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Abstract. This work considers the propagation of high-frequency waves in highly scattering
media where physical absorption of a nonlinear nature occurs. Using the classical tools of the Wigner
transform and multiscale analysis, we derive semilinear radiative transport models for the phase-space
intensity and the diffusive limits of such transport models. As an application, we consider an inverse
problem for the semilinear transport equation, where we reconstruct the absorption coefficients of
the equation from a functional of its solution. We obtain a uniqueness result on the inverse problem.
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1. Introduction. The derivation of kinetic models for wave propagation in
highly scattering media is a classical subject [32, 15] that has received significant
attention in the past two decades due to its importance in many emerging appli-
cations [11, 13, 25, 39, 41, 35]. A significant amount of progress has been made on
both the mathematical justification of the derivation (such as one based on multiscale
analysis of the Wigner transform) [6, 21, 24, 30, 37, 49] and the computational val-
idation of the derived kinetic models [7, 9, 33, 47, 53]; see [1, 2, 4, 5, 12, 23, 25, 28]
and references therein for additional investigations in this field. The obtained mod-
els for imaging in complex media have also been utilized in many different settings
[8, 9, 13, 16].

In this work, we are interested in developing kinetic models when nonlinear ab-
sorption occurs during wave propagation [10, 38, 48, 57]. We are mainly motivated
by applications where reconstructing the absorption of the underlying medium from
internal or boundary observations is of practical interest. Such applications include,
for instance, the case of reconstructing the two-photon absorption coefficient of bio-
logical tissues with optical or photoacoustic measurements [20, 36, 42, 44, 45, 51, 54,
55, 56].

*Received by the editors November 8, 2022; accepted for publication (in revised form) March 14,
2023; published electronically August 17, 2023.
https://doi.org/10.1137/22M1533505
Funding: The work of the first author was partially supported by Simons Foundation Math +
X Investigator Award 376319 (to Michael I. Weinstein). The work of the third author was partially
supported by National Science Foundation (NSF) grants DMS-1913309, DMS-1937254. The work of
the fourth author was supported by NSF grant DMS-1912821 and AFOSR grant FA9550-19-1-0320.
TDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, NY
10027 USA (jek2199@columbia.edu, kr2002@columbia.edu).
fDepartment of Mathematical Sciences, Depaul University, Chicago, IL 60604 USA (wei.li@
depaul.edu).
T Department of Mathematics and Department of Physics, Yale University, New Haven, CT 06511
USA (john.schotland@yale.edu).
I Department of Mathematics and Statistics, Auburn University, Auburn, AL 36830 USA (yimin.
zhong@auburn.edu).

1677

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/22M1533505
mailto:jek2199@columbia.edu
mailto:kr2002@columbia.edu
mailto:wei.li@depaul.edu
mailto:wei.li@depaul.edu
mailto:john.schotland@yale.edu
mailto:yimin.zhong@auburn.edu
mailto:yimin.zhong@auburn.edu

Downloaded 08/17/23 to 132.174.252.171 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1678 KRAISLER, LI, REN, SCHOTLAND, ZHONG

Our derivation will be carried out in the frequency domain, where wave propa-
gation is described by the standard Helmholtz equation. The nonlinear absorption
mechanism we are interested in is modeled as a zeroth-order perturbation to the
second-order Helmholtz differential operator. This is the essential factor that makes
it possible for us to perform the standard calculations in this field for our nonlinear
problem. Even though this is a mathematically less attractive nonlinearity to study,
the derivation does provide us a formal justification of the semilinear radiative trans-
port model (see, for instance (2.20)), used in many applications. We refer interested
readers to [22] for the derivation of transport models for a different type of nonlinear-
ity that makes use of a mean-field approximation. Furthermore, we emphasize that
the derived nonlinear transport model has a variety of important applications. In
fluorescence imaging, it can be used to localize and characterize fluorescent molecules
by determining their two-photon or multiphoton absorption properties.

The remainder of this paper is organized as follows. In section 2, we derive the
radiative transport model for media with quadratic and higher-order absorption. We
then discuss the diffusive limit of the derived transport models in section 3. As an
application of the derived model, we study in section 4 an inverse medium problem
for our semilinear radiative transport equation. Concluding remarks are offered in
section 5.

2. Derivation of the transport equation. For simplicity, we first consider
the case of quadratic nonlinear absorption. This could serve as a model of light
propagation in media with two-photon absorption [51, 54]. We will then generalize
the result to the case of a general polynomial nonlinearity. Let the wave field p(z,x)
be the solution to the scalar wave equation in the time-harmonic form, that is,

>p 2,2
(2.1) Aprr@kanp:O,
where A is the transverse Laplacian in x € R? (d > 1), k is the wave number, and
n = n(z,x,p) is the refractive index. We assume that the refractive index takes the
form
z X

0, Uy

where V is a real bounded stationary random field with zero mean, with ¢x and £,
being the transverse and longitudinal correlation lengths of the random field, respec-
tively. The deterministic function K is nonnegative and measures the strength of the
second-order absorption. The parameters ¢ and p are the scaling factors quantify-
ing the amplitudes of the fluctuation and the second-order absorption, respectively.
Assuming that the field p possesses a beam-like structure propagating in the z direc-
tion, we may write p(z,x) = e”*#9(2,x) with complex amplitude 1(z,x) satisfying the
following equation:

(2.2) n?=1 _gav( >+z‘k1uf((z,x)|p|2,

&y oY
2.3 —— +2ik—— + At + k2 (n® — 1) =0.
(23) o+ 2kl 4 A+ R — 1)y
Let Ly and L, be the characteristic lengths of propagation in the x and z directions,
respectively. We rescale the variables x — Lyx and z+ L.z, and x, z are now O(1).

Then, with the newly defined variables, we may write (n? — 1) as

L,z Lyx
gz ’ éx

(2.4) n—1= —QUV( ) + ik‘fluf?(LzLLxx) |p|2 .
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Equation (2.3) now becomes

(2.5)

1 0% ik O )
E@+2E£+Lx xw—Qk O’V(

L,z Lyx
0,7 Uy

)i R (Lo, Lol =0.
With the small aperture assumption that Ly < L., we can formally approximate the

above equation by the paraxial wave equation

81# L, L,z Lyx
(2.6) + T )

L, ~
Y+ i puK (L2, Lyx) Y9 = 0.

2

95+ aR At~ kL av<

Our derivation works in the regime where the longitudinal propagation distance L, is
much larger than the correlation length ¢, and the correlation length is much larger
than the wavelength, that is, L, > /¢, and £, > \:= Qf We, therefore, introduce the
small parameter € and assume the scaling relations in the weak-coupling regime:

1
¢ :E—Z:5<<1 k(2=

. 1
2. x - .
(2.7) L. L. ’ @ TT Ve L.

Let us denote the rescaled wave field by . (z,x) and take K(z,x) = LZMIN((LZZ, Lyx).
Then the paraxial wave equation turns into

31/15 1 z X
ey 5 iAoV (25 vk LR Po. 0,

We then take the Wigner transform of .:

. &y . d
(2.9) We(z,x,k) = /Rd KV, (x - Ezy,z)wg(x + %,z) (2727)61.

Tt is then standard to check that W (z,x, k) satisfies the following Liouville equation:

oW,
where
(2.11)

Ly W, = é y e Px/e (WE (z,x,k+ 1:2)> - W, (z x, k — )) ,p dp,
S.(z

5
1 —ip-T cp
,CK’EW5:§ e WE Z,X,k—f—? +WE Z7X7k E
R4

Here S.(z,x) is defined as
(2.12) S.(2,%) = K(2,x)[¢-(2,x)]* = K(2,x) | W.(z,x,k)dk,
Rd

while V and §6 denote the Fourier transform (x — p) of V and S., respectively. We
use the standard Fourier transform definition

~ oipx dx
flo)= [ G0,
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2.1. Multiscale expansion. In order to find the asymptotic limit as ¢ — 0,
we introduce y = x/e as the fast variable and denote Wc(z,x,k) = W.(z,x,y,k).
Formally, we write W, as an asymptotic expansion in &:

WE(Z7X7Yak) :WO(Z’X7Y7k)+\/ng(Z7x7y7k)+€W2(Z’X7y7k)+...

For the linear model, the main theoretical difficulty in the rigorous derivation of the
transport equation is to estimate the remainder in the above ansatz [21]. For the
two-photon absorption nonlinear model, an additional difficulty is brought about by
the nonlinear term KCx W., which arises at the O(1) scale. Additional regularity
of Wy is required to obtain a suitable estimate. Using (2.12), we may also expand
S:(z,x) = S:(z,x,y) accordingly as

Ss(zvxvy) = SO(Z,ny) + \@Sl(z,x,y) +€S2(vavy) + - )

where

So(Z,X,y):K(Z,X) WO(ZaX>y7k)dk'
Rd

We can now plug the transform Vi — Vi + %Vy into (2.10) to conclude that the
leading- order equation at O(s~1) implies k - V, Wy = 0. This is equivalent to

WO(ZaX7Y7k):W0(ZaX7k) and SO(ZaX7y):SO(va)'
For the order of O(¢7'/?), we have

(2.13)

k-V,W; +all; +’L'/

) e~ Py (Wo (z,x,k + I;) - Ws (z,x, k — g)) YA/(S, p)dp =0,
R

where oo — 0. This gives that the Fourier transform of W7, Wl is

- (Wo(z, %,k + B) — Wy (2, %,k — B)V(Z,p)
2.14 k)= £ .
( ) Wl(Z,X,p, ) pk+2()é

Finally, we derive the equation for O(1) terms. In order to handle the nonlinearity,
we impose some regularity assumptions. Let s > d+2, and assume there exist positive
constants C7, Cy, and C5 such that

[Wo(z,%, )01 may + [Wo(z,%, )| prray < C1 V(z,x) € R4

<Oy VZER,

WO(Z7 " k)dk‘

R 1 (Re)

K (2, )l s ey <C3 Yz €R.

Then we have that

(2.15) Wo <z,x,k — ;p) + W <z,x,k + ;p) =2Wy(z,x,k) + R(z,x,k),
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where |R(z,x,k)| < Cie|p|. Moreover, we have that
(2.16)

/ Ip||S0 (2, p)|dp
R4 (27)d

2

1 Ip|® s A ,
= 2n) /Rd (1+|p|2)s/2dp/Rd(l+ [p)2|S0(z, p)[*dp

1 |p|2 ; " )
N (2’/T)2d RE (1+‘p\2)8/2 p || O(Z")”HS(]Rd)

2
‘/ Wo(z, -, k)dk
Rd

< CullK (2, )13 ey

H*(R4)
is also uniformly bounded, where Cs > 0 is a constant depending only on s. The last

inequality holds since s > d + 2 implies s > d/2. Therefore, the O(1) term is

OW,
T;+k'vaO+k-vyW2

(217) +’L/ e—ip'y V[/1 Z,X,y,k+ B — W]_ Z,X,y,k - B ‘7 E;p dp
- 2 2 €
+Wo(z,x,k)So(2,%) = 0.

In order to close the equation, we still need to add the orthogonal relation between
Wy and Wy, that is, E[k - V, W5] =0. Hence, we have

(2.18)

Mo . V. W,
0z

i Z/ eiip.y Wl ZaX7Y7k+E _Wl Z7an7k_E ‘7 Eap dp
Rd 2 2 15

+ Wo(z,x,k)So(z,x) =0.

Let R be the correlation function of V', and assume that the power spectrum satisfies

~ -~

(2.19) E[V(z,p)V(zq) = R(p)d(p+q).

Then, as € — 0T, the expectation term in (2.18) converges weakly to

E [z/ eiP'x/E(W1 <z,x,x,k+p> -wW (z,x,x,k p))f/(”z,p)dp}
R € 2 € 2 €

—dm [ R(p—K)[Wo(z,x k) = Wo(z, x,p)l3([[* ~ [p[*)dp.
R

Therefore, the final radiative transport equation of Wy is

(2.20)
oW,
0z

+ (K(z,x)

+ K- VoW + 47 / R(p — 1)[Wo (2%, k) — Wo(z,x, p)]3([k[2 — [p|2)dp
Rd

Wo(z, X, k’)dk’) Wo(z,x,k) =0.
Rd

Physically, the last term on the left-hand side of (2.20) accounts for quadratic absorp-
tion, which indicates that the absorption coefficient linearly depends on the angular
average of Wy(x, z,k). Although Wy(z,x,k) is not guaranteed to be a nonnegative
quantity, the angular average fRd Wo(z,x,k)dk = lim._,¢ |[¢.|? is always nonnegative.
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2.2. Extension to higher-order absorption. We now extend the previous
result to the case of general polynomial absorption. This could be a physical model
for the propagation of light in media with multiphoton absorption [14]. The absorption
term in the refractive index is modeled by

L
(2.21) n2:1—2av(z,x> ik Y Ki(z,x)[pl,
0. b e

where K stands for the absorption strength of (I + 1)th order. Following the same
derivation of the paraxial wave equation, we have a new Liouville equation in the form
of (2.10) where the only modification is the term

L
(2.22) Si(x,2) =Y Ki(2,%)[e(2,x)|*,  Ki(2,%) 1= pL. K (L.2, Lyx).

1=0
Assuming that K; and W, are sufficiently regular, we can follow the same procedure
and obtain the radiative transport equation for Wy in the setting of the following
polynomial absorption:

(2.23)
oWy
0z

+ (i Ki(z,x) [/}Rd Wo(z,x, k’)dk’Y) o) 0.

=0

+ k : VxI/VO + 47T/ E(P - k)[WO(va,k) - WO(vaa p)}5(|k|2 - ‘p‘2)dp
Rd

2.3. The nonlinear radiative transport equation in the standard form.
For a monochromatic solution Wy(z,x,k) which is supported on ||k|| =1, the above
radiative transport equation becomes

oW, ~
820 +kvaO +4m R(p—k)[WO(Z,X,k) —Wo(Z,X, p)]dp
gd—1

+ (lz:Kl(z,x) [

where S9! is the unit sphere in R?. It can further be put in the standard form

oW,
(2.25) (TZO + k- VyWo + Za((Wo))Wo 4 Zs(Wy — KWo) = 0.

(2.24)

gd—1

!
Wo(z,x, k’)dk'] ) Wo(z,x,k) =0,

Here the total energy of the field at x is denoted by

<W()> = VV()(Z,X, k)dk
Sd—l
and
L
(2.26) Sa((Wo)) =Y Bar(Wo)'
=0

is the effective absorption coefficient with ¥, ;(z,x) = K;(z,x) being the absorption

coefficient of (I41)th order. The scattering coefficient is X4 (k) := 4 [.,_, R(p—k)dp,
and the scattering operator K is defined as

(2.27) Ku(z,%x,k) ::/ p(k, kK )u(z,x,k")dk’,

Sd—1

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/17/23 to 132.174.252.171 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TRANSPORT MODELS WITH NONLINEAR ABSORPTION 1683

where the scattering phase function
ArR(k —K')
2s(k)

For the problem to be physical, the absorption strengths K; (0 <! < L) should all be
nonnegative.

p(k, k/) =

3. The diffusion limit. We now study the diffusion limit of the transport equa-
tion for Wy(z,x,k) with general polynomial nonlinear absorption. We assume that
the physical domain €2 is bounded and convex with smooth boundary 9. We focus
on the following nonlinear radiative transport equation:

%+k'va0+Za(<W0>)W0+ES(WO*ICWO):O in X,

0z
)=0 onT_,

(3.1) Wo(z,x,k) =
Wo(0,x,k) = f(x) on Xg,

where X = (0,7) x Q x S471 T'_ = {(2,x,k) € (0,T) x 9Q x S~1 | ny - k < 0}, and
ny is the unit outward normal vector at x € 9§, Xo = x SAd_l.

We will focus on power spectra of the form R(p —k)= R(p-k), in which case the
scattering coefficient

2, (k) =3,

is a constant, and the scattering phase function is p(k,k’) = 47r]§(k k') /5. Assume
the scattering phase function p(k-k’) is bounded below and above by positive constants
0,0 > 0 such that

(3.2) 0 <pkKk')<0.

Note that 6 satisfies the condition v4_160 < 1, where v4_; is the measure of the
(d — 1) dimensional unit sphere. For simplicity, we require that the initial condition
f(x) € L>®(Q x S%1) is x-dependent and nonnegative. The absorption coefficients

obey the condition

(33) 0<@§EG’Z(Z,X) Sza’l <0
for some constants X, ; and X, .
We need the following lemma to have a well-posed problem.

LEMMA 3.1 (Kellogg [34]). Let M be a bounded convex open subset of a real
Banach space, and F : M — M is a compact continuous map which is continuously
Fréchet differentiable on M. If (i) for each m € M, 1 is not an eigenvalue of F'(m),
and (ii) for each m € OM, m # F(m), then F has a unique fixed point in M.

We define the space using dS(x) to denote the surface measure of 92 by

ou

5, Tk-Vue LP((0,T) x Q x §%71);
z

W, = {u € LP((0,T) x Q x S¢1y;
u(0,-,-) € LP(Q x S H;ulp_ € LP((0,T) x T'_, |ny - k|dzdde(x))}
and the equipped norm by

[ullby, = 1ull7s 0y xoxra—1y + 1020+ Vulll, o 1) xoxri-1):

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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THEOREM 3.2. Let the initial condition f(x) satisfy

Z(;L,lcfl

Vi<k<L
Vq—1 (z,x)elg),T)xQ kZa,k -

@)l <

or

v 0,7) x Q
va10<1 (2,%) € (0,T) x Q,

(i) {Vd12£(||f||oo)|f||m<2zsa

where X! is the Fréchet derivative of ¥, that is,

Sh(m) = Sau(z,x)im! "
I=1
Then (3.1) admits a unique nonnegative solution in Wa ((0,T) x Q x S4=1).

Proof. Let F: m— ¢ be the map defined through the relation (¢) = F'm, where
¢ solves the transport equation

O K-Vt Bum)o+ 5. (6~ K6) =0 in X,
(3.4) 0%, k) =0 on T,

#(0,x,k) = f(x) on Xg.

We denote by M the set
M={meL>(0,T) x Q) NL*((0,T) x Q) [0<m < || flloc + 5}

with § > 0 being arbitrary. It is straightforward to check that M is convex, bounded,
and closed under the usual L? topology. For any m € M, we have that ¥,(m) is
nonnegative. Therefore, by the maximum principle for the linear transport equation
(3.4) (see, for instance, [19]), (¢) € M. This shows that F': M — M. To show that F
is a continuous operator, we denote by ¢1 and ¢ the solutions to (3.4) corresponding
to my; € M and my € M, respectively. We then introduce w = ¢1 — ¢o. It is then
clear that w solves the following linear transport equation:

g—f +k-Vw+X,(m)w+ s (w — Kw) = (Za(ma) — Xa(mq))do in X,
(3.5) w(z,x,k)=0 onl_,
w(0,x,k)=0 on Xp.

By standard linear theory [19], this equation admit a unique w € Wy such that

1w, 0,1y xaxsi-1) < Cll(Za(ma2) — Xa(m1))d2ll 20,1y x2xs-1)

(3.6)
<CEL ([ flloo + ) flloclma = mall L2 (0,1 x0)

for some constant C' > 0. Using the averaging lemma [27], we obtain that there exists
a constant C’ > 0 such that

[Fmy — Fmall gz o,mx9) = 1) T a120,mx0) < Cllwllw, (o,mxaxsi-1)

(3.7)
< COE (I flloso + O flloc llmz = mall L2,y x ) -

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Combining this with the Kondrachov embedding theorem, we have shown that F :
M — M is a continuous compact operator. By the Schauder fixed point theorem,
there exists a fixed point for M, and hence (3.1) has a nonnegative solution.

To prove the uniqueness of the solution, we use Lemma 3.1. We first observe that
for any fixed point m* of F, it must satisfy the conditions: m* <||f||c and m* > 0.
This is due to the fact that f is strictly positive. Hence, there are no fixed points
on the boundary M. Next, we show that F’(m) cannot have 1 as its eigenvalue.
Let ¢ be the solution to (3.4) with m € M and dm being a perturbation such that
m + dm € M, and denote by w the solution to the following equation:

ow

5 +k-Vw+ I, (m)w + s (w — Kw) = =X/ (m)dme in X,

2

(3.8) w(z,x,k)=0 onI'_,
w(0,x,k)=0 on Xj.

Then the Fréchet derivative F’(m)[dm] = (w). Suppose F’'(m) indeed has 1 as its
eigenvalue and (w) as the corresponding nonzero eigenfunction. Then F’({w)) = (w)
and

Z—Z)—l—k-Vw—&-Za(m)w—&—Es (w — Kw) = =% (m){w)¢ in X,

(3.9) w(z,x,k)=0 onT_,
w(0,x,k)=0 on Xg.

Using the notations ¥y = ¥, (m) + X5 and R =X Kw — X/ (m){w)¢, we can write the
solution to (3.9) as

ZAT— (x,k) .
w(z,x,k) :/ exp”Jo Deemlx—dl B _ g x — sk K)ds
0

2AT—(x,k) _ _
:/ Y(z — s,x —sk)e” Jo e (=lx—lldi Rz —s,x— sk k) ds
0 ’ Yi(z—s,x—sk)

which then gives the bound
(3.10)

ZAT_ (x,k) i Ris— _ ko k
|w(z,x, k)| g/ (2 —s,x — sk)e” I3 Se(z—lx—Ik)dl (2 — 5,x — sk, k)
0

Yi(z — s,x — sk)

‘ds

- (1 - [T Et(z—l,x—lk)dl> sup R(z — s,x — sk, k) ‘
0<s<zAT_(x,k) Et(z —5X—= Sk)

< sup R(z,x,k) ‘

T (om)xaxsi-1 | Bi(2,%)

for some 0 <+ < 1. Here aAb=min(a,b) and 7_(x, k) is the distance from x to I'_ in
the direction of —k. The next step is to show that sup )y qxgi—1 jo(’;;:) ’ < w0,
which, when combined with the bound in (3.10), leads to the bound |w(z,x,k)| <
Y|lw]|oo (and hence w = 0). This contradicts the assumption that (w) is the eigen-
function corresponding to the eigenvalue 1 of F’. We derive the bound under the
following two assumptions in the theorem:

(a) When condition (i) is satisfied, we deduce from it that

Vd—lzfz(m)Hf”oo < Ea(m)'

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Meanwhile, we also have that
[R(2,%,K)| < Eg[[w]loo + 135 (m) || flloo 0] -
Combining the above two bounds gives us
[R(2,%, k)| < (25 4+ Za(m)) [wlleo = el wlloo-
R(z,%x,k)

3¢ (z,x)
(b) For the case when condition (ii) is satisfied, we first observe that

Therefore, we have sup g )y xga-1 < |lwllso-

R(z,%x,k) =%, (Kw — 0(w)) + (2.0 — X! (m) ) (w)
implies

(3.11)

oo

R(z,x,k)| _ Es(1 —v4-10) +vq_1|E:0 — X}, (m)¢|
< ||w
Yi(z,%x) Yi(z,%x)

When || f|loo satisfies

1 25,6
Va—1 Xy ([ flleo +6)

we obtain that Xs(1 —vg_10) + vg—1]2s0 — X/, (m)d| < X, which, when com-
bined with (3.11), implies that

(3.12) [flleo <

V(z,x) € (0,T) x €,

’ R(z,x,k)

< .
wex 8 <l

Since ¢ > 0 is arbitrary, taking § — 0, the condition (3.12) becomes

1 230

Wllee < o= ST

V(z,x) € (0,T) x Q,
which is simply (ii).
The proof is now complete. ]
To study the diffusion limit, we introduce a small parameter € and denote by W,
the solution to the following scaled radiative transport equation:
ow, 1

1
T L 2k VW, + o (W)W + =3, (We — KW,.) =0 in X,
Oz € €2
=0

(313) W6(27X7k) on F_’
W0.xk) = f(x)  onXp.

We have the following corollary using condition (ii) in Theorem 3.2.

COROLLARY 3.3. If € is sufficiently small such that

0>
(o) e < —— 2

Vdg—1 62 ’

then (3.13) admits a unique nonnegative solution in Wso ((0,T) x 2xS?=1). Moreover,
the solution satisfies ||We|loo < ||f]loo-
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3.1. Asymptotic expansion. Let e be sufficiently small such that (3.13) admits
a unique solution. We formally expand the solution in powers of e:

(3.14) We(z,%,v) = Wo(z,%x,v) + eWi(2,%,V) + EWa(2,%,V) + ¢c(2,X, V).

Let Z denote the identity operator. We then substitute the above expansion into
(3.13). Matching the equations at orders =2, ¢!, and €” gives the following system:

(Z-K)Wo=0,
(3.15) o Ss(Z - K)Wi 4+ k- VW, =0,
T+ (T = K)Wa k- VIV, + (o) Wo = 0.

Following standard procedures [15, 19], we obtain from the first two equations that

d

D;(k
(3.16) Wo(zx,k) =Wo(z,x), Wi(zxk)=-) z( )311.W0(z7x),
i=1 s
where D;(v) € L°°(S?1) are the unique solutions to
(3.17) (T-K)D;(k)=k-e,, Dik)dk=0, i=1,2,...,d.

Sd—1
Next, we integrate the third equation in (3.15) over S%~! and utilize the fact that
(Z-K)W2)=0

to get the equation for Wy. This leads to

/ <8W° + (k- VW, + Ea(WO)WO)> dk=0.
Sd—l

z

Since W is independent of k, we have that Wy solves the following diffusion equation:

A
M _y. (va()) 8, (Wo) W =0, in (0,7) x ©,
(3.18) Wo(z,x) =0, on (0,T) x 9%,

Wo(0,x)=f(x)  on,

where the matrix A is positive definite and is defined as
Aij :/ k-e;D;k)dk.
§d—1

Under our assumption that the scattering phase function p(k-k’) is rotation invariant,
we have that A;; = ﬁéij, where g € (—1,1) is the anisotropy parameter.

Let ¢, be the remainder in the expansion. Then we can check that ¢, satisfies
the following equation:

1 s .
6z¢e+zk'v¢e+?(I_K)¢€+Ea(<we>)¢e:€h1 m X,

(319) ¢5(Z,X, k) :EhQ on F—7
¢6(0,X,k) :€h3 on )(07
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where the functions hy, ha, and hg, respectively, are of the following forms:
hi(z,x,k) = -0, W1 —k-VWy — X, ((W)) (W7 + eWs)
1
—ed, Wy + — [Ea(WO) — X, (W) W,

8Wo
Z ox;

h3(0,X7 k) = —W1 — 6W2 .

2(z,x, k) =

- EWQ,

Let § := %inf[oj]xg Ya,0(z,x). Then, by the assumption in (3.3), § > 0. We then
have that for any z € [0,7),

16e(2,,)loo < ellhslloce™* + 6/0 eI ([|hnlloo + dllh2| 0 )ds
<el([[Palloo + dllh2lloo) + €[ ha o

(3.20)

It remains to show that hy, he, and hs are bounded. We first observe from the
equations in (3.15) that

[Willeo < C1lWolle(o.r).cr @), IWalloo < Cal[Wolle(o.1),c2(0))-

We then take the derivative with respect to z of the equations in (3.15) to deduce
that

10-W1lloo < Csl[Wollc(o,r),c39))s  10:Walloo < CallWolle(o,7),04(22))
together with
[k - VW2 < Csl[Wollco,),c3(2)) -

Therefore, given that Wy € C([0,T),C*4(f2)), we have the following estimate for the
diffusion approximation:

||We - WOHOO < ||¢e||oo + 6||VV1||00 + 62”W/?Hoo = C(T, HWOHC([O,T),C‘l(Q)))E‘

To ensure the regularity of the solution Wy, at least for a short time, we simply need
the initial condition f to be smooth enough since W would be smoother than the
initial condition due to the diffusive nature.

We can prove the following result.

THEOREM 3.4. Assume that f € C§(Q) is nonnegative, and the absorption and
scattering coefficients satisfy the condition

Ya1 €C*Q), ,1>0, X >0.

Then the diffusion equation (3.18) admits a unique strong solution Wy € C([0,T),C*(2))
when 1 <d<3.

Proof. Let L=—-V- (EAV). Then —L is the infinitesimal generator of an analytic
semigroup G(t) on L?(Q) and ||G(t)|| <1 for all £t >0. We denote

D(L) = H*(Q) N H(Q).
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By [43, Theorem 8.4.4] and [43, Theorem 6.3.1], we have that when f € D(L), there
exists a unique local strong solution Wy to (3.18) on (0,7) x Q, that is,

(3.21) Wo € C([0,T), L*(Q)) N C((0,T), H*(Q) N Hy(2)) NC*((0,T), L*()).

Moreover, 0 < Wy < ||f]lc by the comparison principle. Then the result of [43,
Corollary 6.3.2] ensures that 9. Wy is locally Hélder continuous for 2 € (0,7'). Hence,
Wo(z,x) and 0,Wy(z,x) are both continuous on (0,7) x . This means that ¥, (W)
is also continuous. Therefore, we must have Wy(z,-) € C%(Q), which means W is a
classical solution.

Let g(x) := —Lf — S.(f), f € C*(Q) € D(L). By differentiating (3.18), we find
that 1 := 9, W satisfies the following equation:

Oh + Lp + (BL (Wo)Wo + Za(Wo)) 1 =0 in (0,7) x Q,
(3.22) P(z,x)=0 on (0,T) x 09,
B0,%)=g(x)  on {0} x Q.

Following a similar process, we can deduce that (z,-) € C?(2). Since Wy(z,-) €
C?(Q) and 9. Wy(z,-) € C?(Q) for z € (0,T), we have 8, Wy(z, - )+Xa (Wo(z,-))Wo(z,-) €
C?(Q2). By classical regularity theory for elliptic equations [26], Wy(z,-) € C*(Q). O

Remark 3.5. We have assumed so far that the initial condition f is independent
of the variable k. In fact, the case of f depending on k, that is, f = f(x,k), can
be treated in a similar manner by introducing another fast variable 6 = %, as in [19,
section XXI.5.3]. We will not repeat the calculations here.

3.2. The case of degenerate coefficients. Let us now briefly consider the
case when the problem is degenerate, that is, when the absorption coefficient can
vanish in part of the domain of interest. More precisely, we relax the requirement
that all ¥,; > 0 to the following:

(3.23) Y20, Sa(lfllec) >0 ¥(2,x)€[0,T] x Q.

In this case, X/ (]| flloo) > 0. When e is sufficiently small, the scaled transport equation
(3.13) admits a unique solution in L*°(X). Let w, be the solution to the following
linear transport equation:

8zw5+%k-Vwe—kEa(HfHoo)we—k%(Z—K)wezo in X,

(z,x,k) = onI'_,

(0,x,k) = ( ) on Xj.

Since the absorption coefficient 3, (|| f|loo) = Xa ((We)), we conclude that w. < W, for

any € > 0. On the other hand, as ¢ — 0, we have w. — wq, where wy is the solution to
d,wy — V - (éVw()) + (|| flloo)wo =0 in (0,7) x Q,

wo(z,x) =0 on (0,T) x 99,
wp(0,%x) = f(x) on .

(3.24)

We

We

(3.25)

Hence, ||[W| > |lwe|| > infjo,ryxqwo — Ce for some C' > 0. Because inf (o 7yxqwo > 0
strictly for e sufficiently small, we conclude that W, is bounded from below by a
positive number, which implies 3, ({(W,)) is also strictly positive. Then we repeat the
process in (3.20) by setting 6 = %inf(oyT)XQ Yo ((We)); instead, we obtain the same
conclusion that |W, — Wy||eo < C’€ for a constant C” independent of e.
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4. An application in inverse problems. We now consider the following in-
verse medium problem as a direct application of the transport model:

du+k-Vu+X,((w)u+3:(Z-K)u=0 in X,
(4.1) u(z,x,k)=0 onT_,
u(0,x,k) = f(x) on X,
where f(x) € L*°(Xp) is a strictly positive source function. We assume that (4.1) has
a unique positive solution u € W,

We assume that the absorption coefficient ¥, is not known, but we have additional
data that is the density of the solution, that is,

(4.2) g(z,x) = (u) :== /Sdi1 u(z,x,k)dk.

The inverse problem amounts to finding the unknown absorption coefficients >, ; from
the observed data g from a given f.
We can prove the following result.

THEOREM 4.1. Let g and g be data of the form (4.2) generated from (4.1) with
coefficients ¥, and ¥, respectively. Then g =g implies 3, ((u)) =X, ((@)).

Proof. Let ou=u — u. We verify that for any du, we have the identity
(4.3)

2 2
/ k - Vou] 5—udxdk / k- v"su‘ dxdk — / [k v } 0ul i
QxSd-1 QxSd-1 2u QxSd-1

and the identity

(4.4) kvl Loy Sal@) | EE-Ki

jaf?
Using the fact that g =g, we can also conclude that
(4.5) (0u) =0.
It is also straightforward to check that du solves the following transport equation:
(4.6) 00u+k-Viu+3,((u))du+Xs(Z — K)ou= (ia(<ﬁ>) —Ya((u)))u

with zero initial and incoming boundary conditions. We multiply this equation by %“
and integrate over Q x S~ to obtain

0.0u iudxdk—i— k- V|5u| dxdk — [oul* —— 0. udxdk
2
Qx§d-1 Qxs§d-1 axsi-1 2|
2
[ B [ EEDNE
(4.7) Qx§d-1 axsi-1 2]l
+/ |5 |2dxdk + %, / (Z - K)&u]é—udxdk
Qxsd-1 Qxsd-1
/ Ea — Y. ((u)))dudxdk,
XSd 1
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where we have used the identities (4.3) and (4.4).

We first observe that since X, ((u)) and 3,({@)) do not depend on k, the right-
hand side of (4.7) vanishes due to (4.5).

To handle the left-hand side of (4.7), we observe that

2 2
(4.8) / k- v"su‘ dxdk = / nlo 5.
QxSd—1 'y 24
ou 1 |6ul|? 1|6ul? .
4. ou_1 1
(4.9) (06u) 2az[~] Loz,
and
(4.10)
2
25/ (= K)éu]é—ud dk = 2/ 10Ul e — z/ (Kdu)éudxdk
QxSd—1 axsi-1 U Qx§d-1

We can also prove the following inequality (see Appendix A):

(4.11)
|6u|? K2 |6ul|?

5
/ (Kou) 22 dxdk < / (i) 28 gxdk + vg_; -
Qx§d-1 u 2|al?

dxdk,
QxSd—1 2 QxSd—1 U

where k= (25;\[%), the constants 6 and 6 being defined in (3.2).

Let M(z,x) := 3, ({u))— E“(QW) +3 (17”“12’1“2 ) We can then deduce from (4.7),
using (4.8), (4.9), (4.10), and (4.11), that

2
dx dk+/ M(z,x)‘&f|
Qxsd—1

u

1 2
(4.12) =% il

dxdk <0.
2 QxSd—1 u

Since the coefficients X, ; and ¥, are finite and both (u), (@) are bounded by || f|| £ (x,),
there exists a constant M = inf o 7)xo M (2,x) such that

2 2
1y 19Ul g + [9u]

2 ——dxdk <0.
2 7 Jaxge1 U Qxsd-1 U

Then, by the Gronwall inequality and the initial condition du =0 at z =0, we must
have that du =0. Therefore, u =@, which implies that

(4.13) ) ) )
Za(<u>):_qu—|—k~Vu+Es(I—IC)u :_8zu+k~Vuj—Es(I—lC)u :271(<12>)

u u

The proof is complete. 0

The following corollary is a direct result of the comparison principle and Theo-
rem 4.1.

COROLLARY 4.2. Under the assumption of Theorem 4.1, the coefficients ¥, can
be uniquely determined with finitely many data sets (u;), j = 1,2,..., L+ 1, if the
initial conditions satisfy 0 < f1 < fo <...< fr41 on Q.
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5. Concluding remarks. This work describes the derivation of semilinear ra-
diative transport models for wave propagation in highly scattering media with nonlin-
ear absorption. While the technical aspects of the derivation are relatively standard,
we believe that our work provides a theoretical justification for the semilinear radia-
tive transport models, as well as their diffusion approximations, used in applications
such as multiphoton imaging [10, 36, 44, 45, 51, 55, 56, 57].

As we have remarked before, one concrete example of the quadratic absorption we
considered here is two-photon absorption in nonlinear optics [38, 48]. The radiative
transport equation we derive for this case, (2.20), is different from the two-photon
radiative transport equation of [40], where the phase space intensity corresponds to a
two-photon entangled state of light, not two-photon absorption.

The calculation we have presented here does not generalize to media with non-
linearities such as those that arise in the Kerr effect and second harmonic generation
[3, 29, 46, 52]. The derivation of transport equations for wave propagation in such
media is a topic of great interest but is much more challenging due to the richness of
the behavior of the corresponding wave equations [17, 18, 50]. We point to the deriva-
tion in [22] in the context of the nonlinear Schrédinger equation within the mean-field
approximation and leave further investigations in this direction to future work. We
note that the acousto-optic effect, in which light undergoes a frequency shift due to
interaction with an acoustic wave, has also been studied in random media. Although
this effect is not nonlinear in the sense considered in this paper, it is possible to
develop a suitable kinetic model and associated radiative transport equations [31].

Appendix A. Proof of inequality (4.11).
Proof. Using the AM-GM inequality, we deduce that

0 dul? 1 Ko
/ (Kbu) - dxdk < / (i) 2 e+ L / °
Qxsd-1 u Qxsd-1 2|al 2 Jaxsi—1 | VK@

Since 0 < p(k,k’) <6 and (6u) =0, we have the preliminary estimate

2
dxdk.

Kou | _ KCou — % (5u) _ @-0)(ou)
VK K T 2/00@)
@0

0). We then have

20

Denote the constant  :=
2 N )
A el L R (L
Qx§d-1 K QxS§d—1 <u> Q <u>

Using the Cauchy—Schwartz inequality, we arrive at

/S(H mdk/g u(x, k)dk > (/S |ou(x, k)|dk>2 = (|6ul)?.

Therefore, we have

2 2
U [ ek g
<u> §d—1 U(X, k)
This implies that
|6u|? K2 |6ul?

ou
(Kou) — dxdk < / (Kit) === dxdk + vg_1 — —dxdk.
/std71 u QxSd—1 2|u|2 ! 2 QxSsd—-1 U

This completes the proof. 0
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