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ABSTRACT

Single-layer membranes have emerged as promising candidates for applications requiring
high transport rates due to their low resistance to molecular transport. Owing to their atomically
thin structure, these membranes experience significant microscopic fluctuations, emphasizing the
need to explore their impact on ion transport processes. In this study, we investigate the effects of
membrane fluctuations on the elementary scaling behavior of ion conductance G as a function of
ion concentration c,, represented as G = fSc§, using molecular dynamics simulations. Our
findings reveal that membrane fluctuations not only alter the conductance coefficient § but also
the power-law exponent a. We identify two distinct frequency regimes of membrane fluctuations,
GHz-scale and THz-scale fluctuations, and examine their roles in conductance scaling.
Furthermore, we demonstrate that the alteration of conductance scaling arises from the non-
linearity between ion conductance and membrane shape. This work provides a fundamental

understanding of ion transport in fluctuating membranes.



INTRODUCTION

The atomic thickness of 2D membranes offers minimal resistance to molecular transport,
making them favorable for applications that demand a high transport rate. Hence, 2D membranes
have been actively studied for a wide range of membrane applications such as water desalination'~
8 electricity generation from salinity gradient’'?, and separation of heterogeneous fluids'*'°. In
particular, the transport of charged particles, including ions, is of significant interest due to their
relevance in energy applications’!! and numerous biological processes'®?!. Unlike the obvious
linear scaling between conductance and concentration of ions in a macroscopic pore, G X c,, the
transport of ions in a nanoscale pore involves unique scaling behavior at low concentration®*2°,
G « c§, where G is the ion conductance, ¢, is the ion concentration, « is the power-law exponent,
and B is the coefficient. Understanding the scaling behavior is an elementary step towards
understanding the nanoscale ion transport phenomena. However, the current understanding of
conductance scaling is limited to rigid nanopores, where the structural flexibility of nanopore is
neglected. Given their thinness, atomically-thin membranes exhibit significant structural

12728 and ion

fluctuations, which are known to considerably affect both water permeation
transport?**. Thus, a fundamental understanding of how these fluctuations influence the scaling
behavior of ion conductance is important, especially considering the growing interest in 2D
membrane applications.

Ion conductance in a bulk solution exhibits linear scaling between conductance and ion
concentration, represented by G & c,. However, ion conduction near a solid surface deviates from
this linear scaling. For narrow pores or channels, various scaling behaviors have been reported,
23,31-33

, especially where the surface contribution to ion conductance is significant. In 1993, Lev et

al. reported deviations in the conductance scaling at low ion concentrations, attributing this



phenomenon to various surface effects such as ion concentration differences due to surface charge,
direct ion adsorption to the surface, and ordered structures of the ionic solution near the surface.

Stein et al?

. in 2004 reported a fully saturated ion conductance at low ion concentration (i.e., zero
power-law exponent, @ = 0) in silica channels ranging from 1 micrometer to 70 nanometers. They
demonstrated a direct relationship between the channel's surface charge density and the saturated
conductance, suggesting that saturation occurs due to the transport of counter-ions near the channel
surface. Electrokinetic theories*>** have been proposed and utilized to estimate the surface charge
density of nanochannels and nanopores®?%343%. However, these models do not universally account
for the observed behaviors in all systems. Notably, conductance does not always fully saturate.
Previous studies have identified a few attributes that influence the various scaling behavior
of ion conductance. One attribute is the charge regulation, while another is the leakage of surface
potential out of the pore. Charge regulation refers to the phenomenon at the solid-fluid interface
where the surface charge density avries as a function of ion concentration and effects the scaling
behavior of the surface conduction. Several charge regulation models have been proposed to
explain the various power-law exponents measured>*>>-7-38, Another phenomenon that affects the
conductance scaling is the pore potential leakage. When the potential generated by the surface
charge leaks, it leads to a distribution of counterions both inside and outside the pore. Counterions
positioned outside the pore do not directly contribute to the surface conduction. This leads to
diverse scaling behaviors, depending upon the extent of the potential leakage. Specifically, ion
conductance scaling studies conducted using Molecular Dynamics (MD) simulations have shown
that the power-law exponent can vary from zero to one depending on the degree of electric

potential leakage?’. The simulations suggest that the power-law exponent approaches zero for

nanotubes/pores with low radius/length ratio where the potential leakage is negligible. On the other



hand, for nanotubes /pores with high radius/length ratio, such as 2D nanopore membranes with
diameter larger than 2 nm, the pore potential leakage become significant, resulting in various
power-law exponents depending on the degree of the potential leakage. It is noted that although
many nanopores conform to this qualitative trend, including some biological nanopores—which
are considered highly flexible compared to synthetic nanopores—the power-law exponent in
biological nanopores® is approximately 0.05~0.2 smaller than that in other nanopores with similar
aspect ratios?’. Some experimental data, such as those from CNT?* and nanofilters made of
polyethylene terephthalate®' cannot be solely explained by this phenomenon, implying that the
conductance scaling is a complicated phenomenon associated with multiple factors, such as charge
regulation and nanopore flexibility.

In this work, we investigate the effect of membrane fluctuations on the scaling behavior of
ion conductance using MD simulations. We demonstrate that nanopore membrane fluctuations can
influence both the power-law exponent and coefficient of ion conductance. We introduce two
distinct frequency regimes (GHz-scale and THz-scale) of membrane fluctuations and examine the

contribution of each vibrational mode to the ion conductance.



RESULTS AND DISCUSSIONS

To investigate the impact of membrane fluctuations on the scaling of ion conductance, we
conducted MD simulations of ion transport through a single layer of nanoporous membrane (Cu-
HAB'%4%) as shown in Figure la-b. The nanoporous membrane is immersed in a KCI solution.
The edges of the membrane are fixed, and the rest of the membrane experiences thermal
fluctuations during the simulation. For comparison, we also considered a rigid counterpart where
the membrane fluctuations are suppressed, maintaining a flat configuration throughout the
simulation. To generate ion transport across the membrane, an electric field is applied
perpendicular to the membrane. The ion conductance is obtained for various concentrations of KCl
to investigate the scaling behavior between ion conductance and ion concentration. The details on
MD simulations can be found in the methods section. As stated in the introduction section, the
relationship between ion conductance and concentration in nanopore membranes can be
characterized by a power-law equation of the form, G = Bc§. Our simulations show that the
membrane fluctuations alter both the coefficient of conductance £ and the power-law exponent «,
as shown in Figure Ic. Specifically, the membrane fluctuation increases the coefficient 5 by
approximately 100 % and reduces the power-law exponent from 0.75 to 0.55. We note that the
conductance scaling is reduced only in the low concentration regime where the surface
conductance is dominant. In the high concentration regime, where the bulk transport mechanism
is dominant, we observed a linear scaling (i.e., ¢ = 1) for membranes with and without
fluctuations. However, the power-law exponent is reduced in the low concentration regime where
the surface transport mechanism is dominant. It is noted that this modification of power-law
exponent results in a higher discrepancy in conductance with and without membrane fluctuations

as the concentration decreases: 102% at 1.0 M, 221% at 0.1 M, and 409% at 0.01 M. These results



suggest that the membrane fluctuations can significantly impact ionic conductance for low ion
concentration environments.

To better understand the impact of membrane fluctuations on the scaling of ion
conductance, we analyzed the fluctuations of the membrane and the hydrated ions. Figure 2a shows
a visualization of membrane fluctuations obtained by superimposing multiple snapshots of
membranes. The solid color represents the mean displacement of the membrane and the transparent
color represents the fluctuations. The mean displacement of the membrane is approximately zero
and the amplitude of fluctuation varies with the x-coordinate of the membrane. The maximum
fluctuation in the amplitude is observed to be 4 A, which is comparable to the diameter of the
nanopore (6.8 A). This implies that membrane fluctuations become important when the critical
length scale involving transport processes is of the order of a few nanometers or below. In addition
to the membrane fluctuations, we also examined the fluctuations of hydrated ions and their
vibrational frequencies. Figure 2b shows the fluctuations of hydrated ions and Figure 2c its
vibrational density of states (VDOS). The fluctuations of ions surrounded by water molecules
involves THz scale fluctuations*!. Specifically, the vibrations of K* and Cl~ exhibits their peaks
at 1.2 THz and 1.6 THz, respectively. Also, K* — H,0 and Cl~ — H,O stretching mode in the first
hydration shell exhibit their peaks at 6.2 THz and 6.4 THz, respectively.

To understand the effect of an individual vibrational mode of the membrane on the ion
conductance, we first decomposed the membrane fluctuations into several individual modes. We
investigated the trajectories of membranes at the picosecond to nanosecond scale and identified
two separate frequency regimes of membrane fluctuations: gigahertz (GHz)-scale and terahertz
(THz)-scale fluctuations. The GHz-scale fluctuations involve the wiggling motion of the

membrane as a result of the collective motion of membrane atoms. This mode of fluctuation is



much slower than the fluctuations of ions and its hydration water. On the other hand, THz-scale
frequencies are due to the trembling oscillations of membrane atoms, and this scale of frequency
is comparable to the frequency of the fluctuations of the hydrated ions. We found that GHz-scale
fluctuations mainly involve the first and second modes of standing waves with fixed edges (i.e.,
the fundamental harmonic and second harmonic modes), as shown in Figure 2d-e. To estimate the
amplitude and the frequency of the fundamental harmonic mode, we analyzed the z-coordinate of
the center of the membrane z.. Figure 2g shows the fluctuations of z. over time and this indicates
that the amplitude of the fundamental harmonic mode is approximately 4 A. The fundamental
harmonic frequency is approximately 1.5 GHz based on the average frequency of z, alterations
between 4 A and -4 A. Similarly, we determined the amplitude and frequency of the second
harmonic mode by analyzing z,_z, (see Figure 2a-f). The estimated amplitude of the second
harmonic mode is around 2 A, with a frequency of approximately 3.0 GHz. Compared to the first
harmonic mode, the amplitude of the second harmonic is halved, and its frequency is doubled.
Note that this range of GHz frequency is three orders of magnitude slower than the frequency of
the hydrated ions, indicating that the wiggling motion of membrane has a negligible vibrational
coupling with the oscillation of hydrated ion. While there are also THz scale fluctuations of the
membrane as illustrated in Figure 2f, this scale of fluctuation is due to the thermal oscillation of
membrane atoms. The typical scale of the amplitude and the frequency is ~0.1 A and ~10 THz
(see Figure 21), which is comparable to the fluctuations of ions and its hydration water. Therefore,
the thermal oscillation of membrane atoms can create a meaningful vibrational coupling with
nearby ions.

Next, we examined how the individual modes of membrane fluctuations influence the ion

conductance and its scaling. Toward this, we designed conceptual studies for membranes with



specific modes of fluctuation. Specifically, we first explored the effect of GHz-scale fluctuations

on the scaling of ion conductance. The wiggling motion of membrane is modeled with the standing
wave equation for a string with two fixed edges, which is given by A sin {nn (% + %)} sin(2rwt),
where A is the amplitude, n is the mode number, L is the length of the membrane along the x-
coordinate (—% <x< %) , w 1s the frequency, and t is the time. Figure 3a-b show the

conductance-concentration curves under the GHz-scale wiggling motions controlled by the
standing wave equation, with amplitudes of 4 A (Figure 3a) and 2 A (Figure 3b) and L = 4.62 nm.
Note that in these controlled wiggling motions, the trembling oscillations of atoms are suppressed,
allowing us to exclusively study the effects of the membrane's wiggling motions on ion transport.
Notably, the power-law exponent is reduced under the controlled wiggling motion for both the
first and second harmonic modes, compared to its rigid counterpart where the thermal fluctuations
are suppressed and the membrane remains flat during the simulation. This demonstrates that the
wiggling motion of the membrane alters the scaling of ionic conductance. The wiggling motion of
the membrane is in the GHz frequency range and that is significantly slower—by three orders of
magnitude—compared to the frequencies associated with the fluctuations of hydrated ions which
are in the THz-scale. Therefore, the reduced power-law exponent a due to the GHz-scale wiggling
motion does not appear to be a result of vibrational coupling between the membrane and nearby
electrolyte.

Our next step will be to examine the physical mechanism underlying the reduced power-
law exponent a, created by GHz-scale wiggling motion of the membrane. In these simulations,
charge regulation is excluded (surface charge is fixed as a constant). Thus, we focused on the
leakage of a surface potential, which is closely associated with the geometry of the pore/channel.

In the case of long channel that has an enough space to accommodate counter ions attracted to the



channel surface, the effect of surface potential leakage is trivial resulting in the saturation of ion
conductance at low concentration (i.e., @ = 0). In contrast, a thin pore, such as a 2D membrane,
lacks adequate space to accommodate the counter ions. As a result, the surface potential leaks out
of the pore, resulting in various power-law exponents between zero and one, depending on the
degree of leakage. Given the importance of nanopore geometry in ion conductance scaling, we
investigated whether changes in membrane shape, resulting from GHz-scale wiggling motions,
could impact the power-law exponent. Notably, the mean displacement of the GHz-scale
fluctuation is zero. Therefore, the potential non-linearity between ion conductance scaling and
membrane shape needs to be examined.

To test the linearity, we considered two membranes with opposite shapes, §z(x) and
—52z(x) (see the subfigure of Figure 3c-d), so that the summation of the displacements is zero (flat

membrane). To exclusively study the effect of the membrane shape, we fixed the membrane shape
during the simulation and suppressed thermal oscillations of the membrane atoms. This case study
differs from the previous study of a wiggling membrane where the membrane shape changed over
time. If the conductance is linear with the displacement of the membrane, the linear relation,
G(Z = é‘z(x)) + G(z = —Sz(x)) = G(z = 0), must hold. The simulation results for these two
opposite shapes of membrane are shown in Figure 3c-d. Both membranes yield a reduced power-
law exponent compared to the flat membrane. Note that the linearity equation does not hold, which
demonstrates non-linearity in the conductance scaling with respect to the membrane shape. This
non-linearity explains that zero-mean wiggling motions of membrane can reduce the power-law
exponent. To further understand how various shapes of membrane affect conductance scaling, we
examined membranes with several different shapes. The results in Figure 4 consistently show that

the membrane shape can reduce the power-law exponent and slightly increase the coefficient of

10



ion conductance . Our data shows that the amount of displacement is one of the factors for this
effect (see Figure 4b-d). We further analyzed the ion concentration at the pore, ¢, and compared

it to the concentration at the reservoir. Supplementary Figure 1 indicates that the deformation of
the membrane shape influences the scaling of ion concentration at the pore. This suggests that
deformed membranes exhibit less electrical potential leakage compared to flat membranes®?. These
results suggest that ion conductance can be tuned by modifying membrane shape, which has
potential applications in a variety of nanofluidic devices.

Finally, we studied the impact of THz-scale oscillations of membrane atoms on ion
conductance. For this, we applied a sinusoidal function with a particular frequency and amplitude
to oscillate the entire membrane. To investigate the effect of THz-scale oscillations of membrane,
the shape of the membrane is fixed during the simulation. Figure 5 illustrates the effects of THz-
scale membrane oscillations on the conductance-concentration curve. The simulation results
indicate that the THz-scale oscillations of the membrane do not alter the power-law exponent o
(see Figure 5a-c). Figure 5d shows a case with the same shape used in Figure 4b, which yields the
same power-law exponent ¢ = 0.55. This further supports the result that THz-scale oscillations of
the membrane do not alter the power-law exponent, but they can considerably increase the
coefficient of ionic conductance 8, in contrast with the GHz-scale wiggling motions of the
membrane. The increase of the coefficient can be understood as a result of the vibrational coupling

between the membrane and nearby hydrated ions as our earlier studies suggest>®*2.
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CONCLUSIONS

Scaling of ionic conductance in fluctuating 2D membranes is an important area of research
due to its potential applications in membrane-based technologies. In this study, we investigated
the effect of membrane fluctuations on ionic conductance using molecular dynamics simulations.
Our findings indicate that fluctuations in 2D membranes have an impact on the scaling behavior
of ion conductance. Specifically, we found that membranes experiencing fluctuations have a lower
power-law exponent and a higher coefficient of conductance compared to those without
fluctuations. To better understand how membrane fluctuations affect conductance, we first
analyzed the membrane fluctuations and observed two distinct ranges of membrane fluctuations.
One is GHz-scale frequency mode which is due to the wiggling motions of membrane and the
second is THz-scale frequency mode that involves the thermal vibration of atoms. We then
conducted conceptual studies with controlled membrane fluctuations with a specific vibrational
mode. The results show that the GHz-scale wiggling motion of a membrane reduces the power-
law exponent. Our simulations showed a non-linear relationship between the conductance scaling
and the membrane shape, suggesting that the fluctuation of a membrane can alter the conductance
scaling even though the mean displacement is zero. On the other hand, THz-scale fluctuations do
not alter the power-law exponent, but considerably increase the coefficient of the ion conductance.
This study provides a fundamental understanding of how different vibrational modes of the
membrane effect ion transport. Our findings suggest that modifying the shape of membranes could

be a feasible method for tuning ionic conductance in membrane applications.
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METHODS

We conducted molecular dynamics (MD) simulations to investigate the scaling of ion
conductance in fluctuating 2D nanoporous membranes. Specifically, our simulations focused on a
Cu-HAB membrane'* with dimensions of 4.62 nm by 4.00 nm, containing 12 pores in a periodic
cell. The edges of the membrane were fixed, while the rest of the membrane was allowed to
fluctuate during the simulations. To facilitate comparison, we also conducted ion transport
simulations for a rigid membrane, where all membrane atoms were fixed. To generate an electric
potential gradient, a uniform external electric field (0.08632 V/nm) perpendicular to the membrane
was applied, and the system was maintained at a uniform dimension of 5.80 nm perpendicular to
the membrane. We modeled the KCI solution using Coulombic and Lennard-Jones potentials, and
the ReaxFF force field* was used to model the membrane. The partial charges of the membrane
are calculated by the charge equilibration (QEq) method** and fixed them during the simulation.
We used the particle-particle particle-mesh method* to calculate long-range Coulombic

interactions. We adopted LJ parameters from**48

and calculated LJ parameters between two
different atoms using the Lorentz-Berthelot combination rule, with the LJ potential cut-off distance
set at 1.2 nm. The membrane-liquid interactions were modeled using LJ and Coulombic potentials,
while we used the flexible simple point charge water model for water®. The potential parameters
described by Joung et al.>® were used for ions. The system temperature is maintained using the
Nosé-Hoover thermostat, and atomic trajectories were computed using an NVT ensemble with a
time interval of 0.5 fs. We examined several cases where the membrane was subjected to a specific
vibrational mode. To model GHz-scale fluctuations, we utilized the standing wave equation of the

fundamental and second modes with the specific frequencies and amplitudes described in the main

text. For THz-scale vibrations, the membrane was assumed to be rigid and excited sinusoidally
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with a particular amplitude and frequency described in the main text and Figure 5. We measured
ion current by counting the number of ions passing through the membrane, with equilibration
conducted for 1 ns and data collection for 5-10 ns. Then the ion conductance is calculated as G =
I/AV, where I is ion current and AV is cross-membrane electric potential difference. VDOS is
calculated as VDOS(w) = ffooo(v(t + to)v(ty))e ?™@tdt where v is the time derivative of
position (e.g., relative position of ion and water in the first hydration shell for water-ion stretching
mode), t, is the reference time, w is the frequency, and the angle brackets denote the time and

ensemble average. MD simulations are performed by LAMMPS and used OVITO®' for atomic

visualizations.
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In the sub-figure, the transparent color of the membrane represents the fluctuations and the solid

color represent the mean displacement. The figure is plotted in logarithmic scale. The error bars

represent the standard error of the conductance values obtained from each individual 1 ns dataset.
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Figure 2. Fluctuations of membrane and hydrated ions. (a) Comprehensive fluctuations of Cu-
HAB membrane with fixed ends. The solid color represents the mean displacement of the
membrane, and the transparent color represents the fluctuations of membrane. z;, z., and z,
represent the out-of-plane displacement at one-quarter, center, and three-quarter of the membrane
length, respectively (measured from the left end). (b) Illustration of the fluctuation of ions and
hydration water. (c) Vibrational density of states of ions and ion-hydration water stretching mode.
(d) A fundamental harmonic mode and (e) a second harmonic mode of GHz-scale fluctuations. (f)
THz-scale oscillations of membrane. (g) Displacement of the center of the membrane z. over a
period of few nanoseconds. (h) Displacement of the one-quarter point z; and three-quarter point

Zp. (1) Displacement of the membrane z), z., and z, over a period of few tens of picoseconds.
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Figure 4. Conductance scaling for various shapes of membranes. (a) a fundamental harmonic
shape with a displacement of 3.0 A. (b) a second harmonic shape with a displacement of 3.0 A. (c)
a third harmonic shape with a displacement of 3.0 A. (d) a second harmonic shape with a
displacement of 1.5 A. All the membrane shapes are fixed and do not change during the simulation.
The error bars represent the standard error of the conductance values obtained from each individual

1 ns dataset.
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are plotted on a logarithmic scale. The error bars represent the standard error of the conductance

values obtained from each individual 1 ns dataset.
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