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containing a single photon. We reformulate the problem as an integro-differential equation
for the atomic degrees of freedom, and describe an efficient solver for the case of a
Gaussian atomic density. The problem of history dependence arising from the integral
formulation is addressed using sum-of-exponentials history compression. We demonstrate

gﬁx%ﬁ optics the solver on two systems of physical interest: in the first, an initially-excited atom decays
Nonlocal partial differential equations into a photon by spontaneous emission, and in the second, a photon pulse is used to an
Volterra integro-differential equations excite an atom, which then decays.

Sum of exponentials compression © 2022 Elsevier Inc. All rights reserved.

1. Introduction

Many-body problems in quantum optics are of interest in the study of cold-atom systems, quantum waveguides, and
quantum semiconductor devices, among others, with applications to quantum computing, quantum information processing,
and precision measurements [1-8)]. The simplest such problem arises in a system of two-level atoms interacting with a
single photon. In this setting, the propagation of a single-photon state is governed by the system of partial differential
equations [9]

idux, t) =c(—A)"2ux, t) + gp®ax,t), (x,t) e R, )
ida(x, t) = Qa(x, t) + gu(x, t).

Here u is the probability amplitude for creating a photon, a is the probability amplitude for exciting an atom, p is the
atomic number density, € is the atomic resonance frequency, and g is the atom-field coupling constant. The amplitudes
obey the normalization condition
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which has the interpretation that |u|? is the one-photon probability density and that p|a|? is the atomic probability density.
In physical terms, (1) describes the process of collective spontaneous emission. That is, suppose that an atom is initially in
its excited state and there are no photons present in the field. The atom can then decay, transferring its excitation to the
field, which can then excite the remaining atoms, causing them to decay in a similar manner and so on.

Eq. (1) has been investigated in several cases of interest, including a single atom, a uniform medium of constant density,
and a statistically homogeneous random medium [9]. This paper is the first in a series devoted to the analysis and numerical
solution of (1). We note that standard numerical methods are not readily applicable to this problem, which was originally
introduced in Ref. [9], and to our knowledge this is the first paper which discusses its numerical solution. In order to
illustrate the difficulty, we outline the drawbacks of two possible approaches.

Physical domain discretization We could consider discretizing the first equation in (1) directly in physical space using a finite
difference or finite element method, and then solve the resulting system of ODEs. However, the nonlocal character of the
fractional Laplacian operator (—A)!/2, which is given by
r (d+_1)
2 f&)—fW)
1/2
a0 = [ | d
2 R

(
X — y|d+1 ?

T

leads to two related difficulties. First, any discretization of the operator would produce a dense matrix, leading to a large
cost per time step in the absence of suitable fast algorithms. Perhaps more importantly, the photon field u(x, t) would need
to be discretized on a domain containing its full numerical support, which spreads rapidly. This would, in practice, limit
simulations to very short times. One possible remedy would be to truncate the computational domain and impose suitable
artificial outgoing boundary conditions, but for large systems the cost of discretizing the photon field in the truncated
computational domain would remain an issue.

Fourier domain discretization The above observations suggest working in the Fourier domain, in which the action of the
fractional Laplacian is diagonal:

1 : ~

_ 1/2 _ i&-x

(=4) f(x)_—(zmd/e €] f(&)dé,
Rd

where T(g) is the Fourier transform of f, which is defined by

fE = / e X f(x) dx.
]Rd

One could design a Fourier pseudospectral method, such that at each time step, the action of the fractional Laplacian
is computed in the Fourier domain, and the product p(x)a(x,t) is computed in the physical domain. Such methods are
commonly used to solve PDEs of evolution, such as the time-dependent Schrédinger equation, involving a Laplacian term
diagonal in the Fourier domain, and a second term which is more easily computed in the physical domain [10,11]. Here, we
encounter the Fourier domain manifestation of the same problem. Namely, spreading in the physical domain corresponds
to oscillation in the Fourier domain, and we obtain a photon amplitude which becomes more and more oscillatory in the
Fourier domain as time progresses. As a result, one would expect the computational cost to scale at least quadratically with
the propagation time.

Our approach is to recast (5) as a Volterra integral equation for the atomic amplitude. In particular, we eliminate the
photon field using a suitable Green’s function, obviating the need to discretize large spatial domains. The number of degrees
of freedom in the required discretization depends only on the size of the support of p. As such, our method enables fast
and accurate simulations over long times.

We begin by constructing the Green’s function for the homogeneous part of the equation describing u, which satisfies

i0:G(x,t) =c(—A)?G(x, t)

lim G(x,t) = 8(x). (3)
t—0t

The solution in the Fourier domain is given by
G, 0 =e kI, 4)

This implies that in the case g =0, u(&,t) is given by

u(g, t) =G(&, t)ip(5) = e "By (e),

from which the oscillatory behavior is clear.
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We wish to make use of the Green’s function representation of u(x, t), but to avoid discretizing it in the Fourier domain.
To proceed, we rewrite (1) as

idrux, ) = c(—=A)"2ux, t) + %p(x/o)a(x, t),

idra(x, t) = Qa(x,t) + gu(x, t), 5)
u(x,0) =uog(x),
ax,0) =ap(x),

where the density p has been rescaled by the length o, which characterizes the spatial extent of the atoms. Next we
p&x/o)

reformulate (5) as a Volterra integro-differential equation in the unknown b(x, t) = Ta(x, t) alone. Applying the Duhamel
principle to the first equation in (5) gives
t
. 8
ux,t) = / G(x—y,Duo(y)dy — L / f Gx—y,t—s)p(y/o)a(y,s)dyds. (6)
Rd 0 Rd

Substituting the above into the second equation in (5) and multiplying by p(x/c)/c¢ gives

ab(x,t) = —iQb(x,t) — g°

t
p(X/da)//G(x—y,t—s)b(y,S)dde—igp(X/G)U(X’ 0, @

o od
0 Rd

where we have defined

Ux,t) = / G(x—y,Hue(y)dy,
Rd
which is the free evolution of the photon amplitude ug(x). If (7) is solved, the photon amplitude can be recovered as a
matter of post-processing using (6).

The main advantage of solving (7) over the formulations mentioned above is that for a localized density p(x), b(x,t)
remains localized as well. The price we pay is a dense dependence of the solution b(x, t) on its history b(x,s) for 0 <s <'t.
Indeed, it appears that each time step, we must evaluate the history integral on the right hand side of (7). This leads to
an algorithm which, for a given accuracy, has a computational cost scaling as O (Nz) in the number N of time steps, and
a memory requirement scaling as O (N). This is a typical challenge associated with the application of Volterra integral
operators, and several techniques have been proposed to address it, particularly in the context of solving Volterra integral
equations [12-18] and applying Volterra integral operators corresponding to nonlocal transparent boundary conditions [19-
24]. We will make use of one such approach - the sum of exponentials approximation method - to obtain a high-order
accurate numerical method with O (NlogN) computational complexity and O (log N) memory complexity.

We focus in this article on the case of a Gaussian atomic density in one spatial dimension. There is no fundamental
difficulty in extending our method to densities comprised of sums of Gaussians, and to three spatial dimensions. These
extensions will be addressed in a forthcoming publication. A generalization to other densities may also be possible, but
Gaussian and sum-of-Gaussian densities are a suitable physical model for many systems of contemporary interest. We will
see that the present case already exhibits nontrivial dynamics which are expected to appear in three dimensions as well.

This article is organized as follows. In Section 2, we describe the mathematical setup for our numerical method. We
describe our high-order time-stepping algorithm in Section 3, and fill in technical details involving the representation and
evaluation of certain special functions in Section 4. In Section 5 we present numerical results which demonstrate the ac-
curacy of the method and give insight into the behavior of the solution for two physically meaningful examples. Section 6
concludes with a discussion of several open questions and future research directions.

2. Problem setup

To set up our numerical method we will represent the atom amplitude a(x, t) in the one-dimensional case by an expan-
sion
p—1

ax,t) =Y an(t) fn(x/0). (8)
n=0

Here { fn(x)}ﬁ;g are the first p polynomials orthonormal with respect to p(x), so that { fn(x/a)}ﬁ;a are orthonormal with
respect to the scaled density p(x/0)/o. We will first derive a coupled set of Volterra integral equations (VIEs) for the modal
coefficients a, (t). We will then obtain explicit expressions for the case in which the atomic density p is a Gaussian. Finally,
we will show how to recover the photon amplitude from the coefficients a, of the atom amplitude.

3
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2.1. Volterra integral equation for the atomic degrees of freedom

Substituting (8) into (7), integrating against fr;(x/o0), and defining
1 o0
Un(t) = — [ Px/0) fm(x/o)U(x, t) dx,
—00

we obtain

O (£) = —1Qan ()

g2 P 1
- / (X/o)fm(X/G)/an(S) / Cx—y,t—=5)py/o)fa(y/o)dydsdx —igUn(t),

—0o0

where the dot denotes a derivative with respect to time. From (4), we have

1 T
- i(§x—cl|t)
Gix0 =5 /e s
which gives
| oot tutss / an(s) f G(x = y.t = 9)p(y/0)an(s) fu(y /o) dy dsdx
z t )
:%/an(s)/ 71C|§|(f s) (/ léxp(X/O‘)fm(X/O‘)dx) (/ léyp(y/d)fn(y/a)dy) d& ds
0 —00

o

o f an(s) f eI ([ F () (p fo) () dE d

t o0
2 .
= ;’—ﬂ f an(s) [ e, (08) de ds,
0 0

where

Pinn(§) = ¢ (E)Pn (=€) + ¢m(=E)¢n (&)

with

n(€) = (0 fn) ().
Defining

Jmn () = / e Dy (£) dE,

0
we obtain
g
(m () = —iQam (t) — Sno / Jmn (= — s) an(s)ds —igUp(t).
n=0 0

The change of variables

am(t) = e ap(t) 9

gives
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2 Pl ]

in(®) = =55 5[99 fn (S0 =) ) ds — ige ™ Un 0.

2no
"=%0

Il
=}

Integrating both sides in time and swapping the order of integration yields

5 p—1 t t
C .
() + 2g_ /Kmn (£-9)an(s)ds =an(0) —ig/e’QSUm(s)ds (10)
e = ) o J
with
t
: Qo
Kmn () :/el?sjmn(s)ds- (11)
0
The above is a collection of coupled second-kind VIEs for oy, (t), m=0,..., p—1, from which a(x, t) can be recovered using
(8) and (9).

We pause to consider the calculation of the total probability, given as in (2) by

1=% / |a(x,t)|2,o(x/a)dx+/|u(x,t)|2 dx = Pg(t) + Py (t). (12)

Here, we have defined P, and P, as the atomic and photonic contributions to the total probability, respectively. It is
straightforward to calculate Pg4, a quantity of physical interest, within our framework:

l o0
Pa(t) = — / la(x, )| p(x/0) dx

P1P1

= Y Y aomo f FA (/o) 108/ p (/o) dx (13)

n=0 m=0
p-1 p—1
=Y la®FP =) lan(®).
n=0 n=0

2.2. Gaussian atomic density

Let us take the atomic density to be a Gaussian,

—x2

p@x) = eﬁ
Then
Hp(%)
V2’

with H;, the Hermite polynomial of degree n, defined by

fa®) =

Hp(x)e™™ = (—1)"£e—xz. (14)
dxn
The above follows from the formula [25, Eqn. 7.374.1]
o
/ Hun () Hp(x)e ™ dx = /7 2"
—0o0

Taking the Fourier transform of (14) gives

$n(&) = (pf) (&) = ‘s"e*S ., (15)

\/_



J.G. Hoskins, J. Kaye, M. Rachh et al. Journal of Computational Physics 473 (2023) 111723

In particular, we find that ®,;;,(§) =0 if m is even and n is odd or vice versa, and otherwise
(=DM (=)™ m+n6752/2
A/ 2m+n=2mn| .

We remark that the vanishing of &, for odd m +n is a consequence of the symmetry of p. For more general densities, all
@ will be non-zero. The kernel J, is then given by

Prmn(§) =2(=1)"@m(E)¢n(§) =

=D™M(=)™" [ o2 /2-ikt
Jn®) = o f ¢ d

if m and n are even or odd together, and zero otherwise. We define

jn®) = —— / o€ -i¢t g, (16)
T

Here T is the Gamma function, and the normalization is chosen so that j,(0) = 1. A change of variables gives

m-+n+1 )

Jmn () = O F(ﬁ Jmn <ft> ifm+n=0 (mod 2)

0 otherwise.

We also define

kn(6) = [ €S jn(v/25)ds (17)

O~

so that

_1\m _'m+nr(m+§+l) i =
Ko (6) = (=DM (=) \/@ kmyn(@) ifm+n=0 (mod 2) (18)

0 otherwise.
2.3. Recovering the photon amplitude
The photon amplitude is given by (6). The first term, U(x,t), describes the contribution to the amplitude of the initial

photon field configuration, and is straightforward to compute by Fourier transform as long as ug is well-behaved.
For the second term, we write

t oo
u(x,t)—U(x,t):—%//G(x—y,t—s)p(y/o)a(y,s)dyds

t o o0
s [ [ e [ eiorpiyoray.sydeds
0 —o0 —00

T 270
p

~1
lg

270

an(s) / e lclEIt=9)itx / e Y p(y/0) fu(y/o)dydE ds

=0 %

=

o0

an(s) / e ICEIt=9)/0ol6X/0 4, (£) dt ds

=

___is

T 2mo

=
o

_.
- o\w O\w

o

=5 Z/a (S)/ picE(t— s)/a( zéx/a¢ (S)_i_e—lsx/ad)n( $)> d& ds.

Once we have solved (10), we can recover the coefficients an(t) from (9), and compute the photon amplitude as above. In
the case of a Gaussian atomic density, (15) and (16) yield
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ulx,t) —U(x,t)

. p-1 .n L %
_ 18 (=1) —ick(t—s)/o—&2/4 [ ,iEx/o £n n,—igx/o £n
=3 ; o an(s)/e (e EN 4 (—1)le—iE¥/0 g )dsds

n t
(=28 () 2(c(t—s) —x)
270 Z Jn /a"( )[ < o )

0
s (22 as

after some manipulation.

3. Discretization and numerical solution

We use a high-order implicit Gauss-Legendre collocation method to discretize and solve the VIE (10). As is typical
with VIEs, the primary computational bottleneck is the evaluation of history integrals at each time step. The naive cost
of these evaluations scales quadratically with the total number of time steps, but we will show that it can reduced by
splitting the history integrals into local and history parts, and deriving recurrences for the latter using sum-of-exponentials
representations of the kernels Ky (t).

We begin by describing our discretization scheme. We divide the time interval [0, T] into N uniform subintervals {[(j —
1)At, ]At]}] _o» With At =T/N. Let {‘L’k}g;(l) be the collection of g Gauss-Legendre nodes, rescaled and shifted to the interval
[0, At]. We place q Gauss-Legendre nodes on each subinterval, so that the full set of collocation nodes is given by ¢, =
(—DAt+7 for j=1,...,Nand k=0,...,q—1.

We denote the numerical approximation of am(tjk) by o j k. In addition to this so-called grid representation of the
numerical solution, we will also sometimes represent the numerical solution on a subinterval [(j — 1)At, jAt] by

g-1 A
a(t)~ Y, jkPy(D), (19)
k=0

where P,]((t) is the Legendre polynomial of degree k on the interval [(j — 1) At, jAt]; that is, P,{ (t) = Pp(t—(j — 1) At), where
Py (7) is the Legendre polynomial of degree k on [0, At]. One can transform back and forth between the grid representation
am,jk and the Legendre coefficient representation @, j on the jth subinterval by interpolation of the expansion (19) at
the Gauss-Legendre nodes ¢ ji. Indeed, we have

q—1 q—1
R § Jeb v . — § =
Om, jk = P, (t]k)am,],l = Pl(fk)am,j,l,
1I=0 =0

and the matrix 7y = P;(ty) is well-conditioned [26]. We can therefore obtain the grid representation from the coefficient
representation by applying 7, and the coefficient representation from the grid representation by applying 7 1. We refer to
71 as the discrete Legendre transform matrix.

We split the integral operator in (10) into three pieces:

t ¢ (j-nat &

/Kmn(t—S)an(s)ds / + / +/ Kmn(g(t—s))ozn(s)ds

0 (j—1At tr 0

= Cm,n,j(t) + Lm,n,j(t) + Hm,n,j(t)~

Here, the labels of the three integrals stand for current-time, local, and history, respectively. We define tjf =
max (0, (j — M)At) for a fixed positive integer M < N, which is the number of time steps in the current and local in-
tervals in the time domain. The local interval is empty initially, and grows to a maximum length of (M — 1) At, whereas the
history interval is empty until j = M + 1, after which it grows by At each time step. The splitting into local and history parts
is made because the sum-of-exponentials representation of K, (t) is only valid sufficiently far into the history, and later M
will be chosen based on this domain of validity. The further splitting off of the current time part is made to conveniently
address implicit time-stepping.

To discretize, we use the notation Cpn jk ~ Cinn,j(tjk) = Cmon,j((j — 1At 4 1), and similarly for Ly jx and Hpy o j k-
Then rearranging and evaluating at t =t j, the discretization of the VIE (10) can be written as

7
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g g2
Om,jk+ e Z m,n,j.k = Iy Z (Lm.n,j,k + Hm,n,j,k) + fin(tj) (20)
n=1 n=1

where we consider fi(t) =an(0) —ig fot ey, (s)ds as a known source term. We note that at a given time step jo, all of
the quantities on the right-hand side depend on the numerical solution oy, jx computed only in the first jo — 1 time steps,

0 <j <jo—1, whereas the left hand side depends on the current-time solution am_j, k-

3.1. The current-time term

We have
Ljk
Cc
Cmn,jk = Kmn (; (tjk - S)) on(s)ds
(-DAt
q-1 ik
~ Cc i
= Qn,jl / Kmn (; (tjk — S)) P; (s)ds
=0 -nar
q—1 Tk
= an]l/\Kmn (_ (Tk—S)) Pi(s)ds
=0 0
q—1
= Cm,n,k,lan,j,lv
=0

where @Ln,k,, = fOT" Kinn (§ (T, — s)) Pj(s) ds. For each fixed m and n, the array 5,,1,,,’,(,, can be precomposed with the discrete
Legendre transform matrix 7!, defined above, to obtain an array Cm.n.k1 with

q—1

Cm,n,j,k = Zcm,n,k,lan,j,l- (21)
1=0

This allows us to work directly with the grid representation of .

The p?q? quantities Cm nk.l, and therefore Cp p k1, can be precomputed and stored. By plugging the expression (18) for
Kmn (t) in terms of k4 (t) into the definition of Cm n.k,l, we observe that this can be accomplished by computing only pq?®
integrals - corresponding to the different choices of even m+n for m,n=0, ..., p—1 - and scaling the results by constants
depending on m and n.

3.2. The local term
We first split the local term into integrals over the subintervals defining each time step, and then take a similar approach
as for the current-time term:
(J-1At
c
Lm,n,j,k = / Kimn (; (tjk - 5)) op(s)ds

M_2 (j—M+v+1)At

Z f Kmn (g (tjk — s)) an(s)ds

v=max(0,M—j) (j—M+v)At

M_2  g-1 (j=M+v+1)At . ‘
= Z On,j—M4vi1.l / Kinn (; (tjk— 5)) P,]_M+U+] (s)ds
v=max(0,M—j) I=0 (—M+v)At
M-2  gq-1 at c
= @ - Mﬂmfxmn (= =y -Dat+n—-9)Ps)ds
v=max(0,M—j) I=0 0
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—_

M-2 q—
= ﬁm,n,k,l,uan,ijvaJrl,l
v=max(0,M—j) I=0

M-2 q—1

Z Z ﬁm,n,k,l,uan,ij+v+1,l

v=max(0,M—j) I=0

where in the last two lines, we have again defined L, and then £, by precomposition with the discrete Legendre transform
matrix. The Mp2q? quantities Lmnky can be precomputed. As before, using (18), this only requires computing Mpq?
integrals. Thus the cost of computing L, 5, j x for each time step is O (Mpzqz).

3.3. The history term

A naive treatment of the history term would simply amount to extending the local integral back to t = 0 rather than
t= t}?, and using the same method. This would require summing over the full history of the numerical solution ey, j; at each
time step, rather than at most the previous M — 1 time steps, as well as precomputing Npq? rather than Mpq? integrals.
We can avoid this expense with the sum-of-exponentials history compression technique, which has been used in a variety
of contexts to compress and efficiently update the history contribution of Volterra integral operators [14,19,21,23]. The
following discussion illustrates the technique.

We assume for now that there is a sum-of-exponentials representation of the kernel K,

ne
Kipn (t) = Z Wm,n,uei)wt, (22)
n=1
valid for § < +/2t < tmax, With 0 < § < tmax. Here W, Ay € C and Rei, > 0. We will show in Section 4.1 that such a
representation can be constructed with § = 20, tmax = 10%, and n. = 67, which is accurate to near machine precision for all
m,n.
Let us assume T < 0'tmay/(+/2¢), and choose M such that (M —1)At > 68/(+/2¢). If j < M, we have tjf =0and Hyp jk =
0. Otherwise, we have j > M + 1, so that

(J—M)At
c
Hpn,jk = Kinn (; (th< - 5)) an(s)ds
0
e (J—M)At
= Z Wm,n, f eic)\“(tjkis)/aan(s) ds (23)
n=1 0

Ne
= Z Wm,n,uhn,j.k,u
n=1

where hy j e = Jil "M e =9/ o, (5) ds. Observe that
(j—M)At
hn,jku = / eidhu([jkis)/gan (s)ds

0
(J—1-M)At (j—M)At

— o—Cubt/o / e~ ruti-k=9/0 oy () ds + e~ Pnik=9/9 . (s)ds
o (i—1-M)At
(M)At
N Mo it + / e~ M=/ (s)ds.
(—1-M)At

This is a recurrence for hy j .. To update it from one time step to the next, we multiply by a damping factor and add a
local update integral. For the local update integral, we write

(j—M)At -1 (J=Mat
e I (s)ds =) " n jom [ e~ Mn(=9/7 pf (s ds
(i—1=M)At =0 (—-1-M)At

9
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q-1 At
— an,j_M,l/E_C)‘“(MAH_T"_S)/U PI(S) ds
=0 0
q—1
= Z Hi,l, uan j—M.lI
1=0
q—1

= > Hilpu%,j-—M,l
=0

where the second to last line defines 7/-21(,1#, and Hy, 1, is again obtained from ﬁk,l,u by precomposition with the discrete
Legendre transform matrix. The n.q% quantities Hk,1,;. can be precomputed. We obtain

q—1
—Cchy At
hnjoep =" /Uhn,jfl,k,u + ZHR.LMO‘H,FMJ (24)
1=0

which, combined with (23), completes our treatment of the history term. The cost of updating h, j . at each time step
using (24) is (’)( qzne) and the cost of computing Hy, , jr from these values is (’)( ane) For comparison, the cost of
computing Hp n j i directly at each time step, using the same method as we use for the local term, would be O( 2N)
addition to the significantly larger precomputation cost.

3.4. Summary of the time-stepping procedure and computational complexity

We can now summarize the full solver. We first precompute and store the quantities Cpm n k.1, Lmon k,1,v,» and Hy .. Now
let

2 P
g
bm,j,k == 27'[_6 Z (Lm,n,j,k + Hm,n,j,k) + fm(tjk)
n=1
be the right hand side of (20). Sections 3.2 and 3.3 describe how to compute by, j , at each time step using the precomputed
arrays and the values of the solution at the previous M time steps. Using this and (21), we can write the discretized VIE

(20) as

p q
g
Om,jk+ % Z Zcm,n,k,lan,j,l = bm,j.k-

n=1[=0
To take the jth time step, we solve this pq x pq linear system. The system matrix, with entries 8mndk + Cm n k1, Can be
formed and LU-factorized as a precomputation.

The cost of computing b, j  at each time step is O (p?q>M + (p*q + pg®)ne), ignoring the evaluation of fi(t). The cost
of solving the linear system by backward substitution is just O (pzqz). Let us write the computational complexity in terms
of the number of time steps, N. There are two N — oo regimes: T fixed, At — 0, and At fixed, T — oo. In practice, using
high-order time-stepping, convergence with respect to At is rapid, and the limit At — 0 is unimportant; see Figs. 6 and
10 in Section 5. With At fixed and T — oo, M is fixed, and the computational complexity is O (Nne). ne in turn depends
on tmax, and in particular, as we will discuss later, grows like O (logtmax). To ensure T = NAt < tmax/ﬁ, then, we have
ne = O (log N), giving overall O (NlogN) computational complexity.

4. Representation and evaluation of kernels

We have seen that building the arrays Cp k1 and Lpnk1y requires computing integrals against the kernels k. In
particular, if we use standard integration routines, we require a method of evaluating those kernels for all t > 0. Furthermore,
evolving the history term requires a sum-of-exponentials representation (22) of Kny,, valid for sufficiently large times.

We will accomplish both objectives by using an efficient representation of the kernel j,, defined by (16). First, we will
obtain a sum-of-exponentials representation of j,, valid when t > § = 20, and use it to obtain similar representations for
k, and hence Kp,. This also solves the problem of evaluating k, for sufficiently large t. Then we will obtain Chebyshev
expansions of j, and thereby of k; valid for t <$§.

Fig. 1 shows representative examples of the kernels j,(t) for t € [0, 20] and t > 20.

10
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Fig. 1. The first row shows j,(t) for n =0,4,8, and t in the small-time interval [0, 20]. Re j,(t) is indicated by the blue curve, and Im j,(t) by the red
curve. In this interval, we represent each j, by a Chebyshev expansion. The second row shows the same kernels for t > 20, where we represent them by
sum-of-exponentials expansions. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4.1. Sum-of-exponentials representation for large times
We start by constructing a sum-of-exponentials representation of j,(t) valid for t > §, for some § > 0 to be determined.

We note that a sum-of-exponentials representation (22) of Kp, can then be obtained from (17) and (18). In particular,
suppose the representation

Ne _
Jn@®) = Z ‘TVn,uei)wt (25)
n=1
is valid for t > §, for an,ﬂ € C and X,L > 0. Then for t > 8/+/2, when m +n is even, we have
(Mt L o
Kinn(© = K (5/V2) + (1 imn 2 [ e, (s ds
2 52
t
[(mtnsly ne ‘95
= Kun (3/V2) + ComepmnlC ) shg, / o1 VP
minl =
2 =y
T (m+n+1 ) Ne
= Kin (8/V2) + (~ )" (=)™ =2

Wn,
/%n! ILZ:liQa/c—\/ﬁu
8 (e(iﬂc—”— 2 )t _Ji%—ﬁi@&/ﬁ)

ne+1

= Z W et
pn=1

with

mn+1 -
(=DM(—iymtn ( - ) Yn.it ifl<wu<n
\/@ iQ0 [c—/2y, SU =T,

r(m+n+1) Ne ~ (Q_a_m )8 [
—(—1)M(—jymt+n 2 Wn,v 1= v)§/N2 . _
K (8/3/2) = (=1)™ (=) L et if p=ne +1
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Fig. 2. Contour of integration used for ]y, (t) to obtain sum-of-exponentials representation. For sufficiently large a and §, the contribution from the hor-
izontal part of the contour is negligible when t > §. The sum-of-exponentials representation is obtained by applying a quadrature rule to the vertical
part.

and
o V2h, —iQo/c ifl<p<n,
7o if w=ne +1.
Redefining n, <— n, + 1 gives the desired representation (22). We focus then on the construction of (25).

We begin by deforming the integral defining j, in (16) from the interval [0, co) to the contour y shown in Fig. 2. That
is, we have

a o0
2 L
Jn® = T (1) (—i)”“/n”e”z"’tdnJr/(n—ia)”e‘(”"“)z"m““”dn
2 0 0

.(1 .2
=i O+ i ©.
We show in Appendix A that
2] < 1402,

If we take a = §/4, then |j$

(t)‘ < 14e%’/8 when t > §. Thus, to ensure

j,(f)(t)) < ¢ for all t > 8, we can take

8 > /8log(14/¢). If ¢ is the double machine precision, then taking § = 20, a =5 is sufficient to neglect j,(.,z) (t)’.
As a consequence, if we can find a quadrature rule {wp, M,Xﬂ }7;=1 so that

2(_i)n+l
r(%h)

holds to high accuracy for all ¢t > §, then this gives (25) with

a
ne
2 ~ T2_%
/n”e” Tdn Ay wn ket
0 u=1

o=

- ~ T2
Wi, = wn uhj e,

When n > 23, |j,(t)| is below the double machine precision for all t > 20. We therefore only need quadratures for the above

integrals which are valid for n =0, ..., 23; we can simply take wy ; =0 for n > 24.
The method of generalized Gaussian quadrature can be used to find such a quadrature rule [27]. Given a family of
functions - in this case, the functions n”e”Z*”[. nel0,5],forn=0,...,23 and § <t < tmax — this method uses a nonlinear

optimization process to determine a minimal set of quadrature nodes and weights sufficient to integrate all functions in
the family to near machine precision. An upper bound on the number of quadrature nodes required can be given in terms
of the numerical rank of the family of functions. It is straightforward to adapt the proof given in Ref. [28, Lemma 4.4] for
the case of a family of decaying exponentials to the present setting. Briefly, the proof works by 1) rescaling the interval
to [0, 1]; 2) discretizing [0, 1] by a composite Chebyshev grid with nodes exponentially clustered at the origin; and 3)
using standard error estimates for Chebyshev interpolation to show that the resulting piecewise polynomial approximation
is uniformly accurate for all functions in the family. This argument shows that the numerical rank of the family scales as
O (log (tmax/3)). In practice, we simply take tpn,x = 10000000, several orders of magnitude larger than is needed for the
examples shown in this article, and obtain a quadrature rule of n, = 67 nodes and weights.

4.2. Chebyshev representation for small times
We next consider the evaluation of k;(t) for t < §/+/2. First, we can evaluate each j,(t) at Chebyshev nodes on [0, ]
using adaptive integration. j,(t) is an entire function, so its Chebyshev interpolant converges super-exponentially [29]. A

moderate number of Chebyshev nodes are therefore sufficient to represent the function on the full interval to near machine

12
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Fig. 4. (a) Reag(t) and (b) Reu(x, t) for the first example with p=1 and g = 0.1. In (a), the black dashed line is the curve exp(—g2t).

precision by its interpolant at these nodes; see Fig. 1 for plots of some j,(t) on [0, §]. The samples at Chebyshev nodes can
be computed once and stored. j,(t) can then be evaluated at any t € [0, §] by barycentric interpolation [29-31].

Given €, ¢, and o, samples of the integrand of k,(t) in (17) at Chebyshev nodes on [0, 8/+/2] can then be obtained
by pointwise multiplication. If Qo /c is large, then to resolve the complex exponential, j, can be evaluated on a denser
Chebyshev grid. Accurate samples of ky(t) at the same Chebyshev nodes can then be obtained by spectral integration [32],
and as before, can be used to represent kj(t) on [0,/ +/2] by barycentric interpolation.

5. Numerical results

We demonstrate the solver using two examples. In the first, we place an atom in its excited state and observe its decay.
In the second, we excite the atom with a wavepacket.

5.1. Example 1: decay of an excited atom
The first example is characterized by the initial condition

a(x,00=1, u(x,0)=0,

which corresponds to taking o, (0) = 8o, and Uy, (t) =0 in (10). We take c=Q =1 and o =0.1.

We first represent the solution using only a single Hermite polynomial, p = 1. Fig. 3 shows |ag(t)|? for g =0.1,0.2,0.3.
The solutions are characterized by an initial exponential decay regime, with the decay rate determined by g, followed
by a tail of significantly slower decay. The plots indicate close agreement with the standard Wigner-Weisskopf estimate
lag(t)]? ~ =28t of the initial decay rate; for a derivation in the three-dimensional case, which is straightforwardly adapted
to the one-dimensional case, we refer to [9].

Fig. 4 shows Reap(t) and Reu(x,t) for g =0.1. As the atom amplitude decays, it acts as a source for the photon field,
which resembles a wave of speed c radiating from the origin. We note that the photon amplitude is not identically zero
outside of the light cone associated with speed c. Rather, as a result of nonlocal effects arising from the fractional Laplacian
term of (1), it decays algebraically outside of the light cone.

We next consider the limit of a large number of Hermite polynomials, p — oo. To do so, we increase p until the first five
non-zero coefficients a, are converged to high accuracy (we note that, as a result of the symmetry of the system about the

13
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Fig. 5. (a) |an(t)|> with n=0,2, ..., 8 for the first example with p =40 and g = 0.2. (b) The total probability associated with the atom and the photon
field.

1074 1074
s 1078 S 108
) 0
= 107121 < 10712
1016 - 10-16 :
1072 107! 10° 10! 1072 107! 10° 10!
At At

Fig. 6. Error E(t) for the first example with g =0.2 for (a) p =1 and (b) p =40, using fourth and eighth-order time-stepping.

origin, the odd coefficients are identically zero). p = 40 was sufficient for the simulations considered here. We fix g = 0.2, so
our results can be compared with the red curve in Fig. 3. Fig. 5a shows |a,(t)|? for the first five even Hermite polynomials.
At very short times, the n =0 coefficient decays with the same rate as in the p =1 case. However, the rapid decay regime
ends sooner, and gives way to complicated, long-lived dynamics among the coefficients of the various Hermite polynomials.

Another perspective is given by Fig. 5b, which shows the total probability associated with the atom and photon ampli-
tudes. It can also be compared directly with the red curve in Fig. 3, since in the p =1 case |ag(t)|? = Pq(t). Compared with
the p =1 case, in the p =40 case the atom dissipates much less of its probability mass into the photon field.

Evidently, allowing multiple Hermite coefficients gives rise to a trapping effect, whereby some portion of the probability
associated with the zero coefficient remains trapped in higher-order modes rather than being radiated into the continuum
through the photon field. As the solution evolves in time, higher and higher-order coefficients become activated, and the
total probability associated with the atomic amplitude decays exceptionally slowly, if at all.

The plot of the photon amplitude for the p =40 case is qualitatively similar to that appearing in Fig. 4 for the p =1
case, so we do not plot it. The main difference is that in the p =40 case, the atom remains a longer-lived source of larger
magnitude for the photon field.

We next verify the order of accuracy of the time-stepping algorithm by measuring the error

17 Ll 2
Et)= g/|a(x,t)—amf(x,t)‘p(x/a)dx: Z’an(t)—a,gef(t) (26)
0 n=0

against a well-converged reference solution a™f with Hermite coefficients a,ﬁef. We take the parameters as above with
g =0.2, and measure the error E(t) at t =500 using the fourth and eighth-order methods; g =4 and q = 8, respectively.
Fig. 6a gives results for the p =1 case, and Fig. 6b for p = 40.

5.2. Example 2: response to a photon pulse

Our second example models the response of the atom to a photon pulse. We take

2\ V4 2,82 ;
ug(x) = (—nﬂ2> e~ (x=x0)"/B* pifox (27)

14
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with x9, B, and & the inital wavepacket center, width, and wavenumber, respectively. The normalization ensures
ffooo lug(x)|? dx = 1. The free evolution is given by

oo

Ux,t) = / G(x—y,Hug(y)dy

—00

1 [ iEx ~
=5 / G(&, tel*tiy (&) dg

o0
_ VB —i(clg|t—Ex-+x0(E—£0)) p— (E—£0)2B2/4 g
7(27.[)3/4 e e £,

—00

If we take &, 8 sufficiently large so that & > %[Em e~ (E—60)?p%/4 % for some ¢, then up to an error &, we
simply recover a translation of the initial wavepacket:

oo
Ut ~ (2;/)33 s / i€ (x—x0—ct) g=(E~£012B2/4 g _ 10 (x — cp).
—0o0
Thus the free evolution of a wavepacket with a sufficiently high frequency modulation relative to its width is approximately
given by translation at velocity c. We will choose &y, 8 so that the approximate equality holds to machine precision -
& B > 12 with 8 > 1 is sufficient - and for simplicity take it to be an equality going forward.
To compute the source term in the VIE (10), we write

¢ 00 L
/ e'mﬁ(s)ds=% / p(/0) fm(X/0) / €U (x, 5) ds dx. (28)
0 —00 0

We have

t t

f e*BU(x, s)ds = / eBug(x — cs)ds

0 0

2 \VA
- <n—ﬁ2> eléoX/el(Q—Soose—(X—xO—CS)z/ﬂz ds

p 2 (0—tn0)2
”T1/4«/Bei(§0xo+§2(x7xo)/c)e_ﬂ—(iczfo : erfi P2 —&0) X~ %o
23/4¢ 2c B

_etfi </3(€2 —600) X —Xo— ct)) .
2c B

The outer integral in (28) can be computed at each time step by adaptive integration using the explicit expression for the
inner integral. To improve the efficiency, the integrals for each m can be computed simultaneously using the recurrence for
the normalized Hermite functions:

m

1
s 00 = Xfn () \/g Fa (0.

In this setup, we take a(x,0) =0, with c=Q =1 and o = 0.1 as before, and we fix g =0.2. We take g =12 and
= —80 in (27), so that, to machine precision, the wavepacket does not initially overlap with the atomic density.

We first consider the single coefficient case p = 1. In Fig. 7, we plot |a(t)|*> for different choices of the wavenumber,
£ =0.4,0.7,1,1.3, 1.6. The incoming wavepacket interacts with the atom, increasing the magnitude of the atom amplitude,
which then decays at the expected rate. We note that in this case, the rapid decay regime continues for longer than in the
first example; a comparison can be made with the red curve in Fig. 3. We also see that a wavepacket with & = Q - exactly
resonant with the atom - yields the largest and most long-lived atomic excitation. By contrast, when the modulation is
chosen off-resonance, the atomic amplitude first follows the profile of the wavepacket-induced forcing before eventually
settling into the usual decay regime.
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Fig. 7. lag(t)|? for the second example with p =1 and several choices of &y, along with an indication of the decay rate expected for an initially excited
atom. The atomic resonance frequency is 2 =1.
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Fig. 8. (a) Reay(t), (b) Reu(x,t), and (c) Re (u(x,t) — U(x,t)) for the second example with p =1 and & = 1. In (a), the black dashed line is the curve
exp (—g2 (t— to)) with to chosen to follow the envelope of the oscillation.

For the on-resonance case, & = 1, Figs. 8a and 8b give plots of Rea(t) and Reu(x, t), respectively. We see the wavepacket
approach the atom center and excite the atom, which then decays and induces its own response in the photon amplitude,
given by u — U. Fig. 8c gives a plot of Re (u(x,t) — U(x,t)).

We lastly consider the p =40 case—this is again sufficient to achieve convergence to high accuracy for the first five
non-zero a,—for & = 1. The results are given in Fig. 9, and are similar to those shown in Fig. 5. After the initial excitation,
the behavior of the various Hermite modes comprising the atom amplitude is nearly identical to that shown in Fig. 5a for
the first example. The behavior of the atomic and photonic contributions to the total probability are similar, except in this
case the photonic probability contains contributions both from the incoming wavepacket and from the field induced by the
decaying atom.

We again verify the order of accuracy of the fourth and eighth-order time-stepping algorithms by measuring the error
E(t), defined by (26), for t =250, with g =0.2 and & = 1. Results for the p =1 case are given in Fig. 10a, and for the
p =40 case in Fig. 10b.

6. Conclusion

We have presented an efficient numerical method to solve (1) by reformulating it as an integro-differential equation. This
avoids the challenges associated with the nonlocality of the differential operator, and the unboundedness of the domain.
We address the resulting Volterra-type memory dependence, for the case of a Gaussian atomic density, by projecting the
solution history onto a collection of exponentials, which can be propagated by a simple recurrence.

In our numerical experiments, when the spatial extent of the atom amplitude is represented by a single degree of free-
dom, we recover the expected Wigner-Weisskopf decay behavior for a one-atom system. When multiple degrees of freedom
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Fig. 10. Error E(t) for the second example with & =1 for (a) p =1 and (b) p =40, using fourth and eighth-order time-stepping.

are included, we observe more complicated collective dynamics. Our numerical method serves as a useful starting point to
examine more complicated systems and related models in quantum optics. In particular, in a forthcoming publication, we
will generalize the method to systems of distinct two-level atoms coupled to a photon field.
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Appendix A. Estimate of j;,z)(t)
In this Appendix, we prove the estimate used to neglect j,ﬁz) (t) in Section 4.1. We have

rs)

2

o0
1}(12) (t)’ _ /(’7 _ ia)ne—(n—ia)z—i(n—ia)tdn
0
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where in the last line we have made the change of variables x> = n? 4 a2. We split the integral into two pieces:

o0
Xn-H Xn-H
/ 2 _ 2 ¥ dx= f f 2e_xzdx:h+12'
V2 —a?

For the first integral, we have

V2a
I < 2(n+1)/2an+1e—a2 / <x2 _az)_l/z dx.

a
The integral can be computed by the substitution x = asecf, and is equal to log (l + ﬁ) We also use the estimate

2 .
a"tle=@” < /™ to obtain

I <2"2Jn+1log (1 + «/5) .

For the second integral, we use that ——*— < +/2 when x > +/2a to obtain

Vx%—a?

r(1y)

Iz<\/_/xe"dx<«/—/ _"de=7

V2a

Combining these results gives the desired result,

23t/
|j1(12) (t)‘ < eZaz—at log (] + ﬁ) . (n+1—)}_ + f < 14e2!1 —at.
2

n
In the last inequality, we have used that 22/n41 reaches its maximum of approximately 6.9 at n =5.

r(%)
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