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Abstract—This paper devises a neural electromagnetic tran-
sients program (NeuEMTP), an unsupervised, physics-informed
learning approach to numerical-integration-free EMTP solutions.
The main contributions lie in: (1) a learning-based NeuEMTP
architecture to simultaneously generate the electromagnetic states
at all desired time steps, making the step-by-step integration
unnecessary; (2) an unsupervised, physics-informed training pro-
cedure to realize the Neu EMTP functionality without requiring
any EMTP trajectories beforehand; (3) an EMTP-oriented-
neural-network (EMTPNet) accompanied with a novel activation
function Act_mix to enable efficient extrapolations of diverse
oscillation modes under arbitrary frequencies. Case studies sys-
tematically verify that NeuEMTP generates high-fidelity EMTP
trajectories without involving any numerical integration before
or during the training process, and is promising to achieve faster-
than-real-time EMTP simulations on the off-the-shelf computers.

Index Terms—Electromagnetic transients program (EMTP),
deep learning, physics-informed deep learning, trapezoidal rule,
data-driven computing.

I. INTRODUCTION

LECTROMAGNETIC transients program (EMTP), an
indispensable tool for modern power systems, is known
for its formidably daunting computational complexity. The
step-by-step numerical integration makes the classical EMTP
extraordinarily time-consuming since tiny discretizations are
required to precisely trace the electromagnetic waveforms [1].
Recent developments of machine learning (ML) shed light
on revolutionizing the dynamical system analytics [2]. In con-
trast to the numerical solvers, learning-based methods directly
learn trajectories from data without repeatedly solving the
dynamical equations, which are promising for achieving or-
ders of magnitude of acceleration. Nevertheless, conventional
learning-based dynamics prediction approaches mostly adopt
a supervised learning architecture. The strong reliance on
sufficient training data, although workable for slow dynamics
prediction of power systems [3], may not be practical for
learning the high-frequency electromagnetic oscillations. The
reason is that generating and storing a large quantity of high-
fidelity EMTP trajectories could be exceedingly inefficient.
Physics-informed deep learning is a newly-emerged learning
technique, where a physics-informed neural network (PINN)
predicts a dynamical system’s behaviour leveraging the dif-
ferential equations behind the dynamical responses [4]. Ben-
efiting from the exploration of the physics laws, this learn-
ing procedure can be accomplished with fewer or even no
training data. PINN can promisingly accelerate the solving of
ordinary/partial differential equations and has been applied in
diverse disciplines such as fluid flows, biological simulation,
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molecular dynamics. A few studies also investigated the po-

tential of PINN in power system analytics, such as steady-state

analysis [5] and electro-mechanical dynamics analysis [6].
This paper tackles the EMTP obstacle by leveraging the

physics-informed learning philosophy. Two major challenges

are to be addressed: (i) how to properly embed the trape-
zoidal discretization-based EMTP formulation into the ma-
chine learning architecture; (ii) how to accurately imitate
the highly-oscillating electromagnetic waveforms by a neural
network. Our key innovation is a Neural EMTP (NeuEMTP)
approach, which integrates an EMTP-oriented-neural-network

(EMTPNet) and an EMTP-physics-law-informed training pro-

cess to enable ultra-efficient, high-fidelity, and unsupervised

EMTP computation. The contributions of this work include:

o A learning-based EMTP architecture is designed, which
generates the electromagnetic transients at all time steps si-
multaneously via a single forward propagation of EMTPNet.

« An EMTP-physics-law-informed and unsupervised training
procedure is established, which completely removes the hard
requirements to have massive EMTP trajectories as training
samples, making NeuEMTP more efficient than any existing
learning-based power system dynamic analytics.

o An EMTP-oriented-neural-network (EMTPNet) is devised,
which designs a novel activation function Act_mix and an
EMTP interpretation layer to jointly capture diverse electro-
magnetic oscillation modes under arbitrary frequencies.
The remainder of the paper is organized as follows. Sec-

tion II devises the NeuEMTP algorithm. Section III provides

case studies. Section IV concludes the paper.

II. METHODOLOGY
A. Preliminaries of Classical EMTP

For an arbitrary electrical component, its EMTP formula-
tion is established by discretizing the state-space model into
algebraic equations of an equivalent resistance using numerical
integration rules [1], such as the trapezoidal discretization:

i(t) = gu(t) — in(t) (1)
Here, i(t) and v(t) respectively denote the current and voltage
of the component; g denotes the equivalent conductance;
ip,(t) denotes a historical current injection, which reflects the
impact from the previous time step. Specifically, (2) details
the expression of g and i (t) for resistance, inductance and

capacitance:
1 .
IR="Tp > inr(t) =0 (22)
At . ;
9L =57 » nr(t) = —gror(t — At) —ir(t — At) (2b)
2C

gc = E , Z'h7c(t) = gcvc(t — At) + ’ic(t — At) (2¢)
where At denotes the step size in the EMTP computation.
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By assembling the discretized formulation of each compo-
nent, the EMTP model of the entire system can be established:

Gu(t) = i5(t) + in(t) :=(t) 3)
Here, v denotes the vector of nodal voltages; ¢ denotes the
vector of nodal current injections, which assembles currents
from both power sources (i.e., ¢5) and history terms (i.e., ¢5);
G denotes the equivalent conductance matrix of the system.
Therefore, at each time step, EMTP updates the electro-
magnetic states at the current step based on the results at the
previous step(s), as depicted in Fig. 1(a). This step-by-step
numerical integration makes EMTP exceedingly inefficient.
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(a) Classical step-by-step EMTP (b) Learning-based NeuEMTP

Fig. 1: Illustration of NeuEMTP and its comparison with the classical EMTP

B. NeuEMTP: A Neural EMTP Methodology

Motivated by the need to resolve existing obstacles in the
EMTP computation, we devise NeuEMTP, a learning-based
EMTP approach. Denote t,., = [t1, - ,tn] € RY™™ as
the time sequence which is desired to perform the EMTP
simulation, where t;, = kAt. Without loss of generality, this
paper studies impedance networks, whereas the method is
universal and can be directly applied to power networks with
arbitrary dynamic components. Denote vs.q € R™*™ and
tseq € R™>™ as the time-series of unknown nodal voltages
and component currents.

As illustrated in Fig. 1(b), in contrast to the classical
EMTP, NeuEMTP reads in t,., and directly generates the
electromagnetic trajectories through the forward propagation
of the neural network. Upon this design, the electromagnetic
states at all time steps (i.e., Vseq and s.4) Will be computed
simultaneously, making the intractable step-by-step computa-
tion unnecessary.

The following details the NeuEMTP methodology.

1) Unsupervised Learning Architecture of NeuEMTP: The
overarching feature of NeuEMTP is that the entire algorithm is
achieved under an unsupervised learning architecture, meaning
that no EMTP trajectory needs to be generated even for the
training purpose. This feature differentiates our method from
any existing learning-based power system dynamic analytics.

Under a supervised learning architecture, it is trivial to train
a deep neural network (DNN) for replicating arbitrary curves.
As depicted in Fig. 2(a), a DNN can be readily optimized
by minimizing the mean squared error (MSE) between the
training data and the DNN outputs. Nevertheless, supervised
learning strongly relies on a sufficiently large training set to
guarantee accuracy and avoid overfitting. This requirement,
as aforementioned, could be extremely unattainable in the
EMTP learning, given that EMTP requires a small simulation
time step and therefore, computing and saving massive EMTP
results are very challenging and resource-consuming.

978-1-6654-0823-3/22/$31.00 ©2022 IEEE

Backpropagation Backpropagation i‘

N Loss = MsE(['i’] , [': ]) Loss = L(Physics)

DNN N
> v, v, 1 EMTP model
Xo*> to
s seq | EMTP

Training set Net [— Vg,
(a mass of EMTP trajectories) 1

iseq

(a) Conventional supervised ML (b) Unsupervised, physics-informed NeuEMTP

Fig. 2: Illustration of the unsupervised learning architecture of NeuEMTP and
its comparison with conventional supervised ML approaches

This observation motivates the establishment of NeuEMTP
as an unsupervised learning-based EMTP approach. Fig. 2(b)
summarizes the schematic of NeuEMTP. Kernel ingredients of
NeuEMTP include:

(i) An EMTP-oriented-neural-network (EMTPNet) to effica-
ciously express the highly-oscillating electromagnetic wave-
forms (see Subsection II-B2).

(i) A physics-informed loss function to enforce EMTPNet
to comply with the underlying physics laws of EMTP (see
Subsection II-B3);

As shown in Fig. 2(b), by fully exploring the EMTP
physics to guide the EMTPNet training, NeuEMTP completely
exterminates the reliance on the training set, and hence no
EMTP simulation is required in the whole procedure.

2) EMTPNet for Electromagnetic Waveform Generation:
Power system electromagnetic waveforms normally contain
a fundamental-frequency carrier superimposed with high-
frequency harmonics. Unfortunately, standard activation func-
tions, such as Sigmoid, Tanh, ReLU and their variants, can
hardly learn oscillatory functions, because of the “lack of a
periodic inductive bias” [7].

To this end, we design a new activation function, i.e.,
Act_mix, to enable the extrapolation of highly-oscillating elec-
tromagnetic waveforms. As illustrated in Fig. 3(b), Act_mix is
a weighted combination of different activation functionality:

+ ag 1og(1+67ﬁlz) sin?(By2)  (4)

out = a1z + «
1t *14e—>

Here, z = ijinj + b is a weighted linear summation
of the outputs from the previous layer; a1, s, as, (1,52
are parameters of the Act_mix activation function. In (4),
the first and second terms respectively refer to a linear and
nonlinear activation; the third term devises a novel decayed
periodical activation, where (3; and [35 enables learning dif-
ferent oscillation modes such as damped/undamped/divergent
oscillations under arbitrary frequencies. An obvious distinction
of Act_mix against conventional activation functions is that
it is a parameterized activation, which allows for superior
expressibility of either oscillating harmonics or overdamped
transients.

Leveraging Act_mix, the EMTPNet is designed as depicted
in Fig. 3(a). Three modules are arranged in the EMTPNet:
(i) An input layer, which reads in ¢,., and variable conditions
of the system (i.e., exemplified by initial conditions z( here);
(i1) Hidden layers, which employ Act_mix at the first layer and
standard activation functions at the remainder layers. Specifi-
cally, the output of the final hidden layer, i.e., scq € R"**",
is designated as the independent state variables of the system
(e.g., currents of inductances and voltages of capacitances).
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(iii) An EMTP layer, which interprets Tscq into vgeq and 24eq
based on the Kirchhoff’s law of the power network. The reason
of introducing the EMTP interpretation layer is to best reduce
the redundancy of the hidden layer structure to enhance the

training efficiency of EMTPNet.

(a) Architecture of EMTPNet (b) Act_mix Activation Function
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Fig. 3: Schematic diagram of EMTPNet
3) EMTP-Informed Loss Function: Further, an EMTP-
informed loss function is established to guide the unsupervised
training of EMTPNet. On the one hand, (2) enables computing
the historical currents of each component as:

ih,L,seq = _gL(NL,n'Useq + NL,svs,seq) - NLiseq (Sa)

ih,C,seq = gC(NC,nvseq + NC,svs,seq) + NCiseq (5b)
Here, %5 1, seq and 25 ¢ seq are the time-series history terms
estimated by the EMTPNet’s outputs vseq and icq; Vs seq
denotes the time-series voltages of power sources; g is a
diagonal matrix constructed by the equivalent conductance of
inductances; Ny, and INp, , are respectively the incidence
matrices between inductances and non-source/source buses;
Ny extracts the inductance currents from 4,45 gc, Ncon,
Nc¢ s and N¢ are analogously defined for capacitances.

On the other hand, (1) enforces the historical currents to
satisfy the Ohm’s law of each component:

AF— gL(NL,n'vseq"'NL,svs,seq)_NLiseq_ih,L,seq (6)
gC(NC,nvseq+NC,svs,seq)*Nciseq*ih,c,seq

Therefore, AF € R(mr+nc)xn gqqesses the violation level
of EMTPNet’s outputs against the EMTP physics laws, i.e.,
the mismatch between the historical currents obtained from
EMTPNet and the historical currents governed by the EMTP
physics model. Only if EMTPNet produces the true EMTP
results, AF' will converge to zero.

Accordingly, a physics-informed EMTP loss function is
established as a weighted sum of squares of AF":

L= ZM(A]-AFM)Q (7)

where \; denotes the weight for the j-th dimension.

As a result, by minimizing £, EMTPNet will be enforced
to generate time-series trajectories that rigorously conform
with the electromagnetic physics laws of the system, which
theoretically guarantees the qualification of EMTPNet as an
authentic EMTP computation tool.

Again, we emphasize that although AF' is derived from
the discretized EMTP model (1) and (2), it does not perform
the step-by-step calculation as classical EMTP solvers do.
Instead, A F' assesses the EMTP law violation at all time steps
simultaneously with the time-series vs¢q and ¢,.4. Therefore,
the computation of AF only involves matrix calculations,
which can be highly efficient.
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4) Overall Procedure of NeuEMTP: Finally, we outlines the
overall procedure of NeuEMTP:

(i) Training preparation: EMTP models and parameters of a
power system are prepared.

(ii) EMTPNet training: A randomly-initialized EMTPNet is
trained by minimizing £ in (7). In this unsupervised procedure,
the EMTP-informed loss function and the EMTP layer will
invoke the EMTP physics information.

(iii) Generation of EMTP Trajectories: With a well-trained
EMTPNet, the EMTP trajectories are generated through the
forward propagation of EMTPNet:

Fseq} =E&oWri10ALoWr -+ - Ay o Wi (tseq, 20)  (8)

Tseq
where £ denotes the EMTP interpretation function; W, and
A; respectively denote the weighted summation and activation
functions at the [-th layer.

Equation (8) again evidences that NeuEMTP generates the
electromagnetic trajectories at all time steps via a single for-
ward propagation of EMTPNet, in replacement of the step-by-
step numerical integration. This peculiarity conforms with our
expectancy for NeuEMTP as designed in Fig. 1(b). Meanwhile,
the overall NeuEMTP procedure does not rely on any EMT
data, which mitigates the efforts for performing the step-by-
step EMTP computation.

III. CASE STUDY

This section verifies the NeuEMTP methodology. A typical
Latency circuit is studied, which abstracts the multi-timescale
dynamic characteristics of power systems [8]. The NeuEMTP
code is developed in Python 3.8.8 with Pytorch 1.10.0. The
classical EMTP code is implemented in MATLAB R2021a.

A. Verification of Act_mix

First, we demonstrate the necessity of introducing Act_mix
as a new type of activation function for learning the periodical
waveforms of EMTP. Four test functions are employed, which
imitate typical oscillation phenomena in power systems:

o Exp(t)=e~3% as a non-periodical test.

o Sin(t)=sin 10007t as a periodical test.

e SSin(t)=0.3 sin 10007t+0.5 sin 4007¢+ sin 2007¢: a sum-
mation of harmonics to imitate the distorted signals.

o DSin(t)=2e2%%gin 10007¢: a decayed sinusoidal func-
tion to imitate the damped oscillations.

Three different neural networks are compared, which share
the same architecture but use different activation functions:

o Net with Act_mix: which employs Act_mix at the first layer
and Sigmoid at the second layer.

o Net with Sigmoid: which employs Sigmoid at both layers.

o Net with Tanh: which employs Tanh at both layers.

All the three neural networks employ the identical optimizer

and training settings. The maximum iteration is set as 2 x 106.

Fig. 4 presents the simulation results. It can be observed
that Act_mix precisely simulates all different oscillations. In
contrast, conventional activation functions such as Sigmoid
and Tanh only replicate the non-periodical overdampled os-
cillations (see Fig. 4(a)), but fail to capture the periodical
oscillations (see Fig. 4(b)-(d)) within the maximum iteration.
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Fig. 4: Efficacy of the Act_mix activation function

Further, Fig. 5 illustrates the loss function evolution for
each test case using different activation functions. Simulations
clearly reveal that while Sigmoid and Tanh could be easily
stuck in local minimums and fail to provide meaningful results
for the oscillating scenarios even after a huge number of
epochs (see the red and blue lines), Act_mix swiftly converges
for all the scenarios (see the green lines). The reason is
that Act_mix inherently embeds the power system oscillation
characteristics so that a neural network equipped with Act_mix
can more efficiently and effectively identify the oscillation
modes with a reduced neural network scale or within fewer
training iterations. The aforementioned discussions verify the
necessity of employing Act_mix, rather than any other standard
activation functions, for the NeuEMTP study.
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Act_miz
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1 e SigMOTA
g Tanh

Test Function:

MSE Loss

— ST
- = SSin
- DSin

10° 102 104 10°

Iteration

Fig. 5: Loss function evolution under different activation functions

B. Verification of NeuEMTP

This subsection verifies the validity of NeuEMTP in terms of
accuracy, efficiency and generalization ability. The parameters
of the Latency circuit is visualized in Fig. 6. The time step
for NeuEMTP and classical EMTP is set as At = 0.2us.

1) Accuracy of NeuEMTP: As designed in Fig. 3, EMTPNet
takes the simulating time sequence as inputs, and outputs the
time-series EMTP. A two-layer fully connected EMTPNet is
constructed for the Latency circuit, with 10 neurons at the first
layer and 20 neurons at the second layer, which involves 374
parameters. Fig. 7 illustrates the training process of NeuEMTP.
The EMTPNet training takes 993.08s until convergence. The
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Fig. 6: Illustration of the Latency circuit

loss function evolution is presented, which indicates the vi-
olation level of EMTPNet against the EMTP physics laws
as formulated in (6). The fidelity between NeuEMTP and
classical EMTP results is also provided. Nevertheless, it should
be emphasized that the real EMTP results as well as this
fidelity information are never utilized for EMTPNet training.
Instead, they only serve as the ground truth to post-evaluate the
performance of NeuEMTP. Simulation results in Fig. 7 show
that at the starting stage, a randomly-initialized EMTPNet
generates large loss value and low fidelity level. Then, the
EMTPNet parameters are progressively trained; along with this
process the loss function decreases and the fidelity level raises.

100 [ pmmmmmmmmm e e e 1
1072

107 108

Fidelity

10°F 20.

Loss Function
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0.5 1 1.5 2 2.5
Iteration %103

Fig. 7: Loss function evolution during NeuEMTP training

Consequently, Fig. 8 presents the EMTP results obtained
by the optimized EMTPNet. The satisfactory match between
the classical EMTP and NeuEMTP trajectories verifies the
correctness and effectiveness of NeuEMTP. Fig. 8(b) also
investigates whether the NeuEMTP results conform with the
EMTP model, which is the kernel indicator for evaluating the
convergence of NeuEMTP training. It can be observed that the
optimized EMTPNet leads to a negligibly low violation level
against EMTP rules, which reveals its inherent consistency
with the physics nature of EMTP.
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Fig. 8: NeuEMTP results and its comparison with classical EMTP

More importantly, the NeuEMTP functionality is realized
under an unsupervised architecture, not relying on any prior
EMTP simulating data. Therefore, NeuEMTP is completely
immune to the onerous step-by-step EMTP computation dur-
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ing both training and prediction, which makes this new method
superior to any existing learning-based EMTP approaches.

2) Efficiency of NeuEMTP: Another salient feature of
NeuEMTP is its superior efficiency. Table I compares the
computing time of NeuEMTP and that of classical EMTP.
A noteworthy observation is that while the classical EMTP
consumes 18.45s for simulating a one-second transient process
for the Latency circuit, Neu EMTP only consumes 0.28s, which
achieves a speedup for nearly 60 times.

TABLE I: Computational Efficiency of NeuEMTP

Simulating Classical EMTP by NeuEMTP
Period Trapezoidal Integration

[0, 0.5ms] 18.9452 ms 0.2480 ms

[0, 10ms] 28.6051 ms 2.9336 ms

[0, 1s] 18.4489 s 0.2891 s

[0, 10s] 179.2356 s 3.0086 s

The rationale behind the super-efficiency of NeuEMTP lies
in its simultaneous calculation of the EMTP states at all
time steps through a single forward propagation of EMTPNet.
Without involving the step-by-step procedure required by
the classical EMTP, NeuEMTP significantly accelerates the
EMTP computation. Additionally, while the computational
complexity of the classical EMTP depends on the scale of
the system, the complexity of NeuEMTP is only impacted by
the scale of the neural network. Rather, the complexity of
NeuEMTP is mainly related to the waveform characteristics
which determine how complicated a neural network should be
to learn such electromagnetic transients.

3) Generalization Ability of NeuEMTP: Finally, we study the
generalization ability of NeuEMTP.

First, the capability of NeuEMTP for generating EMTP
trajectories under unknown initial conditions is tested. An
EMTPNet is trained with 100 different initial conditions and
tested under newly-input initial conditions. Fig. 9 demonstrates
that NeuEMTP consistently maintains satisfactory fidelity to
trace the ultra-fast electromagnetic transients triggered by
untrained initial conditions, which evidences the robustness
of NeuEMTP against boundary conditions of EMTP models.

Second, Fig. 10 studies the capability of NeuEMTP for
inferring EMTP trajectories beyond the simulating period. An
EMTPNet is trained to respect the EMTP physics laws within
[0, 0.1ms] and is tested in a moderately longer time period
[0, 0.15ms]. Simulation shows that NeuEMTP trajectories not
only accurately match the classical EMTP results during the
training period (see the green line), but also properly trace
the high-frequency oscillations beyond the training period (see
the red line). This experiment demonstrates the generalization
ability of NeuEMTP from the perspective of inferring future
tendencies of EMT in the power grids.

IV. CONCLUSION

This paper devises NeuEMTP, a learning-based, physics-
informed EMTP approach to tackle power system electro-
magnetic transients analysis. The most salient features of
NeuEMTP include: 1) an unsupervised learning architecture
without relying on any prior EMTP simulation data, which
significantly saves the effort for generating EMTP training
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Fig. 10: Generalization ability of NeuEMTP for future time periods

samples; 2) excellent accuracy and generalization ability by
exploiting the underlying EMTP laws behind the electromag-
netic waveforms; 3) unprecedented acceleration attributed to
the use of EMTPNet for simultaneously generating EMTP
states at all time steps rather than performing the step-by-step
integration. Case studies in a typical Latency circuit verifies
the accuracy, efficiency and efficacy of NeuEMTP. NeuEMTP
is a promising accurate, simulation-free electromagnetic com-
putation tool. Our next step is to implement NeuEMTP in large
grids and to enable ultra-fast prediction of N-1 contingencies.
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