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Abstract—This paper devises a neural electromagnetic tran-
sients program (NeuEMTP), an unsupervised, physics-informed
learning approach to numerical-integration-free EMTP solutions.
The main contributions lie in: (1) a learning-based NeuEMTP

architecture to simultaneously generate the electromagnetic states
at all desired time steps, making the step-by-step integration
unnecessary; (2) an unsupervised, physics-informed training pro-
cedure to realize the NeuEMTP functionality without requiring
any EMTP trajectories beforehand; (3) an EMTP-oriented-
neural-network (EMTPNet) accompanied with a novel activation
function Act mix to enable efficient extrapolations of diverse
oscillation modes under arbitrary frequencies. Case studies sys-
tematically verify that NeuEMTP generates high-fidelity EMTP
trajectories without involving any numerical integration before
or during the training process, and is promising to achieve faster-
than-real-time EMTP simulations on the off-the-shelf computers.

Index Terms—Electromagnetic transients program (EMTP),
deep learning, physics-informed deep learning, trapezoidal rule,
data-driven computing.

I. INTRODUCTION

ELECTROMAGNETIC transients program (EMTP), an

indispensable tool for modern power systems, is known

for its formidably daunting computational complexity. The

step-by-step numerical integration makes the classical EMTP

extraordinarily time-consuming since tiny discretizations are

required to precisely trace the electromagnetic waveforms [1].

Recent developments of machine learning (ML) shed light

on revolutionizing the dynamical system analytics [2]. In con-

trast to the numerical solvers, learning-based methods directly

learn trajectories from data without repeatedly solving the

dynamical equations, which are promising for achieving or-

ders of magnitude of acceleration. Nevertheless, conventional

learning-based dynamics prediction approaches mostly adopt

a supervised learning architecture. The strong reliance on

sufficient training data, although workable for slow dynamics

prediction of power systems [3], may not be practical for

learning the high-frequency electromagnetic oscillations. The

reason is that generating and storing a large quantity of high-

fidelity EMTP trajectories could be exceedingly inefficient.

Physics-informed deep learning is a newly-emerged learning

technique, where a physics-informed neural network (PINN)

predicts a dynamical system’s behaviour leveraging the dif-

ferential equations behind the dynamical responses [4]. Ben-

efiting from the exploration of the physics laws, this learn-

ing procedure can be accomplished with fewer or even no

training data. PINN can promisingly accelerate the solving of

ordinary/partial differential equations and has been applied in

diverse disciplines such as fluid flows, biological simulation,
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molecular dynamics. A few studies also investigated the po-

tential of PINN in power system analytics, such as steady-state

analysis [5] and electro-mechanical dynamics analysis [6].

This paper tackles the EMTP obstacle by leveraging the

physics-informed learning philosophy. Two major challenges

are to be addressed: (i) how to properly embed the trape-

zoidal discretization-based EMTP formulation into the ma-

chine learning architecture; (ii) how to accurately imitate

the highly-oscillating electromagnetic waveforms by a neural

network. Our key innovation is a Neural EMTP (NeuEMTP)

approach, which integrates an EMTP-oriented-neural-network

(EMTPNet) and an EMTP-physics-law-informed training pro-

cess to enable ultra-efficient, high-fidelity, and unsupervised

EMTP computation. The contributions of this work include:

• A learning-based EMTP architecture is designed, which

generates the electromagnetic transients at all time steps si-

multaneously via a single forward propagation of EMTPNet.

• An EMTP-physics-law-informed and unsupervised training

procedure is established, which completely removes the hard

requirements to have massive EMTP trajectories as training

samples, making NeuEMTP more efficient than any existing

learning-based power system dynamic analytics.

• An EMTP-oriented-neural-network (EMTPNet) is devised,

which designs a novel activation function Act mix and an

EMTP interpretation layer to jointly capture diverse electro-

magnetic oscillation modes under arbitrary frequencies.

The remainder of the paper is organized as follows. Sec-

tion II devises the NeuEMTP algorithm. Section III provides

case studies. Section IV concludes the paper.

II. METHODOLOGY

A. Preliminaries of Classical EMTP

For an arbitrary electrical component, its EMTP formula-

tion is established by discretizing the state-space model into

algebraic equations of an equivalent resistance using numerical

integration rules [1], such as the trapezoidal discretization:

i(t) = gv(t)− ih(t) (1)

Here, i(t) and v(t) respectively denote the current and voltage

of the component; g denotes the equivalent conductance;

ih(t) denotes a historical current injection, which reflects the

impact from the previous time step. Specifically, (2) details

the expression of g and ih(t) for resistance, inductance and

capacitance:

gR =
1

R
, ih,R(t) = 0

gL =
∆t

2L
, ih,L(t) = −gLvL(t−∆t)− iL(t−∆t)

gC =
2C

∆t
, ih,C(t) = gCvC(t−∆t) + iC(t−∆t)

(2a)

(2b)

(2c)

where ∆t denotes the step size in the EMTP computation.
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By assembling the discretized formulation of each compo-

nent, the EMTP model of the entire system can be established:

Gv(t) = is(t) + ih(t) := i(t) (3)

Here, v denotes the vector of nodal voltages; i denotes the

vector of nodal current injections, which assembles currents

from both power sources (i.e., is) and history terms (i.e., ih);

G denotes the equivalent conductance matrix of the system.

Therefore, at each time step, EMTP updates the electro-

magnetic states at the current step based on the results at the

previous step(s), as depicted in Fig. 1(a). This step-by-step

numerical integration makes EMTP exceedingly inefficient.

… …

(a) Classical step-by-step EMTP

… …

Initial 
state 

…

(b) Learning-based NeuEMTP

Fig. 1: Illustration of NeuEMTP and its comparison with the classical EMTP

B. NeuEMTP: A Neural EMTP Methodology

Motivated by the need to resolve existing obstacles in the

EMTP computation, we devise NeuEMTP, a learning-based

EMTP approach. Denote tseq = [t1, · · · , tn] ∈ R
1×n as

the time sequence which is desired to perform the EMTP

simulation, where tk = k∆t. Without loss of generality, this

paper studies impedance networks, whereas the method is

universal and can be directly applied to power networks with

arbitrary dynamic components. Denote vseq ∈ R
nv×n and

iseq ∈ R
ni×n as the time-series of unknown nodal voltages

and component currents.

As illustrated in Fig. 1(b), in contrast to the classical

EMTP, NeuEMTP reads in tseq and directly generates the

electromagnetic trajectories through the forward propagation

of the neural network. Upon this design, the electromagnetic

states at all time steps (i.e., vseq and iseq) will be computed

simultaneously, making the intractable step-by-step computa-

tion unnecessary.

The following details the NeuEMTP methodology.

1) Unsupervised Learning Architecture of NeuEMTP: The

overarching feature of NeuEMTP is that the entire algorithm is

achieved under an unsupervised learning architecture, meaning

that no EMTP trajectory needs to be generated even for the

training purpose. This feature differentiates our method from

any existing learning-based power system dynamic analytics.

Under a supervised learning architecture, it is trivial to train

a deep neural network (DNN) for replicating arbitrary curves.

As depicted in Fig. 2(a), a DNN can be readily optimized

by minimizing the mean squared error (MSE) between the

training data and the DNN outputs. Nevertheless, supervised

learning strongly relies on a sufficiently large training set to

guarantee accuracy and avoid overfitting. This requirement,

as aforementioned, could be extremely unattainable in the

EMTP learning, given that EMTP requires a small simulation

time step and therefore, computing and saving massive EMTP

results are very challenging and resource-consuming.

DNN

Training set 
(a mass of EMTP trajectories)

Backpropagation

(a) Conventional supervised ML

EMTP 
Net

Backpropagation

EMTP model

(b) Unsupervised, physics-informed NeuEMTP

Fig. 2: Illustration of the unsupervised learning architecture of NeuEMTP and
its comparison with conventional supervised ML approaches

This observation motivates the establishment of NeuEMTP

as an unsupervised learning-based EMTP approach. Fig. 2(b)

summarizes the schematic of NeuEMTP. Kernel ingredients of

NeuEMTP include:

(i) An EMTP-oriented-neural-network (EMTPNet) to effica-

ciously express the highly-oscillating electromagnetic wave-

forms (see Subsection II-B2).

(ii) A physics-informed loss function to enforce EMTPNet

to comply with the underlying physics laws of EMTP (see

Subsection II-B3);

As shown in Fig. 2(b), by fully exploring the EMTP

physics to guide the EMTPNet training, NeuEMTP completely

exterminates the reliance on the training set, and hence no

EMTP simulation is required in the whole procedure.

2) EMTPNet for Electromagnetic Waveform Generation:

Power system electromagnetic waveforms normally contain

a fundamental-frequency carrier superimposed with high-

frequency harmonics. Unfortunately, standard activation func-

tions, such as Sigmoid, Tanh, ReLU and their variants, can

hardly learn oscillatory functions, because of the “lack of a

periodic inductive bias” [7].

To this end, we design a new activation function, i.e.,

Act mix, to enable the extrapolation of highly-oscillating elec-

tromagnetic waveforms. As illustrated in Fig. 3(b), Act mix is

a weighted combination of different activation functionality:

out = α1z + α2
1

1+e−z
+ α3 log

(

1+e−β1z
)

sin2(β2z) (4)

Here, z =
∑

wjinj + b is a weighted linear summation

of the outputs from the previous layer; α1, α2, α3, β1, β2

are parameters of the Act mix activation function. In (4),

the first and second terms respectively refer to a linear and

nonlinear activation; the third term devises a novel decayed

periodical activation, where β1 and β2 enables learning dif-

ferent oscillation modes such as damped/undamped/divergent

oscillations under arbitrary frequencies. An obvious distinction

of Act mix against conventional activation functions is that

it is a parameterized activation, which allows for superior

expressibility of either oscillating harmonics or overdamped

transients.

Leveraging Act mix, the EMTPNet is designed as depicted

in Fig. 3(a). Three modules are arranged in the EMTPNet:

(i) An input layer, which reads in tseq and variable conditions

of the system (i.e., exemplified by initial conditions x0 here);

(ii) Hidden layers, which employ Act mix at the first layer and

standard activation functions at the remainder layers. Specifi-

cally, the output of the final hidden layer, i.e., xseq ∈ R
nx×n,

is designated as the independent state variables of the system

(e.g., currents of inductances and voltages of capacitances).
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(iii) An EMTP layer, which interprets xseq into vseq and iseq
based on the Kirchhoff’s law of the power network. The reason

of introducing the EMTP interpretation layer is to best reduce

the redundancy of the hidden layer structure to enhance the

training efficiency of EMTPNet.

Input Layer

Hidden Layers

EMTP Layer EMTP Interpretation 
from to

(a) Architecture of EMTPNet (b) Act_mixActivation Function

…

Linear 
Activation

Nonlinear 
Activation

Periodical 
Activation

weights   bias weights

Fig. 3: Schematic diagram of EMTPNet

3) EMTP-Informed Loss Function: Further, an EMTP-

informed loss function is established to guide the unsupervised

training of EMTPNet. On the one hand, (2) enables computing

the historical currents of each component as:

ih,L,seq = −gL(NL,nvseq +NL,svs,seq)−NLiseq

ih,C,seq = gC(NC,nvseq +NC,svs,seq) +NCiseq

(5a)

(5b)

Here, ih,L,seq and ih,C,seq are the time-series history terms

estimated by the EMTPNet’s outputs vseq and iseq; vs,seq

denotes the time-series voltages of power sources; gL is a

diagonal matrix constructed by the equivalent conductance of

inductances; NL,n and NL,s are respectively the incidence

matrices between inductances and non-source/source buses;

NL extracts the inductance currents from iseq; gC , NC,n,

NC,s and NC are analogously defined for capacitances.

On the other hand, (1) enforces the historical currents to

satisfy the Ohm’s law of each component:

∆F=

[

gL(NL,nvseq+NL,svs,seq)−NLiseq−ih,L,seq

gC(NC,nvseq+NC,svs,seq)−NCiseq−ih,C,seq

]

(6)

Therefore, ∆F ∈ R
(nL+nC)×n assesses the violation level

of EMTPNet’s outputs against the EMTP physics laws, i.e.,

the mismatch between the historical currents obtained from

EMTPNet and the historical currents governed by the EMTP

physics model. Only if EMTPNet produces the true EMTP

results, ∆F will converge to zero.

Accordingly, a physics-informed EMTP loss function is

established as a weighted sum of squares of ∆F :

L =
∑

j,k
(λj∆Fj,k)

2 (7)

where λj denotes the weight for the j-th dimension.

As a result, by minimizing L, EMTPNet will be enforced

to generate time-series trajectories that rigorously conform

with the electromagnetic physics laws of the system, which

theoretically guarantees the qualification of EMTPNet as an

authentic EMTP computation tool.

Again, we emphasize that although ∆F is derived from

the discretized EMTP model (1) and (2), it does not perform

the step-by-step calculation as classical EMTP solvers do.

Instead, ∆F assesses the EMTP law violation at all time steps

simultaneously with the time-series vseq and iseq . Therefore,

the computation of ∆F only involves matrix calculations,

which can be highly efficient.

4) Overall Procedure of NeuEMTP: Finally, we outlines the

overall procedure of NeuEMTP:

(i) Training preparation: EMTP models and parameters of a

power system are prepared.

(ii) EMTPNet training: A randomly-initialized EMTPNet is

trained by minimizing L in (7). In this unsupervised procedure,

the EMTP-informed loss function and the EMTP layer will

invoke the EMTP physics information.

(iii) Generation of EMTP Trajectories: With a well-trained

EMTPNet, the EMTP trajectories are generated through the

forward propagation of EMTPNet:
[

vseq

iseq

]

= E ◦WL+1 ◦ AL ◦WL · · · A1 ◦W1(tseq, x0) (8)

where E denotes the EMTP interpretation function; Wl and

Al respectively denote the weighted summation and activation

functions at the l-th layer.

Equation (8) again evidences that NeuEMTP generates the

electromagnetic trajectories at all time steps via a single for-

ward propagation of EMTPNet, in replacement of the step-by-

step numerical integration. This peculiarity conforms with our

expectancy for NeuEMTP as designed in Fig. 1(b). Meanwhile,

the overall NeuEMTP procedure does not rely on any EMT

data, which mitigates the efforts for performing the step-by-

step EMTP computation.

III. CASE STUDY

This section verifies the NeuEMTP methodology. A typical

Latency circuit is studied, which abstracts the multi-timescale

dynamic characteristics of power systems [8]. The NeuEMTP

code is developed in Python 3.8.8 with Pytorch 1.10.0. The

classical EMTP code is implemented in MATLAB R2021a.

A. Verification of Act mix

First, we demonstrate the necessity of introducing Act mix

as a new type of activation function for learning the periodical

waveforms of EMTP. Four test functions are employed, which

imitate typical oscillation phenomena in power systems:

• Exp(t)=e−300t as a non-periodical test.

• Sin(t)= sin 1000πt as a periodical test.

• SSin(t)=0.3 sin 1000πt+0.5 sin 400πt+sin 200πt: a sum-

mation of harmonics to imitate the distorted signals.

• DSin(t)=2e−200t sin 1000πt: a decayed sinusoidal func-

tion to imitate the damped oscillations.

Three different neural networks are compared, which share

the same architecture but use different activation functions:

• Net with Act mix: which employs Act mix at the first layer

and Sigmoid at the second layer.

• Net with Sigmoid: which employs Sigmoid at both layers.

• Net with Tanh: which employs Tanh at both layers.

All the three neural networks employ the identical optimizer

and training settings. The maximum iteration is set as 2×106.

Fig. 4 presents the simulation results. It can be observed

that Act mix precisely simulates all different oscillations. In

contrast, conventional activation functions such as Sigmoid

and Tanh only replicate the non-periodical overdampled os-

cillations (see Fig. 4(a)), but fail to capture the periodical

oscillations (see Fig. 4(b)-(d)) within the maximum iteration.
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1.5

2
Net with Act mix Net with Sigmoid Net with Tanh

(a) Exp: an overdamped test

0 20
-1

0

1

0 20
-1

0

1

0 20
-1

0

1
Net with Act mix Net with Sigmoid Net with Tanh

(b) Sin: an undamped oscillation test

0 20
-2

0

2

0 20
-2

0

2

0 20
-2

0

2Net with Act mix Net with Sigmoid Net with Tanh

(c) SSin: a distorted test with harmonics

0 20
-2

0

2

0 20
-2

0

2

0 20
-2

0

2Net with Act mix Net with Sigmoid Net with Tanh

(d) DSin: a damped oscillation test

Fig. 4: Efficacy of the Act mix activation function

Further, Fig. 5 illustrates the loss function evolution for

each test case using different activation functions. Simulations

clearly reveal that while Sigmoid and Tanh could be easily

stuck in local minimums and fail to provide meaningful results

for the oscillating scenarios even after a huge number of

epochs (see the red and blue lines), Act mix swiftly converges

for all the scenarios (see the green lines). The reason is

that Act mix inherently embeds the power system oscillation

characteristics so that a neural network equipped with Act mix

can more efficiently and effectively identify the oscillation

modes with a reduced neural network scale or within fewer

training iterations. The aforementioned discussions verify the

necessity of employing Act mix, rather than any other standard

activation functions, for the NeuEMTP study.

100 102 104 106
10-4

10-2

100

Fig. 5: Loss function evolution under different activation functions

B. Verification of NeuEMTP

This subsection verifies the validity of NeuEMTP in terms of

accuracy, efficiency and generalization ability. The parameters

of the Latency circuit is visualized in Fig. 6. The time step

for NeuEMTP and classical EMTP is set as ∆t = 0.2µs.

1) Accuracy of NeuEMTP: As designed in Fig. 3, EMTPNet

takes the simulating time sequence as inputs, and outputs the

time-series EMTP. A two-layer fully connected EMTPNet is

constructed for the Latency circuit, with 10 neurons at the first

layer and 20 neurons at the second layer, which involves 374

parameters. Fig. 7 illustrates the training process of NeuEMTP.

The EMTPNet training takes 993.08s until convergence. The

L1

C1

R1 L2

C2

Slow Fast 

1 2 3 4

V

V1 : 60Hz

R1 : 0.1Ω

L1 : 1µF

C1 : 10µH

L2 : 1µF

C2 : 500µH

Fig. 6: Illustration of the Latency circuit

loss function evolution is presented, which indicates the vi-

olation level of EMTPNet against the EMTP physics laws

as formulated in (6). The fidelity between NeuEMTP and

classical EMTP results is also provided. Nevertheless, it should

be emphasized that the real EMTP results as well as this

fidelity information are never utilized for EMTPNet training.

Instead, they only serve as the ground truth to post-evaluate the

performance of NeuEMTP. Simulation results in Fig. 7 show

that at the starting stage, a randomly-initialized EMTPNet

generates large loss value and low fidelity level. Then, the

EMTPNet parameters are progressively trained; along with this

process the loss function decreases and the fidelity level raises.

0.5 1 1.5 2 2.5
105

10-8

10-6

10-4

10-2

100

0.6

0.7

0.8

0.9

1

Fig. 7: Loss function evolution during NeuEMTP training

Consequently, Fig. 8 presents the EMTP results obtained

by the optimized EMTPNet. The satisfactory match between

the classical EMTP and NeuEMTP trajectories verifies the

correctness and effectiveness of NeuEMTP. Fig. 8(b) also

investigates whether the NeuEMTP results conform with the

EMTP model, which is the kernel indicator for evaluating the

convergence of NeuEMTP training. It can be observed that the

optimized EMTPNet leads to a negligibly low violation level

against EMTP rules, which reveals its inherent consistency

with the physics nature of EMTP.

0 0.1 0.2 0.3 0.4
0

1

2

0 0.1 0.2 0.3 0.4
0.98

0.99

1

(a) EMTP trajectories generated from NeuEMTP

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6 10-5

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1
10-6

(b) EMTP law violation of the optimized EMTPNet

Fig. 8: NeuEMTP results and its comparison with classical EMTP

More importantly, the NeuEMTP functionality is realized

under an unsupervised architecture, not relying on any prior

EMTP simulating data. Therefore, NeuEMTP is completely

immune to the onerous step-by-step EMTP computation dur-
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ing both training and prediction, which makes this new method

superior to any existing learning-based EMTP approaches.

2) Efficiency of NeuEMTP: Another salient feature of

NeuEMTP is its superior efficiency. Table I compares the

computing time of NeuEMTP and that of classical EMTP.

A noteworthy observation is that while the classical EMTP

consumes 18.45s for simulating a one-second transient process

for the Latency circuit, NeuEMTP only consumes 0.28s, which

achieves a speedup for nearly 60 times.

TABLE I: Computational Efficiency of NeuEMTP

Simulating
Period

Classical EMTP by
Trapezoidal Integration

NeuEMTP

[0 , 0.5ms] 18.9452 ms 0.2480 ms

[0 , 10ms] 28.6051 ms 2.9336 ms

[0 , 1s] 18.4489 s 0.2891 s

[0 , 10s] 179.2356 s 3.0086 s

The rationale behind the super-efficiency of NeuEMTP lies

in its simultaneous calculation of the EMTP states at all

time steps through a single forward propagation of EMTPNet.

Without involving the step-by-step procedure required by

the classical EMTP, NeuEMTP significantly accelerates the

EMTP computation. Additionally, while the computational

complexity of the classical EMTP depends on the scale of

the system, the complexity of NeuEMTP is only impacted by

the scale of the neural network. Rather, the complexity of

NeuEMTP is mainly related to the waveform characteristics

which determine how complicated a neural network should be

to learn such electromagnetic transients.

3) Generalization Ability of NeuEMTP: Finally, we study the

generalization ability of NeuEMTP.

First, the capability of NeuEMTP for generating EMTP

trajectories under unknown initial conditions is tested. An

EMTPNet is trained with 100 different initial conditions and

tested under newly-input initial conditions. Fig. 9 demonstrates

that NeuEMTP consistently maintains satisfactory fidelity to

trace the ultra-fast electromagnetic transients triggered by

untrained initial conditions, which evidences the robustness

of NeuEMTP against boundary conditions of EMTP models.

Second, Fig. 10 studies the capability of NeuEMTP for

inferring EMTP trajectories beyond the simulating period. An

EMTPNet is trained to respect the EMTP physics laws within

[0, 0.1ms] and is tested in a moderately longer time period

[0, 0.15ms]. Simulation shows that NeuEMTP trajectories not

only accurately match the classical EMTP results during the

training period (see the green line), but also properly trace

the high-frequency oscillations beyond the training period (see

the red line). This experiment demonstrates the generalization

ability of NeuEMTP from the perspective of inferring future

tendencies of EMT in the power grids.

IV. CONCLUSION

This paper devises NeuEMTP, a learning-based, physics-

informed EMTP approach to tackle power system electro-

magnetic transients analysis. The most salient features of

NeuEMTP include: 1) an unsupervised learning architecture

without relying on any prior EMTP simulation data, which

significantly saves the effort for generating EMTP training

0 0.1 0.2 0.3 0.4 0.5
-4

-2

0

2

0 0.1 0.2 0.3 0.4 0.5
0

1

2

(a) NeuEMTP results under an initial state vC2,0 = 1.4702V

0 0.1 0.2 0.3 0.4 0.5
0

2

4

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

(b) NeuEMTP results under an initial state vC2,0 = 0.5787V

Fig. 9: Generalization ability of NeuEMTP for newly-input initial conditions

0 0.05 0.1 0.15
-2

0

2 Train Inference

0 0.05 0.1 0.15
-2

0

2 Train Inference

0 0.05 0.1 0.15
0

1

2 Train Inference

0 0.05 0.1 0.15
0.98

0.99

1

Train Inference

Fig. 10: Generalization ability of NeuEMTP for future time periods

samples; 2) excellent accuracy and generalization ability by

exploiting the underlying EMTP laws behind the electromag-

netic waveforms; 3) unprecedented acceleration attributed to

the use of EMTPNet for simultaneously generating EMTP

states at all time steps rather than performing the step-by-step

integration. Case studies in a typical Latency circuit verifies

the accuracy, efficiency and efficacy of NeuEMTP. NeuEMTP

is a promising accurate, simulation-free electromagnetic com-

putation tool. Our next step is to implement NeuEMTP in large

grids and to enable ultra-fast prediction of N-1 contingencies.
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