Let’s call
the estimated combined Jacobian J.. The adaptive updates
are performed for each row of jc as shown in [24]:

Jo, [k +1] = AJ,, [k] + Je, [K] (8)

In these equations, J,,[k] is the i*" row of the combined
Jacobian at instance k, and ~ is the gain of the adaptive
process. Essentially this update rule calculates the difference
between the expected and measured feature displacements,
and projects it as a corrective term after scaling it with ~.

This adaptive scheme requires to be initialized by col-
lecting the first n samples of ¢ and ¢. This is achieved by
providing an initial trajectory to the robot and recording these
values. The window size is an important design parameter for
an adaptive scheme: A large window size makes the system
robust to sharp changes in velocity, however it increases the
time required for the Jacobian to converge. A small window
size may make the system more vulnerable to measurement
noise and may cause sudden changes in robot velocity.

IV. SIMULATIONS AND EXPERIMENTS

In this section, we analyze the capabilities of the skeleton-
based adaptive visual servoing, and compare its performance
to the classical adaptive visual servoing scheme in [19].

A. Configuration Space Control:

A capability of the skeleton-based scheme is to control the
robot in configuration space. We demonstrate this capability
via simulations with a two-link planar robot in Gazebo
simulator. Fig. 4 presents two examples of servoing the
robot to two different configurations (elbow-left and elbow-
right) that correspond to the same end-effector positions. It
is important to note that this is beyond the capabilities of
classical image-based visual servoing schemes, since they
only utilize the features on the end effector. These algorithms
would converge to a given end effector pose with the closest
configuration to the initial one. Thanks to the skeleton
representation that provides features to the control algorithm
all along the robot’s shape, we can define goals and achieve
convergence for different configurations.

We also observed that the algorithm sometimes gets stuck
in local minima as presented in Fig. 5. These local minima
are observed to be at the axial symmetry of the desired
configuration. We believe that this phenomenon might be a
limitation of our curve modeling technique, and will explore
various different modeling methods to avoid the local minima
in the configuration space. Nevertheless, we believe these
minima can be overcome by providing intermediate goal
configurations between the initial and final configurations.

We also observed that both successful convergence and
local minima cases are repeatable; the system followed very
similar trajectories for each initial-goal configuration pair for
five consecutive runs.

B. Controlling a Redundant Manipulator

Proof of concept experiments for the capability of the
skeleton-based algorithm to leverage the redundancy of the
robot is given in Fig. 6. In this example, we run simulations
with a 3 DOF planar robot. The skeleton-based algorithm
was able to make the system converge to the desired config-
urations utilizing all 3 joint motions.

C. Performance Comparison:

We run experiments with a real robot in order to compare
the performance of the skeleton-based adaptive approach to
the classical adaptive visual servoing algorithms. We utilized
a Franka Emika Panda robot along with an Intel RealSense
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Fig. 4. Configuration space control for the same goal position (as shown
by the yellow “+” markers) and initial configuration. Results shown for two
experiments. Left panels: Initial configuration of the robot. Middle panels:
Robot at the target with elbow right configuration. Right panels: Robot at
the target with elbow left configuration. Red dotted curves are the provided
targets, and green curves are the modeled skeleton of the robot.
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Fig. 5.

d435i depth sensor to acquire visual feedback. These ex-
periments are constrained to the planar case and we use two
links of the robot. We use Aruco markers for simplifying the
image processing as follows: In the implementation of the
classical adaptive visual servoing, we track the pixel position
of the marker center and utilize it in the vision-based control
loop. For our skeleton-based algorithm, we use the markers
for constraining the two ends of the extracted skeleton.

We performed 20 experiments with each of the algorithms
for two different initial positions and the 10 targets that
corresponds to the marked end-effector positions in Fig. 7
(For the skeleton-based algorithm, reference curves that
correspond to these target locations are provided).

Prior to conducting the experiments, both algorithms are
tuned with a target location that has an end-effector image
error of 100 pixels in each axis of the image plane. The
estimation window size (n in eqgs. (5) and (6)) is set to 50, and
a control loop frequency of 10 Hz is used. Both algorithms

Configurations
Goal Pose-1

Initial Pose Goal Pose-2

Fig. 6. Skeleton-based visual servoing is also suitable for leveraging the
redundancy of the robot. Experiments with a 3 DOF planar robot.

Fig. 7.
experiments.

Experimental setup and distribution of target poses for the

are provided with the same velocity profile for collecting the
first 50 samples. The controller gains, A, and adaptation gain
~ are extensively tuned for the best performance for each
algorithm while ensuring that the overshoot in end-effector
position errors are less than 5% and the steady state errors
are within £2% of the target position.

The mean and standard deviation for rise time, overshoot
and settling time of 20 experiments for each algorithm is
given in Table I. This data shows that our algorithm provides
faster convergence with less overshoot. We believe that the
higher performance is due to utilizing more information
regarding the motion of the robot via the shape representation
during the online adaptation. Fig. 8 provides the end-effector
trajectory for the skeleton-based algorithm in yellow. The
red dotted curve represents the target configuration and the
green curve represents the final configuration at the end of
the experiment. For this experiment, the end-effector error
and normalized feature error is provided in fig. 10, the
joint velocities are shown in fig. 9, and the model-error for
estimation of the combined Jacobian, J., is given in Fig. 11
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(our sampling and control frequency is 10 Hz, and therefore
10 iterations = 1 second). The first 50 iterations of the plot
represent the model error during the initial estimation period,
while the rest of the iterations represent the model-error
during the control phase. We stop updating our estimation
of the interaction matrix once the robot is close to the
target configuration. The algorithm provides smooth decay
of the error with close-to-optimum trajectory even when the
Jacobian error does not converge to zero.

TABLE I
PERFORMANCE COMPARISON SUMMARY

[ || Baseline IBVS || Proposed algorithm |
Rise time (s) 9.025 £ 3.316 6.870 £ 3.164

Overshoot (%) 4.83 £+ 0.095 2.14 £ 0.044

Settling time (s) || 15.585 & 4.570 11.232 £ 4.029*

Fig. 8. End effector trajectory (as denoted by the yellow curve) plot for our
proposed algorithm. The green curve shows the modeled skeleton for the
current image and the red dotted curve shows the desired modeled skeleton
curve.

D. Repeatability:

A repeatability test is conducted for the skeleton-based
adaptive algorithm and the classical adaptive algorithm by
running 5 trials for the same initial and reference positions.
The results are summarized in Table II. In general, the
transient response results look quite consistent for both the
classical adaptive algorithm and our proposed algorithm. We
notice one trial with a larger overshoot for our novel algo-
rithm and hence the much larger mean overshoot percentage.
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E. Robustness:

As summarized in the introduction section, visual servoing
algorithms typically operate in the kinematic level, and they
rely on accurate inner loop velocity controllers. The accuracy
of this inner loop controller is especially crucial for the
adaptive visual servoing algorithms to achieve convergence.
However, there can be many cases, where an accurate inner
loop controller is not available, e.g. low-impedance robots,
soft robots. To simulate these conditions, we decrease the
joint stiffness of the Franka Emika manipulator by a factor
of 20. This significantly reduces the tracking accuracy of
the low-level controllers and adds undesired dynamics for
the visual servo controllers. We perform a total of eight
experiments with two target positions for each algorithm. For
each target, we run two trials. First, with the robot’s stiffness
set to maximum. This serves as a benchmark experiment and
the second, with the reduced robot stiffness. Figure 12 shows
the experiment trajectories of the end effector. The images
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Fig. 11. Model-error for the estimation of interaction matrix

TABLE II
SUMMARY OF REPEATABILITY TESTS

[ [[ Baseline IBVS [ Proposed algorithm |

Rise time (s) 7.26 +0.17 3.620 £ 0.08
Overshoot (%) 0.33 +£0.00 1.37+£0.01
Settling time (s) 14.74 £ 0.26 7.90 £0.28

are cropped to focus on the region of interest. We can see that
trajectories with reduced stiffness (shown in green) for our
proposed algorithm are significantly closer to their respective
benchmarks (shown in red) than for the baseline algorithm.
This robustness to the system dynamics can be attributed to
the shape features used to estimate the image Jacobian for
our novel algorithm.

V. CONCLUSION & FUTURE WORK

In this paper, we show how skeletonization and curve
fitting techniques can be leveraged to obtain a representation
of the robot’s shape, which then can be used for vision-
based control purposes. We proposed an adaptive scheme
that estimates the relation between the changes in the robot’s
curve representation and the input joint velocities in an online
manner. We provide simulation and experimental results that
demonstrate the capabilities of our algorithm and compare
it’s performance to the classical adaptive visual servoing
approach. Our algorithm shows promising results with faster
convergence, minimal overshoot and low steady state errors.
Additionally, it provides the benefit of configuration space
control which is not possible with classical visual servoing
algorithms.

We believe that this work unlocks new possibilities for
vision-based control of robotic manipulators and poses im-
portant new research questions. We are particularly interested
in adopting newer and faster skeletonization methods such
as skeleton-based human pose tracking techniques [15]-
[17] for robot configuration tracking to achieve accurate
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Fig. 12. End-effector trajectories for two targets. From the left: target 1 -
a)baseline algorithm, b)proposed algorithm; target 2 - c)baseline algorithm,
d)proposed algorithm. Benchmark trajectory shown in red and trajectory for
reduced joint stiffness shown in green.

shape extraction while being robust to occlusions. The skele-
tonization method used in our approach is the bottleneck
for our algorithm currently and using faster methods that
are robust to noise and occlusions in the acquired depth
images would significantly improve controller performance.
The extension of our approach to the configuration control
in 3D space is of our interest. We expect our current
representation to scale well in terms of spatial modelling
capabilities. However, with redundant robots in 3D space we
expect other issues such as self-occlusion. We would like
to consider the following options for circumventing these
problems: a) using multiple views of the robot to reconstruct
its skeleton, b) using an approximate physical model of the
robot to augment the information provided by vision sensor.
Avoiding local minima of the curve representation would also
boost the performance of the algorithm. For this purpose,
we are planning to try other parametric curve modeling
techniques. Currently, our algorithm is unable to validate
a given target configuration and we assume that the target
configurations provided are within the robot’s workspace and
valid. The ability to generate valid targets and intermediate
configurations between the initial and final configurations
is also expected to be an effective solution for avoiding
local minima and unreachable target configurations. Another
interesting direction would be to utilize the skeleton-based
adaptive visual servoing in soft robot control. Since we
use normalized B-splines, we do not expect degradation in
control performance due to changes in length of the robot’s
skeleton as in soft robots. Skeletons are expected to provide
very effective representations of such robots, and leverage
their redundancy for avoiding obstacles, compensating for
unwanted deformations in the robot shape, and navigating
complex environments.
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