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Abstract
We consider the Born and inverse Born series for scalar waves with a cubic
nonlinearity of Kerr type. We find a recursive formula for the operators in the
Born series and prove their boundedness. This result gives conditions which
guarantee convergence of the Born series, and subsequently yields conditions
which guarantee convergence of the inverse Born series. We also use fixed
point theory to give alternate explicit conditions for convergence of the Born
series. We illustrate our results with numerical experiments.
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1. Introduction

There has been considerable recent interest in inverse scattering problems for nonlinear par-
tial differential equations (PDEs) [1–11]. There are numerous applications in various applied
fields ranging from optical imaging to seismology. In general terms, the problem to be con-
sidered is to reconstruct the coefficients of a nonlinear PDE from boundary measurements. As
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in the case for linear PDEs, the fundamental questions relate to the uniqueness, stability and
reconstruction of the unknown coefficients. In contrast to the linear case, which is well stud-
ied, inverse problems for nonlinear PDEs are still relatively unexplored. We note that although
uniqueness and stability results for a variety of inverse problems for semilinear and quasilinear
equations are known, reconstruction methods are just beginning to be developed [3, 12–15].

In this paper, we consider the inverse problem of recovering the coefficients of a nonlinear
elliptic PDE with a cubic nonlinearity. This problem appears in optical physics, where the
cubic term arises in the study of the Kerr effect—a nonlinear process where self-focusing of
light is observed [16]. We show that it is possible to reconstruct the coefficients of the linear
and nonlinear terms in a Kerr medium from boundary measurements. This result holds under a
smallness condition on the measurements, which also guarantees the stability of the recovery.
The reconstruction is based on inversion of the Born series, which expresses the solution to the
inverse problem as an explicitly computable functional of the measured data. We note that this
method has been extensively studied in the context of inverse problems for linear PDEs [17].
The extension to the nonlinear setting involves a substantial reworking of the theory, especially
the combinatorial structure of the Born series itself. Our results are illustrated with numerical
simulations.

The remainder of this paper is organized as follows. In section 2, we introduce the for-
ward problem and state sufficient conditions for its solvability. The Born series is studied in
section 3, the combinatorial structure of the series is characterized, and sufficient conditions
for convergence are established. We also derive various estimates that are used in section 4 to
obtain our main result on the convergence of the inverse Born series (IBS). In section 5, we
present the results of numerical reconstructions of a two-dimensional medium. Our conclu-
sions are presented in section 6. The appendix contains the proof of proposition 1.

2. Forward problem

We consider the Kerr effect in a bounded domain Ω in Rd with a smooth boundary, for d⩾ 2.
The scalar field u obeys the nonlinear PDE

∆u+ k2 (1+α(x))u+ k2β (x) |u|2u= 0 in Ω, (1)

∂u
∂ν

= g on ∂Ω, (2)

where the wavenumber k is real and ν is the unit outward normal to ∂Ω. The coefficients α
and β are the linear and nonlinear susceptibilities, respectively [16] and are taken to be real
valued, as is the boundary source g. It follows that u is real valued, so that |u|2u= u3. More
generally, u is complex valued, in which case our results carry over with small modifications.

We now consider the solution u0 to the linear problem

∆u0 + k2u0 = 0 in Ω, (3)

∂u0
∂ν

= g on ∂Ω. (4)

Following standard procedures, we find that the field u obeys the integral equation

u(x) = u0 (x)− k2
ˆ
Ω

G(x,y)
(
α(y)u(y)+ β (y)u3 (y)

)
dy. (5)

Here the Green’s function G obeys

∆xG(x,y)+ k2G(x,y) = δ (x− y) in Ω, (6)
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∂G
∂νy

= 0 on ∂Ω. (7)

We define the nonlinear operator T : C(Ω)→ C(Ω) by

T(u) = u0 − k2
ˆ
Ω

G(x,y)
(
α(y)u(y)+ β (y)u3 (y)

)
dy. (8)

Note that if u ∈ C(Ω) is a fixed point of T, then u satisfies equation (5). The following result
provides conditions for existence of a unique solution to (5).

Proposition 1. Let T : C(Ω)→ C(Ω) be defined by (8) and define µ by

µ= k2 sup
x∈Ω

ˆ
Ω

|G(x,y) |dy. (9)

If there exists γ > 1/2 such that

∥α∥∞ <
2γ− 1

2µ(1+ γ)

and

∥β∥∞ <
1

2µ∥u0∥2C(Ω) (1+ γ)
3 ,

then T has a unique fixed point on the ball of radius γ∥u0∥C(Ω) about u0 in C(Ω), and fixed
point iteration starting with u0 will converge to the unique fixed point u.

The proof is given in appendix.

3. Born series

The forward problem is to compute the field u on ∂Ω given a prescribed source g on ∂Ω. The
solution to the forward problem is derived by iteration of the integral equation (5), beginning
with the background field u0. We thus obtain

ϕ = K1 (ζ)+K2 (ζ,ζ)+K3 (ζ,ζ,ζ)+ · · · , (10)

where ϕ = u− u0 and ζ := (α,β). The forward operators

Kn : [L
∞ (Ω)]

2n → C(∂Ω× ∂Ω)

are constructed below. We will refer to (10) as the the Born series. We note that proposition 1
guarantees convergence of the Born series.

The forward operator Kn is an n-linear operator (multilinear of order n) on [L∞(Ω)2]n. In
the following, we do not denote the dependence of u0 on the source explicitly. The first iterate
in the fixed point iteration of (8) is given by

u1 (x) := T(u0)(x) = u0 (x)+ k2
ˆ
Ω

G(x,y)
[
α(y)u0 (y)+ β (y)u30 (y)

]
dy, (11)

and thus K1 is defined by

K1 (ζ)(x) = k2
ˆ
Ω

G(x,y)
[
α(y)u0 (y)+ β (y)u30 (y)

]
dy. (12)
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Next we observe that the second iterate is of the form

u2 (x) := T(u1)(x) = u0 (x)+ k2
ˆ
Ω

G(x,y)
[
α(y)u1 (y)+ β (y)u31 (y)

]
dy. (13)

Evidently, expansion of u31 leads to terms which are multilinear in α and β. Subsequent iterates
become progressively more complex. To handle this problem, we introduce the operators:
a,b : C(Ω)× [L∞(Ω)]2 → C(Ω), which are defined by

a(v, ζ) = k2
ˆ
Ω

G(x,y)α(y)v(y)dy, (14)

and

b(v, ζ) = k2
ˆ
Ω

G(x,y)β (y)v(y)dy. (15)

The above operators have tensor counterparts which are defined as follows.

Definition 1. Given Tl = Tl(ζ1, · · · , ζl), a multi-linear operator of order l, define the l+ 1 order
multilinear operators ATl and BTl by

ATl (ζ1, . . . , ζl, ζl+1) = a(Tl (ζ1, . . . , ζl) , ζl+1)

and

BTl (ζ1, . . . , ζl, ζl+1) = b(Tl (ζ1, . . . , ζl) , ζl+1) ,

where a and b are given by (14) and (15) respectively.

We will also need to define the tensor product of multilinear operators.

Definition 2. Given Tj and Tl, which are multilinear operators of order j and l, respectively,
define the tensor product Tl⊗ Tj by

Tl⊗ Tj (ζ1, . . . , ζl, ζl+1, . . . , ζl+j) = Tl (ζ1, . . . , ζl)Tj (ζl+1, . . . , ζl+j) ,

so that Tl⊗ Tj is a multilinear operator of order l+ j.

Note that the tensor product of multilinear operators does not commute. Tensor products
are extended to sums of multilinear operators by bilinearity of the tensor product. The tensor
product is also associative. In this notation, we see that if v is a sum of multilinear operators,
then

Tv= u0 +Av+Bv⊗ v⊗ v

yields another sum of multilinear operators (u0 is an operator of order zero).

Lemma 1. Viewing the nth iterate un as a sum of multilinear operators, for any n we have that

un = un−1 +multilinear operators of order at least n. (16)

Proof. The proof is by induction. For the case n= 1, we have that u1 = u0 +Au0 +Bu0 ⊗ u0 ⊗
u0, so the statement holds. Now assume that the statement holds for un−1. Then

un = u0 +Aun−1 +Bun−1 ⊗ un−1 ⊗ un−1. (17)
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By the inductive hypothesis,

un−1 = un−2 +w,

where w is the sum of the operators of order at least n− 1. We then have

un−1 ⊗ un−1 ⊗ un−1 = un−2 ⊗ un−2 ⊗ un−2 + un−2 ⊗ un−2 ⊗w

+w⊗ un−2 ⊗ un−2 + un−2 ⊗w⊗ un−2

+ un−2 ⊗w⊗w+w⊗ un−2 ⊗w+ un−2 ⊗w⊗w+w⊗w⊗w, (18)

so that

un−1 ⊗ un−1 ⊗ un−1 = un−2 ⊗ un−2 ⊗ un−2 +multilinear operators of order at least n− 1.

Applying A to un−1 and B to un−1 ⊗ un−1 ⊗ un−1, we increase the order of each by one. Hence
we have that

un = u0 +Aun−2 +Bun−2 ⊗ un−2 ⊗ un−2 + terms of order at least n (19)

= un−1 + terms of order at least n. (20)

The result follows by induction.

Remark . Lemma 1 shows that the fixed point iteration generates a series of the form (10),
which converges when the fixed point iteration converges. The operator Kn is given by the sum
of all terms in the series which are homogeneous of degree n. Lemma 1 also implies that the
nth iterate un includes all of these terms. Hence

un = u0 +
n∑

i=1

Ki (ζ, . . . , ζ)+ terms of order at least n+ 1. (21)

3.1. General formula for the forward operators

Using tensor notation, the forward series is given by iterations of

Tv= u0 +Av+Bv⊗ v⊗ v.

Given u0, we have

u1 = Tu0 = u0 +Au0 +Bu0 ⊗ u0 ⊗ u0,

u2 = Tu1 = u0 +Au1 +Bu1 ⊗ u1 ⊗ u1,

un+1 = Tun = u0 +Aun+Bun⊗ un⊗ un.

Define Un to be the sum of the first n forward operators, that is,

Un =
n∑

i=0

Ki (ζ1, . . . ζi)

= u0 +
n∑

i=1

Ki (ζ1, . . . , ζi) .
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We know from lemma 1 that

un = Un+w,

where w is a sum of multilinear operators, all of order greater than n. To find Un+1, we use the
iteration

un+1 = u0 +A(Un+w)+B(Un+w)⊗ (Un+w)⊗ (Un+w) .

We know from lemma 1 that Kn+1 will be the sum of all terms which are of order n+ 1. Since
w contains only terms of order greater than or equal to n+ 1, after applying A or B, the result
will be of higher order and hence will not be included in Kn+1. So any term containing w
after expanding the tensor product can be dropped, and we see that all terms of Kn+1 will be
contained in the sum

AUn+BUn⊗Un⊗Un.

Since A and B each add one to the order, Kn+1 will consist of AKn and all terms of the form

BKi1 ⊗Ki2 ⊗Ki3 ,

where the ordered triplets (i1, i2, i3) are such that i1 + i2 + i3 = n. Hence we have derived the
following:

K0 = u0,

K1 = u0 +Au0 +Bu0 ⊗ u0 ⊗ u0,

Kn+1 = AKn+B
∑

(i1,i2,i3)
i1+i2+i3=n
0⩽i1,i2,i3⩽n

Ki1 ⊗Ki2 ⊗Ki3 . (22)

We note that we can count the number of such ordered triples in the above sum to be

C(n) = n(n+ 1)/2+ n+ 1.

3.2. Bounds on the forward operators

In order to analyze the IBS, bounds on the norms of the forward operators Ki are required. We
will see that to apply existing convergence results about the IBS, we need boundedness of the
operators as multilinear forms. We denote by | · |∞ the bound on any multilinear operator of
order n, defined as follows.

Definition 3. For any multilinear operator K of order n on [L∞(Ω)]2n, we define

|K|∞ = sup
ζ1,...,ζn ̸=0

∥K(ζ1, . . . ζn)∥C(∂Ω×∂Ω)

∥ζ1∥∞ · · ·∥ζn∥∞
.

Note that, for two multilinear operators T1 and T2 of the same order, the triangle inequality,

|T1 + T2|∞ ⩽ |T1|∞ + |T2|∞

holds.
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Lemma 2. The forward operator Kn, as defined by (22), is a bounded multilinear operator
from [L∞(Ω)]2n to C(∂Ω× ∂Ω) and

|Kn|∞ ⩽ νnµ
n, (23)

where

µ= k2 sup
x∈Ω

ˆ
Ω

|G(x,y) |dy, (24)

ν0 = ∥u0∥C(Ω×∂Ω),

and for all n⩾ 0,

νn+1 = νn+
∑

(i1,i2,i3)
i1+i2+i3=n
0⩽i1,i2,i3⩽n

νi1νi2νi3 . (25)

Proof. We first note that for the product operators in definitions 1 and 2, we have that

|BTl|∞ ⩽ µ|Tl|∞,

|ATl|∞ ⩽ µ|Tl|∞,

and

|Tl⊗ Tj|∞ ⩽ |Tl|∞|Tj|∞.

The proof follows by induction. The base case clearly holds with |K0|∞ = ν0. Next we assume
that for each i⩽ n,

∥Ki ∥⩽ νiµ
i.

Using (22), we obtain

|Kn+1|∞ ⩽ |AKn|∞ + |B
∑

(i1,i2,i3)
i1+i2+i3=n
0⩽i1,i2,i3⩽n

Ki1 ⊗Ki2 ⊗Ki3 |∞

⩽ µ|Kn|∞ +µ
∑

(i1,i2,i3)
i1+i2+i3=n
0⩽i1,i2,i3⩽n

|Ki1 |∞|Ki2 |∞|Ki3 |∞

which gives, by the inductive hypothesis

|Kn+1|∞ ⩽ νnµ
n+1 +µn+1

∑
(i1,i2,i3)

i1+i2+i3=n
0⩽i1,i2,i3⩽n

νi1νi2νi3

= νn+1µ
n+1.

7
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Lemma 3. For the sequence {νn} defined by (25), there exist constants K and ν (both depend-
ing on ν0 but independent of n) such that for any n⩾ 0,

νn ⩽ νKn.

Proof. Consider the generating function

P(x) =
∞∑
n=0

νnx
n.

We note that it suffices to prove that this power series has a positive radius of convergence. It
then follows that for some positive x, the terms νnxn → 0. In particular, νnxn are bounded by a
constant ν, which implies that

νn ⩽ ν (1/x)n .

We now show that P(x) is analytic in an interval around zero. Consider the cube of P,

(P(x))3 =
∑
i1,i2,i3

xi1xi2xi3νi1νi2νi3

=
∞∑
n=0

fnx
n,

where

fn =
∑

(i1,i2,i3)
i1+i2+i3=n
0⩽i1,i2,i3⩽n

νi1νi2νi3 ,

which appears in (25). Now, we multiply (25) by xn and sum to obtain

∞∑
n=0

νn+1x
n =

∞∑
n=0

νnx
n+

∞∑
n=0

fnx
n.

It is easy to check that the left hand side is simply (P(x)− ν0)/x, and so the above yields

(P(x)− ν0)/x= P(x)+ (P(x))3 .

Thus we have

x(P(x))3 +(x− 1)P(x)+ ν0 = 0. (26)

This polynomial in P is singular, so it is not clear that it has a root at x= 0. However, if we
differentiate with respect to x, we obtain

P ′ (x) =− (P(x))3 +P(x)

3x(P(x))2 + x− 1
(27)

with P(0) = ν0. Since the right hand side is an analytic function of x and P in a neighborhood
of (0,ν0), the ordinary differential equation (27) (together with an initial condition) has a
unique analytic solution in a neighborhood of x= 0 (see theorem 4.1 of [18]). Integration
of (27) combined with the initial condition implies that this solution satisfies (26), and hence
its coefficients must satisfy (25).
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Proposition 2. The forward operator Kn, given by (22), is a bounded multilinear operator
from [L∞(Ω)]2n to C(∂Ω× ∂Ω), and

|Kn|∞ ⩽ ν (Kµ)n , (28)

where

µ= k2 sup
x∈Ω

ˆ
Ω

|G(x,y) |dy. (29)

Here ν and K, which are the constants in the bound on the sequence {νn}, depend on ν0 =
∥u0∥C(∂Ω×∂Ω).

Corollary. The Born series

u= u0 +
∞∑
n=1

Kn (ζ, . . . , ζ) ,

where Kn are given by (22), converges in C(Ω) for

∥ζ∥∞ ⩽ 1
Kµ

.

4. IBS

The inverse problem is to reconstruct the coefficients α and β from measurements of the scat-
tering data ϕ = u− u0 on ∂Ω. We proceed by recalling that the IBS is defined as

ζ̃ =K1ϕ +K2 (ϕ)+K3 (ϕ)+ · · · , (30)

where the data ϕ ∈ C(∂Ω× ∂Ω). The IBS was analyzed in [19, 20]. The inverse operatorsKm

are defined by

K1 (ϕ) = K+
1 (ϕ) , (31)

K2 (ϕ) =−K1 (K2 (K1 (ϕ) ,K1 (ϕ))) , (32)

Km (ϕ) =−
m∑
n=2

∑
i1+···+in=m

K1Kn (Ki1 (ϕ) , . . . ,Kin (ϕ)) , (33)

where K+
1 is the regularized pseudoinverse of K1. See [17] for a review of the IBS.

The bounds on the forward operators in proposition 2 in combination with theorems 2.2
and 2.4 of [19], yield the following results on the convergence and approximation error of the
IBS. The constants ν and µ in [19] correspond to νKµ and Kµ in (28). We denote by ∥K1∥ the
operator norm of K1 as a map from C(∂Ω× ∂Ω) to L∞(Ω).

Theorem 1 (convergence of the IBS). If ∥K1ϕ∥∞ < r, where the radius of convergence r is
given by

r=
1

2Kµ

[√
16C2 + 1− 4C

]
,

C=max{2,∥K1∥νKµ} and ν,K are defined in lemma 3, then the IBS (30) converges.

9
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Theorem 2 (approximation error). Suppose that the hypotheses of theorem 1 hold and that
the Born and inverse Born series converge. Let ζ̃ denote the sum of the IBS and ζ1 =K1ϕ.

SettingM=max
{
∥ζ∥∞,∥ζ̃∥∞

}
, we further assume that

M<
1
Kµ

(
1−

√
νKµ∥K1∥

1+ νKµ∥K1∥

)
, (34)

then the approximation error can be estimated as follows:

∥∥∥∥∥ζ −
N∑

m=1

Km (ϕ)

∥∥∥∥∥
∞

⩽M

(
∥ζ1∥∞
r

)N+1 1

1− ∥ζ1∥∞
r

+

(
1− νKµ∥K1∥

(1−KµM)
2 + νKµ∥K1∥

)−1

∥(I−K1K1)ζ∥∞ ,

where

M=
2µK√

16C2 + 1
.

5. Numerical reconstructions

In this section, we present several numerical simulations to test the reconstruction method in
two dimensions. We note that the restriction to two dimensions is for simplicity and is not
fundamental. We solve the nonlinear PDE

∆u+ k2 (1+α(x))u+ k2β (x)u3 = 0 in Ω, (35)

∂u
∂ν

= g on ∂Ω, (36)

using a Galerkin finite element method as implemented in the FEniCS library in Python. The
domainΩ is taken to be the unit disk andwe set the wavenumber k= 1. The finite element mesh
was selected automatically by FEniCS. The boundary source g is taken to be g(x) = g0δ(x− y),
where y ∈ ∂Ω and g0 is the strength of the source. The delta function is approximated by a
Gaussian for numerical computations. The forward operators Kn are constructed according to
algorithm 1.

10
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Algorithm 1. Construction of the operators K n ; A and B are given by definition 1.

Function compute-K(n,α,β)
if n= 0 then
return u0;

vα := compute-K(n− 1,α(n),β(n));
vβ := 0;
for i1 = 0 to n− 1 do
for i2 = 0 to n− i1 − 1 do

i3 := n− i2 − i1 − 1;
Ki1 := compute-K(i1,α(1 : i1),β(1 : i1);
Ki2 := compute-K(i2,α(i1 + 1 : i1 + i2),β(i1 + 1 : i1 + i2));
Ki3 := compute-K(i3,α(i1 + i2 + 1 : n− 1),β(i1 + i2 + 1 : n− 1));
vβ := vβ +Ki1 ·Ki2 ·Ki3 ;

return A(vα,α(n))+B(vβ ,β(n));

The operators A and B are defined by the corresponding integral operators a and b. a and
b are evaluated by solving a PDE. Note that only the right-hand side of the PDE changes for
each evaluation of a and b. The IBS is implemented according to (31)–(33), as described in
[20]. The solution to the linearized inverse problem is given in terms of the operatorK1, which
is constructed from the Tikhonov regularized pseudoinverse of the forward operator K1. The
coefficients α and β are piecewise constant. They take the values α0 and β0 inside a circle of
radius

√
.2 centered at (.3,0) and vanish otherwise.

We now present a series of numerical simulations in which reconstructions are carried out
to fourth order in the IBS. All reconstructions reported below make use of 16 sources and 16
detectors, which are arranged uniformly on the boundary of the domain. We first consider the
problem of recovering only one coefficient, either α or β. In figure 1(A), we show the case of
low contrast with α0 = 1 and β0 = 0. In figure 1(B), we show the case of low contrast, with
α0 = 0 and β0 = 1. Figure 2 displays the corresponding cross sections along a horizontal line
passing through the center of the inclusion. It can be seen that the series converges rapidly. Note
that FEniCS produces a finite element approximation to the true coefficient, which explains
the oscillations at the jump. Next, in figures 3 and 4, we present reconstructions at intermediate
contrast with α0 = 4 or β0 = 4. In this case, the series converges more slowly, and at fourth
order the errors present in the linear reconstruction are largely removed. Finally, figures 5 and 6
illustrate reconstructions at high contrast with α0 = 16 or β0 = 16. Evidently, in this example
the IBS fails to converge. As expected, the series diverges for higher contrast inclusions.

We now consider the simultaneous reconstruction of the coefficients α and β. Here the con-
trast α0 = β0 = 1 and g0 = 1. The results are presented in figure 7. The quality of the recon-
structions is qualitatively similar to those in figure 1.

Finally, we note that due to the nonlinearity of (1), the field u depends nonlinearly on the
boundary source g. The implications of this for the inverse problem are illustrated in figure 8,
where g0 = 2. We see that there is an improvement in the quality of the reconstruction com-
pared to figure 7, where g0 = 1.

6. Discussion

In conclusion, we have investigated the IBS for scalar waves with a cubic nonlinearity of
Kerr type. We have analyzed the convergence of the series and have conducted numerical
simulations to illustrate the use of the method. We note that in contrast to the Born series for

11
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Figure 1. Reconstructions of α or β at low contrast.

Figure 2. Cross sections of α and β at low contrast.
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Figure 3. Reconstructions of α and β at intermediate contrast.

Figure 4. Cross sections of α and β at intermediate contrast.
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Figure 5. Reconstructions of α or β at high contrast.

Figure 6. Cross sections of α and β at high contrast.
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Figure 7. Simultaneous reconstruction of α and β with g0 = 1.

Figure 8. Simultaneous reconstruction of α and β with g0 = 2.

linear PDEs, the Born series for nonlinear PDEs has a complex combinatorial structure. By
analyzing this structure, we have found conditions which guarantee the convergence of the
IBS.

The ideas developed in this paper provide a framework for studying inverse problems for
a wide class of nonlinear PDEs with polynomial nonlinearities. The formulas and algorithm
for generating the forward operators, the use of the generating functions, and the resulting
reconstruction algorithm are readily generalizable to this setting and will be explored in future
work.
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Appendix. Proof of proposition 1

In this appendix we obtain conditions for existence of a unique solution to (5) and give altern-
ative conditions on α and β that guarantee convergence of the Born series. Define the linear
operator

G : C0
(
Ω
)
→ C0

(
Ω
)

by

G(v) =−k2
ˆ
Ω

G(x,y)v(y) dy.

Then, for u0 in C0(Ω), we have that T can be written as

T(v) = u0 +G
(
αv+βv3

)
. (37)

Note that G is compact and bounded. Define µ by

µ= k2 sup
x∈Ω

ˆ
Ω

|G(x,y) |dy, (38)

Then we have that

∥G(v)∥⩽ µ∥v∥

for all v ∈ C0(Ω), where throughout this section the norm ∥ · ∥ denotes ∥ · ∥C(Ω). We will make
use of the following two lemmas. The first gives conditions to have a contraction.

Lemma 4. For any f,g ∈ C0(Ω) such that ∥f∥,∥g∥⩽ R, we have

∥T( f)− T(g)∥⩽ q∥f− g∥

where

q= µ
(
∥α∥+ 3R2 ∥β∥

)
for µ defined by (38).

Proof. Let f,g ∈ B. Then,

T( f)− T(g) = k2
ˆ
Ω

G(x,y)
[
α(y)( f(y)− g(y))+ β (y)

(
f(y)3 − g(y)3

)]
dy (39)

so that
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∥T( f)− T(g)∥⩽ µ
∥∥α( f − g)+β

(
f3 − g3

)∥∥
= µ

∥∥[α+β
(
f2 + fg+ g2

)]
( f − g)

∥∥
⩽ µ

(
∥α∥+

∥∥β ( f2 + fg+ g2
)∥∥) · ∥( f − g)∥

⩽ µ
(
∥α∥+ 3R2 ∥β∥

)
· ∥f − g∥. (40)

The second lemma gives us a ball which T maps into itself.

Lemma 5. Let r> 0 be given, and let B= B(u0,r) be the ball of radius r about u0 in C0(Ω).
Define R= ∥u0∥+ r. Then if

µR
(
∥α∥+R2∥β∥

)
< r,

we have that T(v) ∈ B for any v ∈ B, and hence T has a fixed point in B.

Proof. Assume that v ∈ B. Then, by the triangle inequality, we have that ∥v∥⩽ R. Then,

∥T(v)− u0∥= ∥G
(
αv+βv3

)
∥ (41)

⩽ µ
∥∥αv+βv3

∥∥ (42)

⩽ µ
(
R∥α∥+R3∥β∥

)
. (43)

By hypothesis, this is less than r, and hence T(v) ∈ B.

Lemma 6. If the hypotheses of lemma 5 hold and, additionally,

µ
(
∥α∥+ 3R2∥β∥

)
< 1,

then T is a contraction mapping on B.

Proof. Since µ∥α∥+ 3R2 ∥β∥< 1 by assumption, by lemma 4 we have that d(T( f),T(g))⩽
q · d( f,g) where q< 1. Since T also maps B into itself, T is a contraction mapping on B.

Clearly if lemma 6 holds, by the Banach fixed point theorem T will have a unique fixed
point on B. Furthermore, if we start with initial function u0 in B, then fixed-point iteration will
converge to the unique fixed point, which in this case is the solution to the integral of the PDE
defined by (5). The iterates of the fixed point iteration will generate the (forward) Born series.

Remark. We note that If β and α satisfy the (more restrictive) condition

µ
(
∥α∥+ 3R2∥β∥

)
<

r
R
,

then both lemmas 5 and 6 are also satisfied.

The following is well known for the linear case, see for example [21].

Proposition 3. If β= 0 and ∥α∥< 1
µ , then T has a unique fixed point on all of C

0(Ω).

Proof. In this case, lemmas 5 and 6 are both satisfied if

µ∥α∥< r
r+ ∥u0∥

.
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Since by assumption µ∥α∥< 1, there exists r0 such that for any r> r0

µ∥α∥< r
r+ ∥u0∥

< 1.

Therefore T has a unique fixed point on B(u0,r) for any r> r0, so the fixed point must be
unique on all of C0(Ω).

Proposition 4. If α= 0 and β < 4
27µ∥u0∥2 , then T has a unique fixed point in the ball

B(u0,∥u0∥/2).

Proof. Let r= ∥u0∥/2. This means that R= 3∥u0∥/2. Then,

µR
(
∥α∥+R2∥β∥

)
= µR3∥β∥

= µ(3∥u0∥/2)3 ∥β∥

<
27µ∥u0∥3

8
· 4
27µ∥u0∥2

=
∥u0∥
2

= r.

Thus, the hypothesis needed for lemma 5 is satisfied. Additionally, we have that

µ
(
∥α∥+ 3R2∥β∥

)
= 3R2µ∥β∥

= 3(3∥u0∥/2)2µ∥β∥

<
27µ∥u0∥2

4
· 4
27µ∥u0∥2

= 1,

so that the condition for lemma 6 to hold is also satisfied, and hence T has a unique fixed point
on B(u0,r).

Proposition 5. If there exists some γ > 1/2 such that

∥α∥< 2γ− 1
2µ(1+ γ)

and

∥β∥< 1

2µ∥u0∥2 (1+ γ)
3 ,

then T has a unique fixed point in the ball B(u0,γ∥u0∥).

Proof. Let r= γ∥u0∥, which means that R= (1+ γ)∥u0∥. The hypotheses then imply that
lemma 5 holds, because
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µR
(
∥α∥+R2∥β∥

)
= µ(1+ γ)∥u0∥

(
∥α∥+(1+ γ)

2 ∥u0∥2∥β∥
)

< µ(1+ γ)∥u0∥
(

2γ− 1
2µ(1+ γ)

+
1

2µ(1+ γ)

)
= ∥u0∥

(
2γ− 1

2
+

1
2

)
= γ∥u0∥= r.

For lemma 6, we have that

µ
(
∥α∥+ 3R2∥β∥

)
= µ

(
∥α∥+ 3(1+ γ)

2 ∥u0∥2∥β∥
)

< µ

(
2γ− 1

2µ(1+ γ)
+ (1+ γ)

2 ∥u0∥2
1

2µ∥u0∥2 (1+ γ)
3

)

=
2γ− 1
2(1+ γ)

+
1

2(1+ γ)

=
γ

1+ γ
< 1.

Thus T has a unique fixed point on the ball B(u0,γ∥u0∥).
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