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Abstract—To empower flexible and scalable operations, dis-
tributed control of multi-inverter microgrids, based on classical
communication networks among distributed energy resources, has
attracted considerable attention. Notwithstanding this, resilience of
the current schemes on classical communication makes microgrids
vulnerable to cyber attacks. Inspired by quantum properties of
quantum bits, in this paper, we devise a novel synchronization
mechanism. We extend the synchronization framework utilized in
distributed control algorithms to networks of quantum systems.
By employing the architecture of quantum network, security of
the protocol can be enhanced. Test results on two representative
ac and dc microgrids validate the efficacy and universality of the
quantum distributed control.

Index Terms—Quantum distributed control, distributed fre-
quency regulation, distributed voltage regulation.

I. INTRODUCTION

Microgrids, featured by the autonomic coordination of their

local energy sources and power demands, have proven to be a

promising new paradigm of electricity resiliency, and thus their

share in the energy sector is swiftly growing. To match up with

the main characteristics of microgrids including flexibility and

scalability, distributed control of multi-inverter microgrids has

attracted considerable attention as it can achieve the combined

goals of flexible plug-and-play architecture guaranteeing fre-

quency and voltage regulation while preserving precise power

sharing among nonidentical participating DERs [1].

With these in mind, microgrids have become a cyber-physical

system that requires complicated network technologies to handle

massive utilization of communication and computation devices,

and it turns out that cybersecurity has emerged as a serious

concern which has been extensively studied so as to mitigate

data breach and improve security in smart grids [2]. However,

the current power grids are going through a significant transfor-

mation such that the existing technology might not be adequate

to address the security requirements.

On the other hand, the development of quantum computers

will cause security break and they can easily make traditional

methods of cryptography obsolete [3]. The supremacy and

fast development of quantum schemes are paving the way

for the realization of the quantum internet [4]. The concept

of quantum internet is to make a new internet technology

possible by enabling quantum communication between any two

points. Several major applications have already been reported

for quantum internet however, central to all these applications

is the ability to transmit quantum bits (qubits) which cannot be

copied, and any attempt to do so can be detected. This feature
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makes qubits well suited for security applications. Promising

findings on quantum internet have even led some researchers to

believe that all communications will eventually be done through

quantum channels [5]. Inspired by these developments, we aim

to devise a scalable quantum distributed controller that can

guarantee synchronization.

Several efforts have been made to investigate consensus

problems in the quantum domain. One existing approach is

to model the quantum network’s state evolution through the

quantum synchronization master equation [6]. Another approach

is to appeal to the gossip-type interaction between neighbor-

ing quantum computing devices [7]. However, in the existing

approaches, measurement is not considered, i.e., the existing

frameworks are valid as long as the corresponding quantum

system is not measured, which makes them impractical for

realistic distributed control of microgrids.

Motivated by the above challenges and potential to design

a quantum synchronization scheme, in this paper we aim to

develop a quantum distributed control framework to enable

controlling networks of DERs through a network of quantum

systems. To this end, we first formulate the quantum synchro-

nization problem using a quantum master equation and char-

acterize suitable jump operators to drive the quantum network

to synchronization. The protocol we construct gives rise to a

differential equation that allows analyzing the convergence. We

utilize proper observables and show that all the corresponding

expectations will eventually converge to a possibly time-varying

target value, and finally exploit these expectation values as

control signals to drive a network of DERs to synchronization.

II. PRELIMINARIES

In this section, we introduce some fundamental concepts

from quantum systems [8]. The (adjoint) † symbol indicates

the transpose-conjugate in matrix representation, and the ten-

sor product ⊗ is associated to the Kronecker product. The

mathematical description of a single quantum system starts

by considering a complex Hilbert space H. We utilize Dirac’s

notation, where |ψ〉 denotes an element of H, called a ket which

is represented by a column vector, while 〈ψ| = |ψ〉† is used for

its dual, a bra, represented by a row vector, and 〈ψ|ϕ〉 for the

associated inner product. We denote by I the identity operator.

[A,B] = AB−BA is the commutator and {A,B} = AB+BA
is the anticommutator of A and B.

Qubit, defined as the quantum state of a two-state quantum

system, is the smallest unit of information, and it is analogous to

classical bit. State of a qubit, represented by |ψ〉 = α |0〉+β |1〉,
is superposition of the two orthogonal basis states |0〉 ∼ [1, 0]T

and |1〉 ∼ [0, 1]T . α and β are complex numbers in general,

where |α|2 + |β|2 = 1. We denote |q1〉 ⊗ ... ⊗ |qn〉 ∈ H⊗n

as |q1...qn〉. In the case of mixed state, the state of a quantum
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system is represented by a density operator ρ, that is any self-

adjoint positive semi-definite operator with trace one, and ρ =
|ψ〉 〈ψ| with |ψ〉 ∈ H and 〈ψ|ψ〉 = 1 are called pure states. For

further information on qubits see [8], [9].

III. QUANTUM DISTRIBUTED CONTROL

We aim to construct a quantum distributed controller (QDC)

to control a network of DERs. In this framework, each DER

is equipped with or connected to a quantum computing (QC)

device and then seeks a consensus among all the QCs in

a distributed manner. The state of each quantum device can

be described by a positive Hermitian density matrix ρ. Since

synchronization requires interaction among all quantum devices,

let us assume that each device can be considered as a quantum

system and has access to the (quantum) information of its

neighbors. The following Lindblad master equation is a suitable

way to describe the dynamics of a system with dissipation:

ρ̇(t) = − ı

�
[H, ρ] +

n∑
i=1

(
CiρC

†
i −

1

2
{C†

iCi, ρ}
)
, (1)

where H is the effective Hamiltonian as a Hermitian operator

over the underlying Hilbert space, � is the reduced Planck

constant, ı denotes the imaginary unit, and Ci are jump oper-

ators. For more information on Markovian master equations in

Lindblad form, see [10]. We demonstrate that utilizing suitable

jump operators and observers for each quantum node would lead

the average expectation values of all the observers to converge

to a possibly time-varying target value and the synchronization

rule follows the forced Kuramoto model.

A. Algorithm

Let us update the state of each quantum node at each time

step as follows:

|qi(t)〉 =
(

cos π
4

eıφi(t) sin π
4

)
, t ∈ {0, 1, 2, . . .}, (2)

which is the general state in polar coordinates set on the xy-

plane, where φi(0) ∈ (0, π/2) and each φi(t), t ≥ 1, is

the averaged measurement outcome which can be obtained by

simply averaging measurement outcomes of many realizations

of a single experiment for node i.
Let |ψ〉 = |q1q2 · · · qn〉 be the state of the whole quantum

network and ρ = |ψ〉 〈ψ|. We introduce the following master

equation with unitary jump operators:

ρ̇(t) =

n∑
i=1

(CiρC
†
i − ρ)dt+

∑
{i,j}∈E

(Ci,jρC
†
i,j − ρ)dt. (3)

where Ci,j is the swapping operator that specifies the external

interaction between quantum computing devices i and j such

that

Ci,j(|q1〉 ⊗ ...⊗ |qi〉 ⊗ ...⊗ |qj〉 ⊗ ...⊗ |qn〉)
= |q1〉 ⊗ ...⊗ |qj〉 ⊗ ...⊗ |qi〉 ⊗ ...⊗ |qn〉 .

(4)

where, ⊗ denotes the tensor product. Let us define the jump

operator, Ci, by Ci = I⊗(i−1) ⊗Rz(φ)⊗ I⊗(n−i) with Rz(φ)
being the rotation-Z operator which is a single-qubit rotation

through angle φ radians around the Z-axis [9], where φ = φt,i−
φi. By definition, the operator Ci acts only on |qi〉 without

changing the states of other qubits. As can be seen, the jump

operators Ci are state dependent and updated based on the target

values φi,t and the measured φi(t). Therefore, at each time step,

the master equation components are updated based on the target

values and the obtained measurement signals. Thus, the density

matrix at time t + dt can be decomposed into ρ(t + dt) =
ρ(t) + dρt, where dρ(t) is defined in (3).

In order to obtain the angles φi, we introduce the following

observables:

A1,i = I⊗(i−1) ⊗ σx ⊗ I⊗(n−i), (5)

A2,i = I⊗(i−1) ⊗ σy ⊗ I⊗(n−i). (6)

A1,i and A2,i act only on |qi〉 where node-wise means, having

σx and σy which are Pauli matrices [9] as observers at each

node. The expectation value of an observable A in a state,

represented by a density matrix ρ, is given by 〈A〉 = tr(ρA) [9].

For a general one qubit state ρ, tr(ρσx) = r sin θ cosφ,

tr(ρσy) = r sin θ sinφ and tr(ρσz) = r sin θ. Generally,

Lindblad equation results in states becoming more mixed;

however, we only let the system evolve in a short time and

re-initialize the system in a product of pure qubit states.

Therefore, we can consider r = 1 and θ = π/2 and hence

tr(ρσx) = cosφi, tr(ρσy) = sinφi, which are equivalent to

tr(ρA1,i) = cosφi and tr(ρA2,i) = sinφi, respectively. If we

repeat the procedure of Lindblad evolution in a short duration,

measurement and re-initialization, we can obtain approximated

equations for φi’s in the limit dt → 0. The goal is to obtain the

dynamic of the phase angles φi. Note that d
dt 〈A〉 = d

dt tr(ρA) =
tr(ρ̇A). From (3),

tr(ρ̇A1,i) = cosφt,i − cosφi +
n∑

j=1

ai,j(cosφj − cosφi)

tr(ρ̇A2,i) = sinφt,i − sinφi +
n∑

j=1

ai,j(sinφj − sinφi)

(7)

where ai,j = 1 if Cij 	= 0 and ai,j = 0 otherwise. Utilizing

tr(ρA1,i) and tr(ρA2,i), we have the dynamic of φi as follows:

φ̇i =
d

dt
arctan

(
tr(ρA2,i)

tr(ρA1,i)

)

=

{
tr(ρ̇A2,i)tr(ρA1,i)− tr(ρ̇A1,i)tr(ρA2,i)

cos2 φi

}
cos2 φi

= sin (φt,i − φi) +
n∑

j=1

ai,j sin (φj − φi).

(8)

It can be shown that, in (8) the pinning term sin (φt,i − φi)
forces the phase φi to stick at the value φt,i and the coupling

mechanism
∑n

j=1 ai,j sin (φj − φi) helps to synchronize the

entire system such that, all the nodes will synchronize to the

pinner exponentially fast at a rate no less than μ, with μ being

the following

μ = λmin(σ1I + σ2BWBT ) > 0, (9)

where, σ1 = sinc(ε), σ2 = sinc(2ε), sinc(x) ≡ sin(x)/x, ε =
max
1≤i≤n

|ζi|, ζi denotes the phase deviation of the ith oscillator

from the pinner φt,i, W = diag({ai,j}{i,j}∈E) is the diagonal

matrix of edge weights and B = [Bi,j ]n×m is the incidence
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Fig. 1. Schematic depiction of the QDC.

Fig. 2. Coupling of the physical microgrid to the network of quantum
controllers can be considered as coupling of two Kuramoto models.

matrix of the communication graph G with m being the number

of edges.

The basic outline of the algorithm is drawn schematically in

Fig. 1 and is summarized as follows:

1) Initialize qubits as a point on the first quarter of the

equator of the Bloch Sphere, i.e., 0 < φi(0) < π/2.

2) Teleport information throughout the network such that

each quantum node receives the quantum information

from its adjacent nodes.

3) At each node, update the rotation-Z (Rz) operator’s argu-

ment based on the pinner (φt,i) and the current value of

the phase angle φi.

4) Evolve the master equation (3) for one time step δt by

means of the swapping and rotation-Z operators.

5) Measure the expectation value of the σx or σy operator as

the observer at each node. Repeating this multiple times

and averaging gives the cosφi or sinφi, depending on the

exploited observable.

6) On classical hardware at each node, compute arccos 〈σx〉
or arcsin 〈σy〉 to obtain the phase angle φi.

7) Re-initialize the state of each quantum node

8) Go back to step 2.

IV. QUANTUM DISTRIBUTED CONTROLLER FOR AC AND

DC MICROGRIDS

A. Quantum Distributed Frequency Control

In AC microgrids, a predominantly inductive network nat-

urally decouples the load sharing process; the reactive power

regulator must handle the reactive load sharing by adjusting

voltage magnitude while the active power regulator would

handle the active load sharing through adjusting the frequency.

The locally deployed LC filter in each DER makes the output

impedance inductive dominant [11], then the power sharing

control laws that allow the active power to be shared based

on DER units’ rated capacities according to the droop setting,

can be written as ωi = ω∗ − niPi where ωi represents the

frequency at DERi, ω
∗ is a nominal network frequency, Pi is

the measured active power injection at DERi and ni is the gain

of the droop coefficient. Here, we call niPi the power sharing

signal. Our developed QDC for AC microgrids is formulated as

follows

ωi = ω∗ − niPi +
φi

k
,

φ̇i = sin (kniPi − φi) +
n∑

j=1

ai,j sin (φj − φi),
(10)

where φi/k is the secondary control variable and the scaled

power sharing signal, kniPi, is the pinner. The power shar-

ing signal is scaled to be restricted to (0, π/2), thus, we

select k such that k < π/2
max(niPi)

. In a typical AC microgrid

with distributed line impedances, since the susceptance of line

impedance is usually much larger than its conductance, and also

due to the small angle difference between each bus voltage, the

output active power of each DER can be expressed as [12]

Pi =
n∑

p=1

EiEp|Yi,p| sin (δi − δp) =
n∑

p=1

gi,p sin (δi − δp)

(11)

where Ei is the nodal voltage magnitudes Ei > 0, −Yi,p is the

admittance of the line between DERi and DERp and δi is the

voltage phase angle.

From (11), the physical power network can be treated as

a connected network whose entries of its adjacency matrix

are gi,p = EiEp|Yi,p| and hence, considering (10), it can be

readily obtained that, the coupling of the network of quantum

distributed controllers and the physical microgrid is the coupling

of a forced Kuramoto model with a Kuramoto model (Fig. 2).

At the steady state, the microgrid is assumed stable. Since the

DERs’ frequency must be equal, we have ωi = ωj and thus

niPi − φi/k = njPj − φj/k ∀i, j. As mentioned before, φi
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Fig. 3. Networked AC microgrids diagram and parameters - Blue bidirectional arrows represent the undirected quantum communications.

Fig. 4. DERs’ frequencies throughout the network after attaching and
detaching the step load.

converges to the pinner as t → ∞. Thus, niPi = φi/k and

niPi = njPj ∀i, j and ωi converges to ω∗.

B. Verification on an AC Networked-Microgrid Case Study

The performance of the developed QDC is tested on a

networked microgrids with five AC microgrids each one has

3 DERs (Fig. 3). The nominal voltage and frequency are 380

V and 60 Hz, respectively. For the sake of

simulation, two scenarios are examined. In the first scenario,

the system is examined in the face of attaching and detaching

a step load. To verify the QDC’s feature of plug-and-play

capability, as the second scenario, plug-and-play of DERs is

tested. To simulate Eq. (3), the Python-based open source

software QuTiP [13] is exploited.

1) Controller Performance: Studies in this section illustrate

the performance of the QDC under a step load change of 40

kW applied to microgrid 2 at t = 10s and detached at t = 20s

and results are depicted in Fig. 4. The exploited communication

graph is shown in Fig. 3. As can be seen, frequency regulation is

maintained throughout the step load changes and Active power

is accurately shared among the heterogeneous participating

DERs throughout the entire runtime.

2) Plug-and-play functionality: This case verifies the QDC’s

feature of plug-and-play capability. This merit is investigated,

by detaching DER10, DER11 and DER12 at t = 10s and

plugging them in again at t = 20s. As depicted in Fig. 5, after

disconnection of the DERs, the power deficiency reallocated

among the remaining DERs and they manage to share the

loads. As shown, accurate active power sharing and frequency

restoration are maintained during plug-and-play operation.

Fig. 5. Frequency regulation and active power sharing after plug-and-
play of DERs 10, 11 and 12.

C. Quantum Distributed Voltage Control for DC Microgrids.

In DC microgrids, droop control function is mainly utilized

to provide decentralized power sharing. It generates the voltage

reference V ref
i as [14] V ref

i = V ∗ − miIi where V ∗ is the

nominal dc voltage, mi is the current droop gain, Ii is the

output current of DERi. Consider the DC microgrid depicted

in Fig. (6), ignoring the inductance effect of lines, the DC bus

voltage Vb can be determined as Vb = V ref
i − RiIi. It can be

shown that, if the current droop gain mi is set much larger

than the line resistance Ri,
Ii
Ij

≈ mi

mj
and Vb ≈ V ref

i ∀i, j.

The larger mi is chosen, the more accurate power sharing can

be obtained, however, larger mi may cause the dc bus voltage

Vb to deviate more from the nominal value V ∗. Therefore, we

aim to attain both power sharing and precise voltage restoration,

simultaneously, by adding the QDC. To equip the DC microgrid

with the QDC, the droop function is modified as

V ref
i = V ∗ −miIi +

φi

c
,

φ̇i = sin (cmiIi − φi) +
n∑

j=1

ai,j sin (φj − φi),
(12)

Again, we select c such that c < π/2
max(miIi)

. Obviously, the first
part in the secondary control dynamic is to drive the dc bus

voltage Vb to the nominal value V ∗ while the second part is to

guarantee that φi = φj is satisfied, i.e., the current sharing is

achieved which demonstrates that the QDC is also applicable

to distributed voltage control in DC microgrids.

978-1-6654-0823-3/22/$31.00 ©2022 IEEE 
Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 14,2024 at 21:01:12 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. DC microgrid model equipped with the QDC and parameters.

Fig. 7. Voltage regulation and current sharing after a step load
disturbance at t = 10s.

D. Verification on a DC Microgrid Case Study.

This case verifies the universality of the QDC. This merit

is investigated by equipping a 9 DER DC microgrid case

study with the QDC (see Fig. 6) and applying a step load

of 267 kw at t = 10s. Results are depicted in Fig. (7). The

exploited communication graph is shown in Fig. (6). As can be

seen, voltage regulation is guaranteed throughout the step load

disturbance and power/current is accurately shared among the

participating DERs throughout the runtime.

V. CONCLUSION

While we are on the verge of quantum internet, planning for

future smart power grids, based on classical communications

seems obsolete and may fail to address the new requirements

and security challenges. Therefore, keeping up with the quantum

technology seems essential. In this work we introduce a new

synchronization mechanism by means of the quantum properties

of qubits. We leverage a proposed master equation to construct

the network of differential equations and demonstrate that the

synchronization rule follows the forced Kuramoto model. We

show how our proposed quantum synchronization scheme can

be exploited to regulate AC microgrids’ frequency and DC

microgrids’ voltage and guarantee precise power sharing.

Regarding the realization, the QDC requires establishing

quantum communication among the nodes and having quantum

computers at the nodes to simulate the master equation (3). On

the quantum hardware side, there are some promising findings

and developments. For example, right now, the 127-qubit Eagle

processor is the largest IBM real quantum machine. However,

according to the road map of IBM, a 1000-qubit Quantum

machine, called Condor, will be available by the end of 2023

[15]. Developments like this are major steps toward commer-

cializing quantum computers. On the computation side, authors

in [16] have proposed a gate-based algorithm for simulating

master equations and open quantum system dynamics on real

quantum machines. This is another ongoing research direction,

since new methods for decreasing quantum circuits depth are

ever emerging.
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