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MIntNet: Rapid motion intention forecasting of
coupled human-robot systems with

simulation-to-real autoregressive neural networks
John Atkins1 and Hyunglae Lee1

ABSTRACT

This paper describes the use of a simulation-to-real training
pipeline using autoregressive neural networks (MIntNet) for
coupled-human robot motion intention prediction. Using only
general prior knowledge about the interaction task, a large
simulation dataset was generated and used to train a multi-
output variation of the classic autoregressive model. The
network used an encoding-decoding method to construct con-
densed representations of the coupled system kinematics over
a sequence of time windows and generated their condensed
latent representations to predict multiple sequences of the
future system states. This method was then tested on 10
real human subjects’ data for the interaction task and the
simulation-to-real generalization performance was evaluated
for the proposed network along with alternative implemen-
tations of standard multilayered perceptron, convolutional,
and long-short term memory based networks. Results show
the proposed network has better generalization performance
compared to the alternatives, capable of closely predicting
positions during fast motion along non-constant curvatures
subject to low-frequency disturbances. The MIntNet was able
to accurately predict future positions in a 200 ms window
with errors of 3.1 ± 4.8 mm averaged over the prediction
window with inference times of 0.26±0.44 ms. Performance
was higher for short range predictions with errors over the
time window growing as 2.3 ± 3.4 mm at 50 ms, 2.4 ± 4.4
mm at 100 ms, and 5.5±6.7 mm at 200 ms. Together these
properties allow for agile predictions of motion intention that
can be used to inform assistive control policies for enhanced
collaborative control of coupled human-robot systems.

Index Terms—Intention Recognition, Physical Human-Robot
Interaction, Modeling and Simulating Humans

I. INTRODUCTION

MOTION intention prediction in the context of coupled
physical human-robot interaction (pHRI) describes the
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problem of inferring the human’s desired motion over a
suitably long time horizon using only information measured
through the interaction port between a robot’s end effector and
the human operator [1]. This problem is widely seen in the
domains of assistive exoskeletons and other wearable devices
where the robotic system has limited ability to observe the
human operator’s full body motion and must rely on sensing
such as torque/force sensors, inertial measurement units, and
joint encoders in order to infer the user’s intended motion [2].

This problem is amplified for assistive devices designed
to follow and aid a user’s arm motion due to the possibility
of sudden, fast motion of the hands or forearms not seen in
repetitive, slow motion seen in walking or trunk movements.
Additionally, interaction forces measured from a coupled inter-
face such as a handle or arm brace are subject to intermittent,
oscillations in the 0 to 15 Hz frequency range - often referred
to as tremors [3] - that cannot be filtered without significant
loss of system bandwidth required to quickly assist the user.

Common approaches for predicting motion intention of cou-
pled human-robot systems often employ regression methods
such as fitting polynomial or time-series forecasting mod-
els like autoregressive integrated moving average (ARIMA)
models to a sequence of past system states for prediction
of future states [4] [5]. Work in adaptive control often uses
Radial Basis Function neural networks (RBFNNs) for inten-
tion and reference trajectory estimation in conjunction with
model-based adaptive methods [6] [7]. Recent work has also
extended adaptive methods with meta-learning methods for
human movement prediction while quickly adapting to unseen
trends in new users [8] [9].

Other data driven methods operating on electromyogra-
phy (EMG) signals to detect motion intention are also used
[10] [11], but the requirement of needing to place EMG

sensors on a subject and then be properly calibrated limits
their use in many practical applications such as in outdoor
environments or industrial use.

The problem of coupled human-robot motion prediction is
in essence a multi-dimensional time-series forecasting prob-
lem. Model-based prediction methods as seen in model pre-
dictive control formulations are widely used in robotics [12]
[13], but they do rely on knowing sufficient information about
the system of which the model depends. For human-robot
interaction cases, there is often a lack of knowledge about the
true state of the human’s behavior that is available during high
speed motion assistance cases. This motivates observation-
based approaches for modeling how past system states and
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measurements are predictive of future system states that would
be robust to low-frequency disturbances that commonly appear
in real human motion data [3].

Over the past decade, there has been a boom of research
into using new data driven methods to fit time-series data such
as Deep AutoRegressive Networks (DARNs) [14], temporal
convolutional networks (TCNs) [15], dynamical variational
autoencoders (DVAEs) [16], and temporal fusion transformers
(TFTs) [17] for learning the dynamics of sequences and for
generative forecasting [18]. These methods show amazing
performance learning complex time-series relationships for
difficult problems. However, they feature complex networks
in order to capture the dynamics correctly which may be inef-
ficient when run on limited computational hardware commonly
seen on wearable robotics. These systems would greatly ben-
efit from efficient estimation of parameters, state forecasting,
and intention classification which motivates the development
of lightweight, interpretative models to tackle these problems
while operating on portable hardware such as a Raspberry
Pi (Raspberry Pi Foundation, Cambridge, UK) or a NVIDIA
Jetson Nano (NVIDIA Corporation, Santa Clara, California).

This paper outlines the use of a lightweight neural network
extending the traditional vector autoregression model that was
capable of sub-millisecond inference times. The model is
tailored for short term motion intention prediction and features
high generalization performance for use in agile coupled
human-robot systems. It used a simulation-to-real training
pipeline using limited prior knowledge about the dynamics
and disturbances that was able to generalize to real human
subject data with only a small drop in performance.

II. METHODS

A. Problem Setup

Vector autoregression (VAR) models are a form of multi-
dimensional time-series statistical models used to describe the
evolution of a system’s state as a function of a series of M
lags, or past observations of the state, that take the form of

xi = c+A1xi−1 +A2xi−2 + · · ·+AMxi−M + et (1)

where xi is the k-dimensional state vector at time index i,
xi−m∀m ∈ (1,M) are the relative state vectors, c is a constant
term, and et is a vector of error terms with assumptions of zero
mean, Am is a k × k covariance matrix, and no correlation
with errors at previous states. This form of model is useful
for the application of pHRI motion prediction as it relies on
observations of a series of possibly low-dimensional observ-
able states available to a robot over a chosen sampled time
window rather than fully coupled system state information at
the current time during online operation.

However, if the number of M lags is relatively low over
a long time window, individual relative state vectors may be
sensitive to disturbances from the human. These disturbances
cannot be filtered out of the stream of incoming measurement
data due to loss of useful information and filtering induced
time delays that lower the possible bandwidth of the assistance.
One method to mitigate the effect of a short range disturbance
is to use a greater number of lags with smaller spacing between

the terms, however this quickly increases the dimensionality
and complexity of the model.

In our method, we made the use of a learned encoding
function, Θ(·), that mapped a sequence of sampled state
vectors over a short time window to a single latent vector
zi that served as a condensed representation of the system
state’s behavior over the sampled window. This encoder can
be passed over the stream of state vectors at a larger spacing
to form a sequence of latent vectors zi−n, n ∈ [0, N ], that
can then form a non-linear forecasting variation of the VAR
model as

zi+1 = f(z0, z1, . . . , zN ) (2)

where zi+1 is the predicted latent variable, f(·) is the autore-
gressive forecasting model, and N is the number of relative
state vectors.

zi+1

zi+2

...
zi+M

 =


f1(zi, zi−1, . . . , zi−N )
f2(zi, zi−1, . . . , zi−N )

...
fM (zi, zi−1, . . . , zi−N )

 (3)

where M is the number of forward latent vectors to be
predicted simultaneously. Expressed symbolically, the encod-
ing function Θ(·) can be written as Θ(·) : {xi−nq−fu} →
{zi−n}, n ∈ [0, N ], f ∈ [0, F ]. The forecasting functions
fm(·),m ∈ [1,M ] can be composed with a decoding function
ϕm(·) to form a combined forecasting decoder Φ(·) = ϕ(f(·))
which maps Φm(·) : {zi−n}Nn=0 → {xi+mp−gv}, where
{zi−n}Nn=0 is the input sequence of N + 1 latent vectors, p
is the spacing of the forward clusters relative to the current
index i, g is the index of the G points in the output sampled
window, and v is the spacing of sampled points inside of the
main window.

This multi-time scale approach can be described using
a pair of stencils parameterized by terms (N, q, F, u) and
(M,p,G, v) representing backwards N sampled time windows
with clusters of points spaced q indices from each other
relative to the base sampling rate with F points inside the
cluster at a spacing of u indices from each other intra-cluster
points. Note this indexing method is functionally equivalent to
choosing stride and dilation parameters for a 1-D convolutional
kernel and the benefit of this approach is only for ease of
analysis. Similarly, for the forward prediction clusters, there
were M predicted clusters spaced at p indices with G points
inside the cluster with intra-cluster spacing of v indices (Fig.
1 (a)). This stencil approach allowed the terms for the model’s
inputs and outputs to be easily generated from a stream of data
sampled at a higher frequency than the underlying system’s
movement. This is often the case for wearable devices or
assistive robotics where the sampling rate of many common
sensors is in the range of 100 - 1000 Hz, while most large
scale human movement taking place at less than 10 Hz.
Uneven lengths for the input and output sequences were used
for this approach to allow for the selection of a long, densely
sampled input window and short, sparsely sampled output
window better suited for motion intention forecasting.
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Fig. 1. (a) The proposed architecture operated as a series of convolutional kernels passing over a series of the input sequence of short time windows to
form a sequence of latent vectors, zi−N , . . . , zi. The latent sequence was then passed to M decoders in parallel which applied a learned layer mask to the
sequence before decoding the masked sequence to the target section of the output sequence. (b) Internal architecture of the encoder. (c) Internal architecture
of the parallel decoders.

For this problem, the full state of the system was modeled
as the relative end effector position with its own value from
200 ms prior, together with the end effector velocity and
acceleration on a 2D plane. Predicting the relative positions
made the network shift invariant to allow predicting positions
relative to the end effector and not the arbitrary system origin.
As the predicted future position was the key interest in this
study, the relative positions were taken to be key variable of
the output state for analysis.

The chosen stencil parameters are (N, q, F, u) =
(4, 20, 5, 5) and (M,p,G, v) = (2, 20, 3, 10), or 4 + 1 input
clusters spaced 20 indices apart with 5 intra-cluster points
spaced 5 indices apart, and 2 output clusters spaced 20 indices
apart with 3 intra-cluster points spaced 10 indices apart. By
satisfying the condition of p = (G− 1)v, this spacing causes
the last point in the first output cluster and the first point in
the second cluster to overlap. This allows the predicted point
clusters to be translated to align with the input window or
previous output cluster to compensate for undesirable biases
in predictions between outputs.

B. Network Architecture

The network architecture chosen to implement the proposed
MIntNet model was based on an encoding-decoding scheme
(Fig. 1). The encoder was a three layer convolutional network
that operates on the short-time window sampled point clusters,
condensing the window into a single latent vector (Fig. 1
B). The encoder’s convolutional kernel was passed over the
input sequence at a regular spacing of u indices relative to
the base sampling rate to form a sequence of latent vectors.
In this implementation, the input was arranged into a 3-D
tensor of shape (dim(xinput,i), N, F ) where dim(xinput,i) is
the dimension of the input state vector, N is the number of
clusters, and F is the number of points per cluster, and the
convolutional kernels is a 2-D kernel that operates on the last
dimension of the tensor. This was done for ease of analysis
and processing and an equivalent kernel could be generated

from a 1-D convolutional kernel with appropriate stride and
dilation parameters.

This generated the latent sequence of (zi−N , . . . , zi) which
was then passed to M decoder functions (Φm(·)) implemented
as an additive masking layer and then was passed to fully
connected multi-layered perceptron (MLP) mapping the entire
masked latent sequence to the points in each output cluster
(Fig. 1(c)). Multiplicative masks applied in the form of self-
attention layers as seen in [19] were tested as alternatives in
early studies and faster training with better final losses were
consistently observed when compared to a straightforward
additive mask or gate for these datasets for and this problem.
The mask was computed with a Hadamard product of the latent
sequence and layer weights with values in the range of [−1, 1]
and then averaged as a straightforward method inspired by the
long history of prior work of gated units such as the Gated
Linear Unit [20] and the Gated Residual Network [17]. This
allows weights after activations of near −1 to cancel out the
input rather than scaling the entire input sequence and kept
the number of learnable parameters as low as the length of
the input sequence.

The motivation for decoding each target cluster in parallel
was threefold. Firstly, the masking layer allowed the full latent
sequence to be used for prediction while simultaneously reduc-
ing the influence of latent vectors that are less predictive of the
movement for a particular time window. Secondly, it allowed
the weights in each decoder to be dependent on fewer points
in the output sequence to encourage faster convergence during
training. Lastly, having the decoders operate independently
allowed each decoder to operate in multi-threaded applications
for faster inference.

C. Alternate Networks for Performance Comparison

Performance of the proposed convolutional encoder with
parallel linear decoder network (MIntNet) was compared with
common alternative network architectures used for similar
approaches. Five alternative networks were used in this study:
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Fig. 2. Comparison of the real recorded datasets and the simulated datasets used for training. A small sample of three real human subjects’ data was analysed
to determine target ranges and distributions of state variables to inform creation of a simulated dataset to be used for training. From the information gathered
from 6 minute of real data, roughly 45 minutes of simulated data from 3 simulated subjects and 5 trajectory and noise cases with 20 randomly generated
trials was created and used for the training set. (a), (b) Representative trials of both the real datasets and simulation datasets showing both the trajectory
of positions and accelerations over the workspace and over time. (c), (d) Distributions of the real and simulated datasets used to tune ranges of velocities,
accelerations, and forces for simulation dataset generation.

1) a six-layered fully connected MLP network that reshapes
layers acting on the input and output to maintain standard input
and output representations (Linear); 2) a Linear encoding-
decoding MLP network based on autoencoder networks that
use three layers each for the encoder and decoder with similar
reshaping layers (Linear-Linear); 3) a radial basis function
neural network (RBFNN) [6]; 4) a convolutional encoder with
parallel convolutional decoders (Conv-Conv) [21]; and 5) a
convolutional encoder with long short-term memory and a final
MLP layer decoder (Conv-LSTM) [22].

The base output feature or channel size was 32 features
for all alternative networks. Kernel sizes of 3 × 1 or 1 × 3
were used as a base kernel size for all convolutional layers,
and the LSTM featured two internal layers. Continuously
Differentiable Exponential Linear Units (CELU) activation
was applied between all layers, and Hardtanh activation was
used for the masking layer weights. Further details for the

specific parameters for all networks can be found in Table II
and III in the Appendix. The base channel and feature size
was chosen based on iterative hyperparameter tuning and 32
was found to give lower losses during training than smaller
channel numbers. Larger channel numbers up to 128 were
tested and the final performance was similar although training
and inference times were much longer. After the masking
layers, the parallel linear decoders were implemented as a
convolutional layer with kernel size equal to the sequence
length to allow easy scaling of the total number of parameters
with the latent sequence length. This approach had the same
connections between inputs and outputs as a fully connected
MLP layer with slight implementation differences followed by
two MLP layers with standard settings. All networks used the
same input and output tensors defined by the stencil parameters
to ensure the comparison of the performances is not affected
by representation of the inputs and outputs.
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D. Simulation Dataset Generation

A source dataset of pHRI motion data for an arm reaching
task was chosen as a reference to generate the simulated
dataset (Fig. 2). In this task, a human operator guided the end
effector of a 7-DOF robotic arm (LBR iiwa R820, KUKA,
German) quickly through a series of five way points. The
interaction was controlled by a variable admittance controller
with interaction forces measured with a 6-axis force/torque
load cell (Delta IP60, ATI Industrial Automation, NC) [23]
[24].

The source dataset consisted of data from 10 young, healthy
individuals (age: 22–31, height: 152–188 cm, weight: 50–82
kg, sex: 9 males and 1 female, handedness: 7 right handed and
3 left handed), which was approved by the Institutional Review
Board of Arizona State University (STUDY 00010123). They
provided informed, written consent prior to participation.

The data was recorded with two cases, the first used constant
admittance parameters of 10 kg and 10 Nm/s for inertial and
damping values in all directions. The stiffness was varying
between 0 N/m and 300 N/m proportional to the scalar
product of the current velocity and acceleration. The second
case used a stiffness of 10N/m with equilibrium position set 3
cm on a straight line along the current velocity direction. This
dataset was chosen as it represents a common scenario in pHRI
where the motion of the operator’s hand follows a complicated
trajectory. The trajectories are over a limited workspace of
a 20 × 20 cm2 area in front of the user. The instantaneous
velocity of the user’s hand reaches speeds of over 20 cm/s,
allowing the end effector to traverse the entire width of the
workspace in less than one second with peak accelerations
near 100 cm/s2 in regions of high curvature.

A simulation-to-real approach was chosen to generate a
large set of trajectories that contained not only motions that
mimicked what was observed in the source dataset, but unseen
motions such as straight line motion and curves with sudden
directional changes. This was done to allow the network to ob-
serve a superset of motion trends to encourage generalization
to unobserved motions that may not been seen in a limited set
of only curved motion subject to disturbances (Fig. 2(c), (d)).

Initially a set of three human subject’s data was recorded for
the two admittance controller cases. Ten trials were sampled at
1000 Hz lasting approximately 6 seconds each and analyzed
to determine the range of velocities, accelerations, forces, and
disturbances (Fig. 2(a)). The simulation uses these ranges to
define simulation parameters such as way point positions and
velocities, time between way points, simulated human control
input, and noise or disturbance inputs for a variety of cases.

The five cases were generated to produce a diverse dataset
of motions to assist with simulation-to-real generalization.
The first case featured straight line motion between way
point positions without noise or disturbances. The second case
featured random way point velocity directions at the way point
positions to create smooth arcs free of noise or disturbances.
The third case was similar as the second case but included
disturbance inputs. The fourth case set the velocity directions
as the mean direction of the previous and next way point
positions, and the fifth case was similar to the fourth but also

includes disturbance inputs (Fig. 2(b)). The disturbance inputs
were modeled as forces with channels independently sampled
from unit normal distributions at random rates sampled from a
uniform distribution between 100ms and 200ms. This creates
disturbance forces with magnitudes and frequency responses in
the range observed from the real human subject data that avoid
time-dependent trends. Predictable, time-dependent trends in
the simulated disturbance forces could be learned by the
networks during training but would not appear in the real
human subject motion and thus would harm simulation-to-real
generalization performance. The simulated trials were filtered
with a fifth order low-pass Butterworth filter with 10 Hz
cutoff frequency before downsampling to 250 Hz for more
efficient storage of the large dataset. Subjects were simulated
by standard cascaded PID controllers. These gains were set
first to prioritize both position and velocity reference signals
equally, the second to prioritize position signals over velocity,
and the third to prioritize velocity over position. The gains
were selected to be stable and were tuned to mimic unrefined
behavior of a human user interacting with an unfamiliar robot.

E. Training

All networks were trained on the training and validation
sets pulled from the simulation dataset. The test set was
formed from 10 real human subjects recorded for the two
admittance controller cases for 10 trials each. Each trial lasted
approximately six seconds totaling roughly 20 minutes of
human subject data. The channels for the inputs and outputs
were scaled to have unit variance and the input and output
tensors were arranged into batches of 128.

During training, Gaussian noise, sampled independently
from a zero mean with 0.05 variance, was added to the
scaled inputs before applying uniform dropout with a rate
of 10%. Both of these were done for regularization of the
network parameters and to promote continuity of similar input
sequences mapping to similar output sequences.

The Adam optimizer was used for training with an initial
learning rate of 1e− 4 and was adjusted lower by a factor of
1/3 when a plateau in the validation loss was detected. The
training was ended early if the percentage improvement of the
loss was less than 0.5% with a maximum epoch number of
40.

The PyTorch [25] library was used for the implementation
of the networks and for training. An NVIDIA GeForce GTX
1060 GPU (NVIDIA Corporation, Santa Clara, California)
was used for training. An Intel Core i7-8750H CPU (Intel
Corporation, Santa Clara, California) was used for evaluation
and inference times to reflect performance on most wearable
robotic devices lacking GPUs. For evaluation and inference
speed testing, the networks were compiled as TorchScript to
reduce computational overhead from Python.

III. RESULTS

A. Network Performance Comparison

The training and validation results showed fast convergence
for all networks except the LSTM implementation (Fig. 3(a)).
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TABLE I
NETWORK COMPARISON SUMMARY

Network Sim. Set Error Real Set Error Training Time per Epoch Inference Time
Model Mean (SD) [mm] Mean (SD) [mm] Mean (SD) [s] Mean (SD) [ms]
Linear 1.50 (1.37) 4.25 (4.59) 3.38 (1.43) 0.030 (0.171)

Linear-Linear 2.22 (2.19) 4.94 (4.99) 3.45 (1.13) 0.027 (0.162)
RBFNN 1.99 (2.13) 4.65 (4.93) 16.93 (4.96) 0.701 (0.455)

Conv-Conv 1.67 (1.53) 4.03 (4.70) 25.18 (16.21) 0.284 (0.450)
MIntNet 1.56 (1.53) 3.11 (4.79) 30.04 (9.24) 0.256 (0.435)

Conv-LSTM 2.94 (2.82) 4.42 (4.69) 38.47 (8.27) 1.007 (0.471)

Both simulation and real human subject dataset error distributions were computed by taking the vector difference of the output and the predicted values point
by point, computing the L-2 norm of the difference, then finding the mean and standard deviations over all observations. Training times were computed by
calculating the mean and standard deviations of all recording training times. Inference times were computed by compiling each network into TorchScript and
timing the speed of processing a single input at a time for 200 observations and then finding the mean and standard deviations.

Fig. 3. (a) Validation losses for training multiple network architectures over
40 epochs. (b) Mean error averaged over all seven points in the prediction
window of 200 ms for networks tested on a validation set from simulated
trials.

The evaluation on the validation set showed comparable mean
errors of 1.50± 1.37 mm and 1.56± 1.53 mm for the Linear
network and MIntNet, respectively, as the best two performing
networks on the validation set taken from only simulated data
(Fig. 3(b)).

Prediction error for both simulation and real human subjects
datasets, training time, and inference time statistics were
evaluated for all the tested networks. The results were averaged
over all subjects, cases, trials, and forecasting windows (Table
I). Simulation dataset errors for the Linear, Conv-Conv, and
MIntNet were comparatively similar in both mean and stan-
dard deviation. When generalizing to the real dataset, MIntNet
shows the best mean performance at a marginally higher
standard deviation than the alternatives. While training times
for all convolutional encoder networks were similar, inference
times for the MIntNet network are comparable to the Linear
networks without loss of generalization performance.

B. Generalization to Real Human Data

All the networks took in a 525 ms input window and
predicted coupled-system behavior out to 200 ms in the
future (Fig. 4). The network was robust to disturbances in the
input and can reliably predict sharp directional changes and
non-constant curvatures. Accuracy decreased as the prediction
window increased due to dependence on unseen disturbances
not present in the input window.

Fig. 4. Sample results of the MIntNet’s performance. The network allows
predicting positions out to 200 ms in the future using a 525 ms input
window. These predictions worked through sudden changes in direction and
for non-constant curvatures over a range of velocities using training on only
simulated data. The output cluster spacing is such that the last point of the first
cluster and the earliest point in the second cluster to overlap. This allows for
compensation of any biases between independent outputs to ensure prediction
of continuous motions.

The networks were evaluated on the real subject dataset
and prediction errors were averaged over subjects, cases, and
trials to compare overall performance between the networks
over the prediction window (Fig. 5). Of all the tested networks,
the MIntNet model had consistently lower mean and standard
deviations of prediction error over the entire window although
the difference is more pronounced before 100 ms. For the 50
ms and 100 ms predictions, MIntNet’s errors were 2.29 ±
3.40 mm and 2.42± 4.43 mm, respectively. For the 200 ms
prediction, the error was 5.53±6.74 mm and was comparable
to other networks’ performance.

The MIntNet model was further analysed subject-by-subject
and case-by-case (Fig. 6). Grouped errors averaging over all
points in the 200 ms prediction window for all 10 subjects for
Cases 1 and 2 were 3.13± 3.13 mm and 3.70± 4.15 mm.
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Fig. 5. Comparison of tested networks’ prediction accuracy for real human
subjects’ data over the prediction window. All networks trained on purely
simulated data show an increase in both mean and standard deviation of
errors when evaluated on the 10 real human subjects dataset as expected.
The proposed MIntNet model showed the smallest growth in mean error for
short-range predictions with comparable performance to alternatives near the
end of the prediction window.

Fig. 6. The MIntNet showed similar performance between both variable
admittance controller schemes when tested on real subjects data while only
being trained on simulated data that used a constant admittance controller
parameter set.

IV. DISCUSSION

All tested networks showed mean prediction errors of less
than 3 mm on the simulation set. Mean errors increased to
under 5 mm for all networks showing good generalization
performance for the mean prediction with far better perfor-
mance for short-range position forecasts (Table I).

The high variance in the prediction errors for all networks
in the real subjects datasets at first glance would suggest
low performance of the generated predictions. However, the
underlying issues with the variable performance originates
from the datasets themselves. The trajectories the network was
trained on were subjected to random disturbances that can rise
and fall in the range of the prediction window. Additionally,
the disturbances can start after the end of the input window.

TABLE II
NETWORK PARAMETER SUMMARY

Model Parameter Value

Linear
Feature Number 32
Layer Number 6

Activation CELU

Linear-Linear

Feature Number 32
Latent Features 4

Encoder Layer Number 3
Decoder Layer Number 3

Activation CELU

RBFNN

Feature Number 32
Latent Features 12

Gaussian RBF Number 24
RBF Width 0.5

MIntNet

Channel Number 32
Feature Number 32
Latent Features 4

Encoder Layer Number 3
Encoder Kernel Size [1, 3]

Decoder Layer Number 3
Decoder First Layer Kernel Size [5, 1]

Mask Features 5
Mask Activation Hardtanh

Activation CELU

Conv-Conv

Channel Number 32
Latent Features 4

Encoder Layer Number 3
Encoder Kernel Size [1, 3]

Decoder Layer Number 3
Decoder Kernel Size [3, 1]

Mask Features 5
Mask Activation Hardtanh

Activation CELU

Conv-LSTM

Channel Number 32
Latent Features 4

Encoder Layer Number 3
Encoder Kernel Size [1, 3]

LSTM Features 32
LSTM Layers 2

Activation CELU

This caused a sharp increase of error for short regions of
the trials that are later averaged into the reported prediction
errors. This is fundamentally unavoidable in forecasting with
unknown disturbance inputs, but for the purposes of predicting
the user’s motion intention this is only a minor concern.

Directly using forecasted relative positions in the presence
of large disturbances would result in sudden, non-smooth
changes in the generated assistance forces which would gen-
erate vibrations and a drop in assistance quality. The major
benefit of the MIntNet’s ability to predict a sequence of future
states at a fast rate is that the estimates can be smoothed to
extract directional intention and changes in velocity relative
to the current state. This approach would not be viable when
using networks with long inference times as the required
computational time along would be too long to maintain high
speed cycle time requirements for agile assistance.

High variance relative to the mean inference times was
observed on all tested networks suggesting the presence of
periodic drops in speed during inference. This was likely the
result of evaluating the networks on a computer running a non-
real time operating system which does not ensure consistent
cycle times due to task switching to background processes.
Inference times on a real-time operating system would likely
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yield consistent speeds close or below the reported means for
a more even comparison.

This method for handling pHRI tasks allowed simulation-to-
real training pipelines using minimal prior knowledge about
the task itself and no prior knowledge of the human’s dy-
namics. Arbitrary amounts of randomly generated simulated
trajectories can be used to train networks as a forecasting pol-
icy with good generalization performance. This performance
should be understood as the performance of a base forecasting
policy that can be further trained offline on collected human
subject data as needed. Together these properties show promise
for the use of lightweight autoregressive neural networks for
pHRI applications. Future work is planned that uses this model
for predicting reference trajectories to be used with a variable
admittance controller for improving assistive force generation
to a human user.

APPENDIX

Training and network parameters were selected by iterative
hyperparameter tuning during early testing and were chosen
to balance convergence time and final evaluation loss (Table
II).
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