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Abstract: We propose a data-driven framework for identifying coarse-grained (CG) Lennard-
Jones (LJ) potential parameters in confined systems for simple liquids. Our approach involves
the use of a Deep Neural Network (DNN) that is trained to approximate the solution of the
Inverse Liquid State (ILST) problem for confined systems. The DNN model inherently
incorporates essential physical characteristics specific to confined fluids, enabling accurate
prediction of inhomogeneity effects. By utilizing transfer learning, we predict single-site LJ
potentials of simple multiatomic liquids confined in a slit-like channel, which effectively
replicate both the fluid structure and molecular force of the target All-Atom (AA) system when
the electrostatic interactions are not dominant. In addition, we showcase the synergy between
the data-driven approach and the well-known Bottom-Up coarse-graining method utilizing
Relative-Entropy (RE) Minimization. Through sequential utilization of these two methods, the
robustness of the iterative RE method is significantly augmented, leading to a remarkable

enhancement in convergence.
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1. Introduction

Coarse-graining has proven to be a crucial tool in modeling complex molecular systems and
studying their behavior at larger spatiotemporal scales that would be impossible with high-
resolution methods like All-Atom Molecular Dynamics or first-principle techniques like Ab-
Initio Molecular Dynamics (AIMD).!? As an example, in recent research,’ the utilization of
coarse-grained models allowed for the examination of molecular transport in nuclear pore
complexes over timescales of tens of milliseconds. This remarkable feat involved systems
containing approximately 200 million atoms, a task that would have been inconceivable using

alternative techniques.

By reducing the degrees of freedom of a fine-grained atomic system, coarse-graining allows
for a close replication of its properties at a much lower computational cost. This is analogous
to solving the "Inverse Problem of Liquid State Theory" in classical mechanics,*® which
involves finding interatomic potential parameters that correspond to a given equilibrium
particle distribution. The distribution represents a high-resolution atomistic system, while the
derived potentials are for a low-resolution coarse-grained system. In the case of pairwise
interactions between particles, the Bogolyubov—Born-Green—Kirkwood Yvon (BBGKY)*
hierarchy provides a set of equations that relate the »n particle and n+/ particle distribution
functions to the underlying interaction potential. Nonetheless, these equations cannot be readily
applied as the higher-order distribution functions remain unknown. Even though certain
approximation methods’ have been used to estimate solutions, their applicability is limited to
specific categories of materials. This highlights that finding a general solution to the inverse

liquid state problem is a non-trivial task.

Several techniques for coarse-graining have been developed in the past for studying systems
like®-® polymers, liquid crystals, colloids and biomolecules like proteins, lipid bilayers, etc.

These techniques can be broadly classified into two categories: Top-Down and Bottom-Up.



Top-Down'® approaches parameterize CG potentials by fitting them to experimental data to
match thermodynamic quantities or macroscale properties like density, pressure, or surface
tension''"'2. On the other hand, Bottom-Up'® approaches rely on principles of statistical
mechanics, which govern atomic motion at molecular scales. A central idea in Bottom-Up
method is to model the many-body Potential of Mean-Force (PMF) which contains necessary
information required to infer key properties of the AA system. However, they rely on data from
more accurate atomistic simulation, which are computationally expensive and restricted to
smaller systems. The most popular Bottom-Up methods include, Iterative Boltzmann Inversion
(IBI),'* Relative Entropy (RE)!> 62 6 and Force-Matching (FM).!6!8 These Bottom-Up
methods have certain limitations such as a deficiency in robustness when it comes to
identifying a global minimum and sensitivity to initial conditions. Furthermore, potentials
derived using Bottom-Up methods exhibit substantial deviations on target properties®’"° away
from the reference state-point for which they are derived and vary significantly with

7174 and  density’>. Consequently, achieving transferability to different

temperature
thermodynamic states has proven to be quite challenging’®’8. In the case of iterative methods
like IBI and RE, multiple MD simulation of sufficient duration are required to be run to obtain
an adequate sampling of snapshots to compute quantities required for update- calculations. The
originally proposed IBI'* and RE'>® schemes require running simulations at each step.
However, developments utilizing trajectory reweighing techniques based on statistical

perturbation theory have been suggested for RE” and quite recently for IBI*

. This approach
eliminates the need to run a CG simulation at each iterative step. Nonetheless, it's important to
note that convergence cannot be assured without careful treatment of the iterative process, in
addition to the computational complexity involved. Furthermore, techniques such as IBI entail

the computation of the atom distribution through the utilization of the Radial Distribution

Function (RDF), which is specifically defined for homogeneous systems. This limitation



restricts its applicability to confined systems, such as nanochannels where the fluid structure

changes along the width.

With recent advances in ML, researchers have sought to address many of these drawbacks by
using data-driven approaches.'®? ML based methods are fast and robust, and exciting
breakthroughs have been made using them.*® DeepILST?® was one of the first approaches to
provide an approximate solution to the inverse problem for a wide class of simple liquids'’
using a data-driven method. It used a DNN which was trained to learn the mapping between a
given RDF and the corresponding potential parameters for LJ liquids at a given thermodynamic
state. Transfer learning was then used to coarse-grain different multiatomic simple liquids.
While this framework provides a route to obtaining a one-shot solution to the inverse problem,
its applicability is limited to homogeneous systems. Numerous engineering systems,
particularly those involving fluids in confined spaces such as nanochannels and interfaces,
possess distinct characteristics that set them apart from their bulk counterparts. These
confinement effects give rise to unique properties that have been harnessed for various

3135 including drug delivery systems, energy storage devices, and sensors.

applications,
Consequently, there is significant interest in exploring the inverse problem for an
inhomogeneous system and subsequently developing a tailored coarse-graining framework for
confined fluids. We address this in our current work and develop a data-driven approach to

coarse-grain simple liquids in a nanochannel by explicitly incorporating key features that

describe confinement effects.

These effects give rise to strong density oscillations near the wall-fluid interface, resulting from
the intricate interplay between attractive and repulsive forces between the wall and the fluid
atoms. A strong repulsion by the wall leads to a zero-density value close to the wall. As we
move away from the wall, at a short distance a fluid density peak is observed predominantly

due to attractive interactions of the wall and its location is almost entirely determined by the



attractive minimum of the wall fluid-potential.*® This peak is followed by a density-minima
caused due to repulsive forces against the fluid atoms of the first layer. At a distance far away
from the wall the distribution of fluid particles is no longer influenced by the wall and
resembles a homogeneous bulk-like structure. This coupling between wall-fluid and fluid-fluid
interaction forces is therefore critical in determining the structure of confined fluids. Using
theoretical arguments, we show how both force components contain necessary information for
obtaining coarse-grained wall-fluid and fluid-fluid potential parameters. We then use a DNN
which learns this non-trivial relationship between the LJ potential parameters and the wall-
fluid/fluid-fluid force profiles of LJ liquids, providing an “approximate solution” to the Inverse
Problem of Liquid State for inhomogeneous systems and subsequently a route to coarse-grain

simple liquids in confinement.

We regard the obtained solution as an approximation primarily due to the modeling of the
interaction potential, which is simplified as a pairwise Lennard-Jones potential. Despite its
simplicity, it is one of the most frequently used potentials in molecular dynamics due to its
physical origins and ability to describe essential aspects of atomic and molecular interactions,
including Pauli’s repulsion at close distances and London Dispersion forces at longer distances.
As a result, it has been widely used to model diverse systems including real simple liquids®’
and to validate several classical theories in Statistical Mechanics which rely on assumption of
pairwise interactions.* Although its use also imposes constraints in terms of applicability to
complex molecules, (which have strong multi-body correlation or long-range interactions
which can’t be captured by the LJ functional form?®) it also retains an element of interpretability
because of its physically derived basis. We seek to alleviate this limitation and broaden its
applicability to complex molecules by using a sequential approach that combines the data-

driven method with Relative Entropy Minimization-based coarse-graining method. The RE



derived CG potentials have been successfully used to coarse-grain complex liquids (like water)

in confinement®, highlighting the potential of the suggested hybrid approach.

We now propose the following approach based on the ILST for inhomogeneous systems. First,
we train a DNN which approximates a mapping between wall-fluid and fluid-fluid forces acting
on simple LJ liquids in confinement and its potential parameters. Next, we extract the wall-
fluid and fluid-fluid forces acting on the Centre-Of-Mass (COM) mapped trajectories of
multiatomic liquids and using these as inputs to the well-trained DNN model, infer the single
site coarse-grained potential parameters of the CG bead. The DNN obtained potentials are then
used to initialize the RE framework. Using the DNN generated potentials as an initial guess to
the RE framework leads to a two-way advantage where both methods gain from each other.
First, it extends the applicability of the data-driven approach to include diverse systems with
more complex interactions and second, it leads to a critical improvement in convergence of the

RE iterations which are slow if used in a stand-alone manner.

The remainder of the paper is organized as follows. First, the inverse problem of liquid state
and how it leads to the relationship between fluid forces and CG parameters are described in
Section 2.1. A reader only interested in the computational aspect of this work may skip Section
2.1.In Section 2.2 we give details of the CG and AA simulations needed to generate the training
data and multiatom fingerprints used for coarse-graining. Next in section 2.3, we describe the
data-driven approach along with the architecture of the DNN used for coarse-graining. In
Section 2.4 we discuss the Relative Entropy minimization method. Lastly, we assess the
accuracy of coarse-graining different multiatomic molecules in Section 3.1 and demonstrate
the advantage of using DNN with RE in Section 3.2.

2. Methods
2.1. Inverse Liquid State Theory (ILST)



Henderson's Theorem*® guarantees uniqueness of the solution to the inverse problem for
homogeneous systems, and techniques such as IBI and DeepILST aim to identify such
solutions. In contrast, the inverse problem for inhomogeneous systems has received less
attention, despite its relevance to coarse-graining in nanochannels. Given the comprehensive
theoretical confirmation of the existence and uniqueness of solutions for inhomogeneous
systems in Ref. ®, we will now investigate this matter from a computational perspective. The

inverse problem for confined systems is defined as follows:

Consider a system of N particles interacting under the potential Vy,. As described in Ref. 6, the

single particle density under the action of an external potential U(r) can be written as,

pW@E) =3N, 2

=1 Ef exp [V (ry, oo, 1 e 1h) — Z?’zl U(rj)]drl wdry .. dry (1)

where the integration is carried over all positions except 7;, as indicated by the hat. Zy is the
partition function in the canonical ensemble and kgzT is chosen to be equal to one for

simplicity.

The inverse problem for an inhomogeneous system deals with the following question: Given
an interparticle potential Vy(rq, ... ... ,ry) and distribution pM(r) of a system such that
[ p@(r)dr = N does there exist a corresponding single particle external potential U (r) that
gives the equilibrium particle distribution given by Equation (1) and if it exists, is it unique?
Using rigorous theoretical arguments, Ref. ¢ shows that for a large class of systems such a
potential exists and is unique. In the context of this work, Vy is the pairwise fluid-fluid CG
potential while U(r) the pairwise wall-fluid CG potential and p(D(r) the AA fluid density
profile. For fluids confined between walls, the wall-fluid potential U(r) is caused solely by
wall atoms that depends on the wall-fluid interaction parameters and the distance z from the
wall. If the wall atoms are approximated as a continuous medium, then it can be shown that the

external potential due to a single wall is given by,*
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Here p,, represents wall atom density, o,,¢ and &, the wall-fluid Leonard Jones interaction
parameters respectively. Equation (2) along with the preceding definition of the inverse
problem in confined systems serves as a starting point for a theoretical treatment of the inverse
problem in nanochannels and subsequently relates to coarse-graining. However, this definition
is not readily useful from a coarse-graining perspective since the definition assumes that the
fluid-fluid potential Vy is already known. This is not the case for most coarse-graining
applications in nanochannels where one does not know the fluid-fluid potential beforehand and

rather needs to infer it from the corresponding AA system.

We thus reformulate the classical inverse problem in such a way to not keep Vy fixed.
However, in doing so we now introduce an additional variable resulting in two unknown
potentials Vy, U and one known structural property p(?(r) of the nanochannel. Consequently,
this leads to an underdetermined system. We address this by introducing a second structural
property g (r;,15) which represents the pair-distribution function. For a system with the total

interaction potential defined by Wy, the pair distribution function is defined as,

N 1 !
g(Z)(rlr ) - p(l)(r) .p(l)(r’).ZN f f exp [_ﬁWN(TJr ,T3, ---rrN) ]dr?) “.dTN (3)
Where f = 1/kgT . Alternatively, the above equation can also be written as,

’ 1 !
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Equation (4) can be used to calculate g® (r,7") by Molecular Dynamics via a histogram
binning procedure. In the most generic sense g@®(r,r’) (doublet correlation) and
pW(r) (singlet correlation) would be functions of six and three variables, respectively.

However, in the case of nanochannels, owing to planar symmetry they reduce to



9P (z4,2,, Ry, ) and pM(z) which are three and one variable functions. Here z; and z, are
the z coordinates and Ry, is the axial distance between 2 points used to calculate the pair

correlation inside the nanochannel.

The inverse problem of liquid state can now be redefined to compute fluid-fluid potential Vy
and wall-fluid potential U(z) that matches the corresponding density p()(z) and pair-
distribution function g (z;,z,, R;,). It is interesting to note that if the external potential U(z)
= 0 (no walls) then the system becomes homogeneous with p()(z) = N/V and the pair-
distribution function becomes radially symmetric, g®(ry,ry) = g®@(|r; — rp]) . The
problem now simplifies to finding the fluid-fluid potential V) which matches the corresponding
radial distribution function (RDF), which is the well-established inverse problem for
homogenous systems. Thus, the inverse problem for a bulk system can be viewed as a special

case of an inverse problem for an inhomogeneous system.

In statistical mechanics the inverse problem consists of two facets. Firstly, the inquiry into the
existence and uniqueness of the solution, and secondly, the question of whether the solution
can be obtained, if it does exist. Although the latter is more relevant and intriguing from a

computational perspective, the former warrants some deliberation as well.

The uniqueness of the solution to the inverse problem has been a topic of extensive debate. For
instance, the proof of Henderson’s Theorem™® has been shown to incorrectly assume the Gibbs
Variational Principle to hold in the thermodynamic limit as demonstrated by Ref. *!.
Additionally, the sensitivity and stability of these solutions have remained problematic, thus
limiting their practical applicability. For instance, Ref. *> demonstrated how vastly different
potentials can result in similar-looking radial distribution functions (RDFs). Despite their
paramount importance in offering valuable theoretical insights into the physics of the problem,

it is imperative to exercise caution when applying such uniqueness results to practical systems.



While we don’t establish the uniqueness of the obtained potential, we prioritize the physical
consistency of the coarse-grained potentials first by constraining them to a set of physically
derived potentials and second by verifying their ability to replicate key structural correlations

in the nanochannel.

Although we define g®(zy, z,, R;,) as one of the target structural properties to replicate,
computing it using MD presents some difficulty as it needs very long simulations compared to
the bulk. This is not desirable in the context of ML where the generated training data includes
thousands of different systems (as will be elaborated in later sections) and computing the pair
correlation for each of these systems entails substantial computational cost. An intuitive
theoretical treatment describing the significance and issues pertinent to calculation of pair-
distribution in inhomogeneous systems can be found in Ref. ***. Given the intricacy of
determining the pair-correlation function, we adopt a simplification based on the observation
that, for simple liquids inside a nanochannel, only the density undergoes substantial changes,
while the local arrangement of atoms parallel to the axis of the nanochannel remains relatively

t.46

constant.”™ We corroborate this hypothesis in Appendix A.1 of the supporting material.

This local structure parallel to the axis of nanochannel can be computed as a function of 2
variables by setting z; = z, = z so that g®*(z; = z,z, = z,R;, = R) = gy (z,R). We refer
to g (z, R) as the parallel RDF and use it as a metric to test our results as shown in the later
sections. Appendix 1 describes the numerical details of calculating g, (z, R) and its value at
various locations along the width. It can be seen in supporting information Figure 1 that for a
simple liquid (like CH4 and H2S) the parallel RDF hardly changes along the width or confining
direction. Having defined the target quantities, we now propose a methodology to compute the

coarse-grained wall-fluid and fluid-fluid potentials such that they preserve the structural



correlations. Consider the following equation relating density to wall-fluid and fluid-fluid

forces,

pD(@) —py = el B (7@ + T@)yy) dz 5)

where p, is the density at the center of the nanochannel and defines the state of the system
along with temperature which is fixed at 300 K. Equation (5) shows that the variation in density

can be represented as a sum of two force interactions - f(z),,s which is the mean wall-fluid
force and f(2) 77 1s the mean fluid-fluid force. Furthermore, the mean wall-fluid and fluid-

fluid forces can be written as,*

F@yr ==L D@ g2, R 22 dRdz ©)
f@wr=—2 (7

Here V(z', z, R) is the fluid-fluid potential between two fluid particles located at coordinate (z,
0) and (z', R). Here z, z' are the coordinate directions along the width and R along the axis of
the nanochannel, respectively. The details of Equation (5) and (6) are given in Appendix A.2
and A.3 of the supporting information. Equations (5-7) elucidate the connection between the
mean wall-fluid/fluid-fluid forces and the corresponding interatomic potentials U and V,
respectively. These equations have traditionally been presented in the context of the anisotropic
integral theory *’ and have been extensively applied to obtain density and pair correlations
using certain closure equations. While this approach has yielded valuable insights into the
structure of confined liquids, it is restricted by the approximate analytical form of closure
relations that are only effective for specific types of liquids. We address this issue by using a
data-driven approach which learns this non-trivial relationship between forces and interatomic

potentials. We define a mapping ¢ as follows,



V,U}=d(f(@ss F(@wsr Po) )
The temperature, which is fixed at 300 K, along with the density p, define the thermodynamic
state of the system. p, implicitly enters the mapping function because of the boundary
conditions on Equation (5). Equation (8) represents a complex mapping between the wall-fluid,
fluid-fluid forces, and the corresponding interaction potentials. This mapping is learnt in a data-
driven manner using a Feed-Forward DNN which are known to be universal function
approximators.*® It is also worth noting that although f(2) Ffr f(@w s are singlet correlations,
the mapping ¢ implicitly contains information about the pair correlations which appear in
equation (6). The mapping ¢ can thus be seen as some transformation over the pair-correlation
which is learnt through training the DNN via loss function minimization as will be discussed
later. Since we constrain the interaction type to Lennard-Jones potential, the Left-Hand Side

(LHS) in equation (8) can be re-written as,

{orrerrrowp ewr} = O(F@Dsp F@Dwsr Po) )

where o and € represent the LJ interaction parameters. Once the function ‘¢’ is learnt, Equation
(9) can be used to obtain the coarse-grained parameters by using forces obtained from the

Center of Mass (COM) mapped trajectories of the All-Atom systems.

2.2. Data Generation

In this study, the dataset for the DNN is generated using a MD simulation with 7000 systems
of different Lennard-Jones (LJ) fluids confined in a slit-like graphene nanochannel with a fixed
width of 8 nm. The lateral dimensions of the graphene layer are 5.0 X 5.0 nm?. The bulk
density values, and force field parameters of the MD simulations are uniformly sampled from
the range provided in Table 1. As described earlier, the interatomic interactions are modeled

using the 12-6 Lennard-Jones potential with functional form given by:



12 6
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Here o, ¢ are the length and energy scale parameters and r represents the distance between

interacting atoms.

Table 1. Range of values for density and LJ parameters.

Thermodynamic State Parameter Range

p (nm?) T (K) o (&) & (kcal/mol)
Min 8.0 300 1.0 0.01
Max 12.0 300 55 0.7

We perform MD simulations using the large-scale atomic/molecular massively parallel
simulator (LAMMPS)* with a time step of 1 fs in the NVT (canonical) ensemble with T =
300 K. The temperature of the LJ fluid is maintained using the Nosé—Hoover thermostat.*
Periodic boundary conditions are applied in the x and y directions. In the z direction, we insert
an extra vacuum space of three times the actual z dimension to eliminate the slab effect.
Simulations are performed with fixed position of graphene walls and each MD simulation is

run for 2 ns. The wall-fluid and fluid-fluid forces are calculated on the fly by histogram binning

along the width of the nanochannel.

We also evaluate the performance of the DNN in predicting the CG potentials for multiatom
molecules including N2, CO, CH4 and H2S. We choose these molecules based on their

differences in dipole-moments, moment of inertia, bond-length, mass and number of atoms.!”



Interactions between multiatom molecules involve both non-bonded and bonded interactions.
Force fields for bonded interactions (bonds and angles) are obtained from the GROMOS force-
field available in the ATB Repository.>! The non-bonded interactions can include both short-
range van der Waals and long-range electrostatic interactions. The van der Waals interactions

are modelled using LJ potentials. The electrostatic interactions are given by: Veouiompry =

qi4j
47T€0Tij

, where q;, q; are point charges on interacting atoms i,j respectively, 1;; is the
distance between them and ¢, is the dielectric permittivity of vacuum. In MD simulations, the
long-range electrostatic interactions are modeled using the particle mesh Ewald algorithm.>
Simulations are performed using LAMMPS package with a step size of 1 fs. We run the
simulations for 2 ns and the trajectory of the atoms are saved for calculating the force and COM
profiles. This gives us the COM mapped wall-fluid and fluid-fluid mean force profiles along

the width of the channel, which are then used as inputs to the well-trained DNN, which takes

this information and relates it to the interaction parameters according to Equation (9).

2.3. Neural Network Architecture

A Feed-Forward Deep Neural Network consists of layers of artificial neurons that are
connected to each other in a specific architecture. The input layer receives the data, which is
then processed and transmitted through hidden layers, which finally produces a transformed

value at the output layer. Figure 1 shows the architecture of the DNN used.
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Figure 1: The neural network encompasses three inputs: wall-fluid force, fluid-fluid force, and
density at the channel center. It generates four outputs, which correspond to the wall-fluid and
fluid-fluid LJ parameters. The accuracy of the DNN is evaluated on the validation set after
being trained on a set of hyperparameters. The hyperparameters are then fine-tuned to achieve

optimal accuracy on the validation set.
The input to the neural network is : x; = ( fwf (2)i ﬁf (2)ir Py; ) (11)

where i € D, the training dataset. x; is the input vector constructed by concatenating the wall-
fluid forces, fluid-fluid forces which are arrays of dimension p each and density value at the
center of the channel. The number of bins p along the width of nanochannel, was chosen to be
200. The choice of p which affects the input dimensionality was influenced by two factors.
Firstly, it was noted that a small bin size led to noisy histogram force profiles, while a large bin
size caused “smearing” of force profiles and thus loss of important features. The second
consideration was the effect of feature size on the training of the DNN. A large dimensionality

of input vector typically increases the complexity of learning task for the DNN, thereby



requiring more parameterization. This was also observed during training where both the
number of neurons and the network’s depth needed to be increased to minimize the loss
function as the bin size decreased. This is believed to be a result of both noise in the input
profiles and the high dimensionality of input features. Nevertheless, the value of p was chosen
to keep the input dimensionality as low as possible without causing undue "smearing" of the

histogram profiles.

Each neuron in a DNN processes the input data by applying a non-linear activation function to
a linear combination of the input data and a set of weights and biases. This transformation is
given by: ¢ (x) = ¢ (Wipr_1(x) + by), where ¢y is the activation function in the k"
layer. Wy, by, are the set of weights and biases in the k" layer, respectively. Commonly used
activation functions include sigmoid, ReLU and tanh. The activation function is used to
introduce non-linearity into the network, allowing the DNN to learn more complex functions
and representations. We found that using a sigmoid activation function for all the layers gave
the best results. The parameters W), and b;, are then adjusted during training to minimize the

loss given by,

1 ~ - - o - ~
Loss = BZL'ED(GDNN,L' - O_GT,L')Evf + (Eown,i — gGT,i)\%vf + (Gpwn,i — GGT,i)}Z‘f +

(Bonwi — Zerifs (12)

where the subscripts 'DNN’,'GT' represent the predicted and ground-truth values, respectively.
Tilda represents normalized values for all the output parameters. The loss minimization is done
using gradient descent techniques. We got the best performance using the Adam algorithm>?

with a learning rate of 0.1 and a batch size of 64.

An important aspect of ML is to make the model predict data outside the training dataset and
prevent overfitting. Several other techniques like dropout, ensemble averaging, and batch

normalization have been widely used to deal with this issue.’*>° Here, we use dropout in the



second layer which drops certain nodes randomly with a rate of 0.3 thus forcing the network to
learn redundant features and preventing it from depending too much on any individual neuron.
When training a neural network, it is also important to use different sets of data for training,
validation, and testing. We randomly separate the dataset into three groups for training (70%
of the total dataset), validation (15%) and testing (15%). The training data is used to adjust and
update weights and biases of the neural network during the training process by calculating
gradients using backpropagation. The validation data is used to evaluate the performance of
the model during the training process and to tune the hyperparameters of the model, such as
the learning rate and the number of hidden layers. We got the best performance on the
validation dataset using 2 layers with 128 and 64 nodes, respectively. Once a good performance
has been achieved on both training and validation dataset, the final performance is evaluated
on the testing dataset. The error on the testing data gives an estimate of how well the model is

likely to perform on unseen data.
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Figure 2: Methodology employed to coarse-grain simple multiatomic molecules in
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confinement. First MD simulations are performed for a range of LJ fluids at different densities
to generate force maps which are used for training, testing and validation of the DNN (green

arrows). Once the DNN is well-trained we carry out inference where force maps from the



Center of Mass mapped All-Atom trajectories are used as inputs to the DNN and the predicted
outputs of the DNN serve as the coarse-grained LJ parameters (red arrows). The density and
force variation of the coarse-grained systems are then compared with their All-Atom
counterparts. If the accuracy is low the potential is further fine-tuned by performing Relative

Entropy updates.

Figure 2 describes this sequential approach employed for obtaining coarse-grained wall-fluid
and fluid-fluid potentials. The framework consists of 2 distinct parts i) Training (highlighted

in green) and ii) Inference (highlighted in red).

During the training phase, the DNN learns the non-trivial relationship between the mean-force
profiles and the corresponding LJ force fields for simple LJ liquids in confinement as given by
Equation 9. Subsequently, this well-trained DNN is repurposed to perform coarse-graining on
more intricate multiatomic liquids, a process referred to as transfer learning. In this context,
transfer learning entails utilizing a DNN originally trained on simple LJ liquids to perform
coarse-graining on complex multiatomic liquids. To achieve this, we initially compute force
profiles for the wall-fluid and fluid-fluid interactions along the trajectories of the mapped
Center of Mass for multiatomic molecules. These force profiles are then employed to conduct
inference with the adeptly trained DNN. The DNN's output yields the coarse-grained
parameters corresponding to the multiatomic molecule under consideration. Subsequently, we
gauge the efficacy of transfer learning by comparing the results of the coarse-grained
simulations, denoted as CGNN, with their All-Atom counterparts. As mentioned earlier, the LJ
potential form although physically derived is less accurate for certain liquids where
electrostatic or multibody correlations are dominant. Using the DNN derived LJ potentials as
a starting point more flexible numerical potentials with optimal functional form are derived

using Relative Entropy Minimization.



2.4. Relative Entropy Minimization
The measure known as Relative Entropy, which is derived from information theory, calculates
the level of similarity between two probability distribution functions,’® and can be expressed

as follows:

Sret = Zi paaDin (E2255) 1 (S, (13)

where S, is the Relative Entropy and i corresponds to a particular set of atomic positions in
the AA ensemble. M is the AA to CG mapping operator and S, is the mapping entropy due
to all states in AA system that map to the same CG configuration. It can be shown that S,,4,,
doesn’t depend on the CG potential and is rather a function of the mapping operator M. In this
case the mapping M assigns CG positions to the COM of the molecules in the AA ensemble.
paa and pcg are phase space probabilities for the AA and CG system corresponding to
configuration { which depend on the interatomic potentials. RE can thus be used as a metric to
maximize the overlap between AA and CG configurations. One major drawback of this method

is that it converges slowly for an arbitrary initial guess of parameters. A recommended’’>®

way
of initializing the parameters for RE is to invert the RDF according to the equation,
—kgT Ing(r) = v(r), where g(r) is the RDF and v(r) is the interparticle potential, which we
refer as the “Boltzmann Inverted” potential guess. Although physically consistent in some

sense, this equation holds only for homogeneous systems and in the limit where density of the

system approaches zero.

In this work, we try to address these limitations by exploiting the similarity between force-
based methods and Relative Entropy. In the past, many works have explored the relation

between Relative Entropy and force-based methods>®. Although they are based on different



mathematical formulations and physical principles, under certain conditions it is shown that
they converge to similar solutions.®® Given this similarity we explore the possibility of using
the DNN generated potentials as an initial guess for the RE framework to improve its

convergence.

3. Results and Discussion

3.1. Performance of DNN for LJ fluid and coarse-graining simple liquids

The DNN model is trained using the LJ fluid dataset generated in Section 2.2 and optimized
via minimizing the loss function in Equation (12). We first assess the performance of the DNN
model by comparing the predicted LJ potential parameters with their corresponding ground
truth values. To quantify the training and testing error, we use the weighted mean absolute

. ® ®
Ziep |”j.DNN‘ j,GT

i
YieD |'U](-’();T|

percentage error (MAPE) metric defined as eyapg; = 100 X , Where v

represents one of the four LJ potential parameters, o sf, 55, Oy, Ewy - L represents the ith
data point and j = wf or ff corresponding to the wall-fluid and fluid-fluid potential
parameters. Figure 3(a)-3(d) show the one-to-one comparison of ground truth values and DNN
predicted LJ potential parameters for the training dataset. We can see that the DNN model is
well-trained to approximate the mapping (see Eq 9) with maximum MAPE < 5.4 %. To check
model generalization, the DNN model is then tested using the testing data which is held out
and not seen during training. The testing results are shown in Figure 3(e)-3(h). We observe that

most points in testing dataset lie close to the ideal line with the maximum MAPE < 2.0 %.
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Figure 3: Comparison of the predicted and ground-truth LJ parameters for (a - d) Training and

(e-h) Testing data.

The DNN model can thus predict the LJ potential parameters for unseen data. Next, we transfer
the DNN knowledge of LJ fluids to predict the coarse-grained force field parameters for simple
multiatomic molecules in confinement. In the coarse-graining process, a multiatom molecule
is coarse-grained into a single bead such that the COM mapped wall-fluid and fluid-fluid
interactions are preserved in the single bead system. As shown in figure 2 (red arrows in the
figure), the wall-fluid and fluid-fluid force profiles obtained from the AAMD simulations and
the corresponding density p, are fed as inputs to the well-trained DNN model. Using this
information, the DNN model predicts the coarse-grained force field parameters used to

represent multiatomic molecules as single beads within the nanochannel.

In order to evaluate the accuracy of the proposed method for coarse-graining, the CG force
field parameters were utilized to carry out molecular dynamics (MD) simulations on single
bead systems. These simulations, referred to as CGNN simulations, are performed with the

same LAMMPS settings described in Section 2.2. A comparison is then made between the



structural properties and force profiles of AA systems and those obtained from the CGNN

simulations. The discrepancy between AA and CG profiles is measured using the error given

X oe(—X 24 - d
Jo 1XceM=X qa(m)|rdr and % erTpy e = % €T = |fe (M) —faa(@)ldr

as % err, = ;
COM/RDF I3 Xaa(ryrtar [min(F44(r)|

Here f is the force, X denotes either the Center of Mass (COM) density or the parallel RDF.
These quantities of the corresponding AA or CG system are calculated at the i*" bin and N,
denotes total number of bins. Figure 4 shows results for the COM profiles for both AAMD and
CGNN simulations of N,,CO,CH,,and H,S. The COM profiles obtained from DNN
parameterized CGNN are in good agreement with AAMD results for HaS,

N,, CO and CH, with error errcop € [5.42%, 2.97%, 4.04%, 2.40%], respectively.
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Figure 4: Comparison of density profiles of AA and CGNN systems of different simple

multiatomic liquids.

Figure 5 compares the parallel RDF, which is the second structural property we seek to
replicate. The errors for H2S, N2, CO and CHsare errgpr = [2.51%, 1.92%, 1.12%, 0.93%],

respectively. In addition to the fluid structure, the total molecular force in the AAMD



simulations is also preserved in the CGNN simulations for the above four types of molecules.
It can be seen in Figure 6 that the total molecular force obtained from CGNN simulations agrees

well with the AAMD results for HaS, N5, CO and CH, with erryqc. € [2.32%, 2.13%, 1.82%,

0.84%].
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Figure 5: Comparison of parallel RDF profiles of AA and CGNN systems of different simple

multiatomic liquids.
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Figure 6: Comparison of force profiles of AA and DNN predicted CG systems of different

multiatomic simple liquids.

It should be noted that N, and CH, are non-polar while CO and HzS are polar molecules that
exhibit long-range electrostatic interactions. Since the training data used by the DNN includes
only neutral LJ liquids, the transfer learning process can only distill information of short-ranged
van der Waals interactions from the AA force maps and approximates the electrostatic
component as a short-range potential. This approach of locally approximating slowly varying
attractive forces was originally proposed by Ref. ! for studying inhomogeneous simple liquids.
Their approach demonstrated that an inhomogeneous fluid's structure can be described by an
equivalent reference fluid with a short ranged purely repulsive core under the influence of an
external field. This field can be calculated using a self-consistent iterative approach based on
the BBGKY hierarchy. However, such a truncated model leads to errors as the long-range
interactions start becoming significant. For instance, the DNN parameterized CGNN displays
a larger deviation on all target properties on H2S, which has a much higher dipole moment

(1.84 Debye) compared to CO (0.01 Debye), N, and CH4(non-polar).
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Figure 7: Comparison of wall-fluid (WF), fluid-fluid van der Waals (FF VdW), electrostatic

(FF Electro) and total potential of mean force (PMF) profiles for (a) CO (b) HBr and (¢) H2S

We conduct a quantitative evaluation of the influence of long-range electrostatic forces on the
efficacy of transfer learning process. To effectively assess the electrostatic potential
contribution, we first decompose the total PMF into wall-fluid potential and fluid-fluid
potential. The fluid-fluid PMF can further be decomposed into van der Waals and electrostatic
interactions. The electrostatic PMF computed includes both the short-range and the long-range
interactions which are computed in real and reciprocal space respectively. Since the carbon
atoms in the graphene surface have zero charge in AAMD simulations, only the fluid-fluid
interactions cause electrostatic contribution to the total PMF. The decomposed potentials for
the 3 types of molecules with varying dipole moments namely, CO (0.01 Debye), HBr (1.59
Debye) and H2S (1.84 Debye) are shown in Figure 7. The electrostatic contribution to the total
PMF is weak for CO and therefore it is observed that all the three decomposed PMF
components namely wall-fluid, fluid-fluid, and total potentials from the CGNN simulations are
in good agreement with their corresponding AAMD counterparts. Consequently, the DNN
predicts the CG parameters to effectively replicate both the fluid structure and molecular force
of the target AA system. For HBr, the electrostatic potential has a stronger contribution than
CO near the interface. This leads to a slight deviation closer to the wall, although the overall

PMF still remains preserved. The discrepancy is greater for H2S, which has a relatively stronger



electrostatic contribution. However, it is noteworthy that while the separate contributions vary
considerably, the collective coarse-grained (CG) potential of mean force (PMF) remains
similar to the All-Atom PMF. This suggests that the DNN approximates the long-range forces
as short-range components and utilizes them to deduce the CG parameters which closely

matches with the All-Atom PMF.

3.2. Initializing RE method with DNN potentials as initial guesses

The preceding section revealed that the CGNN simulation falls short in accurately predicting
the COM profile for molecules with relatively stronger electrostatic interactions where the
short-ranged LJ potential is not a good approximation. To overcome this limitation of using a
Lennard-Jones potential form, we sequentially combine the DNN method with Relative
Entropy minimization based coarse-graining method which allows for more flexible
numerically optimized potentials. We employ the DNN method to generate an initial set of
Lennard-Jones parameters as described in Section 2.3. The resulting LJ functional form is then
modelled as a cubic spline whose coefficients now define the shape of the wall-fluid and fluid-
fluid potential. This numerical potential then serves as a robust starting point to optimize the
RE objective function. This RE framework then iterates over the initial guess and updates the
fitting coefficients of the cubic spline thereby shaping the potential profiles in such a way to

minimize the Relative Entropy between AA and CG ensembles.

We perform the RE based coarse-graining using the VOTCA package.'® ® As shown in Figure
8, the DNN and RE framework provide potentials that are nearly identical for simple non-polar
liquids like CH4. As shown in the previous section, in case of H2S the CGNN predictions for
density show a relatively higher error of 5.42%, while other molecules with relatively lower
electrostatics show good accuracy with errors less than 5% which we use as a threshold cutoff

criterion. The RE framework then further refines the H2S potentials predicted by the DNN



model, resulting in a CG system whose density closely matches the AA system’s density,

illustrated in figure 9(c)-9(d).
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Figure 9: (Top) Convergence characteristics for different initialization schemes. (Bottom)
Density/Force profile comparison for H2S with potentials obtained from RE Minimization
procedure initialized with CGNN potentials. “Relax” here refers to relaxation factors used for

RE update.

From Figure 9(a)-(b) it is seen that initialization has a significant effect on convergence for the
RE method. Our findings indicate that a poor initial guess can cause the RE iterations to diverge
resulting in termination of the iterative process. We observe that for both CH4 and H2S, using
the Boltzmann Inverted (BI) potential as the initial guess leads to a slow or weak convergence
resulting in a significant computational cost. While significant modifications can be made to
improve the BI convergence using different pre-factors and relaxation settings, the process
remains slow and ad-hoc. In contrast, using the DNN generated LJ potential as the initial guess
results in fast convergence, as demonstrated in Figure 9(a, b). The results indicate that, with a
robust initial guess generated by the DNN model, the RE framework converges within 25
iterations for both H2S and CHa4. In comparison, when using a Boltzmann Inverted initial guess
(with carefully tuned convergence parameters), the RE framework requires at least 100
iterations for H2S and even more for CH4 to converge. Since each iteration of the RE framework
involves a separate CG simulation, this improvement translates to a reduction of 100 CG
simulations compared to the Boltzmann Inverted initial guess thus demonstrating a significant

improvement in convergence and computational cost.

4. Conclusions

In this study, we have explored the application of inverse liquid state theory in the purview of
confined systems and in doing so identified key correlations that characterize the structure of
inhomogeneous fluid. More importantly, the solution to the inverse liquid state problem for

inhomogeneous system is seen as a route to coarse-graining simple multiatomic molecules



where the identified structural correlations of the All-Atom system are to be preserved. The
wall-fluid and fluid-fluid forces are shown to contain necessary information required to
preserve structural properties of the AA system. We then develop a novel data-driven approach
where a DNN approximates the complex mapping between wall-fluid/fluid-fluid forces of
simple fluids and corresponding potential parameters. The well-trained DNN is then used to
coarse-grain simple multiatomic molecules by utilizing transfer learning. Our model accurately
reproduces density, parallel RDF and force profiles across the channel width for various
molecules at different densities particularly when the electrostatic interactions are not

dominant.

However, we found that this limitation inherent to transfer learning can be addressed by using
the DNN framework in conjunction with Relative Entropy minimization based coarse-graining
method. We discovered that the DNN generated potential provides an excellent initial guess
for the RE framework, leading to significant improvements in convergence. Furthermore, we
demonstrated that the combination of data-driven approach with the RE method can help fine-
tune the CG potential obtained using the DNN. This is evidenced by the improved agreement
between the AA and CG density profiles for H2S, which were achieved through RE based
iterative refinement of the initial DNN potentials. Overall, the synergistic combination of data-
driven and physics-based Bottom-Up approaches results in improved fidelity and convergence,

allowing for more efficient and more reliable coarse-graining of complex molecular systems.
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