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Abstract: We propose a data-driven framework for identifying coarse-grained (CG) Lennard-

Jones (LJ) potential parameters in confined systems for simple liquids. Our approach involves 

the use of a Deep Neural Network (DNN) that is trained to approximate the solution of the 

Inverse Liquid State (ILST) problem for confined systems. The DNN model inherently 

incorporates essential physical characteristics specific to confined fluids, enabling accurate 

prediction of inhomogeneity effects. By utilizing transfer learning, we predict single-site LJ 

potentials of simple multiatomic liquids confined in a slit-like channel, which effectively 

replicate both the fluid structure and molecular force of the target All-Atom (AA) system when 

the electrostatic interactions are not dominant. In addition, we showcase the synergy between 

the data-driven approach and the well-known Bottom-Up coarse-graining method utilizing 

Relative-Entropy (RE) Minimization. Through sequential utilization of these two methods, the 

robustness of the iterative RE method is significantly augmented, leading to a remarkable 

enhancement in convergence. 
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1. Introduction 

Coarse-graining has proven to be a crucial tool in modeling complex molecular systems and 

studying their behavior at larger spatiotemporal scales that would be impossible with high-

resolution methods like All-Atom Molecular Dynamics or first-principle techniques like Ab-

Initio Molecular Dynamics (AIMD).1-2 As an example, in recent research,3 the utilization of 

coarse-grained models allowed for the examination of molecular transport in nuclear pore 

complexes over timescales of tens of milliseconds. This remarkable feat involved systems 

containing approximately 200 million atoms, a task that would have been inconceivable using 

alternative techniques. 

 By reducing the degrees of freedom of a fine-grained atomic system, coarse-graining allows 

for a close replication of its properties at a much lower computational cost. This is analogous 

to solving the "Inverse Problem of Liquid State Theory" in classical mechanics,4-8 which 

involves finding interatomic potential parameters that correspond to a given equilibrium 

particle distribution. The distribution represents a high-resolution atomistic system, while the 

derived potentials are for a low-resolution coarse-grained system. In the case of pairwise 

interactions between particles, the Bogolyubov–Born–Green–Kirkwood Yvon (BBGKY)4 

hierarchy provides a set of equations that relate the n particle and n+1 particle distribution 

functions to the underlying interaction potential. Nonetheless, these equations cannot be readily 

applied as the higher-order distribution functions remain unknown. Even though certain 

approximation methods9 have been used to estimate solutions,  their applicability is limited to 

specific categories of materials. This highlights that finding a general solution to the inverse 

liquid state problem is a non-trivial task. 

Several techniques for coarse-graining have been developed in the past for studying systems 

like64-68 polymers, liquid crystals, colloids and biomolecules like proteins, lipid bilayers, etc. 

These techniques can be broadly classified into two categories: Top-Down and Bottom-Up. 



Top-Down10 approaches parameterize CG potentials by fitting them to experimental data to 

match thermodynamic quantities or macroscale properties like density, pressure, or surface 

tension11-12. On the other hand, Bottom-Up13 approaches rely on principles of statistical 

mechanics, which govern atomic motion at molecular scales. A central idea in Bottom-Up 

method is to model the many-body Potential of Mean-Force (PMF) which contains necessary 

information required to infer key properties of the AA system. However, they rely on data from 

more accurate atomistic simulation, which are computationally expensive and restricted to 

smaller systems. The most popular Bottom-Up methods include, Iterative Boltzmann Inversion 

(IBI),14 Relative Entropy (RE)15, 62, 63 and Force-Matching (FM).16-18 These Bottom-Up 

methods have certain  limitations such as a deficiency in robustness when it comes to 

identifying a global minimum and sensitivity to initial conditions. Furthermore, potentials 

derived using Bottom-Up methods exhibit substantial deviations on target properties69-70 away 

from the reference state-point for which they are derived and vary significantly with 

temperature71-74 and density75. Consequently, achieving transferability to different 

thermodynamic states has proven to be quite challenging76-78. In the case of iterative methods 

like IBI and RE, multiple MD simulation of sufficient duration are required to be run to obtain 

an adequate sampling of snapshots to compute quantities required for update- calculations. The 

originally proposed IBI14 and RE15,63 schemes require running simulations at each step. 

However, developments utilizing trajectory reweighing techniques based on statistical 

perturbation theory have been suggested for RE79 and quite recently for IBI80. This approach 

eliminates the need to run a CG simulation at each iterative step. Nonetheless, it's important to 

note that convergence cannot be assured without careful treatment of the iterative process, in 

addition to the computational complexity involved. Furthermore, techniques such as IBI entail 

the computation of the atom distribution through the utilization of the Radial Distribution 

Function (RDF), which is specifically defined for homogeneous systems. This limitation 



restricts its applicability to confined systems, such as nanochannels where the fluid structure 

changes along the width. 

With recent advances in ML, researchers have sought to address many of these drawbacks by 

using data-driven approaches.19-29 ML based methods are fast and robust, and exciting 

breakthroughs have been made using them.30 DeepILST23 was one of the first approaches to 

provide an approximate solution to the inverse problem for a wide class of simple liquids19 

using a data-driven method.  It used a DNN which was trained to learn the mapping between a 

given RDF and the corresponding potential parameters for LJ liquids at a given thermodynamic 

state. Transfer learning was then used to coarse-grain different multiatomic simple liquids. 

While this framework provides a route to obtaining a one-shot solution to the inverse problem, 

its applicability is limited to homogeneous systems. Numerous engineering systems, 

particularly those involving fluids in confined spaces such as nanochannels and interfaces, 

possess distinct characteristics that set them apart from their bulk counterparts. These 

confinement effects give rise to unique properties that have been harnessed for various 

applications,31-35 including drug delivery systems, energy storage devices, and sensors. 

Consequently, there is significant interest in exploring the inverse problem for an 

inhomogeneous system and subsequently developing a tailored coarse-graining framework for 

confined fluids. We address this in our current work and develop a data-driven approach to 

coarse-grain simple liquids in a nanochannel by explicitly incorporating key features that 

describe confinement effects. 

These effects give rise to strong density oscillations near the wall-fluid interface, resulting from 

the intricate interplay between attractive and repulsive forces between the wall and the fluid 

atoms. A strong repulsion by the wall leads to a zero-density value close to the wall. As we 

move away from the wall, at a short distance a fluid density peak is observed predominantly 

due to attractive interactions of the wall and its location is almost entirely determined by the 



attractive minimum of the wall fluid-potential.36 This peak is followed by a density-minima 

caused due to repulsive forces against the fluid atoms of the first layer. At a distance far away 

from the wall the distribution of fluid particles is no longer influenced by the wall and 

resembles a homogeneous bulk-like structure. This coupling between wall-fluid and fluid-fluid 

interaction forces is therefore critical in determining the structure of confined fluids. Using 

theoretical arguments, we show how both force components contain necessary information for 

obtaining coarse-grained wall-fluid and fluid-fluid potential parameters. We then use a DNN 

which learns this non-trivial relationship between the LJ potential parameters and the wall-

fluid/fluid-fluid force profiles of LJ liquids, providing an “approximate solution” to the Inverse 

Problem of Liquid State for inhomogeneous systems and subsequently a route to coarse-grain 

simple liquids in confinement.  

We regard the obtained solution as an approximation primarily due to the modeling of the 

interaction potential, which is simplified as a pairwise Lennard-Jones potential. Despite its 

simplicity, it is one of the most frequently used potentials in molecular dynamics due to its 

physical origins and ability to describe essential aspects of atomic and molecular interactions, 

including Pauli’s repulsion at close distances and London Dispersion forces at longer distances. 

As a result, it has been widely used to model diverse systems including real simple liquids37 

and to validate several classical theories in Statistical Mechanics which rely on assumption of 

pairwise interactions.4 Although its use also imposes constraints in terms of applicability to 

complex molecules, (which have strong multi-body correlation or long-range interactions 

which can’t be captured by the LJ functional form38) it also retains an element of interpretability 

because of its physically derived basis. We seek to alleviate this limitation and broaden its 

applicability to complex molecules by using a sequential approach that combines the data-

driven method with Relative Entropy Minimization-based coarse-graining method. The RE 



derived CG potentials have been successfully used to coarse-grain complex liquids (like water) 

in confinement39, highlighting the potential of the suggested hybrid approach. 

We now propose the following approach based on the ILST for inhomogeneous systems. First, 

we train a DNN which approximates a mapping between wall-fluid and fluid-fluid forces acting 

on simple LJ liquids in confinement and its potential parameters. Next, we extract the wall-

fluid and fluid-fluid forces acting on the Centre-Of-Mass (COM) mapped trajectories of 

multiatomic liquids and using these as inputs to the well-trained DNN model, infer the single 

site coarse-grained potential parameters of the CG bead. The DNN obtained potentials are then 

used to initialize the RE framework. Using the DNN generated potentials as an initial guess to 

the RE framework leads to a two-way advantage where both methods gain from each other. 

First, it extends the applicability of the data-driven approach to include diverse systems with 

more complex interactions and second, it leads to a critical improvement in convergence of the 

RE iterations which are slow if used in a stand-alone manner. 

The remainder of the paper is organized as follows. First, the inverse problem of liquid state 

and how it leads to the relationship between fluid forces and CG parameters are described in 

Section 2.1. A reader only interested in the computational aspect of this work may skip Section 

2.1. In Section 2.2 we give details of the CG and AA simulations needed to generate the training 

data and multiatom fingerprints used for coarse-graining. Next in section 2.3, we describe the 

data-driven approach along with the architecture of the DNN used for coarse-graining. In 

Section 2.4 we discuss the Relative Entropy minimization method. Lastly, we assess the 

accuracy of coarse-graining different multiatomic molecules in Section 3.1 and demonstrate 

the advantage of using DNN with RE in Section 3.2. 

2. Methods  

2.1.  Inverse Liquid State Theory (ILST)  



Henderson's Theorem40 guarantees uniqueness of the solution to the inverse problem for 

homogeneous systems, and techniques such as IBI and DeepILST aim to identify such 

solutions. In contrast, the inverse problem for inhomogeneous systems has received less 

attention, despite its relevance to coarse-graining in nanochannels. Given the comprehensive 

theoretical confirmation of the existence and uniqueness of solutions for inhomogeneous 

systems in Ref. 6, we will now investigate this matter from a computational perspective. The 

inverse problem for confined systems is defined as follows:  

Consider a system of 𝑁 particles interacting under the potential 𝑉𝑁. As described in Ref. 6, the 

single particle density under the action of an external potential 𝑈(𝑟) can be written as, 

𝜌(1)(𝑟) = ∑  𝑁
𝑖=1

1

𝑍𝑁
∫ 𝑒𝑥𝑝 [−𝑉𝑁(𝑟1, … , 𝑟𝑖, … , 𝑟𝑁) − ∑  𝑁

𝑗=1 𝑈(𝑟𝑗)]𝑑𝑟1 … 𝑑𝑟𝑖̂ … 𝑑𝑟𝑁                        (1) 

where the integration is carried over all positions except 𝑟𝑖, as indicated by the hat. 𝑍𝑁 is the 

partition function in the canonical ensemble and  𝑘𝐵𝑇 is chosen to be equal to one for 

simplicity. 

The inverse problem for an inhomogeneous system deals with the following question: Given 

an interparticle potential 𝑉𝑁(𝑟1, … … , 𝑟𝑁)  and distribution 𝜌(1)(𝑟)  of a system such that 

∫  𝜌(1)(𝑟)𝑑𝑟 = 𝑁 does there exist a corresponding single particle external potential 𝑈(𝑟) that 

gives the equilibrium particle distribution given by Equation (1) and if it exists, is it unique?   

Using rigorous theoretical arguments, Ref. 6 shows that for a large class of systems such a 

potential exists and is unique. In the context of this work, 𝑉𝑁 is the pairwise fluid-fluid CG 

potential while 𝑈(𝑟) the pairwise wall-fluid CG potential and 𝜌(1)(𝑟)  the AA fluid density 

profile. For fluids confined between walls, the wall-fluid potential 𝑈(𝑟) is caused solely by 

wall atoms that depends on the wall-fluid interaction parameters and the distance z from the 

wall. If the wall atoms are approximated as a continuous medium, then it can be shown that the 

external potential due to a single wall is given by,4   



                                   𝑈(𝑧) =
2

3
𝜋

𝑤
𝜎𝑤𝑓

3  𝜀𝑤𝑓 [
2

15
(𝜎𝑤𝑓/𝑧)9 − (𝜎𝑤𝑓/𝑧)3]                               (2)       

Here 
𝑤

 represents wall atom density, 𝜎𝑤𝑓 and 𝜀𝑤𝑓 the wall-fluid Leonard Jones interaction 

parameters respectively. Equation (2) along with the preceding definition of the inverse 

problem in confined systems serves as a starting point for a theoretical treatment of the inverse 

problem in nanochannels and subsequently relates to coarse-graining. However, this definition 

is not readily useful from a coarse-graining perspective since the definition assumes that the 

fluid-fluid potential 𝑉𝑁 is already known.  This is not the case for most coarse-graining 

applications in nanochannels where one does not know the fluid-fluid potential beforehand and 

rather needs to infer it from the corresponding AA system.  

We thus reformulate the classical inverse problem in such a way to not keep 𝑉𝑁  fixed. 

However, in doing so we now introduce an additional variable resulting in two unknown 

potentials 𝑉𝑁, 𝑈 and one known structural property 𝜌(1)(𝑟) of the nanochannel. Consequently, 

this leads to an underdetermined system. We address this by introducing a second structural 

property 𝑔(2)(𝑟1, 𝑟2) which represents the pair-distribution function. For a system with the total 

interaction potential defined by 𝑊𝑁 the pair distribution function is defined as, 

           𝑔(2)(𝑟, 𝑟′)  =  
1

 𝜌(1)(𝑟) .𝜌(1)(𝑟′). 𝑍𝑁  
∫ ⋯ ∫ 𝑒𝑥𝑝 [−𝛽𝑊𝑁(𝑟, 𝑟′, 𝑟3, … , 𝑟𝑁) ]𝑑𝑟3 ⋯ 𝑑𝑟𝑁        (3)             

Where 𝛽 =  1/𝑘𝐵𝑇 . Alternatively, the above equation can also be written as, 

              𝑔(2)(𝑟, 𝑟′)  =
1

 𝜌(1)(𝑟) .𝜌(1)(𝑟′)
⟨∑  𝑁

𝑖=1 ∑  𝑁
𝑗=1 𝛿(𝑟 − 𝑟𝑖)𝛿(𝑟′ − 𝑟𝑗)⟩                                (4) 

Equation (4) can be used to calculate 𝑔(2)(𝑟, 𝑟′) by Molecular Dynamics via a histogram 

binning procedure. In the most generic sense 𝑔(2)(𝑟, 𝑟′) (doublet correlation) and 

𝜌(1)(𝑟) (singlet correlation) would be functions of six and three variables, respectively. 

However, in the case of nanochannels, owing to planar symmetry they reduce to 



𝑔(2)(𝑧1, 𝑧2, 𝑅12 ) 𝑎𝑛𝑑 𝜌(1)(𝑧) which are three and one variable functions. Here z1 and z2 are 

the z coordinates and 𝑅12  is the axial distance between 2 points used to calculate the pair 

correlation inside the nanochannel. 

The inverse problem of liquid state can now be redefined to compute fluid-fluid potential 𝑉𝑁 

and wall-fluid potential 𝑈(𝑧)  that matches the corresponding density 𝜌(1)(𝑧)  and pair-

distribution function 𝑔(2)(z1, z2, R12). It is interesting to note that if the external potential 𝑈(𝑧) 

= 0 (no walls) then the system becomes homogeneous with 𝜌(1)(𝑧) =  𝑁/𝑉  and the pair-

distribution function becomes radially symmetric, 𝑔(2)(r1, r2)  =  𝑔(2)(|r1  −  r2|) . The 

problem now simplifies to finding the fluid-fluid potential 𝑉𝑁 which matches the corresponding 

radial distribution function (RDF), which is the well-established inverse problem for 

homogenous systems. Thus, the inverse problem for a bulk system can be viewed as a special 

case of an inverse problem for an inhomogeneous system. 

In statistical mechanics the inverse problem consists of two facets. Firstly, the inquiry into the 

existence and uniqueness of the solution, and secondly, the question of whether the solution 

can be obtained, if it does exist. Although the latter is more relevant and intriguing from a 

computational perspective, the former warrants some deliberation as well. 

The uniqueness of the solution to the inverse problem has been a topic of extensive debate. For 

instance, the proof of Henderson’s Theorem40 has been shown to  incorrectly assume the Gibbs 

Variational Principle to hold in the thermodynamic limit as demonstrated by Ref. 41. 

Additionally, the sensitivity and stability of these solutions have remained problematic, thus 

limiting their practical applicability. For instance, Ref. 42 demonstrated how vastly different 

potentials can result in similar-looking radial distribution functions (RDFs). Despite their 

paramount importance in offering valuable theoretical insights into the physics of the problem, 

it is imperative to exercise caution when applying such uniqueness results to practical systems. 



While we don’t establish the uniqueness of the obtained potential, we prioritize the physical 

consistency of the coarse-grained potentials first by constraining them to a set of physically 

derived potentials and second by verifying their ability to replicate key structural correlations 

in the nanochannel. 

Although we define 𝑔(2)(𝑧1, 𝑧2, 𝑅12) as one of the target structural properties to replicate, 

computing it using MD presents some difficulty as it needs very long simulations compared to 

the bulk. This is not desirable in the context of ML where the generated training data includes 

thousands of different systems (as will be elaborated in later sections) and computing the pair 

correlation for each of these systems entails substantial computational cost. An intuitive 

theoretical treatment describing the significance and issues pertinent to calculation of pair-

distribution in inhomogeneous systems can be found in Ref. 43-45. Given the intricacy of 

determining the pair-correlation function, we adopt a simplification based on the observation 

that, for simple liquids inside a nanochannel, only the density undergoes substantial changes, 

while the local arrangement of atoms parallel to the axis of the nanochannel remains relatively 

constant.46 We corroborate this hypothesis in Appendix A.1 of the supporting material. 

This local structure parallel to the axis of nanochannel can be computed as a function of 2 

variables by setting 𝑧1 = 𝑧2 = 𝑧 so that 𝑔(2)(𝑧1 = 𝑧, 𝑧2 = 𝑧, 𝑅12  =  𝑅) = 𝑔|| (𝑧, 𝑅).  We refer 

to 𝑔|| (𝑧, 𝑅) as the parallel RDF and use it as a metric to test our results as shown in the later 

sections. Appendix 1 describes the numerical details of calculating 𝑔|| (𝑧, 𝑅) and its value at 

various locations along the width. It can be seen in supporting information Figure 1 that for a 

simple liquid (like CH4 and H2S) the parallel RDF hardly changes along the width or confining 

direction.  Having defined the target quantities, we now propose a methodology to compute the 

coarse-grained wall-fluid and fluid-fluid potentials such that they preserve the structural 



correlations.  Consider the following equation relating density to wall-fluid and fluid-fluid 

forces, 

                                   𝜌(1)(𝑧)   − 𝜌
0

  =    𝑒∫ 𝛽 ( 𝑓̅(𝑧)𝑤𝑓 +   𝑓̅(𝑧)𝑓𝑓) 𝑑𝑧  
                                           (5) 

where 𝜌0 is the density at the center of the nanochannel and  defines the state of the system 

along with temperature which is fixed at 300 K. Equation (5) shows that the variation in density 

can be represented as a sum of two force interactions -  𝑓(̅𝑧)𝑤𝑓 which is the mean wall-fluid 

force and  𝑓(̅𝑧)𝑓𝑓 is the mean fluid-fluid force.  Furthermore, the mean wall-fluid and fluid-

fluid forces can be written as,45 

                           𝑓(̅𝑧)𝑓𝑓 = −∫ 𝜌(1)(𝑧) 𝑔(𝑧′, 𝑧, 𝑅)
∂𝑉(𝑧′,𝑧,𝑅)

∂𝑧
  𝑑𝑅𝑑𝑧′                                      (6) 

                                                    𝑓(̅𝑧)𝑤𝑓 = −
∂𝑈

∂𝑧
                                                                      (7) 

Here 𝑉(𝑧′, 𝑧, 𝑅) is the fluid-fluid potential between two fluid particles located at coordinate (𝑧, 

0) and (𝑧′, 𝑅). Here 𝑧, 𝑧′ are the coordinate directions along the width and 𝑅 along the axis of 

the nanochannel, respectively. The details of Equation (5) and (6) are given in Appendix A.2 

and A.3 of the supporting information. Equations (5-7) elucidate the connection between the 

mean wall-fluid/fluid-fluid forces and the corresponding interatomic potentials 𝑈  and 𝑉 , 

respectively. These equations have traditionally been presented in the context of the anisotropic 

integral theory 47 and have been extensively applied to obtain density and pair correlations 

using certain closure equations. While this approach has yielded valuable insights into the 

structure of confined liquids, it is restricted by the approximate analytical form of closure 

relations that are only effective for specific types of liquids.  We address this issue by using a 

data-driven approach which learns this non-trivial relationship between forces and interatomic 

potentials. We define a mapping 𝜙 as follows,                                                                



                                         {𝑉, 𝑈} = 𝜙( 𝑓(̅𝑧)𝑓𝑓,  𝑓(̅𝑧)𝑤𝑓, 𝜌0)                                                  (8)                                       

The temperature, which is fixed at 300 K, along with the density 𝜌0 define the thermodynamic 

state of the system. 𝜌0  implicitly enters the mapping function because of the boundary 

conditions on Equation (5). Equation (8) represents a complex mapping between the wall-fluid, 

fluid-fluid forces, and the corresponding interaction potentials. This mapping is learnt in a data-

driven manner using a Feed-Forward DNN which are known to be universal function 

approximators.48 It is also worth noting that although  𝑓(̅𝑧)𝑓𝑓,  𝑓(̅𝑧)𝑤𝑓 are singlet correlations, 

the mapping 𝜙 implicitly contains information about the pair correlations which appear in 

equation (6). The mapping 𝜙 can thus be seen as some transformation over the pair-correlation 

which is learnt through training the DNN via loss function minimization as will be discussed 

later. Since we constrain the interaction type to Lennard-Jones potential, the Left-Hand Side 

(LHS) in equation (8) can be re-written as, 

                                         { 𝑓𝑓,  𝑓𝑓, 𝑤𝑓,  𝑤𝑓} = 𝜙( 𝑓(̅𝑧)𝑓𝑓,  𝑓(̅𝑧)𝑤𝑓, 𝜌0)                          (9)            

where  and  represent the LJ interaction parameters. Once the function ‘𝜙’ is learnt, Equation 

(9) can be used to obtain the coarse-grained parameters by using forces obtained from the 

Center of Mass (COM) mapped trajectories of the All-Atom systems.  

 

2.2.  Data Generation 

In this study, the dataset for the DNN is generated using a MD simulation with 7000 systems 

of different Lennard-Jones (LJ) fluids confined in a slit-like graphene nanochannel with a fixed 

width of 8 nm. The lateral dimensions of the graphene layer are 5.0 × 5.0 nm2. The bulk 

density values, and force field parameters of the MD simulations are uniformly sampled from 

the range provided in Table 1. As described earlier, the interatomic interactions are modeled 

using the 12-6 Lennard-Jones potential with functional form given by: 



                                                    𝑉𝐿𝐽  =  4 [(


𝑟
)

12
−   (



𝑟
)

6
]                                                 (10) 

Here ,  are the length and energy scale parameters and  𝑟 represents the distance between 

interacting atoms.  

 

Table 1. Range of values for density and LJ parameters. 

                       Thermodynamic State                     Parameter Range 

      

                         (nm-3)           T (K)               (Å)            (kcal/mol)   

      

Min 8.0 300 1.0 0.01  

Max 12.0 300 5.5 0.7  

 

We perform MD simulations using the large-scale atomic/molecular massively parallel 

simulator (LAMMPS)49 with a time step of 1 fs in the NVT (canonical) ensemble with 𝑇 =

300 K. The temperature of the LJ fluid is maintained using the Nosé–Hoover thermostat.50 

Periodic boundary conditions are applied in the x and y directions. In the z direction, we insert 

an extra vacuum space of three times the actual z dimension to eliminate the slab effect. 

Simulations are performed with fixed position of graphene walls and each MD simulation is 

run for 2 ns. The wall-fluid and fluid-fluid forces are calculated on the fly by histogram binning 

along the width of the nanochannel. 

We also evaluate the performance of the DNN in predicting the CG potentials for multiatom 

molecules including N2, CO, CH4 and H2S. We choose these molecules based on their 

differences in dipole-moments, moment of inertia, bond-length, mass and number of atoms.19   



Interactions between multiatom molecules involve both non-bonded and bonded interactions. 

Force fields for bonded interactions (bonds and angles) are obtained from the GROMOS force-

field available in the ATB Repository.51 The non-bonded interactions can include both short-

range van der Waals and long-range electrostatic interactions. The van der Waals interactions 

are modelled using LJ potentials. The electrostatic interactions are given by: 𝑉𝑐𝑜𝑢𝑙𝑜𝑚𝑏(𝑟)  =

  
𝑞𝑖𝑞𝑗

4 0𝑟𝑖𝑗
 , where 𝑞𝑖 , 𝑞𝑗  are point charges on interacting atoms 𝑖, 𝑗   respectively, 𝑟𝑖𝑗  is the 

distance between them and  0 is the dielectric permittivity of vacuum. In MD simulations, the 

long-range electrostatic interactions are modeled using the particle mesh Ewald algorithm.52 

Simulations are performed using LAMMPS package with a step size of 1 fs. We run the 

simulations for 2 ns and the trajectory of the atoms are saved for calculating the force and COM 

profiles. This gives us the COM mapped wall-fluid and fluid-fluid mean force profiles along 

the width of the channel, which are then used as inputs to the well-trained DNN, which takes 

this information and relates it to the interaction parameters according to Equation (9).   

2.3.  Neural Network Architecture 

A Feed-Forward Deep Neural Network consists of layers of artificial neurons that are 

connected to each other in a specific architecture. The input layer receives the data, which is 

then processed and transmitted through hidden layers, which finally produces a transformed 

value at the output layer.  Figure 1 shows the architecture of the DNN used. 

 



 

Figure 1: The neural network encompasses three inputs: wall-fluid force, fluid-fluid force, and 

density at the channel center. It generates four outputs, which correspond to the wall-fluid and 

fluid-fluid LJ parameters. The accuracy of the DNN is evaluated on the validation set after 

being trained on a set of hyperparameters. The hyperparameters are then fine-tuned to achieve 

optimal accuracy on the validation set. 

The input to the neural network is ∶  𝑥𝑖 =  ( 𝑓𝑤̅𝑓(𝑧)𝑖 ,   𝑓𝑓̅𝑓(𝑧)𝑖 , 
0,𝑖

  )                                  (11) 

where 𝑖  𝐷, the training dataset.  𝑥𝑖 is the input vector constructed by concatenating the wall-

fluid forces, fluid-fluid forces which are arrays of dimension p each and density value at the 

center of the channel. The number of bins p along the width of nanochannel, was chosen to be 

200. The choice of p which affects the input dimensionality was influenced by two factors. 

Firstly, it was noted that a small bin size led to noisy histogram force profiles, while a large bin 

size caused “smearing” of force profiles and thus loss of important features. The second 

consideration was the effect of feature size on the training of the DNN. A large dimensionality 

of input vector typically increases the complexity of learning task for the DNN, thereby 



requiring more parameterization. This was also observed during training where both the 

number of neurons and the network’s depth needed to be increased to minimize the loss 

function as the bin size decreased. This is believed to be a result of both noise in the input 

profiles and the high dimensionality of input features. Nevertheless, the value of p  was chosen 

to keep the input dimensionality as low as possible without causing undue "smearing" of the 

histogram profiles.    

Each neuron in a DNN processes the input data by applying a non-linear activation function to 

a linear combination of the input data and a set of weights and biases. This transformation is 

given by: 𝜙𝑘(𝑥) = 𝜙𝑘(𝑊𝑘𝜙𝑘−1(𝑥) + 𝑏𝑘),  where 𝜙𝑘  is the activation function in the 𝑘𝑡ℎ 

layer. 𝑊𝑘, 𝑏𝑘 are the set of weights and biases in the 𝑘𝑡ℎ layer, respectively. Commonly used 

activation functions include sigmoid, ReLU and tanh. The activation function is used to 

introduce non-linearity into the network, allowing the DNN to learn more complex functions 

and representations.  We found that using a sigmoid activation function for all the layers gave 

the best results. The parameters 𝑊𝑘 and 𝑏𝑘 are then adjusted during training to minimize the 

loss given by, 

𝐿𝑜𝑠𝑠 =
1

2𝐷
∑ ( ̃𝐷𝑁𝑁,𝑖 −  ̃𝐺𝑇,𝑖)𝑤𝑓

2 +𝑖 ∈𝐷 (̃𝐷𝑁𝑁,𝑖 − ̃𝐺𝑇,𝑖)𝑤𝑓
2 +  ( ̃𝐷𝑁𝑁,𝑖 −  ̃𝐺𝑇,𝑖)𝑓𝑓

2 +

               (̃𝐷𝑁𝑁,𝑖 −  ̃𝐺𝑇,𝑖)𝑓𝑓
2                                                                                                       (12) 

where the subscripts ′𝐷𝑁𝑁′, ′𝐺𝑇′ represent the predicted and ground-truth values, respectively. 

Tilda represents normalized values for all the output parameters. The loss minimization is done 

using gradient descent techniques. We got the best performance using the Adam algorithm53 

with a learning rate of 0.1 and a batch size of 64. 

An important aspect of ML is to make the model predict data outside the training dataset and 

prevent overfitting. Several other techniques like dropout, ensemble averaging, and batch 

normalization have been widely used to deal with this issue.54-55 Here, we use dropout in the 



second layer which drops certain nodes randomly with a rate of 0.3 thus forcing the network to 

learn redundant features and preventing it from depending too much on any individual neuron. 

When training a neural network, it is also important to use different sets of data for training, 

validation, and testing. We randomly separate the dataset into three groups for training (70% 

of the total dataset), validation (15%) and testing (15%). The training data is used to adjust and 

update weights and biases of the neural network during the training process by calculating 

gradients using backpropagation. The validation data is used to evaluate the performance of 

the model during the training process and to tune the hyperparameters of the model, such as 

the learning rate and the number of hidden layers. We got the best performance on the 

validation dataset using 2 layers with 128 and 64 nodes, respectively. Once a good performance 

has been achieved on both training and validation dataset, the final performance is evaluated 

on the testing dataset. The error on the testing data gives an estimate of how well the model is 

likely to perform on unseen data. 

 

Figure 2: Methodology employed to coarse-grain simple multiatomic molecules in 

confinement. First MD simulations are performed for a range of LJ fluids at different densities 

to generate force maps which are used for training, testing and validation of the DNN (green 

arrows). Once the DNN is well-trained we carry out inference where force maps from the 



Center of Mass mapped All-Atom trajectories are used as inputs to the DNN and the predicted 

outputs of the DNN serve as the coarse-grained LJ parameters (red arrows). The density and 

force variation of the coarse-grained systems are then compared with their All-Atom 

counterparts. If the accuracy is low the potential is further fine-tuned by performing Relative 

Entropy updates.  

Figure 2 describes this sequential approach employed for obtaining coarse-grained wall-fluid 

and fluid-fluid potentials. The framework consists of 2 distinct parts i) Training (highlighted 

in green) and ii) Inference (highlighted in red). 

During the training phase, the DNN learns the non-trivial relationship between the mean-force 

profiles and the corresponding LJ force fields for simple LJ liquids in confinement as given by 

Equation 9. Subsequently, this well-trained DNN is repurposed to perform coarse-graining on 

more intricate multiatomic liquids, a process referred to as transfer learning. In this context, 

transfer learning entails utilizing a DNN originally trained on simple LJ liquids to perform 

coarse-graining on complex multiatomic liquids. To achieve this, we initially compute force 

profiles for the wall-fluid and fluid-fluid interactions along the trajectories of the mapped 

Center of Mass for multiatomic molecules. These force profiles are then employed to conduct 

inference with the adeptly trained DNN. The DNN's output yields the coarse-grained 

parameters corresponding to the multiatomic molecule under consideration. Subsequently, we 

gauge the efficacy of transfer learning by comparing the results of the coarse-grained 

simulations, denoted as CGNN, with their All-Atom counterparts. As mentioned earlier, the LJ 

potential form although physically derived is less accurate for certain liquids where 

electrostatic or multibody correlations are dominant. Using the DNN derived LJ potentials as 

a starting point more flexible numerical potentials with optimal functional form are derived 

using Relative Entropy Minimization. 



 

2.4. Relative Entropy Minimization  

The measure known as Relative Entropy, which is derived from information theory, calculates 

the level of similarity between two probability distribution functions,56 and can be expressed 

as follows: 

                    𝑆𝑟𝑒𝑙 = ∑  𝑖 𝑝𝐴𝐴(𝑖)𝑙𝑛 (
𝑝𝐴𝐴(𝑖)

𝑝𝐶𝐺(𝑀(𝑖))
) + ⟨𝑆𝑚𝑎𝑝⟩

𝐴𝐴
                                                     (13) 

where 𝑆𝑟𝑒𝑙 is the Relative Entropy and  𝑖 corresponds to a particular set of atomic positions in 

the AA ensemble. 𝑀 is the AA to CG mapping operator and 𝑆𝑚𝑎𝑝 is the mapping entropy due 

to all states in AA system that map to the same CG configuration. It can be shown that 𝑆𝑚𝑎𝑝 

doesn’t depend on the CG potential and is rather a function of the mapping operator 𝑀. In this 

case the mapping 𝑀 assigns CG positions to the COM of the molecules in the AA ensemble. 

𝑝AA  and  𝑝CG  are phase space probabilities for the AA and CG system corresponding to 

configuration 𝑖 which depend on the interatomic potentials. RE can thus be used as a metric to 

maximize the overlap between AA and CG configurations. One major drawback of this method 

is that it converges slowly for an arbitrary initial guess of parameters. A recommended57-58 way 

of initializing the parameters for RE is to invert the RDF according to the equation, 

−𝑘𝐵𝑇 ln 𝑔(𝑟) = 𝑣(𝑟), where 𝑔(𝑟) is the RDF and 𝑣(𝑟) is the interparticle potential, which we 

refer as the “Boltzmann Inverted” potential guess. Although physically consistent in some 

sense, this equation holds only for homogeneous systems and in the limit where density of the 

system approaches zero.    

In this work, we try to address these limitations by exploiting the similarity between force-

based methods and Relative Entropy. In the past, many works have explored the relation 

between Relative Entropy and force-based methods59. Although they are based on different 



mathematical formulations and physical principles, under certain conditions it is shown that 

they converge to similar solutions.60 Given this similarity we explore the possibility of using 

the DNN generated potentials as an initial guess for the RE framework to improve its 

convergence.  

3. Results and Discussion 

3.1. Performance of DNN for LJ fluid and coarse-graining simple liquids 

The DNN model is trained using the LJ fluid dataset generated in Section 2.2 and optimized 

via minimizing the loss function in Equation (12). We first assess the performance of the DNN 

model by comparing the predicted LJ potential parameters with their corresponding ground 

truth values. To quantify the training and testing error, we use the weighted mean absolute 

percentage error (MAPE) metric defined as 𝜖MAPE,𝑗 = 100 ×
∑  𝑖∈𝐷 |𝑣𝑗,DNN

(𝑖)
−𝑣𝑗,GT

(𝑖)
|

∑  𝑖∈D |𝑣
𝑗,GT
(𝑖)

|
 , where 𝑣 

represents one of the four LJ potential parameters,  𝑓𝑓,  𝑓𝑓, 𝑤𝑓,  𝑤𝑓  . 𝑖 represents the 𝑖𝑡ℎ 

data point and 𝑗 = 𝑤𝑓 𝑜𝑟 𝑓𝑓  corresponding to the wall-fluid and fluid-fluid potential 

parameters. Figure 3(a)-3(d) show the one-to-one comparison of ground truth values and DNN 

predicted LJ potential parameters for the training dataset. We can see that the DNN model is 

well-trained to approximate the mapping (see Eq 9) with maximum MAPE ≤  5.4 %. To check 

model generalization, the DNN model is then tested using the testing data which is held out 

and not seen during training. The testing results are shown in Figure 3(e)-3(h). We observe that 

most points in testing dataset lie close to the ideal line with the maximum MAPE ≤  2.0 %.  



 

Figure 3: Comparison of the predicted and ground-truth LJ parameters for (a - d) Training and 

(e-h) Testing data. 

The DNN model can thus predict the LJ potential parameters for unseen data. Next, we transfer 

the DNN knowledge of LJ fluids to predict the coarse-grained force field parameters for simple 

multiatomic molecules in confinement. In the coarse-graining process, a multiatom molecule 

is coarse-grained into a single bead such that the COM mapped wall-fluid and fluid-fluid 

interactions are preserved in the single bead system. As shown in figure 2 (red arrows in the 

figure), the wall-fluid and fluid-fluid force profiles obtained from the AAMD simulations and 

the corresponding density 𝜌0  are fed as inputs to the well-trained DNN model. Using this 

information, the DNN model predicts the coarse-grained force field parameters used to 

represent multiatomic molecules as single beads within the nanochannel. 

In order to evaluate the accuracy of the proposed method for coarse-graining, the CG force 

field parameters were utilized to carry out molecular dynamics (MD) simulations on single 

bead systems. These simulations, referred to as CGNN simulations, are performed with the 

same LAMMPS settings described in Section 2.2. A comparison is then made between the 



structural properties and force profiles of AA systems and those obtained from the CGNN 

simulations. The discrepancy between AA and CG profiles is measured using the error given 

as % 𝑒𝑟𝑟𝐶𝑂𝑀/𝑅𝐷𝐹 =
∫  

r

0
|𝑋𝐶𝐺(𝑟)−𝑋𝐴𝐴(𝑟)|𝑟2d𝑟

∫  
r

0
𝑋𝐴𝐴(𝑟)𝑟2d𝑟

  and % 𝑒𝑟𝑟𝐹𝑜𝑟𝑐𝑒 =  % 𝑒𝑟𝑟 =
|𝑓𝐶𝐺(𝑟)−𝑓𝐴𝐴(𝑟)|d𝑟

|𝑚𝑖𝑛(𝐹𝐴𝐴(𝑟)|
 

 Here 𝑓 is the force, X denotes either the Center of Mass (COM) density or the parallel RDF. 

These quantities of the corresponding AA or CG system are calculated at the 𝑖𝑡ℎ bin and 𝑁𝑏 

denotes total number of bins. Figure 4 shows results for the COM profiles for both AAMD and 

CGNN simulations of N2, CO, CH4, and H2S . The COM profiles obtained from DNN 

parameterized CGNN are in good agreement with AAMD results for H2S, 

N2, CO and CH4 with error  𝑒𝑟𝑟𝐶𝑂𝑀 ∈ [5.42%, 2.97%, 4.04%, 2.40%], respectively.  

 

Figure 4: Comparison of density profiles of AA and CGNN systems of different simple 

multiatomic liquids.  

Figure 5 compares the parallel RDF ,  which is the second structural property we seek to 

replicate. The errors for H2S, N2, CO and CH4 are  𝑒𝑟𝑟𝑅𝐷𝐹  =  [2.51%, 1.92%, 1.12%, 0.93%], 

respectively. In addition to the fluid structure, the total molecular force in the AAMD 



simulations is also preserved in the CGNN simulations for the above four types of molecules. 

It can be seen in Figure 6 that the total molecular force obtained from CGNN simulations agrees 

well with the AAMD results for H2S, N2, CO and CH4 with  𝑒𝑟𝑟𝑓𝑜𝑟𝑐𝑒 ∈ [2.32%, 2.13%, 1.82%, 

0.84%].  

 

Figure 5: Comparison of parallel RDF profiles of AA and CGNN systems of different simple 

multiatomic liquids.  



Figure 6: Comparison of force profiles of AA and DNN predicted CG systems of different 

multiatomic simple liquids.  

It should be noted that N2 and CH4 are non-polar while CO and H2S are polar molecules that 

exhibit long-range electrostatic interactions. Since the training data used by the DNN includes 

only neutral LJ liquids, the transfer learning process can only distill information of short-ranged 

van der Waals interactions from the AA force maps and approximates the electrostatic 

component as a short-range potential. This approach of locally approximating slowly varying 

attractive forces was originally proposed by Ref. 61 for studying inhomogeneous simple liquids. 

Their approach demonstrated that an inhomogeneous fluid's structure can be described by an 

equivalent reference fluid with a short ranged purely repulsive core under the influence of an 

external field. This field can be calculated using a self-consistent iterative approach based on 

the BBGKY hierarchy. However, such a truncated model leads to errors as the long-range 

interactions start becoming significant. For instance, the DNN parameterized CGNN displays 

a larger deviation on all target properties on H2S, which has a much higher dipole moment 

(1.84 Debye) compared to CO (0.01 Debye), N2 and CH4(non-polar).   



   

Figure 7: Comparison of wall-fluid (WF), fluid-fluid van der Waals (FF VdW), electrostatic 

(FF Electro) and total potential of mean force (PMF) profiles for (a) CO (b) HBr and (c) H2S 

We conduct a quantitative evaluation of the influence of long-range electrostatic forces on the 

efficacy of transfer learning process. To effectively assess the electrostatic potential 

contribution, we first decompose the total PMF into wall-fluid potential and fluid-fluid 

potential. The fluid-fluid PMF can further be decomposed into van der Waals and electrostatic 

interactions. The electrostatic PMF computed includes both the short-range and the long-range 

interactions which are computed in real and reciprocal space respectively. Since the carbon 

atoms in the graphene surface have zero charge in AAMD simulations, only the fluid-fluid 

interactions cause electrostatic contribution to the total PMF. The decomposed potentials for 

the 3 types of molecules with varying dipole moments namely, CO (0.01 Debye), HBr (1.59 

Debye) and H2S (1.84 Debye) are shown in Figure 7. The electrostatic contribution to the total 

PMF is weak for CO and therefore it is observed that all the three decomposed PMF 

components namely wall-fluid, fluid-fluid, and total potentials from the CGNN simulations are 

in good agreement with their corresponding AAMD counterparts. Consequently, the DNN 

predicts the CG parameters to effectively replicate both the fluid structure and molecular force 

of the target AA system. For HBr, the electrostatic potential has a stronger contribution than 

CO near the interface. This leads to a slight deviation closer to the wall, although the overall 

PMF still remains preserved. The discrepancy is greater for H2S, which has a relatively stronger 



electrostatic contribution. However, it is noteworthy that while the separate contributions vary 

considerably, the collective coarse-grained (CG) potential of mean force (PMF) remains 

similar to the All-Atom PMF. This suggests that the DNN approximates the long-range forces 

as short-range components and utilizes them to deduce the CG parameters which closely 

matches with the All-Atom PMF. 

3.2. Initializing RE method with DNN potentials as initial guesses 

The preceding section revealed that the CGNN simulation falls short in accurately predicting 

the COM profile for molecules with relatively stronger electrostatic interactions where the 

short-ranged LJ potential is not a good approximation. To overcome this limitation of using a 

Lennard-Jones potential form, we sequentially combine the DNN method with Relative 

Entropy minimization based coarse-graining method which allows for more flexible 

numerically optimized potentials. We employ the DNN method to generate an initial set of 

Lennard-Jones parameters as described in Section 2.3. The resulting LJ functional form is then 

modelled as a cubic spline whose coefficients now define the shape of the wall-fluid and fluid-

fluid potential. This numerical potential then serves as a robust starting point to optimize the 

RE objective function. This RE framework then iterates over the initial guess and updates the 

fitting coefficients of the cubic spline thereby shaping the potential profiles in such a way to 

minimize the Relative Entropy between AA and CG ensembles. 

We perform the RE based coarse-graining using the VOTCA package.16, 60 As shown in Figure 

8, the DNN and RE framework provide potentials that are nearly identical for simple non-polar 

liquids like CH4. As shown in the previous section, in case of H2S the CGNN predictions for 

density show a relatively higher error of 5.42%, while other molecules with relatively lower 

electrostatics show good accuracy with errors less than 5% which we use as a threshold cutoff 

criterion. The RE framework then further refines the H2S potentials predicted by the DNN 



model, resulting in a CG system whose density closely matches the AA system’s density, as 

illustrated in figure 9(c)-9(d).  

 

Figure 8: Comparison of DNN predicted initial guesses and converged RE solution for (a, b) 

CH4 and (c, d) H2S. 

 



Figure 9: (Top) Convergence characteristics for different initialization schemes. (Bottom) 

Density/Force profile comparison for H2S with potentials obtained from RE Minimization 

procedure initialized with CGNN potentials. “Relax” here refers to relaxation factors used for 

RE update.  

From Figure 9(a)-(b) it is seen that initialization has a significant effect on convergence for the 

RE method. Our findings indicate that a poor initial guess can cause the RE iterations to diverge 

resulting in termination of the iterative process. We observe that for both CH4 and H2S, using 

the Boltzmann Inverted (BI) potential as the initial guess leads to a slow or weak convergence 

resulting in a significant computational cost. While significant modifications can be made to 

improve the BI convergence using different pre-factors and relaxation settings, the process 

remains slow and ad-hoc. In contrast, using the DNN generated LJ potential as the initial guess 

results in fast convergence, as demonstrated in Figure 9(a, b). The results indicate that, with a 

robust initial guess generated by the DNN model, the RE framework converges within 25 

iterations for both H2S and CH4. In comparison, when using a Boltzmann Inverted initial guess 

(with carefully tuned convergence parameters), the RE framework requires at least 100 

iterations for H2S and even more for CH4 to converge. Since each iteration of the RE framework 

involves a separate CG simulation, this improvement translates to a reduction of 100 CG 

simulations compared to the Boltzmann Inverted initial guess thus demonstrating a significant 

improvement in convergence and computational cost. 

4. Conclusions 

In this study, we have explored the application of inverse liquid state theory in the purview of 

confined systems and in doing so identified key correlations that characterize the structure of 

inhomogeneous fluid. More importantly, the solution to the inverse liquid state problem for 

inhomogeneous system is seen as a route to coarse-graining simple multiatomic molecules 



where the identified structural correlations of the All-Atom system are to be preserved. The 

wall-fluid and fluid-fluid forces are shown to contain necessary information required to 

preserve structural properties of the AA system. We then develop a novel data-driven approach 

where a DNN approximates the complex mapping between wall-fluid/fluid-fluid forces of 

simple fluids and corresponding potential parameters. The well-trained DNN is then used to 

coarse-grain simple multiatomic molecules by utilizing transfer learning. Our model accurately 

reproduces density, parallel RDF and force profiles across the channel width for various 

molecules at different densities particularly when the electrostatic interactions are not 

dominant.  

However, we found that this limitation inherent to transfer learning can be addressed by using 

the DNN framework in conjunction with Relative Entropy minimization based coarse-graining 

method. We discovered that the DNN generated potential provides an excellent initial guess 

for the RE framework, leading to significant improvements in convergence. Furthermore, we 

demonstrated that the combination of data-driven approach with the RE method can help fine-

tune the CG potential obtained using the DNN. This is evidenced by the improved agreement 

between the AA and CG density profiles for H2S, which were achieved through RE based 

iterative refinement of the initial DNN potentials. Overall, the synergistic combination of data-

driven and physics-based Bottom-Up approaches results in improved fidelity and convergence, 

allowing for more efficient and more reliable coarse-graining of complex molecular systems. 
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