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Abstract. We propose a method to reconstruct the electrical current density from acoustically-
modulated boundary measurements of time-harmonic electromagnetic fields. We show that the
current can be uniquely reconstructed with Lipschitz stability. We also report numerical simulations
to illustrate the analytical results.
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1. Introduction. The inverse source problem for the Maxwell equations is of
fundamental interest and considerable practical importance, with applications ranging
from geophysics to biomedical imaging [1, 12, 13, 24, 38]. The problem is usually
stated in the following form: determine the electric current density from boundary
measurements of the electric and magnetic fields. It is well known that this problem
is underdetermined and does not admit a unique solution, due to the existence of so-
called nonradiating sources [20]. However, if the source is spatially localized or some
other a priori information is available, it is often possible to characterize the source to
some extent [2]. Such a method is applied to the localization of low-frequency electric
and magnetic signals originating from current sources in the brain or heart [34].

In this paper, we propose an alternative approach to the electromagnetic inverse
source problem. In this approach, which is an extension of the authors' previous work
on the acousto-electric inverse source problem for static fields [30], a wavefield is used
to control the material properties of a medium of interest, which is then probed by
a second wavefield. Also, see related work on hybrid imaging [3, 7, 8, 9, 10, 11, 14,
16, 17, 18, 19, 23, 25, 26, 27, 28, 29, 30, 32, 33, 35, 36, 37]. Here the electric current
density as well as the conductivity, electric permittivity, and magnetic permeability
are spatially modulated by an acoustic wave. In this manner, we find that it is possible
to uniquely recover the current density from boundary measurements of the fields with
Lipschitz stability.
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ACOUSTO-ELECTROMAGNETIC INVERSE SOURCE PROBLEM 419

The remainder of this paper is organized as follows. In section 2 we introduce a
model for the acoustic modulation of the current density and the material parame-
ters. In sections 3 and 4 this model is used to formulate the inverse source problem
and thereby derive an internal functional from which the source may be recovered.
Numerically simulated reconstructions are given in section 5. Finally, our conclusions
are presented in section 6.

2. Model. We begin by developing a simple model for acoustic modulation of
the electrical current density and material parameters, following the approach of [30].
We begin by considering the time-harmonic Maxwell equations in a bounded domain
\Omega \subset R3:

(1)
i\omega \varepsilon E+\nabla \times H= J+ \sigma E in \Omega ,

 - i\omega \mu H+\nabla \times E= 0 in \Omega .

We also impose the impedance boundary condition

(2) H\times \^n - \lambda (\^n\times E)\times \^n= 0 on \partial \Omega ,

which arises since \Omega is taken to be enclosed by a good conductor. Here the vector
functions J, E, and H are the current density, the electric field, and the magnetic
field, respectively. The scalar functions \varepsilon , \mu , \sigma , and \lambda are the electric permittivity,
magnetic permeability, conductivity, and surface impedance, respectively. The vector
\^n is the outward unit outward normal to \Omega and \omega is a fixed frequency. Note that in
the above, we do not write the equations governing the divergence of E and H which
are not needed in what follows.

The inverse source problem is to reconstruct the source J from boundary measure-
ments, assuming that the coefficients \mu , \varepsilon , \sigma , \lambda are known. A typical measurement is
the tangential electric field on the boundary [1]:

(3) g := (\^n\times E)\times \^n| \partial \Omega .

This problem does not have a unique solution [20]. That is, distinct sources may give
rise to the same boundary measurements.

Remark 2.1. An alternative measurement is h := \^n\times H| \partial \Omega . Knowledge of g is
equivalent to knowledge of h when the impedance boundary condition (2) is taken
into account, since h= - \lambda g on \partial \Omega .

We now examine the effect of acoustic modulation. Two approaches have been
proposed in the literature: modulation with plane waves or spherical waves. The
latter has been utilized in electromagnetic tomography [4] and acousto-optic imaging
[5, 6]. The former has been employed in acousto-optic imaging [10], bioluminescence
tomography [7, 11, 19], optical tomography [28, 29], and acousto-electric imaging
[30]. In this paper, we make use of plane-wave modulation for ease of mathematical
analysis. We note that both types of modulation are equivalent since spherical waves
can be synthesized from plane waves by the Weyl formula.

Following [10, 30], we consider a system of charge carriers in a fluid, in which a
small-amplitude acoustic plane wave propagates. It follows that the current density
J\delta is modulated according to

J\delta = J(1 + \delta \gamma J cos(k \cdot x+\varphi )),(4)

where J is the conductivity in the absence of the acoustic wave, \delta \ll 1 is a small
parameter that is proportional to the acoustic pressure, \gamma J is the elasto-electric con-
stant, k is the wave vector of the acoustic wave and \varphi is its phase. Likewise, the
conductivity \sigma \delta and permittivity \varepsilon \delta are also modulated:
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420 WEI LI, JOHN C. SCHOTLAND, YANG YANG, AND YIMIN ZHONG

\varepsilon \delta = \varepsilon (1 + \delta \gamma \varepsilon cos(k \cdot x+\varphi )),

\sigma \delta = \sigma (1 + \delta \gamma \sigma cos(k \cdot x+\varphi )),

where \sigma and \varepsilon are the unmodulated conductivity and permittivity, and the constants
\gamma \varepsilon , \gamma \sigma are known as the elasto-electric constants. For simplicity we assume that the
impedance \lambda is not affected by the acoustic modulation. It follows that the modulated
electric and magnetic fields E\delta and H\delta satisfy the modified Maxwell equations

(5)
i\omega \varepsilon \delta E\delta +\nabla \times H\delta = J\delta + \sigma \delta E\delta in \Omega ,

 - i\omega \mu H\delta +\nabla \times E\delta = 0 in \Omega ,

together with the boundary condition

(6) H\delta \times \^n - \lambda (\^n\times E\delta )\times \^n= 0 on \partial \Omega .

The corresponding boundary measurement becomes

(7) g\delta := (\^n\times E\delta )\times \^n| \partial \Omega .

3. Internal functional. In this section, we derive the internal functional from
boundary measurements of the electric field. We also introduce the necessary function
spaces and specify certain technical requirements on the conductivity and permittivity.

3.1. Function spaces. We will use the following standard spaces to discuss the
wellposedness of the Maxwell's equations [15]. Let \Omega \subset R3 be an open bounded set
with a C1,1 boundary, and let

H(curl,\Omega )=
\bigl\{ 
u\in (L2(\Omega ))3 :\nabla \times u\in (L2(\Omega ))3

\bigr\} 
.

The norm on H(curl,\Omega ) is given by

\| u\| H(curl,\Omega ) =
\bigl( 
\| u\| 2(L2(\Omega ))3 + \| \nabla \times u\| 2(L2(\Omega ))3

\bigr) 1/2
.

The two tangential trace maps \Gamma \tau and \Pi \tau have the following definitions:

\Gamma \tau :H(curl,\Omega )\rightarrow H - 1/2(div, \partial \Omega ),

u \mapsto \rightarrow \^n\times u| \partial \Omega 

and

\Pi \tau :H(curl,\Omega )\rightarrow H - 1/2(curl, \partial \Omega ),

u \mapsto \rightarrow (\^n\times u)\times \^n| \partial \Omega ,

where

H - 1/2(div, \partial \Omega )=
\Bigl\{ 
u\in (H - 1/2(\partial \Omega ))3 : div\partial \Omega u\in H - 1/2(\partial \Omega )

\Bigr\} 
and

H - 1/2(curl, \partial \Omega )=
\Bigl\{ 
u\in (H - 1/2(\partial \Omega ))3 : curl\partial \Omega u\in H - 1/2(\partial \Omega )

\Bigr\} 
.

Here div\partial \Omega is the surface divergence and curl\partial \Omega is the surface curl. The two spaces
H - 1/2(div, \partial \Omega ) and H - 1/2(curl, \partial \Omega ) are dual to each other. To handle the impedance
boundary condition, we define the tangential trace of a vector field

(8) \bfitphi T := \Pi \tau (\bfitphi ) = (\^n\times \bfitphi )\times \^n| \partial \Omega ,
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ACOUSTO-ELECTROMAGNETIC INVERSE SOURCE PROBLEM 421

and the space

X =
\bigl\{ 
u\in H(curl,\Omega ) : uT \in (L2(\partial \Omega ))3

\bigr\} 
.

The norm on X is

\| u\| 2X = \| u\| 2H(curl,\Omega ) + \| uT \| 2(L2(\partial \Omega ))3 .

We denote the dual space of X by X\ast . We denote the (L2(\Omega ))3-inner product by

(u,v)(L2(\Omega ))3 :=

\int 
\Omega 

u \cdot vdx, u,v \in (L2(\Omega ))3,

and the (L2(\partial \Omega ))3 inner product by

\langle u,v\rangle (L2(\partial \Omega ))3 :=

\int 
\partial \Omega 

u \cdot vdx, u,v \in (L2(\partial \Omega ))3,

where v denotes the complex conjugate of v. We denote the dual paring of u \in 
H - 1/2(div, \partial \Omega ) and v \in H - 1/2(curl, \partial \Omega ) by \langle u,v\rangle .

3.2. Assumptions and weak formulation. We will make the following as-
sumptions throughout this paper.

A-1. The domain \Omega is an open bounded connected domain in R3 with C1,1

boundary.
A-2. The medium is nonmagnetic with \mu = \mu 0 in \Omega , where \mu 0 is the magnetic

permeability in vacuum. The coefficients \varepsilon and \sigma are real piecewise H3(\Omega )
functions.

A-3. There exists positive constants K1 and K2, such that

(9) K1 > \varepsilon ,\lambda >K2 > 0, K1 >\sigma \geq 0,

and the conductivity \sigma is nonzero.
A-4. The source J is an (L2(\Omega ))3 vector field and is compactly supported in \Omega .

Here the space H3(\Omega ) is defined as follows. The domain \Omega can be partitioned into
finitely many connected subdomains of Lipschitz boundary, denoted by \Omega p for p =
1, . . . ,N , and a function is piecewise H3 if its restriction on each \Omega p is H3(\Omega p).

Remark 3.1. We conclude from A-2 that \varepsilon and \sigma are piecewise C1 by the Sobolev
embedding theorem. We conclude from A-3 that K1 > \varepsilon \delta > K2 > 0 and \sigma \delta \geq 0, so
long as \delta is sufficiently small.

The modulated Maxwell equations (5) and the impedance boundary condition (6)
can be written in terms of only the electric field:

(10) \nabla \times \nabla \times E\delta  - \mu (\omega 2\varepsilon \delta + i\omega \sigma \delta )E\delta = i\omega \mu J\delta in \Omega ,

which is subject to the impedance boundary condition

(11)

\biggl( 
1

\mu 
\nabla \times E\delta 

\biggr) 
\times \^n - i\omega \lambda (\^n\times E\delta )\times \^n= 0 on \partial \Omega .

We say E\delta \in X is a weak solution of (10) obeying the impedance boundary
condition (11) if for all \bfitphi \in X,\biggl( 

1

\mu 
\nabla \times E\delta ,\nabla \times \bfitphi 

\biggr) 
(L2(\Omega ))3

 - 
\bigl( 
(\omega 2\varepsilon + i\omega \sigma )E\delta ,\bfitphi 

\bigr) 
(L2(\Omega ))3

 - i\omega \langle \lambda E\delta T ,\bfitphi T \rangle 

= i\omega (J,\bfitphi )(L2(\Omega ))3 .(12)
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422 WEI LI, JOHN C. SCHOTLAND, YANG YANG, AND YIMIN ZHONG

It follows from Assumptions A1--A4, that the weak solution E\delta \in X exists and is
unique [31].

3.3. Internal functional. We now derive the internal functional for both clas-
sical and weak solutions. To proceed, we consider the fields F and G which obey the
Maxwell equations without sources:

(13)
i\omega \varepsilon F+\nabla \times G= \sigma F in \Omega ,

 - i\omega \mu G+\nabla \times F= 0 in \Omega ,

along with the impedance boundary condition

G\times \^n - \lambda (\^n\times F)\times \^n= g on \partial \Omega ,

where g\in (L2(\partial \Omega ))3. Equivalently,

(14)

\nabla \times \nabla \times F - \mu (\omega 2\varepsilon + i\omega \sigma )F= 0 in \Omega ,\biggl( 
1

i\omega \mu 
\nabla \times F

\biggr) 
\times \^n - \lambda (\^n\times F)\times \^n= g on \partial \Omega .

Note that (13) are explicitly solvable, since the required coefficients are known. Next,
we take the inner product of (5) with F, the inner product of (14) with E\delta , and then
subtract to obtain

\nabla \times \nabla \times E\delta \cdot F - \nabla \times \nabla \times F \cdot E\delta 

= \mu [\omega 2(\varepsilon \delta  - \varepsilon ) + i\omega (\sigma \delta  - \sigma )]F \cdot E\delta + i\mu \omega J\delta \cdot F.

Integrating the above result over \Omega and using the vector identity (\nabla \times A) \cdot B =
\nabla \cdot (A\times B) + (\nabla \times B) \cdot A, we find that\int 

\Omega 

\biggl[ 
\nabla \cdot 

\biggl( 
1

\mu 
\nabla \times E\delta \times F

\biggr) 
+
\bigl( 
\nabla \times F

\bigr) 
\cdot 
\biggl( 
1

\mu 
\nabla \times E\delta 

\biggr) \biggr] 
dx

 - 
\int 
\Omega 

\biggl[ 
\nabla \cdot 

\biggl( 
1

\mu 
\nabla \times F\times E\delta 

\biggr) 
+ (\nabla \times E\delta ) \cdot 

\biggl( 
1

\mu 
\nabla \times F

\biggr) \biggr] 
dx

=

\int 
\Omega 

[\omega 2(\varepsilon \delta  - \varepsilon ) + i\omega (\sigma \delta  - \sigma )]F \cdot E\delta dx+ i\omega J\delta \cdot F.

We now integrate by parts the divergence terms, which, using the relations 1
\mu \nabla \times E\delta =

i\omega H\delta and 1
\mu \nabla \times F= i\omega G, yields

i\omega 

\int 
\partial \Omega 

\^n \cdot (H\delta \times F)dx - i\omega 

\int 
\partial \Omega 

\^n \cdot (G\times E\delta )dx

=

\int 
\Omega 

[\omega 2(\varepsilon \delta  - \varepsilon ) + i\omega (\sigma \delta  - \sigma )]F \cdot E\delta dx+ i\omega J\delta \cdot F.(15)

Note that the boundary integral only depends on the tangential components of the
fields H\delta , E\delta , F, and G, which are known from the boundary measurements (7).
Therefore, the left-hand side can be determined from the boundary measurements.
For the right-hand side, we consider the asymptotic expansion in the small quantity
\delta . The O(1) term is

i\omega 

\int 
\Omega 

J \cdot F.
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ACOUSTO-ELECTROMAGNETIC INVERSE SOURCE PROBLEM 423

The O(\delta ) term is of the form

(16)

\int 
\Omega 

\bigl[ \bigl( 
\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma 

\bigr) 
F \cdot E+ i\omega \gamma JJ \cdot F

\bigr] 
cos(k \cdot x+\varphi ))dx.

Varying k and \varphi in (16), and performing the inverse Fourier transform, we obtain the
internal functional

(17) Q :=
\bigl( 
\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma 

\bigr) 
F \cdot E+ i\omega \gamma JJ \cdot F,

which is known at every point in \Omega .

Remark 3.2. In place of (6), where we assumed that the impedance \lambda of the
boundary is not modulated by the acoustic field, we may alternatively consider the
case that \lambda is modulated. In the latter case, the internal function (17) remains the
same, since the right-hand-side of (15) remains known.

We make the following hypothesis to extract more information from the internal
function (17).

Hypothesis 3.3. There exists a finite open cover \{ \Omega \alpha \} \alpha \in \Lambda of \Omega , such that for each
\alpha \in \Lambda , there exist three solutions to (14) in \Omega , denoted F1\alpha , F2\alpha , and F3\alpha , that are
linearly independent on \Omega \alpha .

The hypothesis means that, in each \Omega \alpha , we can form the nonsingular matrix
[F1\alpha ,F2\alpha ,F3\alpha ], where Fj\alpha is the jth column, j = 1,2,3. Let Qj\alpha be the inter-
nal functional defined as in (17), with F replaced by Fj\alpha . Given the row vector
[Q1\alpha ,Q2\alpha ,Q3\alpha ], we have

[Q1\alpha ,Q2\alpha ,Q3\alpha ]
T = [F1\alpha ,F2\alpha ,F3\alpha ]

T
\bigl[ \bigl( 
\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma 

\bigr) 
E+ i\omega \gamma JJ

\bigr] 
in \Omega \alpha 

where we view E and J as column vectors, and T denotes the transpose. Therefore,
if we define Q\in (L2(\Omega ))3 by specifying its restrictions according to

Q| \Omega \alpha := [F1\alpha ,F2\alpha ,F3\alpha ]
 - T [Q1\alpha ,Q2\alpha ,Q3\alpha ]

T ,

then Q is well defined since both E and J are global vector fields over \Omega , and we have

(18) Q= i\omega \gamma JJ+
\bigl( 
\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma 

\bigr) 
E.

Note that we view Q as a vector-valued internal functional.

4. Inverse problem and internal functional. It follows from the above dis-
cussion that the inverse problem consists of recovering the source current J from
the internal functional Q. In this section we will derive a reconstruction procedure
that uniquely recovers J with Lipschitz stability. The analysis depends critically on
whether the constant \gamma J vanishes.

4.1. Case I: \bfitgamma \bfitJ = 0. In this situation, the equality (18) does not involve J
directly.

Proposition 4.1. Suppose the assumptions A1--A4 and the hypothesis (3.3) hold.
If \gamma J = 0, then we have the following two subcases:

(I.1) If \Omega \subseteq supp (\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma ), then the source J is uniquely determined with
the stability estimate

\| J - \~J\| X\ast \leq C
\bigm\| \bigm\| \bigm\| Q - \~Q

\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma 

\bigm\| \bigm\| \bigm\| 
X
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424 WEI LI, JOHN C. SCHOTLAND, YANG YANG, AND YIMIN ZHONG

for some constant C > 0 independent of J, \~J.
(I.2) If \Omega \not \subseteq supp (\omega 2\varepsilon \gamma \varepsilon +i\omega \sigma \gamma \sigma ), then the source J cannot be uniquely determined.

Moreover, whenever J is uniquely determined, there are explicit reconstruction proce-
dures.

Proof. If \Omega \subseteq supp (\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma ), then (18) implies

E=
Q

\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma 
.

This uniquely determines the weak solution E\in X everywhere in \Omega . Consequently, H
and J are also uniquely determined via the Maxwell's equations (1). Note that all of
these procedures are constructive: given Q, we compute E from the above equality,
and then J from (1).

The stability can be derived as follows. If there is another source \~J with corre-
sponding electric field \~E, and vector internal functional \~Q defined as in (18), then
E - \~E is a weak solution of the Maxwell equations. That is,\biggl( 

1

\mu 
\nabla \times (E - \~E),\nabla \times \bfitphi 

\biggr) 
(L2(\Omega ))3

 - 
\Bigl( 
(\omega 2\varepsilon + i\omega \sigma )(E - \~E),\bfitphi 

\Bigr) 
(L2(\Omega ))3

 - i\omega \langle \lambda (E - \~E)T ,\bfitphi T \rangle = i\omega 
\Bigl( 
J - \~J,\bfitphi 

\Bigr) 
(L2(\Omega ))3

for all \bfitphi \in X. As the coefficients in this weak formulation are all bounded, there
exists a constant C > 0 such that\bigm| \bigm| \bigm| \omega \Bigl( 

J - \~J,\bfitphi 
\Bigr) \bigm| \bigm| \bigm| \leq C\| E - \~E\| X \| \phi \| X .

We deduce that

\| J - \~J\| X\ast \leq C\| E - \~E\| X =C

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| Q - \~Q

\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
X

.

If \Omega * supp (\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma ), there exists an open set D \subseteq \Omega \setminus supp (\omega 2\varepsilon \gamma \varepsilon +
i\omega \sigma \gamma \sigma ). For any compactly supported smooth function \phi \in C\infty 

c (D), if (E,H) solves
(1), then (E + \nabla \phi ,H) solves (1) with J replaced by J + (i\omega \varepsilon  - \sigma )\nabla \phi . Moreover,
since (E+\nabla \phi ,H)| \partial \Omega = (E,H), these two pairs both satisfy the boundary condition
(2) and produce identical measurement (3). This means that sources of the form
J\phi := (i\omega \varepsilon  - \sigma )\nabla \phi are nonradiating. Thus the source J cannot be uniquely determined
from the boundary measurement (3).

4.1.1. Increased regularity. The stability estimate for the subcase \gamma J = 0
and \Omega \subseteq supp (\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma ) is in terms of the X\ast norm, which follows because
J was obtained from E using a weak formulation. When the reconstructed E and
H are smooth enough, for example, when E \in (H2(\Omega ))3, we can utilize the strong
formulation to control J in (L2(\Omega ))3 in terms of the higher order derivatives of the
internal data.

Proposition 4.2. Suppose the assumptions A1--A4 and the hypothesis (3.3) hold.
Suppose, in addition, that \varepsilon ,\sigma \in C1,1(\Omega ). If \gamma J = 0 and \Omega \subseteq supp (\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma ),
then the following stability estimate holds for any two compactly supported sources
J, \~J\in (H2(\Omega ))3
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ACOUSTO-ELECTROMAGNETIC INVERSE SOURCE PROBLEM 425

\| J - \~J\| (L2(\Omega ))3 \leq C

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| Q - \~Q

\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
(H2(\Omega 1))3

.

Here \Omega 1 is an open set compactly contained in \Omega such that suppJ\subset \Omega 1 and supp \~J\subset 
\Omega 1, and the constant C > 0 is independent of J, \~J.

Proof. Define

u :=E - \~E=
Q - \~Q

\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma 
.

Then u solves

(19) \nabla \times 1

\mu 
\nabla \times u - (\omega 2\varepsilon + i\omega \sigma )u= i\omega (J - \~J).

The following stability estimate is immediate:

\| J - \~J\| (L2(\Omega ))3) = \| J - \~J\| (L2(\Omega 1))3 \leq C\| u\| (H2(\Omega 1))3 =C

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| Q - \~Q

\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
(H2(\Omega 1))3

.

It remains to show that the quantity

\| u\| (H2(\Omega 1))3 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| Q - \~Q

\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
H2(\Omega 1)

is finite. To proceed we will employ an interior regularity estimate for elliptic equa-
tions. Denote by a := \omega 2\varepsilon > 0, b := i\omega \sigma \geq 0, and f := i\omega (J  - \~J). Then take the
divergence of (19) to obtain

(20) \nabla \cdot u= - \nabla (a+ ib) \cdot u+\nabla \cdot f
a+ ib

.

Using the identity \nabla \times \nabla \times u=\nabla (\nabla \cdot u) - \Delta u, we obtain the following elliptic system:

\Delta u= - \nabla 
\biggl[ 
\nabla (a+ ib) \cdot u+\nabla \cdot f

a+ ib

\biggr] 
 - \mu (a+ ib)u - \mu f .

For each component of u, the left-hand side of the above defines a second order elliptic
operator with constant coefficients, so we can apply an interior regularity estimate
[21, Lemma 6.32]. Since a is bounded away from zero and a, b are piecewise C1,1(\Omega ),
the following quantities are all bounded in \Omega :

| a+ ib| ,
\bigm| \bigm| \bigm| \bigm| \nabla \cdot \nabla (a+ ib)

a+ ib

\bigm| \bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| \bigm| \nabla (a+ ib)

a+ ib

\bigm| \bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| \bigm| \nabla 1

a+ ib

\bigm| \bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| \bigm| 1

a+ ib

\bigm| \bigm| \bigm| \bigm| .
Thus

\nabla 
\biggl( 
\nabla (a+ ib) \cdot u+\nabla \cdot f

a+ ib

\biggr) 
+ \mu (a+ ib)u+ \mu f \in (H - 1

loc (\Omega ))
3.

Combing this with the fact that u\in (L2(\Omega ))3, we obtain from [21, Lemma 6.32] that
u\in (H1

loc(\Omega ))
3. This increased regularity implies that

\nabla 
\biggl[ 
\nabla (a+ ib) \cdot u+\nabla \cdot f

a+ ib

\biggr] 
+\mu (a+ ib)u+ \mu f \in (L2

loc(\Omega ))
3.
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426 WEI LI, JOHN C. SCHOTLAND, YANG YANG, AND YIMIN ZHONG

Applying [21, Lemma 6.32] again, we obtain that u \in (H2
loc(\Omega ))

3. Next, choose a
smooth cutoff function \chi that is compactly supported in \Omega and equal to one on \Omega 1.
We find that

\| u\| (H2(\Omega 1))3 \leq \| \chi u\| (H2(R3))3 <\infty .

Thus we obtain that u\in H2(\Omega 1).

4.2. Case II: \bfitgamma \bfitJ \not = 0. Here (18) implies that

(21) J=
Q - 

\bigl( 
\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma 

\bigr) 
E

i\omega \gamma J
.

Inserting the above into the Maxwell equations (1), we obtain an equation of the form

(22) \nabla \times 1

\mu 
\nabla \times E - (a+ ib)E=

Q

\gamma J
,

where

a= \omega 2\varepsilon 

\biggl( 
1 - \gamma \varepsilon 

\gamma J

\biggr) 
, b= \omega \sigma 

\biggl( 
1 - \gamma \sigma 

\gamma J

\biggr) 
.

Note that there are boundary constraints for E, including the impedance boundary
condition (2) and the measurement (3).

To analyze the stability of the inverse problem, suppose that there is another
source \~J with corresponding electric field \~E and vector internal functional \~Q, defined
by (18). Let u :=E - \~E\in X be a weak solution of the equation

(23) \nabla \times 1

\mu 
\nabla \times u - (a+ ib)u=

Q - \~Q

\gamma J
in \Omega ,

and obey the impedance boundary condition

(24)

\biggl( 
1

\mu 
\nabla \times u

\biggr) 
\times \^n - i\omega \lambda (\^n\times u)\times \^n= 0 on \partial \Omega ,

where

(25) (\^n\times u)\times \^n| \partial \Omega = g - \~g.

It remains to establish the solvability of (22) with boundary condition (2) or the
solvability of (23) with boundary condition (24). Now (22) and (23) are similar in
form to (10). The difference is that in (10), the term (\omega 2\varepsilon \delta + i\omega \sigma \delta ) has a strictly
positive real part and a nonnegative imaginary part, which ensures the existence and
uniqueness of the weak solution by standard methods [31]. These sign conditions no
longer hold for the term a+ib in (22) and (23), due to the presence of the elasto-electric
constants \gamma \varepsilon , \gamma \sigma , \gamma J . Therefore, we divide the discussion into several sub-cases. By
Assumption A3, we see that a is either identically zero or bounded away from zero,
b is either nonpositive or nonnegative. This observation accounts for the following
classification of subcases.

Theorem 4.3. Suppose the assumptions A1--A4 and the hypothesis (3.3) hold. If
\gamma J \not = 0, we have the following subcases:

(II.1) If \gamma \varepsilon = \gamma \sigma = \gamma J , then the source J cannot be uniquely determined.
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ACOUSTO-ELECTROMAGNETIC INVERSE SOURCE PROBLEM 427

(II.2) If \gamma \varepsilon = \gamma J , \gamma \sigma \not = \gamma J , and \Omega \subseteq supp\sigma , then the source J is uniquely deter-
mined. If, in addition, | b| is strictly bounded away from zero, then we have
the following stability estimates. If \gamma \sigma /\gamma J < 1,

\| J - \~J\| (L2(\Omega ))3 \leq C\| Q - \~Q\| (L2(\Omega ))3 ,

and if \gamma \sigma /\gamma J > 1,

\| J - \~J\| (L2(\Omega ))3 \leq C(\| Q - \~Q\| (L2(\Omega ))3 + \| g - \~g\| (L2(\partial \Omega ))3).

(II.3) If \gamma \varepsilon = \gamma J , \gamma \sigma \not = \gamma J , and \Omega \not \subseteq supp\sigma , then the source J cannot be uniquely
determined.

(II.4) If \gamma \varepsilon \not = \gamma J , then the source J is uniquely determined. If \gamma \varepsilon /\gamma J > 1, we have
the following stability estimate:

\| J - \~J\| (L2(\Omega ))3 \leq C\| Q - \~Q\| (L2(\Omega ))3 ,

and if \gamma \varepsilon /\gamma J < 1,

\| J - \~J\| (L2(\Omega ))3 \leq C(\| Q - \~Q\| (L2(\Omega ))3 + \| g - \~g\| (L2(\partial \Omega ))3).

Here C > 0 is a constant independent of J, \~J. Moreover, whenever J is uniquely
determined, there are explicit reconstruction procedures.

The proof is presented in the next few subsections.

Remark 4.4. It is generally expected that \gamma J \not = \gamma \varepsilon because the former is solely a
density effect, and the latter is due to density variation and Brillouin scattering [10].
Thus case (II.4) is more likely to occur in practice.

The results in Proposition 4.1 and Theorem 4.3 can be summarized by the fol-
lowing table:

Case Subcase Uniqueness

\gamma J = 0 (I.1) \Omega \subseteq supp (\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma ) Y

(I.2) \Omega \not \subseteq supp (\omega 2\varepsilon \gamma \varepsilon + i\omega \sigma \gamma \sigma ) N

\gamma J \not = 0 (II.1) \gamma \varepsilon = \gamma \sigma = \gamma J N

(II.2) \gamma \varepsilon = \gamma J , \gamma \sigma \not = \gamma J , \Omega \subseteq supp\sigma , \sigma > 0 Y
(II.3) \gamma \varepsilon = \gamma J , \gamma \sigma \not = \gamma J , \Omega \not \subseteq supp\sigma N
(II.4) \gamma \varepsilon \not = \gamma J Y

Remark 4.5. The stability in cases II.2 and II.4 indeed deteriorates when \gamma \sigma /\gamma J
or \gamma \varepsilon /\gamma J approaches 1, in which case a or b in (23) approaches 0, and the stability
constant in cases II.2 and II.4 blows up.

4.2.1. Subcase (II.1): \bfitgamma \bfitvarepsilon = \bfitgamma \bfitsigma = \bfitgamma \bfitJ . This subcase corresponds to a \equiv 0 and
b\equiv 0. For any \phi \in C\infty 

c (\Omega ), if E satisfies the (22) and the boundary condition (2), so
does E+\nabla \phi . This means, as a result of (18), that sources of the form J\phi := (i\omega \varepsilon  - \sigma )\nabla \phi 
are nonradiating. Thus the original source J cannot be uniquely determined.

4.2.2. Subcase (II.2 and II.3): \bfitgamma \bfitvarepsilon = \bfitgamma \bfitJ and \bfitgamma \bfitsigma \not = \bfitgamma \bfitJ . This subcase corre-
sponds to a \equiv 0 and b \not \equiv 0. Note that either b \geq 0 everywhere or b \leq 0 everywhere
due to assumption A3. In the following discussion, we will keep a as a placeholder for
ease of exposition.

We now take the inner product of (23) with u and use the vector identity (\nabla \times 
A) \cdot B=\nabla \cdot (A\times B) + (\nabla \times B) \cdot A to integrate by parts
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428 WEI LI, JOHN C. SCHOTLAND, YANG YANG, AND YIMIN ZHONG\int 
\partial \Omega 

\biggl[ 
1

\mu 
(\nabla \times u)\times u

\biggr] 
\cdot \^ndx+

\int 
\Omega 

\biggl[ 
1

\mu 
| \nabla \times u| 2  - (a+ ib)| u| 2

\biggr] 
dx

=
1

\gamma J

\int 
\Omega 

(Q - \~Q) \cdot udx.(26)

For the boundary integral, we apply the vector triple product identity (B\times C) \cdot A=
C \cdot (A\times B) to obtain\biggl[ 

1

\mu 
(\nabla \times u)\times u

\biggr] 
\cdot \^n= uT \cdot 

\biggl[ 
\^n\times 

\biggl( 
1

\mu 
\nabla \times u

\biggr) \biggr] 
on \partial \Omega .

Here uT = (\^n\times u)\times \^n| \partial \Omega is the tangential trace of u as defined in (8). From (24), we
obtain \^n\times ( 1\mu \nabla \times u) = - i\omega \lambda uT . Thus the boundary integrand becomes\biggl[ \Bigl( 1

\mu 
\nabla \times u

\Bigr) 
\times u

\biggr] 
\cdot \^n= uT \cdot 

\biggl[ 
\^n\times 

\biggl( 
1

\mu 
\nabla \times u

\biggr) \biggr] 
= - i\omega \lambda | uT | 2 = - i\omega \lambda | g - \~g| 2.

Therefore, separating the real and imaginary parts of (26) we obtain\int 
\Omega 

1

\mu 
| \nabla \times u| 2  - a| u| 2 dx=

\int 
\Omega 

Re

\Biggl[ 
(Q - \~Q) \cdot u

\gamma J

\Biggr] 
dx,(27)

\int 
\Omega 

b| u| 2 dx+

\int 
\partial \Omega 

\omega \lambda | g - \~g| 2 dx= - 
\int 
\Omega 

Im

\Biggl[ 
(Q - \~Q) \cdot u

\gamma J

\Biggr] 
dx.(28)

To prove uniqueness, we set g = \~g. Then Q = \~Q and (28) implies b| u| = 0. If
\Omega \subseteq supp\sigma = suppb, we conclude that u \equiv 0 in \Omega . If \Omega \not \subseteq supp\sigma = suppb, there
exists an open set D \subseteq \Omega \setminus suppb. For any compactly supported smooth function
\phi \in C\infty 

c (D), the choice u := \nabla \phi is a nontrivial solution to (23), (24), proving the
nonuniqueness.

Now we prove stability assuming that \sigma is strictly positive, which implies that b
is bounded away from zero. When b < 0, recall that a= 0, so there exists a constant
C > 0, independent of u, such that

\| u\| 2H(curl,\Omega ) \leq C

\biggl( \int 
\Omega 

1

\mu 
| \nabla \times u| 2  - a| u| 2 dx+

\int 
\Omega 

b| u| 2 dx
\biggr) 

\leq C(\| Q - \~Q\| (L2(\Omega ))3\| u\| (L2(\Omega ))3 + \| g - \~g\| 2(L2(\partial \Omega ))3)(29)

\leq C
\Bigl( \eta 
2
\| Q - \~Q\| 2(L2(\Omega ))3 +

1

2\eta 
\| u\| 2(L2(\Omega ))3 + \| g - \~g\| 2(L2(\partial \Omega ))3

\Bigr) 
where \eta > 0 is an arbitrary constant. If we choose \eta so that C

2\eta < 1, then the

term C
2\eta \| u\| (L2(\Omega ))3 can be absorbed into the left-hand side, resulting in the following

estimate (with a different constant C):

\| u\| H(curl,\Omega ) \leq C(\| Q - \~Q\| (L2(\Omega ))3 + \| g - \~g\| (L2(\partial \Omega ))3).

This result, combined with (21), yields the stability estimate

\| J - \~J\| (L2(\Omega ))3 \leq C(\| Q - \~Q\| (L2(\Omega ))3 + \| g - \~g\| (L2(\partial \Omega ))3).

When a= 0 and b > 0 is bounded away from zero, we can obtain a better stability
estimate. In this case, the left-hand side of (28) is the sum of two nonnegative terms,
then the estimate (29) can be improved as
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ACOUSTO-ELECTROMAGNETIC INVERSE SOURCE PROBLEM 429

\| u\| 2H(curl,\Omega ) \leq C

\biggl( \int 
\Omega 

1

\mu 
| \nabla \times u| 2  - a| u| 2 dx+

\int 
\Omega 

b| u| 2 dx
\biggr) 

\leq C\| Q - \~Q\| (L2(\Omega ))3\| u\| (L2(\Omega ))3

\leq C\| Q - \~Q\| (L2(\Omega ))3\| u\| H(curl,\Omega ).

Canceling out \| u\| 2H(curl,\Omega ) and applying the relation (21) yields the stability estimate

\| J - \~J\| (L2(\Omega ))3 \leq C\| Q - \~Q\| (L2(\Omega ))3 .

4.2.3. Subcase (II.4): \bfitgamma \bfitvarepsilon \not = \bfitgamma \bfitJ . This subcase corresponds to a \not = 0. Note
that due to assumption A3, there exists a constant c > 0 such that either a \geq c > 0
everywhere or a\leq  - c < 0 everywhere in \Omega .

\bullet If a \leq  - c < 0, the identities (26), (27), (28) still hold, hence there exists a
constant C > 0 such that

\| u\| 2L2(\Omega ) \leq C

\int 
\Omega 

1

\mu 
| \nabla \times u| 2  - a| u| 2 dx=C

\int 
\Omega 

Re

\Biggl[ 
(Q - \~Q) \cdot u

\gamma J

\Biggr] 
dx,

where the second equality comes from (27). Suppose Q= \~Q, then u= 0 in \Omega , proving
uniqueness. The above inequality also implies, by the Cauchy--Schwartz inequality,
that

\| u\| 2(L2(\Omega ))3 \leq C\| Q - \~Q\| (L2(\Omega ))3\| u\| (L2(\Omega ))3 .

Canceling factors of \| u\| L2(\Omega ) and applying the relation (21) yields the stability
estimate

\| J - \~J\| (L2(\Omega ))3 \leq C\| Q - \~Q\| (L2(\Omega ))3 .

\bullet If a\geq c > 0, we consider u equipped with the Dirichlet boundary condition

(30) \delta g := uT = (\^n\times u)\times \^n= \~g - g.

Since E, \~E\in X, we conclude that \delta g \in H - 1/2(curl, \partial \Omega ). Thus, there exists a function
\scrG \in H(curl,\Omega ), such that

\scrG T = \delta g and \| \scrG \| H(curl,\Omega ) \leq C\| \delta g\| H - 1/2(curl,\partial \Omega ).

Set \~u := u - \scrG , then \~uT = 0 and \~u solves
(31)\biggl( 
1

\mu 
\nabla \times \~u,\nabla \times \bfitphi 

\biggr) 
(L2(\Omega ))3)

 - ((a+ ib)\~u,\bfitphi )(L2(\Omega ))3 =
\Bigl( 
\~f ,\bfitphi 

\Bigr) 
(L2(\Omega ))3

, \bfitphi \in H(curl,\Omega )0,

where H(curl,\Omega )0 is the subspace of H(curl,\Omega ) with zero tangential trace, and

\~f :=
i\omega 

\gamma J
(Q - \~Q) +\nabla \times 

\Bigl( 1

\mu 
\nabla \times \scrG 

\Bigr) 
 - (a+ ib)\scrG .

Note that for \~f \in (H(curl,\Omega )0)
\ast , the dual space of H(curl,\Omega )0, we have

\| \~f\| (H(curl,\Omega )0)\ast \leq C(\| Q - \~Q\| (L2(\Omega ))3 + \| \scrG \| H(curl,\Omega ))

\leq C(\| Q - \~Q\| (L2(\Omega ))3) + \| \delta g\| H - 1/2(curl,\partial \Omega )).
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430 WEI LI, JOHN C. SCHOTLAND, YANG YANG, AND YIMIN ZHONG

It follows from [31, Theorem 4.17] that there exists a unique solution \~u to (31) with

\| \~u\| H(curl,\Omega ) \leq C(\| \~f\| (H(curl,\Omega )0)\ast + \| \delta g\| H - 1/2(curl,\partial \Omega ))

\leq C(\| Q - \~Q\| (L2(\Omega ))3 + \| g - \~g\| (L2(\partial \Omega ))3).

Remark 4.6. Note that when applying [31, Theorem 4.17], the entire boundary
\partial \Omega is equipped with the homogeneous Dirichlet condition. Here we have extended
[31, Theorem 4.17], which requires b \geq 0, but is obviously correct for b \leq 0 when all
of \partial \Omega has homogeneous Dirichlet boundary condition and b is not constantly zero.

Finally, whenever J is uniquely determined, it can be reconstructed as follows.
Given Q and g, solve the boundary value problem (22) and (3) to obtain E. Then
use the Maxwell equations (1) to recover J.

5. Numerical experiments. In this section, we present numerical experiments
to test the reconstruction of J in cases (I.1) and (II.4). The code is implemented
in Python using the finite element PDE solver NGSolve.1 Numerical experiments
are performed on the domain consisting of an infinite cylinder of radius r = 1cm,
discretized with a uniform triangular mesh of 19276 triangles. The Maxwell equations
(1) are solved with a third-order N\'ed\'elec element.

We denote by \varepsilon 0 and \mu 0 the electric permittivity and the magnetic permeability
in vacuum, respectively. In a medium with electric permittivity \varepsilon and magnetic
permeability \mu , we define

\varepsilon r :=
\varepsilon 

\varepsilon 0
, \mu r =

\mu 

\mu 0
.

We refer to \varepsilon r and \mu r as the relative electric permittivity and the relative magnetic
permeability, respectively. Moreover, let c be the light speed in vacuum and define

(32) \^\sigma =
1

c\varepsilon 0
\sigma , \^J= c\mu 0J, \^\omega =

\omega 

c
.

Using the relation c= 1/
\surd 
\varepsilon 0\mu 0, we can rewrite the Maxwell equations (1) as

\nabla \times 1

\mu r
\nabla \times E - (\^\omega 2\varepsilon r + i\^\omega \^\sigma )E= i\^\omega \^J,

together with the impedance boundary condition (2), with impedance \lambda = 1.
The physical parameters are chosen as follows. According to assumption A2,

\mu r = 1. The frequency is selected such that \^\omega = \pi [cm - 1], which corresponds to a
frequency f = \omega 

2\pi \approx 15GHz. Density plots of \varepsilon r and \^\sigma are displayed in Figure 1. For
\varepsilon r, the background value is taken to be 37.2 for blood (see [22]) and there are three
regions with smaller values of \varepsilon r which are 7.79 (top) for fat, 20.2 (left) for nerve, and
36.4 (right) for muscle. The source \^J is a real vector, whose components are shown
in Figure 2.

Auxiliary solutions are needed in the reconstruction to compute the vector internal
data (18) from the scalar internal data (17). Such solutions are obtained by solving
the equation for j = 1,2:

\nabla \times \nabla \times Fj  - (\^\omega 2\varepsilon r + i\^\omega \^\sigma )Fj = 0 in \Omega ,

1The code is hosted at https://github.com/lowrank/umme.
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Fig. 1. Left: \varepsilon r. Right: \^\sigma [cm - 1].

Fig. 2. Source \^J. Left: x-component. Right: y-component.

along with the impedance boundary condition\biggl( 
1

i\^\omega 
\nabla \times Fj

\biggr) 
\times \^n - \lambda (\^n\times Fj)\times \^n= gj on \partial \Omega ,

where gk is defined by

(33) gj :=
1

i\^\omega 
\nabla \times Ej \times n - \lambda (n\times Ej)\times n on \partial \Omega ,

with E1 = (e - iky,0) and E2 = (0, e - ikx). Here the wave number k =
\sqrt{} 

(\^\omega 2\varepsilon r + i\^\omega \^\sigma ),
where \varepsilon r, \^\sigma are taken from the background values corresponding to blood. The ratio-
nale for the choice of gj is that when the medium is homogeneous, then E1 and E2

are mutually orthogonal plane waves. Clearly, such an orthogonality relation may not
hold in practice due to the distortion caused by the inhomogeneity. In the following
two cases, we measure the relative L2 error of reconstructions by

\| Jreconstructed  - Jtrue\| (L2(\partial \Omega ))3

\| Jtrue\| (L2(\partial \Omega ))3
.

5.1. Case (I.1). In this experiment, the modulation parameters are chosen as
\gamma J = 0, and \gamma \varepsilon = 0.25, \gamma \sigma = 0.35. The scalar internal data Q is obtained by solving

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 3. Reconstructed source current vector for case (I.1). Top row: from left to right, real
part of the x component and the y component. Bottom row: from left to right, cross sections of the
reconstruction and the true solution along the line y= x. The relative L2 error of reconstruction is
32.5\%.

the forward problem (1). Then 0.1\% multiplicative noise is added to the signal. The
vector internal data Q is calculated from the auxiliary solutions. The reconstruction
is carried out using the procedure described in Proposition 4.1. That is, we solve for
E from (18) and then recover J from the Maxwell equations (1) through the following
weak formulation by setting \delta = 0 in (12):

i\omega (J,\bfitphi )(L2(\Omega ))3

=

\biggl( 
1

\mu 
\nabla \times E,\nabla \times \bfitphi 

\biggr) 
(L2(\Omega ))3

 - 
\bigl( 
(\omega 2\varepsilon + i\omega \sigma )E,\bfitphi 

\bigr) 
(L2(\Omega ))3

 - i\omega \langle \lambda ET ,\bfitphi T \rangle .

Here J is solved under the Galerkin framework by treating the left-hand side
i\omega (J,\bfitphi )(L2(\Omega ))3 as the bilinear form and the right-hand side as the linear form with
known E. The reconstructed source is shown in Figure 3.

5.2. Case (II.4). In this experiment, the modulation parameters are chosen as
\gamma J = 0.65, \gamma \varepsilon = 0.35, and \gamma \sigma = 0.35. The scalar internal data Q is obtained by solving
the forward problem (1). Then 1\% multiplicative noise is added to the signal. The
vector internal data Q is found using the auxiliary solutions. The reconstruction
is performed according to Proposition 4.3. That is, the boundary value problem
(22), (3) is solved to obtain E. The Maxwell equations (1) are then used to find J
through the similar approach of case (I.1). The reconstructed source \^Jrec is shown in
Figure 4.
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Fig. 4. Reconstructed source current vector \^Jrec for case 6. Top row: from left to right,
real part of x component and y component. Bottom row: from left to right, cross sections of
reconstruction and the true solution along the line y= x. The relative L2 error of reconstruction is
3.2\%.

Remark 5.1. The reconstructions for case (II.4) are much better than those for
case (I.1). This can be explained by the corresponding stability estimates. Proposition
4.1 for case (I.1) requires the H(curl) norm ofQ to be bounded, which is very sensitive
to noise. In contrast, the stability estimate in Proposition 4.3 for case (II.4) only
requires that the L2 norm of Q be bounded.

6. Conclusion. In this paper, we proposed a constructive approach to recover
the electrical current density from the internal data induced by acoustically modulated
boundary measurement of time-harmonic electromagnetic fields. We analyzed the
uniqueness and stability of the inverse problem, and revealed how these results depend
on values of the elasto-electric constants. Based on the analysis, a computational
method was developed, implemented, and validated using simulated experiments. The
performance of the numerical reconstruction was observed to agree with theory.

An important ingredient in deriving the uniqueness and stability results is the
existence of three linearly independent fields (see Hypothesis 3.3). However, it remains
an open question regarding what conditions are sufficient to ensure the existence of
these fields. Characterization of existence is theoretically significant for understanding
solutions of the Maxwell equations, and is critical for designing reliable computational
methods for the electromagnetic inverse source problem. This topic will be explored
in future work.
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