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ABSTRACT2

Multi-robot cooperative control has been extensively studied using model-based distributed3
control methods. However, such control methods rely on sensing and perception modules in a4
sequential pipeline of design, and the separation of perception and controls may cause processing5
latency and compounding errors that affect control performance. End-to-end learning overcomes6
such limitation by learning directly from onboard sensing data, and outputs control command to7
robots. Challenges exist in end-to-end learning for multi-robot cooperative control and previous8
results are not scalable. We propose in this paper a novel decentralized cooperative control9
method for multi-robot formation using deep neural networks, in which inter-robot communication10
is modeled by a graph neural network (GNN). Our method takes the LIDAR sensor data as input,11
and the control policy is learned from demonstrations that are provided by an expert controller12
for decentralized formation control. While trained with a fixed number of robots, the learned13
control policy is scalable. Evaluation in a robot simulator demonstrates the triangulation formation14
behavior of multi-robot teams with different sizes using the learned control policy.15

Keywords: Distributed multi-robot control, multi-robot learning, graph neural network, formation control and coordination, autonomous16
robots17

1 INTRODUCTION

The last decade has witnessed substantial technological advances of multi-robot systems that enabled a18
vast range of applications including autonomous transportation systems, multi-robot exploration, rescue19
and security patrols. Multi-robot systems demonstrated notable advantages over single-robot systems such20
as enhanced efficiency in task execution, reconfigurability and fault tolerance. Particularly, the capability21
of multi-robot systems to self-organize via local interaction gives rise to various multi-robot collective22
behaviors (e.g., flocking, formation, area coverage) to achieve team-level objectives (Guo, 2017).23

A plethora of control methods has contributed to the development of multi-robot autonomy that enables24
complex collective behaviors of multi-robot systems. One major control design paradigm focuses on25
decentralized feedback control methods (Cortés and Egerstedt, 2017; Panagou et al., 2015; Bechlioulis26
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et al., 2019) which provide provable control and coordination protocols that can be executed efficiently at run27
time. Control protocols are designed to compute robot actions analytically using robot’s kinematic/dynamic28
model and communication graph that specifies the interaction connectivity for local information exchange.29
Such hand-engineered control and coordination protocols separate the problem into a set of sequentially30
executed stages including perception, state measurement/estimation, and control. However, this pipeline of31
stages could suffer from perception and state estimation errors which compound through the sequential32
individual stages (Loquercio et al., 2021; Zhang and Scaramuzza, 2018). Moreover, such pipeline introduces33
latency between perception and actuation as the time necessary to process perception data and compute34
control command accumulates (Falanga et al., 2019). Both compounding errors and latency are well-known35
issues that impact task performance and success in robotics. Learning-based methods, as another control36
design paradigm, has proven to be successful in learning control policies from data (Kahn et al., 2018; Li37
et al., 2020; Devo et al., 2020; Li et al., 2022). Particularly, owing to the feature representation capability of38
deep neural networks (DNNs), control policies can be modeled to synthesize a control command directly39
from a raw sensor observation. Such control policies are trained to model an end-to-end computation that40
encompasses the traditional pipeline of stages and their underlying interactions (Loquercio et al., 2021).41

Multi-robot learning has long been an active research area (Stone and Veloso, 2000; Gronauer and Diepold,42
2021). Nonetheless, it wasn’t until recent years that challenges originating from real-world complexities43
can be handled with the advancement of deep reinforcement learning techniques. Breakthroughs on44
computational methods have been made to address long-standing challenges in multi-robot learning such45
as non-stationarity (Foerster et al., 2017; Lowe et al., 2017; Foerster et al., 2018), learning to communicate46
(Sukhbaatar et al., 2016; Foerster et al., 2016; Jiang and Lu, 2018), scalability (Gupta et al., 2017).47
Various multi-robot control problems such as path planning (Blumenkamp et al., 2022; Wang et al., 2021),48
coordinated control (Tolstaya et al., 2020a; Yan et al., 2022; Agarwal et al., 2020; Zhou et al., 2019; Tolstaya49
et al., 2020b; Kabore and Güler, 2021; Jiang and Guo, 2020) have been tackled using learning-based50
methods. Despite the remarkable progress in multi-robot learning, the architecture design and learning of51
scalable computational models that accommodate emerging information structures is still an open question.52
For example, it has yet to be understood what and how information should be dynamically gathered given53
the distributed information structure that only allows local inter-robot interaction. Recently, graph neural54
networks (GNNs) (Scarselli et al., 2008) were used to model the information-sharing structure between55
robots. A GNN can be trained to capture task-relevant information to be propagated and shared in the56
robot team via local inter-robot communication. GNNs have become an appealing framework for modeling57
distributed robot networks (Agarwal et al., 2020; Zhou et al., 2019; Tolstaya et al., 2020a,b; Wang and58
Gombolay, 2020; Blumenkamp et al., 2022) due to their scalability and permutation-invariance (Gama59
et al., 2020).60

In this paper, we study a multi-robot formation problem using a learning-based method to find61
decentralized control policies that operate on robot sensor observations. The formation problem is defined62
for the multi-robot team to achieve triangulation formations that constitute a planar graph with prescribed63
equidistant edge lengths. We use a GNN to model the inter-robot communication for learning scalable64
control policies. The GNN is combined with a convolutional neural network (CNN) to process sensor-level65
robot observations. Utilizing a model-based decentralized controller for triangulation formation as an66
expert control, we train the deep neural network (DNN) with a data aggregation training scheme. We67
demonstrate in a robot simulator that the learned decentralized control policy is scalable to different sizes68
of multi-robot teams while trained with a fixed number of robots.69
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The main contributions of this paper is the GNN-based end-to-end decentralized control for multi-robot70
triangulation formation. Comparing to our prior work (Jiang et al., 2019) on learning-based end-to-end71
control of multi-robot formation, this paper achieves decentralized scalable control policy, while our prior72
work (Jiang et al., 2019) adopts centralized training mechanism and the trained policy is not scalable73
and applies to three-robot formation only. Comparing to the recent GNN-based flocking control method74
(Tolstaya et al., 2020a), the triangulation formation studied in this paper imposes additional geometric75
constraints for multi-robot coordinated motion in comparison with the flocking behavior in Tolstaya et al.76
(2020a). Furthermore, our decentralized control scheme is end-to-end and takes robot LIDAR sensor data77
as input directly, while the method in Tolstaya et al. (2020a) takes state values of robot positions as input.78
As mentioned earlier, the end-to-end learning facilitates direct learning from sensor data, and can avoid79
potential compounding errors and latency issues commonly found in conventional design that separates80
perception and control in sequential stages of a pipeline.81

The rest of the paper is organized as follows. Section 2 presents the model of differential-drive mobile82
robots, and formulates our multi-robot cooperative control problem. The GNN-based training and online83
control methods are described in Section 3. Robot simulation results are demonstrated in Section 4.84
Section 5 discusses the main difference compared to existing learning-based methods. The paper is finally85
concluded in Section 6.86

2 PROBLEM STATEMENT

In this paper, we consider a multi-robot cooperative control problem with N differential-drive mobile87
robots. The kinematic model of each robot i ∈ {1, ..., N} is given by the discrete-time model:88  xi(t+ 1)

yi(t+ 1)
θi(t+ 1)

 =

 xi(t)
yi(t)
θi(t)

+G(t) ·
[

uiL(t)
uiR(t)

]
, (1)

where [xi, yi, θi]
T ∈ R3 is the robot state vector that consists of the position pi ≜ [xi, yi]

T and the89
orientation θi; ui ≜ [uiL, uiR]

T ∈ R2 is the control vector with uiL and uiR being the left and right motor90
control, respectively. The matrix G(t) is defined as:91

G(t) =

 ∆T
2 cos θi(t)

∆T
2 cos θi(t)

∆T
2 sin θi(t)

∆T
2 sin θi(t)

−∆T
l

∆T
l

 , (2)

where ∆T is the sampling period and l is the distance between the robot’s left and right wheels.92

We assume that each robot is equipped with a LIDAR sensor to detect neighboring robots. The LIDAR93
measurements are transformed to an occupancy map, denoted by oi(t), serving as the robot’s local94
observation. The proximity graph of the robot team is defined as a Gabriel graph (Mesbahi and Egerstedt,95
2010), denoted as G = (V,E), where V = {v1, ..., vN} is the set of vertices corresponding to the robots96
located at p1, ...,pN ∈ R2 and E is the set of edges. The “line” connecting the vertices vi, vj ∈ V , i ̸= j,97
is said to be an edge if and only if the circle of diameter, ∥pi− pj∥, containing both vertices vi and vj does98
not contain any vertex in its interior. An example of a valid and an invalid edge of a Gabriel graph can be99
seen in Fig. 1. Robots i and j associated with vertices vi and vj , respectively, are said to be neighbors and100
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(a) (b)

Figure 1. Gabriel graph: (a) robot i and j are not neighbors as robot k exists in the circle whose diameter
is defined by the distance between robots i and j; (b) robot i and j are valid neighbors as there are no other
robots in the circle.

can communicate if {vi, vj} ∈ E. Note that the proximity graph G is time-varying as a robot’s neighbors101
vary when they move around.102

The objective of the cooperative control is to find a decentralized control protocol for each robot such103
that, starting from any initial positions that there’s at least one robot within the neighborhood of each robot104
(i.e., the initial proximity graph G is connected), the group of robots achieves triangulation formations105
with a prescribed inter-robot distance, d∗, for all pairs of robots {vi, vj} ∈ E. That is, ∥pi − pj∥ → d∗ as106
t→∞, ∀(vi, vj) ∈ E.107

To address the formulated multi-robot coordination problem, we propose a learning-based method to108
find a decentralized and scalable control policy that can be deployed on each robot. A GNN in conjunction109
with a CNN will be used as the parameterized representation of the control policy. The neural network110
policy is decentralized in the sense that only local information obtained by each robot is used to compute a111
control action. We show in simulation experiments that, owing to the scalability of the GNN representation,112
the learned control policy is scalable in that once trained with a given number of robots, the policy is113
applicable to different sizes of robot team with the team size remaining unchanged during operation. In the114
next section, we introduce the architecture and training of the neural network control policy.115

3 METHOD

3.1 Overview of Learning-based Cooperative Control116

The overview of the proposed learning-based multi-robot cooperative control is shown in Fig. 2. The117
decentralized control policy is parameterized by a DNN consisting of a CNN, a GNN, a multi-layer118
perceptron (MLP) network, and a fully-connceted (FC) network as shown in the dashed box. The CNN119
extracts task-relevant features from an occupancy map obtained by the robot’s own onboard LIDAR120
sensor. The features from the robot’s local observation are communicated via the GNN which models the121
underlying communication for information propagation and aggregation in the robot network. Given the122
features aggregated locally via the GNN, the MLP and FC layers compute a robot control command as the123
final output. The DNN policy can be expressed by124

ui = π(oi;G,Θ), ∀i ∈ {1, ..., N}. (3)

To compute a control action ui, the policy (3) uses each robot’s own observation oi and the local125
information aggregated from current neighboring robots determined by the proximity graph G that the126
GNN has access to. Θ is the tensor of parameter of the DNN which is tuned during policy training.127
During online control, the DNN policy computes robot control end-to-end through a feed-forward pass in a128
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Figure 2. The overall diagram of the end-to-end GNN-based decentralized formation control.

decentralized manner. It’s worth noting that the GNN block shown in Fig. 2 represents data exchange within129
the entire robot team through local communication and does not signify a central communication unit. The130
computation of GNN is decentralized as each robot aggregates local information from its neighbors only.131
More details of the computation of GNN are presented in Section 3.2.132

We train the policy (3) via learning from demonstrations (LfD), and a model-based controller is used as133
an expert controller to provide demonstration data. The data set is composed of pairs of robot observation134
oi and expert control action u∗

i associated with that observation. The policy training then amounts to135
finding the optimal parameters Θ that minimize the following loss function (for a single data sample):136

L(Θ) =
1

2
∥π(oi;G,Θ)− u∗

i ∥2. (4)

The loss function measures the difference between the neural network controller’s output given by137
π(oi;G,Θ) and the expert controller’s output u∗

i computed in the same system state from which the138
observation oi is obtained. Minimizing the loss function encourages the policy to imitate the control139
strategies of the model-based decentralized controller.140

3.2 Graph Neural Network141

The feature vector xi ∈ RF extracted by the CNN on each robot i will be communicated to its neighbors142
by one-hop communication via the GNN. The GNN architecture adopted in this paper is the aggregation143
GNN (Gama et al., 2018). Each layer of the GNN performs a graph convolution that aggregates information144
from neighboring robots. The information aggregation with k-hop communication in the robot network at145
time step t creates a signal:146

Z(t) =
[
X(t),SX(t),S2X(t), ...,SkX(t)

]
∈ RN×F (k+1),

where X(t) = [x1(t),x2(t), ...,xN (t)]T ∈ RN×F is the collection of feature vectors of all robots and147
S(t) ∈ RN×N is the Graph Shift Operator (GSO) (Gama et al., 2018). The GSO is defined as a local linear148
operation applied to graph signals (e.g., the feature vector xi(t)) (Gama et al., 2018). Specifically, the f -th149
element of the feature vector for robot i after applying the GSO with one-hop (i.e., k = 1) communication150
is given by:151

[SX(t)]if =
N∑
j=1

[S]ij [X(t)]jf . (5)
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The GSO is associated with the graph structure, and in our problem it is defined as the adjacency matrix,152
i.e., [S]ij = 1 if robot i and j are neighbors, otherwise [S]ij = 0.153

Each row i of Z(t), denoted by zi ∈ RF (k+1), is a local signal representing the information vector154
aggregated on the i-th robot. The local signal zi is then convolved with a bank of FG filters, denoted155
by h ∈ RF (k+1)×G, to produce an output feature vector: yi = σgnn

(
hTzi

)
∈ RG, where σgnn(·) is a156

point-wise nonlinear activation function. The elements of h represent the learnable filter weights which157
are shared by all robots. The local feature vector, yi, is fed into the MLP and FC layers of each robot’s158
local policy to compute an robot control command. More details of the aggregation GNN used in this paper159
can be found in Gama et al. (2018). Note that we specifically use one-hop communication (i.e., k = 1)160
and select the the number of GNN layers to be one (i.e., the graph convolution operation σgnn(·) is only161
performed once per time step) to reduce the communication load at each time step.162

It is worth mentioning that our proposed policy model inherits the scalability property of the GNN. The163
scalability of GNNs stems from their permutation equivariance property and stability to changes in the164
topology (Gama et al., 2020). These properties allow GNNs to generalize the signal processing protocol165
learned at local nodes to every other node with similar topological neighborhood.166

3.3 Policy Training167

3.3.1 Expert Controller168

The model-based controller (Mesbahi and Egerstedt, 2010) for multi-robot triangulation formation169
problem was employed as the expert controller to provide training data. The expert controller achieves170
triangulation formations by minimizing the potential function associated with robots i and j, i.e.,171

Uij =
1

2
(∥pi − pj∥ − d∗)2, ∀{i, j} ∈ E. (6)

The potential function takes on its minimum at the prescribed inter-robot distance, d∗. Assuming single-172
integrator dynamics of the robots, i.e., ṗi = vi, the control law is given by173

vi = −Kc

∑
j∈Ni

∥pi − pj∥ − d∗

∥pi − pj∥
· (pi − pj), (7)

where robot j belongs to the neighbors of robot i, Ni, defined by the Gabriel graph and Kc is the control174
gain. When the inter-robot distance is greater than d∗, the controller exerts attractive force through the175

positive weight ∥pi−pj∥−d∗

∥pi−pj∥ . When the inter-robot distance is smaller than d∗, the controller repels the176

robots away from each other as the weight becomes negative. At convergence, the neighboring robots form177
triangulations with the distance d∗.178

The control input, vi, computed by the expert controller for the single-integrator model is converted to179
the motor control of the differential-drive robot model, ui, using coordinate transformation method (Chen180
et al., 2019). The transformation is given by181 [

uiL
uiR

]
=

[
sin θi +

l
2c cos θi sin θi − l

2c cos θi
− sin θi +

l
2c cos θi sin θi +

l
2c cos θi

]
· vi, (8)
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where l is defined in (2) and c = l/2. Then the differential-drive robot (1) can be controlled by the expert182
controller after transformation.183

3.3.2 Policy Training with DAgger184

The DNN policy was trained via learning from demonstration, and a model-based controller was used to185
provide expert demonstration data. In order to obtain a model sufficiently generalizable to unseen states at186
test time, we used a Data Aggregation (DAgger) training framework (Ross et al., 2011). The idea behind187
this is that an empty data set is gradually “aggregated” by data samples with states visited by a learning188
policy and actions given by the expert. To this end, we picked the learning policy with a probability (1− β)189
to execute a control action at each time step of collecting data samples during training. The probability β190
was initialized to 1 and decayed by a factor of 0.9 after every 50 episodes.191

The policy training with DAgger is outlined in Algorithm 1. As training progresses, the data set D was192
aggregated with data samples in the form of

(
oi(t),S(t),u

∗
i (t)

)
. Since computing a control input by the193

model at time t requires the robot’s local observation oi(t) and the information aggregated through the194
GSO, we recorded S(t) along with the observation-action pair, oi(t) and u∗

i (t), to create a data sample.195
In each training episode, mini-batches of size B were sampled from the data set D to train our model by196
backpropagating the mini-batch gradient of the loss calculated by (4).197

Algorithm 1 Policy Training with DAgger

Require: Observation oi(t), graph shift operator S(t), expert control action u∗
i (t) at each time step t

Ensure: DNN policy π(oi;G,Θ)
1: Initialize data set D ← ∅
2: Initialize policy parameter Θ← Θ0
3: Initialize β ← 1
4: for episode e = 1 to E do
5: Initialize robot state [xi, yi, θi], ∀i ∈ {1, ..., N}
6: for time step t = 1 to T do
7: for robot i = 1 to N do
8: Query an expert control u∗

i (t)← π∗(si(t))
9: Get sample

(
oi(t),S(t),u

∗
i (t)

)
10: Choose a policy πi ← βπ∗ + (1− β)π
11: end for
12: D ← D ∪ {

(
oi(t),S(t),u

∗
i (t)

)
}Ni=1

13: Execute policy πi, ∀i ∈ {1, ..., N}, to advance the environment
14: end for
15: for n = 1 to K do
16: Draw mini-batch samples of size B from D
17: Update policy parameters Θ by mini-batch gradient descent with loss (4)
18: end for
19: Update β ← 0.9β if mod(e, 50) = 0
20: end for
21: return learned policy π(oi;G,Θ)

3.4 Online Cooperative Control198

At test time i.e., online formation control, a local copy of the learned policy π(oi;G,Θ) was deployed on199
each robot as a decentralized controller. At each time step, the local policy received an occupancy map and200
a control action was calculated in a feed-forward pass. One-hop communication was performed between201

Frontiers 7



Jiang et al.

neighboring robots i and j, for which {vi, vj} ∈ E, to aggregate information in a decentralized way. Note202
that the communication graph is defined in Section 2 as a Gabriel graph and shown in Fig. 1. The online203
cooperative control is outlined in Algorithm 2.204

Algorithm 2 Online Cooperative Control

Require: Occupancy map oi(t)
Ensure: Robot control action ui(t)

1: Initialize robot state [xi, yi, θi], ∀i ∈ {1, ..., N}
2: for time step t = 1 to T do
3: for robot i = 1 to N do
4: Obtain an occupancy map oi(t)
5: Aggregate information locally by applying (5) via one-hop communication
6: Compute a control action ui(t)← π(oi;G,Θ)
7: end for
8: Execute the control action ui, ∀i ∈ {1, ..., N} to advance the environment
9: end for

4 EXPERIMENT RESULTS

4.1 Simulation Environment205

The robot control simulation was conducted in the robot simulator, CoppeliaSim (from the creators of206
V-REP). We choose a team of P3-DX mobile robots, each of which has a Velodyne VLP 16 LiDAR sensor207
used to obtain LiDAR data and then converted to occupancy maps. The LiDAR sensors were set to a208
sensing range of 10 meters. The size of the occupancy map created from the sensory reading was 100 pixels209
×100 pixels, making the granularity of the occupancy maps 0.1 meters/pixel. The robot simulator was210
controlled via various Python scripts, as the simulator API can be accessed via local data communication211
to and from the client Python program.212

The computer used to simulate the results has an Intel i7 12900K, 12 core CPU that ran at 3.6 GHz.213
The GPU used for rendering and neural network training and testing was an NVIDIA Titan Xp GPU. The214
PyTorch framework handled the GNN implementation as well as computations for training and testing the215
neural network.216

4.2 DNN Implementation217

The implementation details of the neural network architecture shown in Fig. 2 are given in Table 1. The218
CNN layers were composed of multiple convolutional blocks. The input size of the first convolutional219
block was set to (1, 100, 100) to fit the size of the occupancy map. The extracted features from the input by220
the CNN were flattened into a vector of size (1, 18432), which was further compressed by the compression221
block into a feature vector whose size was (1, 128). That is, the dimension F of xi was set to 128. The222
compressed feature vector was fed to the GNN block and communicated to neighboring robots. The GNN223
consisted of 1 graph convolution layer that produced a new feature vector of the same size with the input.224
That is, the dimension G of yi was set to 128. Muliple MLP blocks took as input the feature vector and225
output the robot control action whose dimension was (1, 2).226
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Table 1. Blocks and parameters of the DNN.

Layer Block Input Size Output Size
Convolutional Max Pool Block 1 (1,100,100) (32,50,50)

Convolutional Block 2 (32,50,50) (32,50,50)
Convolutional Max Pool Block 3 (32,50,50) (64,25,25)

Convolutional Block 4 (64,24,24) (128,12,12)
Convolutional Max Pool Block 5 (128,12,12) (128,12,12)

Feature Compression Block 1 (1,18432) (1,128)
GNN Block 1 (1,128) (1,128)
MLP Block 1 (1,128) (1,128)
MLP Block 2 (1,128) (1,128)

Output MLP Block 3 (1,128) (1,2)

4.3 System Parameters and Performance Metrics227

The desired triangulation formation was set as d∗ = 2 m. We set k = 1 in the k-hop communication.228
The initial conditions of robot positions were randomly generated in a circle of radius 5m, and the initial229
orientation of each robot was randomly chosen from [0, 2π]. The distance l between the robot’s left and230
right wheels is 0.331 m.231

We trained the DNN on a team of five robots. To evaluate the performance of the trained model, we tested232
it on different numbers of robots ranging from N = 4 to N = 9. We define the formation error between233
neighboring robots i and j at time t as: Ei,j(t) = |∥pi(t)− pj(t)∥ − d∗|. The group formation error at any234
time t is defined as: Eg(t) = 1

N

∑
j∈Ni
Ei,j(t).235

During training with N = 5, the data collection period of each training episode (i.e., lines 6-14 in236
Algorithm 1) ran for at most 200 s, and a data point was collected every 0.05 s. We terminated the237
simulation if the temporal average of Eg(t)/d∗ over the most recent 20 s was smaller than 5%. Note that238
when we chose the speed control gain Kc in the expert control (7), there was a tradeoff between the239
converging speed and the steady-state error. A large Kc makes the system converges to the triangulation240
formation faster, but may cause the system to oscillate around the equilibrium. We chose an adaptive241
control gain Kc in (7) to be 1 initially, and then after Eg(t)/d∗ < 0.05, Kc is decreased to slow down the242
robots as they are close to each other.243

During testing, we consider the multi-robot system converged if the group formation error (i.e., the244
temporal average of the group formation error Eg(t)/d∗ over the most recent 20 s) is smaller than 5% or245
10%. We define three performance metrics as follows:246

1. Success rate: Rate = nsuccess/n, is the proportion of successful cases over total number of tested247
cases n. A simulation run is considered successful if it converges before the end of the simulation. We248
present success rate with 5% and 10% tolerance in Table 2.249

2. Converge time: Tconverge is the time when a simulation run converges. That is, the first time that the250
temporal average of the group formation error over the most recent 20 s reaches the 5% threshold and251
then keeps decreasing.252

3. Group formation error defined in percentage: Eg/d∗, where Eg is defined as the temporal average of253
Eg(t) over the last 20 s prior to the end of the simulation.254
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4.4 Training255

We trained the DNN using a five-robot team by running Algorithm 1. The data collection period of each256
training episode (i.e., lines 6-14) ran for at most 200 s, where a data point was collected every 0.05 s. The257
probability value β for picking between the neural network controller and the expert controller at every258
time step started at β = 1 in episode e = 1, and was updated every episode with the formula for episode e259

as βe = 0.9⌊
e
50⌋ where ⌊·⌋ represents the floor operator. Thereby, β decayed by a factor of 0.9 every 50260

training episodes. The loss function used was a mean squared error loss between the expert control that261
was stored and the control that was returned by the learned model. During training, the RMSprop optimizer262
(Mustapha et al., 2020) was used. The learning rate was set to 0.0001 and the size of mini-batch, B, used263
to calculated gradient was set to 16. After training for 200 episodes, the weights were saved for testing.264

4.5 Testing Results265

After training the neural network model using a five-robot team, we tested our end-to-end decentralized266
formation control for robot teams of varying sizes by running Algorithm 2. Random initial conditions were267
used for robot start positions. We demonstrate the empirical and statistical results below.268

The snapshots of nine robots achieving triangulation formation in the CoppeliaSim simulator are shown269
in Fig. 3. The solid black lines represent the formation achieved at different time steps. The testing results270
for different robot team sizes, N = 5, 6, 7, 8, 9, are shown in Fig. 4 from (a) to (e), respectively. The time271
histories of inter-robot distance (i.e., dij(t), i = 1, . . . , N, j ∈ Ni), and the trajectory of each robot are272
shown in the top and the bottom of the figures, respectively. We can see that the robot team achieves the273
desired triangulation formation and maintains the desired neighboring distance d∗ = 2 m. More simulation274
results for robot team sizes can be found in the supplementary video file submitted together with this paper.275

t = 0 s t = 10 s t = 20 s t = 30 s t = 40 s t = 50 s

Figure 3. Snapshots of online formation control of nine robots in CoppeliaSim simulator. The colored
arcs visualize the LiDAR scanning.

To evaluate scalability, we ran testing experiments with 100 different robot initial conditions for each276
of the robot-team sizes from 4 to 9. The success rate for different robot-team sizes are shown in Table 2.277
We can see that the success rate achieves 100% for any team size with the 10% tolerance (i.e., the group278
formation error Eg/d∗ is smaller than 10% as defined in Section 4.3). With the 5% tolerance threshold,279
the success rate decreases as the number of the robots increases. This is due to the fact that when robots280
get closer to the desired formation, small motion uncertainties cause oscillations of trajectories, and the281
oscillations persist more when the number of robots increases. This phenomenon can be mitigated by282
reducing the speed control gain Kc further after the robots reach around the desired formation. However,283
tuning this control parameter is tedious and is by trial and error. The success rate reported in this table were284
obtained using one set of Kc. Thus, we can see that our method possesses good scalability, that is, while285
trained with a 5-robot team, the DNN policy can be applied to different sizes of robot team.286
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(a) (b) (c) (d) (e)

Figure 4. Testing results for: (a) five-robot team (N = 5), (b) six-robot team (N = 6), (c) a seven-robot
team (N = 7), (d) eight-robot team (N = 8), and (e) nine-robot team (N = 9). Top row: Time histories
of inter-robot distance, dij(t), i = 1, . . . , N, j ∈ Ni; Bottom row: Robot trajectories with robot positions
(denoted by colored small triangles) sampled every 10 s, and the black solid lines indicate the final
formation achieved.

Table 2. Success rates over 100 runs.

Number of robots: 4 5 6 7 8 9
Success rate % (5% tolerance): 100 100 98 90 78 64
Success rate % (10% tolerance): 100 100 100 100 100 100

To further evaluate performance, we tested 100 initial conditions for each of the multi-robot teams with287
sizes from 4 to 9. We show in Fig. 5(a) the box plot of the group formation error Eg as defined in Section288
4.3. We can see that the median formation errors are between 2% to 6% for robot team sizes from 4 to 9.289
Fig. 5(b) shows the box plot of the convergence time Tconverge. we can see that the median convergence290
time is around 15 s. From Fig. 5, we can see that while the DNN model was trained using a five-robot team,291
the learned controller is scalable to other sizes of multi-robot team and the performance are satisfactory292
under the metrics of group formation error and convergence time.

(a) (b)

Figure 5. Box plot for 100 initial conditions of multi-robot testing. The central mark in each box
is the median, the edges of the boxes are the 25th and 75th percentiles, the whiskers extend to the
maximum/minimum, and the circles represent outliers. (a) Group formation error for multi-robot teams
with sizes from 4 to 9; (b) Convergence time for multi-robot teams with sizes from 4 to 9.

293
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To further compare the performance between the expert control and our trained DNN models, we show294
the box plot of 100 initial conditions for the 5-robot case in Fig. 6. We can see that the expert control295
achieved 1.76% in median formation error and 12.9 s in median convergence time, while our DNN model296
achieved 3.12% and 18.2 s, respectively. We can see that the expert policy outperforms the end-to-end297
policy slightly. This is expected given that the expert policy, as defined in (7) and (8), uses the global298
position of the robots, which is assumed to be observable perfectly. The end-to-end policy, on the other299
hand, uses LiDAR observations as input which is noisy. It should be noted that the goal of the proposed300
method was not to outperform the expert controller given ideal state measurements. The main advantages301
of our method over the expert controller are that 1) the end-to-end computational model by our method302
mitigates accumulation of error and latency in traditional pipeline of computational modules used by the303
expert control method; 2) our method does not need a localization system to obtain global robot positions,304
reducing overall system complexity.

Figure 6. Comparison between the expert control and our trained DNN model for the 5-robot case with
100 initial conditions.

305

4.6 Other Formation Shapes306

The triangulation formation control we designed can be extended to other formation shapes, such as307
line formation and circle formation. For such cases, we used additional landmarks (i.e., stationary robots308
positioned at pre-selected reference positions for other robots to achieve formation objectives) and modified309
the expert controller to achieve the desired formations.310

Line formation: The objective of the line formation is for the robots to position themselves at an equal311
distance from one another in a line between two landmarks . We simulated a 7-robot team with 2 stationary312
robots serving as landmarks that were 14 meters apart at each end of the desired line. The other 5 robots313
were controlled by the same expert controller (7) and (8) that we used for the triangulation formation. We314
ran the same training algorithm (i.e., Algorithm 1) with the same hyperparameters as before. Fig. 7(a)315
shows the testing result that the robots achieved the desired line formation.316

Circle formation: The objective of the circle formation is for M robots to position themselves into an317
M -sided regular polygonal formation with a landmark at the center. We simulated using M = 6 robots318
with one additional robot stayed stationary at the desired center position. We modified the expert controller319
(7) to the following:320

vi =−Kc

∑
j∈Ni

∥pi − pj∥ − d∗

∥pi − pj∥
· (pi − pj)

−Kl
∥pi − pl∥ − d∗

∥pi − pl∥
· (pi − pl),

(9)

Frontiers 12



Jiang et al.

where d∗ = 2 is the radius of the circle, pl = (0, 0) is the position of the center robot, and the control gains321
were set to Kl = 10, Kc = 1. We ran the same training algorithm (i.e., Algorithm 1) with the modified322
expert control above with the same hyperparameters as before. Fig. 7(b) shows the testing result that 6323
robots achieved the desired circle formation.324

Comparison with other works: To empirically compare our method with other learning based method325
on formation control, we used the publicly available implementation of the work (Agarwal et al., 2020)326
to evaluate performances of both line formation and circle formation for 100 trials. In the case of line327
formation, the mean of the group formation error, Eg/d∗ (as defined in Section 4.3), obtained in Agarwal328
et al. (2020) was 7.4% with a standard deviation (SD) 2.9%; and using our method, the mean was 1.8%329
with SD 1.1%. In the case of circle formation, the formation error obtained in Agarwal et al. (2020) was330
4.2% with SD 1.2%, and ours was 3.4% with SD 1.4%. Note that our simulation was implemented with331
realistic robot models in a robot simulator, while Agarwal et al. (2020) used a point mass robot model.332
Thus our method achieves comparable or better formation error with more complicated robot models.

(a) (b)

Figure 7. Other formation shapes: (a) Line formation; (b) Circle formation. Robot positions (denoted by
colored small triangles) are sampled every 10 s. The black solid lines indicate the final formation achieved.

333

5 DISCUSSION

To further compare our proposed method with recent work on learning-based multi-robot control, we334
summarize in Table 3 the main differences. Existing methods can be categorized into reinforcement335
learning (RL) (such as Agarwal et al. (2020); Li et al. (2022); Yan et al. (2022); Blumenkamp et al. (2022))336
and learning from demonstration (LfD) (such as Li et al. (2020); Tolstaya et al. (2020a) and our work),337
depending on the training paradigm. The RL method does not require an expert policy, but its trial-and-error338
nature could make the training intractable for multi-robot systems. The intractability issue exacerbates339
when a realistic environment is considered, where the dimensionalities of the robot state and observation340
spaces increase dramatically. As shown in the table, the RL-based methods (Li et al., 2022; Yan et al.,341
2022; Blumenkamp et al., 2022) were only validated for up to 5 robots when a realistic robot model was342
considered. It’s noteworthy to mention that Li et al. (2022) incorporated LfD into RL to mitigate the343
training intractability issue. Agarwal et al. (2020) used up to 10 robots for validation, however, the robot344
model was simplified as point mass. In contrast, our method employs a LfD paradigm which exploits expert345
demonstrations to guide the control policy search, thus considerably reduces the policy search space. Our346
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method was validated for up to 9 robots with a realistic robot model and high-dimensional observation347
space. Indeed, formation control of multi-robot systems has been well studied in the control regime348
using analytical model-based methods (Guo, 2017; Cortés and Egerstedt, 2017), and the dynamic model-349
based expert controller used in this paper is mathematically provably correct and guarantees formation350
convergence of multi-robot systems (Mesbahi and Egerstedt, 2010).351

The scalability of a control policy was evaluated by testing it with different numbers of robots than that352
in training. Among the RL-based works, Yan et al. (2022) and Li et al. (2022) did not demonstrate353
the scalability of their methods. Agarwal et al. (2020) used a GNN architecture, but the zero-shot354
generalizability (i.e., a policy trained with a fixed number of robots is directly tested with a different355
number of robots) is low as the success rate of the learned policy decreases when the number of robots356
in testing differs from that in training. However, they showed that the scalability can be improved when357
curriculum learning is exploited. Li et al. (2020), Tolstaya et al. (2020a), and our work adopted GNN358
architectures with LfD training paradigm and demonstrated a high level of scalability. Another advantage359
of our approach is that it does not need localization to obtain global positions of the robots to compute360
control actions as required in other works (Agarwal et al., 2020; Li et al., 2022; Tolstaya et al., 2020a;361
Blumenkamp et al., 2022).362

Table 3. Summary of works on learning-based multi-robot control

Reference Tasks Method/ Robot Model Policy Input # of Robots Scalability Need
Architecture Trained (Tested) Localization

Agarwal et al. (2020)
Coverage, line,

RL/GNN Point mass Absolute pose 5 (2-10) Yes Yes
formation

Li et al. (2022) Path planning
RL+LfD/

Holonomic
LiDAR,

3-5 (3-5) No Yes
CNN+FC velocity, position

Yan et al. (2022)
Formation +

RL/RNN
Ackermann- Distance,

3-5 (3-5) No No
path planning steering angle

Blumenkamp et al. (2022) Path planning RL/GNN Holonomic Absolute pose 5 (5) − Yes

Li et al. (2020) Path planning
LfD/

Point mass Binary map 4-12 (4-14) Yes No
CNN+GNN

Tolstaya et al. (2020a) Flocking LfD/GNN Point mass Absolute pose 100 (50-150) Yes Yes

This Paper Triangulation LfD/
Nonholonomic LiDAR 5 (3-9) Yes No

formation CNN+GNN

“−” represents the case where result was not presented.

6 CONCLUSION

In this paper, we have presented a novel end-to-end decentralized multi-robot control for triangulation363
formation. Utilizing GNN’s capability to model inter-robot communication, we designed GNN-based364
algorithms for learning scalable control policies. Experimental validation was performed in the robot365
simulator, CoppeliaSim, which has showed satisfactory performance for varying size of multi-robot teams.366
Future work includes implementation on real robot platforms and testings.367
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FIGURE CAPTIONS

(a) (b)

Figure 1. Gabriel graph: (a) robot i and j are not neighbors as robot k exists in the circle whose diameter
is defined by the distance between robots i and j; (b) robot i and j are valid neighbors as there are no other
robots in the circle.
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Figure 2. The overall diagram of the end-to-end GNN-based decentralized formation control.

t = 0 s t = 10 s t = 20 s t = 30 s t = 40 s t = 50 s

Figure 3. Snapshots of online formation control of 9 robots in CoppeliaSim simulator. The colored arcs
visualize the LIDAR scanning.

(a) (b) (c) (d) (e)

Figure 4. Testing results for: (a) five-robot team (N = 5), (b) six-robot team (N = 6), (c) seven-robot
team (N = 7), (d) eight-robot team (N = 8), and (e) nine-robot team (N = 9). Top: Time histories of
inter-robot distance, dij(t), i = 1, . . . , N, j ∈ Ni; Bottom: Robot trajectories with robot positions (denoted
by colored small triangles) drawn every 10 s, and the black solid lines indicate the final formation achieved.
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(a) (b)

Figure 5. Box plot for 100 initial conditions of multi-robot testing. The central mark in each box
is the median, the edges of the boxes are the 25th and 75th percentiles, the whiskers extend to the
maximum/minimum, and the circles represent outliers. (a) Group formation error for multi-robot teams
with sizes from 4 to 9; (b) Convergence time for multi-robot teams with sizes from 4 to 9.

Figure 6. Comparison between the expert control and our trained DNN model for the 5-robot case with
100 initial conditions.

(a) (b)

Figure 7. Other Formation Shapes: (a) Line formation; (b) Circle formation. Robot positions (denoted by
colored small triangles) are drawn every 10 s. The black solid lines indicate the final formation achieved.
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