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ABSTRACT

Moving object segmentation (MOS) is the process of identifying
dynamic objects from video frames, such as moving vehicles or
pedestrians, while discarding the background. It plays an essential
role in many real-world applications such as autonomous driving,
mobile robots, and surveillance systems. With the availability of a
huge amount of data and the development of powerful computing
infrastructure, deep learning-based methods have shown remark-
able improvements in MOS tasks. However, as the dimension of
data becomes higher and the network architecture becomes more
complicated, deep learning-based MOS models are computationally
intensive, which limits their deployment on resource-constrained
devices and in delay-sensitive applications. Therefore, more re-
search started to develop fast and lightweight models. This paper
aims to provide a comprehensive review of deep learning-based
MOS models, with a focus on efficient model design techniques.
We summarize a variety of MOS datasets, and conduct a thorough
review of segmentation accuracy metrics and model efficiency met-
rics. Most importantly, we compare the performance of efficient
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MOS models on popular datasets, identify competitive models and
analyze their essential techniques. Finally, we point out existing
challenges and present future research directions.

Keywords: Background subtraction, change detection, deep learning, efficient
model design, lightweight model, moving object segmentation,
real-time processing, video object segmentation.

1 Introduction

Moving object segmentation (MOS) [59] is a fundamental task in computer
vision. It is the process of extracting dynamic foreground content from video
frames, such as moving vehicles or pedestrians, while discarding the non-moving
background. MOS is used as a critical video pre-processing step followed by
higher-level tasks such as traffic monitoring [39], target re-identification [251],
action recognition [261], human detection [244], and object tracking [256].
However, with the increasing amount of produced visual data and computation-
resource-limited platforms such as self-driving cars, wireless surveillance cam-
eras, and navigation robots, it becomes quite crucial and challenging to process
a large amount of video data in a timely fashion. In recent years, the research
attention has moved toward developing more cost-efficient MOS models [36] by
reducing the model size and computational complexity, increasing the inference
speed, while achieving acceptable segmentation accuracy.

1.1 Background and Scope

In general, MOS tasks can be categorized as object-level segmentation and
instance-level segmentation [69]. As illustrated in Figure 1(a), the goal of
object-level segmentation is to detect all moving objects as the foreground and
to generate a pixel-level binary segmentation mask, no matter the video scene
has a single instance or multiple instances. For example, a horse and the person
riding the horse are both detected as foreground, without being distinguished as
two different instances. In contrast, as illustrated in Figure 1(b), instance-level
segmentation not only detects the foreground moving objects, but also assigns
each instance a different label, which can be utilized for object identification
and tracking over time. For example, a man and two dogs are all detected
as foreground, and these three instances are each assigned a different label.
This shall be differentiated from video semantic segmentation (VSS), where
instances having the same semantic meaning are assigned the same class label.
In that case, the two dogs in Figure 1(b) will be assigned a single class label.
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Figure 1: Sample frames and ground-truth segmentation masks of (a) object-level segmen-
tation and (b) instance-level segmentation tasks. The frames are selected from popular
datasets: CDnet 2014 [215], LASIESTA [44], YouTube-VOS [227], DAVIS 2016 [164], and
DAVIS 2017 [165].

There are also several frequently used terms related to MOS: moving object
detection (MOD), video object segmentation (VOS), and video salient object
detection (VSOD). In the following, we will explain these terms, and define
the discussion scope of MOS in this survey.

1.1.1 Moving Object Detection

Moving object detection (MOD) [6, 27, 91, 95, 169, 174, 235], also known as
background subtraction [19, 59, 64, 89, 124, 180], is a traditional computer
vision task that detects the changing foreground objects from static or dynamic
background for video surveillance or anomaly detection purposes [59]. It can be
viewed as an object-level segmentation task, which outputs a binary foreground
mask without distinguishing different instances, as shown in Figure 1(a).
Besides, dynamic elements in the background such as waving tree leaves,
flowing water, snowing weather, are not the target objects to be detected.
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1.1.2 Video Object Segmentation

In recent years, with the advances in deep learning and machine intelligence,
the task of MOD is naturally extended to video object segmentation (VOS),
to meet the requirement of emerging applications such as intelligence video
editing, scene understanding, and autonomous driving. VOS refers to the task
of segmenting main moving objects from a video sequence [165] which capture
human attention. The early VOS task in the DAVIS 2016 challenge [164] is
object-level segmentation, which only requires to segment one object or two
spatially connected objects from a video sequence, generating a binary segmen-
tation mask, as shown in Figure 1(a) DAVIS 2016 example. Later, multi-object
VOS was introduced with the launch of the DAVIS 2017 challenge [165]. This
task setting is more challenging as it is instance-level segmentation as shown
in Figure 1(b), which requires not only separating the main moving objects
from the background, but also discriminating different instances, generating a
multi-class segmentation mask.

Depending on the level of human intervention during the segmentation
process, VOS tasks can be divided into three categories: unsupervised VOS,
semi-supervised VOS, and interactive VOS. In unsupervised VOS, human
does not interact with the algorithm to obtain the segmentation results. In
semi-supervised VOS [165], the algorithm is given a video sequence and the first-
frame segmentation mask of the target objects, then the algorithm outputs the
masks of those objects in remaining frames. Finally, interactive VOS assumes
the user gives iterative refinement inputs to the algorithm, for example, in the
form of a scribble, to segment the objects of interest. Methods have to produce
a segmentation mask for that object in all the frames of a video sequence
taking into account all the user interactions.

1.1.3 Video Salient Object Detection

A concept similar to unsupervised VOS is video salient object detection (VSOD)
[67, 181]. VSOD aims also at finding objects in video frames that mostly
attract human attention. However, it produces a sequence of probability
maps that indicate the likelihood of each pixel belonging to most visually
important objects. In contrast, unsupervised VOS outputs either a binary
segmentation mask for single-instance case, or a multi-class segmentation mask
for multi-instance case.

1.1.4 Moving Object Segmentation

In this survey, we mainly review state-of-the-art models for MOD), unsupervised
VOS and semi-supervised VOS tasks. It is noteworthy that MOD can be
considered as object-level unsupervised VOS. Since these three tasks all aim
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at segmenting main moving objects from videos, we adopt the term moving
object segmentation (MOS), which differentiates our discussion scope from the
original scope of VOS that also includes interactive VOS.

1.2 Overview of Existing MOS Approaches

Techniques used to segment video moving objects can be categorized as tradi-
tional approaches and deep learning-based approaches. Traditional approaches
[11, 14, 15, 20, 28, 29, 39, 53, 68, 70, 72, 84-86, 117, 131, 145, 182, 185,
208, 211, 255, 256, 259, 262| do not require ground-truth labels for algorithm
development. They usually include two components: background modeling and
pixel classification. However, traditional methods meet difficulties when they
are applied to complex scenarios, such as videos with dynamic backgrounds,
shadows, illumination changes, and night scenes.

With the development of powerful computing infrastructure and the avail-
ability of a huge amount of data, deep neural networks (DNNs) have shown
remarkable success in MOS tasks. Existing DNN-based MOS models are
mostly supervised approaches based on 2D convolutional neural networks
(CNNs) [8, 21, 35, 41, 42, 79-81, 96, 107-110, 133, 142, 160, 161, 172, 193,
194, 216, 248, 249], 3D CNNs [2, 58, 78, 127, 128, 171, 217], or generative
adversarial networks (GANSs) [9, 10, 158, 159, 186, 253, 254]. They demon-
strated that DNNs can automatically extract spatial low-, mid-, and high-level
features as well as temporal features, which turn out to be very helpful in MOS
problems. Some methods combine both traditional methods and deep learning
methods to get better performance such as RT-SBS [43], GraphMOS [63], and
MotionRec [129].

Besides, semi-supervised video object segmentation (VOS) has emer-ged in
recent years, in which the ground-truth segmentation mask of the first frame is
provided during test time. This type of approach can be further categorized as
(1) online fine-tuning-based methods, such as Meta-Learning [224], e-OSVOS
[137], PreMOVS [123], etc.; (2) propagation-based methods, such as CTN [82],
MaskTrack [163], FAVOS [37], AGSS [112], AGAME [88], DTN [245], SAT
[32], Fasttmu [188], AOT-T [232], etc.; and (3) template-based methods, such
as SwiftNet [206], STM [151], PLM [237], RANet [219], FRTM [170], TVOS
[247], TTVOS [154], GC [105], LWL [13], MSN [222], RMNet [225], SiamMask
[210], DDEAL [236], PiWiVOS [152], etc. The difference is that methods in
category (1) need to re-train or fine-tune models online during the inference
stage, and methods in categories (2) and (3) are usually used together and
they do not need online model fine-tuning.

While existing DNN models provide superior MOS accuracy, they suffer
from computationally expensive and memory-intensive problems. As the depth
of neural network increases, the model size and computational complexity
dramatically increase, making it challenging to apply these models to real-world
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scenarios, such as self-driving cars, robotics, and augmented reality. These
tasks are typically deployed on mobile and embedded devices with limited
memory and computing resources. Besides, they are usually latency-sensitive
and need to be executed in a timely manner. High-complexity deep learning
models cannot meet these requirements. Therefore, the research community
now focuses more on designing cost-efficient deep MOS networks which have
smaller model size, can achieve a faster inference speed, while maintaining high
segmentation accuracy, so that they are suitable for mobile and embedded
environments.

In this survey paper, we review the most recent advances in deep learning-
based MOS techniques. We focus on fast and lightweight models and their
performance on most popular MOS datasets. Besides, we provide a compre-
hensive list of existing MOS datasets and summarize performance evaluation
metrics from both model accuracy and efficiency perspectives.

1.3 Previous Surveys

Table 1 lists existing surveys [6, 18, 19, 27, 59, 64, 89, 91, 95, 124, 132, 169,
174, 180, 213, 220, 234, 235] on MOS. Six of them [19, 27, 64, 132, 213, 234]
reviewed recent deep learning-based MOS methods, and all the other surveys
only focused on traditional methods.

Some surveys on deep learning-based MOS [19, 64] reviewed network archi-
tectures from background generation and background subtraction perspectives,
and provided visual and quantitative performance evaluation on the CDnet
2014 dataset [215]. Methods about moving objects detection with a moving
camera were also discussed [27], where a small number of deep learning models
were briefly introduced. In [132], a detailed review of deep learning-based
MOS model designs and evaluation settings is provided, such as different ways
of splitting the training and test sets. It also provided performance evaluation
on the CDnet 2014 dataset.

However, none of the aforementioned survey papers discussed techniques
for efficient MOS model design for resource-constrained edge devices or delay-
sensitive applications. They did not investigate fast or lightweight mod-
els, and did not compare inference speeds among different models. Besides,
they did not discuss the newest MOS models developed in 2022, neither did
they provide experimental studies on the recent popular MOS datasets such
as DAVIS 2016 [164], DAVIS 2017 [165], and YouTube-VOS [227]. More-
over, the performance evaluation metrics introduced in existing surveys are
limited. Recently, a comprehensive review on video object segmentation
(VOS) models was conducted [213], including VOS datasets and VOS-oriented
performance evaluation metrics. Nevertheless, it did not discuss fast and
lightweight models, therefore it cannot provide insights for designing efficient
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models. Another survey on VOS [234] provided very limited discussion on
efficient model design techniques. Besides, it did not present experimen-
tal results, and there were no comparison studies and analysis of model
performance.

1.4 Owur Contributions

In this work, we systematically review the most recent advances in deep
learning-based MOS, with a focus on efficient (fast and lightweight) MOS
models. Our major contributions are the following;:

e For the first time in the literature, we provide a comprehensive review of
efficient MOS model design techniques which play an important role in
mobile and embedded device applications and in delay-sensitive scenarios.

o We discuss existing MOS datasets from the perspective of scene categories.
We not only cover traditional MOD datasets such as CDnet 2014 and
BMC [201] datasets, but also extend our discussion to newer VOS

datasets such as DAVIS 2016, DAVIS 2017, and YouTube-VOS, which
were designed for more complex scenes and higher resolutions.

e We conduct a thorough review of model performance evaluation metrics,
including segmentation accuracy metrics for object-level and instance-
level segmentation as well as for salient object segmentation, and model
efficiency evaluation metrics such as inference speed, model size, trainable
parameters, and computational complexity. In contrast, existing MOS
survey papers only introduced a subset of them.

o We evaluate the performance of efficient MOS models on four most popu-
lar datasets: CDnet 2014, DAVIS 2016, DAVIS 2017, and YouTube-VOS.
We identify models that are competitive in segmentation accuracy and
inference speeds on these datasets, and analyze the essential techniques
of these models.

o We identify existing challenges in MOS and provide insights into future
research directions.

The remainder of the paper is organized as follows. In Section 2, we intro-
duce existing MOS methods, with a brief overview of traditional approaches,
and a more detailed discussion on deep learning-based approaches. In Section 3,
we discuss efficient MOS model design techniques and summarize models that
use these techniques. Section 4 introduces representative datasets for a variety
of scene categories. Section 5 presents performance evaluation metrics includ-
ing segmentation accuracy metrics and model efficiency metrics. In Section 6,
we provide comparison studies of existing efficient MOS models for popular
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Figure 2: The timeline of MOS including traditional approaches [11, 14, 20, 28, 29, 53, 68,
72, 84-86, 131, 145, 182, 185, 208, 211] and deep learning approaches [3, 8, 9, 21, 32, 43,
63, 74-76, 78, 88, 96, 105, 109, 110, 112, 123, 127, 129, 133, 134, 141, 142, 147, 151, 152,
159-161, 170, 171, 175, 187, 193, 194, 198, 203, 206, 207, 210, 216, 217, 222, 225, 232, 240,
254].

datasets. Section 7 analyzes existing challenges in MOS and presents future
research directions. Section 8 concludes the paper.

2 Existing MOS Approaches

MOS approaches can be categorized into traditional approaches and deep
learning-based approaches. The chronological advancement in algorithms
is depicted in Figure 2. Deep learning-based approaches are increasingly
developed from 2016 and traditional approaches started in early 1999 and now
are still being developed in parallel with deep learning-based approaches, and
are even combined with deep learning approaches in a hybrid mode.

2.1

Traditional approaches [11, 14, 15, 20, 28, 29, 39, 53, 68, 72, 84-86, 117, 131,
145, 182, 185, 208, 211, 255, 256, 262] do not require labeled ground-truth
segmentation masks. They include two steps: background modeling and pixel
classification. First, the background scene is initialized and updated over time,
then each pixel is classified as foreground or background based on a threshold.
Background modeling schemes can be parametric or non-parametric. Para-
metric approaches represent the background statistically using a probability

Traditional Approaches
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density function (PDF) such as a single Gaussian or a mixture of Gaussians
(GMM) [182, 262], and require to learn the parameters of these pdfs. Non-
parametric approaches do not need to learn the parameters of probability
distributions such as the kernel density estimation (KDE) method [53], or
they do not have distribution assumptions for the background. There are
also several sub-categories under the non-parametric approaches: filter-based,
sample consensus, and principal-component-analysis (PCA) [116-118] methods.
Examples of filter-based approaches are Kalman filtering [39], temporal median
filtering [256], and running average filtering [255]. Examples of sample consen-
sus methods are WeSamBE [86], ViBe [11], SuBSENSE [29], and PAWCS [28].
For instance, SUuBSENSE uses a feedback system to adjust the background
model automatically based on local binary similarity pattern (LBSP) features
and pixel intensities [15]. PCA methods use eigenvalue decomposition for
background modeling. To solve the camera motion problem, background
subtraction based on robust principal-component analysis (RPCA) [84, 85]
was also developed.

2.2 Deep Learning-Based Approaches
2.2.1 2D-CNN-based

Deep learning-based approaches have been recently proposed for MOS problems.
The first deep learning-based work is ConvNet-GT [21] as shown in Figure 3(a),
which performs change detection by replacing the pixel classification component
with a well-defined neural network structure. The background is estimated
with a temporal median filter, then it is stacked together with the original video
frames to form the input of the CNN that outputs the binary masks. In a more
advanced model MSFgNet [160], a motion-saliency network (MSNet) is used
to estimate the background, which is then subtracted from the original frames,
followed by a foreground extraction network (FgNet) that detects the moving
objects. Another type of CNN is multi-scale feature learning-based CNN, which
extracts multi-scale features to achieve better accuracy, such as MSCNN +
Cascade [216], Guided Multi-Scale CNN [107], MCSCNN [108], MsEDNet [161]
and VGG-16 [177] based networks FgSegNet M [96] and FgSegNet v2 [110].
In MSCNN+Cascade [216], segmentation results are generated pixel by pixel.
Although it achieves good accuracy, the pixel-wise processing is very time
consuming. In FgSegNet M [96] as shown in Figure 3(b), a 2D CNN takes
each video frame at three different resolution scales in parallel as the input of
the encoding network.
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Figure 3: 2D-CNN-based models: (a) ConvNet-GT (Copyright © 2016 IEEE [21]), (b)
FgSegNet M (Copyright (© 2018 Elsevier B.V. [96]).

2.2.2 38D-CNN-based

The advantage of 3D convolution for MOS problems is that 3D convolution can
utilize spatial-temporal information in visual data, which helps improve model
accuracy. For example, in 3D CNN-LSTM |[2] as shown in Figure 4(a), short-
term temporal motions of a video sequence are captured by 3D convolutions,
while the long-short term temporal motions are captured by 2D LSTM modules.
Another example is 3DAtrous [78], which also captures long-term temporal
information in the video data. It is trained based on an LSTM network with
focal loss to tackle the class imbalance problem commonly seen in background
subtraction. Besides, 3D-CNN-BGS [171] utilizes 3D convolution to track tem-
poral changes in video sequences. It performs 3D convolution on 10 consecutive
frames of the video, and upsamples the low-, mid-, and high-level feature layers
of the network in a multi-scale approach to enhance segmentation accuracy.
In [58], 3D CNN and a fully connected layer are adopted in a patch-wise
method. In 3DS_ MM [75] as shown in Figure 4(b), 3D separable convolutional
neural network with a multi-input multi-output strategy is proposed, in which
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Figure 4: 3D-CNN-based models: (a) 3D CNN-LSTM model (Copyright (©) 2020 IEEE [2]),
(b) 3DS_MM [75] model using 3D separable CNN.

the standard 3D convolution is decomposed into depthwise and pointwise
convolutions, in order to reduce model size and computational complexity.

2.2.3 GAN-based

Generative adversarial networks (GAN) is also adopted in MOS problems.
BScGAN [10] as shown in Figure 5(a) is based on conditional GAN (¢cGAN), in
which the discriminator not only takes the foreground mask as the input, but
also takes the stacked color image and its background as a conditional input to
improve segmentation accuracy. FgGAN [159] shown in Figure 5(b) adopted
GAN-based unpaired learning to solve challenging MOS problems such as
dynamic background, bad weather, effect of shadow and irregular motion of
objects. Since the training set has unpaired input and output images, this
network is trained by adding a cycle-consistent loss in the traditional GAN
loss. First, a video-wise background is estimated using GAN-based unpaired
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Figure 5: GAN-based models: (a) BScGAN (Copyright (©) 2018 IEEE [10]), (b) FgGAN
(Copyright (©) 2019 IEEE [159]).

learning network (network-I). Then, to extract the motion information related
to foreground, motion saliency is estimated using the estimated background
and current video frame.

Further, the estimated motion saliency is given as the input to another GAN-
based unpaired learning network (network-II) for foreground segmentation.
In BSPVGAN [254], a median filter was used for background modeling and
Bayesian GANs were adopted for pixel classification, because Bayesian GANs
can address the problem of ghost, non-stationary background, and sudden
illumination changes. Meanwhile, BSIsGAN [186] utilized conditional least
squares adversarial networks, in which the generator loss function includes the
L1-loss and perceptual-loss between the generated segmentation mask and its
respective ground truth to learn dynamic background variations. DBSGen [9]
was also developed to address the dynamic background subtraction problem,
which used two generative neural networks, one for dynamic motion removal
and the other for background generation. The networks were optimized in an
end-to-end fashion. Finally, the foreground moving objects were obtained by a
pixel-wise distance threshold based on a dynamic entropy map.
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2.2.4 Unsupervised VOS

Unsupervised video object segmentation (UVOS), also known as zero-shot
VOS, automatically segments and tracks primary moving objects in a video
sequence without any prior information. Early UVOS in DAVIS 2016 Challenge
is object-level segmentation which generates binary segmentation masks and
is relatively simple [51, 67, 104, 181, 195]. Besides, MOD tasks can also be
considered as object-level unsupervised VOS.

With the launch of DAVIS 2019 Challenge, multi-object UVOS has become
a hot topic. This task is more challenging as it is instance-level segmentation,
which requires automatically discriminating different object instances and
associating the same identities over time. An early approach RVOS [202]
incorporated recurrent layers spatially and temporally to discover different
object instances within a frame, and to keep the coherence of segmented
objects along time. Since the network shared the encoder forward pass for
all the objects in a frame, it achieved a fast overall runtime, although the
segmentation accuracy is relatively low. More sophisticated models followed
a two-stage paradigm: (1) detect object proposals using pre-trained Mask R~
CNN, and (2) conduct generic feature matching for temporal association using
re-identification techniques [212, 257, 263]. Although these approaches achieved
higher accuracy, they are computationally expensive. For example, UnOVOST
[263] not only requires Mask R-CNN for instance proposal generation, but also
needs to compute optical flow for motion estimation. Complex post-processing
and heuristics also make this method unsuitable for practical applications.

Recently, to strike a better balance between accuracy and efficiency, the
model in [258] formulates instance proposal and foreground estimation in a
unified framework, requiring much less time to generate instance proposals
than Mask R-CNN based methods. Besides, it does not require additional
post-processing components.

2.2.5 Semi-Supervised VOS

Semi-supervised VOS, also known as one-shot VOS, has emerged with the
launch of DAVIS 2017 Challenge [165]. It incorporates human intervention
during the inference stage. The most typical human intervention is to provide
the ground-truth object mask of the first frame of the video. Many semi-
supervised VOS models are trained and evaluated on the DAVIS 2016 dataset
[164] designed for object-level segmentation, or on the DAVIS 2017 [165] and
YouTube-VOS [227] datasets designed for instance-level segmentation.

Deep learning models for semi-supervised VOS tasks can be categorized
as online fine-tuning-based, template-based, and propagation-based methods.
Online fine-tuning-based methods first learn general segmentation features
offline from images and video sequences, then fine-tune the model at test
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time with the ground-truth object mask of the first frame. For example,
PReMVOS [123] adopts online fine-tuning, which first generates a set of object
segmentation mask proposals for each video frame, followed by selecting and
merging these proposals into accurate and temporally consistent pixel-wise
object tracks over a video sequence. It won both the 2018 DAVIS Challenge
on VOS and the 2018 YouTube-VOS challenge.

On the other hand, template-based methods use the first frame with its
ground-truth mask to extract object features as a template, then segment
objects from subsequent frames by matching their features with the template.
Examples of template-based methods are RANet [219] and TTVOS [154].
RANet applies a ranking system to the matching process between multiple
templates and the input to extract reliable results. TTVOS combines short-
term matching and long-term matching, in which short-term matching enhances
target object localization and long-term matching improves fine details and
handles object shape-changing. Propagation-based methods use the previous
frame mask to infer the current frame mask. One example is MaskTrack [163],
which proceeds on a per-frame basis, guided by the output of the previous
frame towards the object of interest in the next frame.

2.2.6 Other Approaches

Some foreground and background segmentation models use data augmentation
techniques to improve the performance of prior models. For example, data
augmentation performed in [172] not only creates endless data on the fly,
but also features semantic transformations of illumination, which enhances
the generalization capability of the model. It successfully simulates flashes
and shadows by applying the Euclidean distance transform over a randomly
generated binary mask. Such data augmentation allows to effectively train
an illumination-invariant deep learning model for background subtraction.
Another example using data augmentation is [93]. Two data augmentation
methods of adjusting background model images and past images are proposed
and applied to their previously proposed foreground segmentation framework
[92]. Through this method, the segmentation performance is improved in
difficult areas such as static foreground and ghost objects, compared to previous
studies.

Some other models combine traditional and deep learning approaches to
leverage the strengths of both to obtain better performance such as RT-SBS
[43], GraphMOS [63], MotionRec [129], and GraphBGS [62].
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Figure 6: Asymmetric convolution.

3 Efficient MOS Model Design

Although deep learning-based MOS models have achieved high accuracy in
recent years, they come at a high computational cost and a slow inference
speed due to complex network structures and intense convolution operations.
The need for efficient models that require less inference time is vital, especially
for applications such as autonomous driving. In the following, we summarize
techniques used to design efficient deep neural network architectures to reduce
the inference time, computational complexity and model size, while maintaining
high segmentation accuracy. Existing models using these techniques are
summarized in Table 2.

3.1 Asymmetric Convolution

Asymmetric convolution is to factorize a standard two-dimensional convolution
kernel into two one-dimensional convolution kernels. As shown in Figure 6, a
K x K convolution can be substituted with a K x 1 convolution followed by a
1 x K convolution. Such a scheme can effectively reduce network parameters
and required calculations. For example, when the input channel C; is the same
as the output channel C,, the number of parameters and computational cost are
saved by 33% for a 3 x 3 kernel [189], and the performance degradation is often
very small. A real-time foreground segmentation model DRSNet [205] uses
asymmetric convolutions in its proposed MultiScaleSE Block, DoubleConv
Block and NeckConv Block, to replace symmetric convolutions to reduce
parameters and to ensure segmentation accuracy at the same time.
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Figure 7: An illustration of the dilated convolution with kernel size k = 3 and dilation rate
d = 2. Both the standard convolution and dilated convolution have the same number of
parameters (i.e. kernel size is 3 x 3), whereas the dilated convolution has a larger 5 x 5
receptive field.

3.2 Dilated Convolution

Dilated convolution is adopted in MOS [204, 205, 228, 241] to allow larger
receptive field with the same computation and number of model parameters
(weights). In [228], dilated convolutions are implemented with different dilation
rates to increase the receptive field for video segmentation. As illustrated in
Figure 7, for a k x k dilated convolutional kernel with a dilation rate of d > 1,
the effective size of the kernel is increased to [(k—1)d+1]2. However, only k x k
pixels participate in the convolutional operation, reducing the computational
cost while increasing the effective kernel size and receptive field [135].

It is worth noting that dilated convolution is usually combined with multi-
scale schemes to extract features. In PDB [181], multi-scale features are
extracted by dilated convolution with different dilation rates to generate
features with different receptive fields, which reduces complexity compared to
using large kernel sizes. In PyramidCSA [67], multi-scale features are extracted
by constrained self-attention with different attention window sizes and dilations
in parallel branches, to capture motion cues of multi-scale objects and objects
moving at various speeds. It has much less computation and memory usage
than the non-local attention mechanism which extracts global context.

3.8 Group Convolution and Depth- Wise Convolution

To reduce computational cost and model size, group convolution is adopted
in [156]. The idea of group convolution was first introduced in AlexNet [94]
to use the limited memory of two GPUs to train the model in parallel. Since
then, it has been widely applied in computation-efficient network architecture
designs. As shown in Figure 8, a group convolution splits the channels of the
input feature maps into G mutually exclusive groups, then convolution is inde-
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Figure 8: An illustration of the group convolution with three groups G = 3. Each group of
input is convolved with (Cy/3) kernels of size K x K x (C;/3), to generate an output of
size Ho X W, X (Co/3). Three groups of outputs are concatenated to form the final result.

&
Kernel size: K X K X 1

i
H[= H, Kernel size: 1 X 1 X C;
w W, Ho

Step1: Depth-wise convolution
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(b) Depth-wise separable convolution

Figure 9: An illustration of the 2D depth-wise separable convolution.

pendently performed on each group, followed by output channel concatenation.
Theoretically, it can reduce both the computational complexity and model
parameters by a factor of G.

The method of depth-wise convolution was first proposed in MobileNet [77].
As demonstrated in Figure 9, it decomposes a standard 2D convolution into
a depth-wise convolution (also known as spatial or channel-wise convolution)
and a 1 x 1 point-wise convolution. While the depth-wise convolution applies
an independent 2D filter for each input channel, the subsequent point-wise
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convolution performs 1D convolutions on the output of the depth-wise convo-
lution along the channel direction. This separation can effectively reduce the
amount of computation and model size. For example, when the filter size is
K x K, the computational cost of 2D separable convolution can be reduced
to roughly % of that of the standard 2D convolution. It can dramatically
increase the inference speed while maintaining high detection accuracy. This
idea was utilized in 2D_ Separable CNN [74] and One-Shot Animal model
[228] for video moving object segmentation.

To further exploit the temporal information in the video input, the 3DS_ MM
model was proposed [75], which adopts 3D convolution to extract spatio-
temporal features in the video data and to improve segmentation accuracy. To
reduce computational complexity and model size, the standard 3D convolution
is decomposed into a depth-wise convolution and a point-wise convolution.
While the depth-wise convolution performs a spatial-temporal convolution
independently on each input channel, the subsequent point-wise convolution
along the channel direction can effectively leverage channel correlations. When
K x K x K is the spatial-temporal filter size, the computational cost of such a
3D separable convolution can be reduced roughly to % of that of the standard
3D convolution.

On the other hand, since it is better to apply nonlinear activations in a high-
dimensional space than in a low-dimensional space to prevent information loss,
MobileNetV2 [173] introduces the inverted residual bottleneck module. The
input features with C) channels are first expanded to a high-dimensional space
with C}, > C] channels using a point-wise convolution. Subsequently, a 2D
depth-wise convolution with nonlinear activations is performed on each of these
Cj, channels. Afterwards, another point-wise convolution with linear activatons
projects the features back onto a low-dimensional space with C; channels. To
utilize spatio-temporal information in video data and to increase segmentation
accuracy, the method proposed in F3DsCNN [76] replaces such 2D separable
convolutions in the inverted residual bottleneck by 3D separable convolutions.

3.4 Reduce Feature Map’s Volume

Convolution-based feature extraction has high computational complexity due to
large image resolution and large number of channels. Methods are typically used
in MOS to reduce the volume of feature maps. In particular, large-scale down-
sampling can be used to reduce the input image (or feature map) resolution
before applying more convolutional layers, and point-wise convolution can
be used to reduce the number of channels. Such techniques can be found
in [127, 133, 155, 156, 170, 204, 205, 210, 232, 240]. For example, in UZ2-
ONet [204], OctConv (Octave Convolution) [34] is used to reduce spatial
redundancy. It is well-known that natural images can be decomposed into a
low and a high spatial frequency part. While the low-frequency part represents
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global structures, the high-frequency part contains fine details. Similarly, the
feature maps of a convolution layer can also be factorized to low-frequency
and high-frequency components. OctConv stores and processes the smoothly
changing, low-frequency feature maps in a low-resolution tensor to reduce
spatial redundancy, meanwhile reducing the memory and computation cost.
Another example is a shallower network ChangeDet [133] which utilizes fewer
number of kernels to reduce feature map channels, and uses max pooling to
reduce feature map resolutions. This results in only 0.13 millions of trainable
parameters with a model size of only 1.6 megabytes (MB).

3.5 Simplified Network Architecture

To reduce model size and computational cost, simplified network architectures
are also used in MOS models. In FCESNet [168], there is no fully connected
layers, and the network only contains 7 layers, which reduces the number of
parameters and increases the inference speed. FAMINet [120] is proposed to
include feature extractor, appearance network, motion network and integration
network. The appearance network generates an initial segmentation, the
motion network generates an optical flow, then the integration network takes
these results and previous frames’ predictions as its inputs, and outputs the
final refined segmentation result. For efficiency, the motion network only has
two convolutional layers and the integration network only has five convolutional
layers. In the Lightweight U-Net-like model [111], thinner convolution layers
are utilized to achieve an inference speed of 250 frames per second (fps) on
a GTX Titan Xp GPU. The model size is only 435 kilobytes (KB). There
are only 0.105 millions of model parameters, and only 0.13 billion floating-
point operations (GFLOPs) are needed. In the One-Shot Animal Model [228§],
the proposed encoder module Xception-lite for video object segmentation
is inspired by Xception-65 backbone [40]. While the original Xception-65
backbone has 65 layers to extract visual features which is time-consuming, the
Xception-lite model only has 20 layers. To achieve the best trade-off between
accuracy and speed, Xception-lite also incorporates residual connections and
separable convolutions. Such simplified network architectures can also be
found in Guided Multi-Scale CNN [107], MSCNN-Cascade [216], MSFgNet
[160], Trip-Net [147], PiWiVOS-F [152], etc.

3.6 Two-Branch Network

Segmenting high-resolution inputs directly with classical frameworks like fully
convolutional networks (FCN) [121] is time consuming. To overcome this
shortcoming, the two-branch network scheme was proposed. The network
consists of two branches, while one branch is shallow, captures spatial details
and generates high-resolution feature representation, the other branch is deep
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Figure 10: Two-branch network: (a) ContextNet [166], (b) F3DsCNN (Copyright (©) 2021
IEEE [76]).

and obtains high-level semantic context. Finally, the two-branch output feature
maps are fused to generate the segmentation result. For example, ContextNet
[166] as shown in Figure 10(a) processes the video frame at two resolutions in
two parallel branches for semantic segmentation. In F3DsCNN [76] as shown
in Figure 10(b), the 3D convolution-based two-branch scheme is adopted to
extract spatial-temporal information for video moving object segmentation.
Moreover, F3DsCNN proposed to share the first few layers of the two branches
such that the model size and complexity can be further reduced. Similar ideas
were also adopted in ICNet [250] and FgSegNet v2 [110], which extended
the two-branch network to three-branch networks to extract low-, mid-, and
high-level features.

Using such two-branch or multi-branch networks can get high quality
segmentation results, since the high-resolution branch helps recover and refine
the coarse prediction produced by the low-resolution branch. Although some
details are missing and blurry boundaries are generated in the low-resolution
branch, it already harvests most semantic parts.

3.7 Channel Merging by Addition

To integrate shallow and deep semantic layers, usually channel concatenation
is used as in Figure 11(a). However, it increases the computational cost of
subsequent convolution layers since the number of channels increases. As
illustrated in Figure 11(b), to reduce the computational cost, addition can be
used to merge channels [205], [111]. In particular, the Lightweight U-Net-like
model [111] adopts element-wise summing for feature fusion in the decoder,
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which stabilizes training convergence, and also achieves an inference speed of
250 fps on an Nvidia GTX Titan Xp GPU with a model size of 435 KB and
0.105 millions of trainable parameters.

3.8 Decoder Size Reduction

The encoder-decoder network is one of the most standard architectures of object
segmentation. It is suggested that the architecture of an encoder—decoder model
can be simplified by reducing the decoder’s size, in order to save computational
cost. In other words, we can adopt an asymmetric encoder-decoder architecture
in which the encoder is larger than the decoder, instead of a symmetric encoder-
decoder architecture. The rationale behind this idea is that the encoder should
work in a similar fashion to original classification architectures, which extract
deep features of smaller resolutions. On the contrary, the role of the decoder is
to up-sample the output of the encoder, only enhancing its details. Therefore,
reducing the decoder’s size results in computational cost savings. Overall, this
approach is appealing since most of the time the reduction in the decoder’s
size does not affect segmentation accuracy.

Decoder size reduction has been demonstrated in [74] and [75], in which
the number of decoder layers is less than that of the encoder layers, which
achieves faster inference speed without affecting the accuracy. In F3DsCNN
[76], the last deconvolution layer in the decoder is replaced by upsampling to
further increase the inference speed. In the One-Shot Animal model [228], the
encoder is a deep network that generates five stages of shallow to deep feature
maps. The feature maps are then upsampled and concatenated to form the
final encoded feature map. In contrast, the decoder simply performs a 1 x 1
convolution to linearly fuse these feature maps to output a 1D probability
map as the segmentation result, followed by post-processing to fine-tune the
segmentation accuracy.

240X 240x 8 240 x 240 X 8

240x240x 8

240 x 240 X 16

240 x240x 8 240 x240x 8
(a) Channel merging by concatenation (b) Channel merging by addition

Figure 11: Channel merging by (a) concatenation, and (b) addition.
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3.9 Quantization

The runtime of a network can be further reduced using quantization techniques.
These techniques reduce the size/memory requirements of a network by encod-
ing parameters in low-bit representations. In [38], quantization is adopted in
both training and inference with 8-bit weights and features, which results in
significant model compression and efficiency enhancement. In [24], the exper-
iments were conducted with the half-precision floating point (FP16) format
since this provides a good trade-off between accuracy and power consumption.
The use of FP16 has achieved a good frame rate on the NVIDIA Jetson Nano
edge-device, which shows its suitability for real-time applications [24].

3.10 Small Convolution Kernel

To benefit from rich contextual dependencies, an MOS model can use standard
convolutions with large kernel size to enlarge the receptive field. However, it is
harmful to use excessively large kernels, because they might lead to over-fitting
[162], and increase the model size and complexity, especially when they are
used in deep layers with a large number of input feature map channels. To
address this problem, in [241], small kernel size is adopted along with dilated
convolution (atrous convolution), which effectively enlarges the receptive field
to capture long-range dependencies, meanwhile avoiding problems that may
be caused by large kernels.

Although large kernels were adopted in [115] and [47] to close the per-
formance gap between CNNs and transformers [48, 119], it is noteworthy
that these methods [47, 115] adopt large kernels in depth-wise convolution
to control the computational complexity. In particular, [115] also utilized
inverted bottleneck, such that the depth-wise convolution with a large kernel
is performed when the feature channels are small, followed by 1 x 1 point-wise
convolution which raised the channel to a higher-dimensional space.

8.11 Skip Connection

Skip connection (or shortcut connection) is a technique that has demonstrated
its effectiveness in maintaining high segmentation accuracy without adding
network complexity, and has been adopted in classic lightweight models such
as MobileNetV2 [77] and SqueezeNet [61].

In the Lightweight U-Net-like MOS model [111] as shown in Figure 12, long
and short skip connections are proposed to facilitate data flow and maximize
the usage of parameters in the model, enabling a lightweight design and
leading to faster networks. As shown in Figure 12(a), long skip connections
ship low-level features extracted by the second encoder layer directly across
networks and share them to the corresponding decoding layer. Since the
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texture details are captured by low-level features and are usually lost in deep
layers, long skip connections can provide decoders with such low-level features
to more effectively infer the foreground masks. Compared to multi-scale
feature extraction [216], long skip connections make one pass sufficient to pass
richer information to the other end of the network [111]. On the other hand,
short skip connections are adopted in bottleneck blocks of the network to
enhance feature utilization rate, such that the bottleneck blocks in [111] can be
designed as compact as possible. Figure 12(b) shows the detailed structure of
the bottleneck block, which consists of four mini-blocks. Each mini-block is an
extremely lightweight operation block that further consists of one convolutional
layer, one instance normalization, and one parametric ReLU layer. As shown
in Table 4, such efficient design of the Lightweight U-Net-like model achieved
the highest F-measure (97.7%) with the fastest inference speed (250 fps) and
required the fewest model parameters (0.1 M) among all models under the
Titan Xp GPU group.

Skip connection is also used in BMN-BSN [142], BSUV-Net2.0 [193], 3D
CNN-LSTM [2], BScGAN [10], U2-ONet [204], Edge Aggregation Network [157],
Long-Short Term Network (LSTNet) [207], Frame-Level Weakly Supervised
Network [139], and MvRF-CNN [3] for MOS tasks. Besides, asymmetric skip
connections [205] was also proposed, which can more effectively integrate
information from different semantic layers than symmetric skip connections,
while requiring smaller number of network parameters.

3.12 Improving the Efficiency of Semi-Supervised VOS

Recently, more and more semi-supervised VOS models (one-shot learning)
have emerged, in which the object mask of the first frame is provided in the
inference process, and the goal is to automatically segment the target object
from the entire video sequence.

Asymmetric Bottleneck

1x1 Conv. Layer

Image Tensor
Px1 Asym. Conv. Layer

Conv + InstanceNorm
Conv + LeakyReLU
Conv + LeakyReLU
Asymmetric Bottleneck
Summing-based Fusion
RelU+Transpose Conv
Summing-based Fusion
RelU+Transpose Conv
ReLU+Trans.Conv+inst.Norm.
1xP Asym. Conv. Layer
Summing-based Fusion

Figure 12: (a) Long and short skip connections in the Lightweight U-Net-like MOS model
[111], and (b) the Asymmetric Bottleneck block of (a), using a short skip-connection.



28 Howu et al.

There are three types of one-shot learning for video object segmentation:
online fine-tuning, template-based, and propagation-based. Online fine-tuning
refers to approaches that fine-tune a general-purpose segmentation model on
the annotated first frame during test time using hundreds of iterations of
gradient descent [230]. Due to the heavy computation burden of fine-tuning,
the processing speed of such methods cannot satisfy the requirements for
practical applications. To alleviate the complexity issue of online fine-tuning,
meta learning can be used to optimize the online fine-tuning process [137, 224].
Or, template-based and propagation-based methods can be used to refrain
from online fine-tuning.

3.12.1 Meta Learning

Meta learning, also known as “learning to learn”, uses a bunch of similar learning
tasks to train a meta-learner, such that it can adapt to a new task quickly with
only a few training samples. In [224], a meta-learner is trained on multiple VOS
tasks such that the meta model can capture their common knowledge and gains
the ability to fast adapt the segmentation model to new video sequences. The e-
OSVOS [137] approach meta learned the model initialization and learning rates
for test time optimization by predicting individual learning rate at a neuron
level. Furthermore, it applies an online adaptation to address the common
performance degradation problem for future frames in the video sequence.

8.12.2 Template-Based and Propagation-Based Methods

In addition to meta learning, template-based and propagation-based methods
(introduced in Section 2.2.5) are also proposed to alleviate the dependence on
the online fine-tuning process, and they are usually combined in many fast
VOS models.

However, template-based methods can suffer from memory issues because
historical frames need to be memorized and updated, and propagation-based
methods are vulnerable to temporal discontinuities like occlusions and rapid
motion. To solve these problems, a real-time model SwiftNet [206] updates
fewer frames in memory and adaptively selects incremental frames that have
variations for memory update and ignores static ones. Besides, it abandons
full-frame operations and incrementally processes with temporally varying
pixels. Similarly, [156] adaptively updated the shape variation of target objects
without heavy computation or additional memory. In [105], fixed-size feature
representation is used to reduce memory which is needed in the template
matching process. In the Regional Memory Network (RMNet) [225], local-to-
local matching is performed between the current query frame and past frames.
This effectively addresses the problems of mismatching to similar objects and
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high computational complexity caused by global-to-global matching. DDEAL
[236] learns static cues from the labeled first frame and dynamically updates
cues of subsequent frames for object segmentation. In [207], both template-
based and propagation-based strategies were explored to match for pixel-level
object segmentation and to handle the mismatching and drifting problem. In
particular, the proposed long-term network exploits the object relationship
between the current frame and the first frame, and the proposed short-term
network explores immediate object variations.

Efficient design of template-based and propagation-based methods can also
be found in SAT-fast [32], SAT [32], Fasttmu [188], RANet [219], FRTM-fast
[170], FRTM [170], G-FRTM-fast [155], TVOS [247], TTVOS(HRNet) [154],
TTVOS(ResNet50) [154], LWL [13], MSN [222], SiamMask [210], AGSS [112],
etc.

3.13 Multi-Input Multi-Output Strategy

Another factor that affects the performance of a model is the input-output
relationship. As shown in Figure 13, the input-output relationship of existing
MOS networks has three types. The first type is single-input single-output
(SISO), which is widely exploited in 2D CNNs such as FgSegNet_ S [96] and
2D _Separable CNN [74]. The second type is multi-input single-output (MISO)
which can be found in 3D CNNs such as 3D-CNN-BGS [171], 3DAtrous [7§],
and DMFC3D [217]. The disadvantage of SISO and MISO is that they result
in a slow inference speed because only one frame output is predicted in every
forward pass. The third type of input-output relation is multi-input multi-
output (MIMO) such as FCESNet [168], which can take multiple input frames
and output multiple frames of segmentation masks in each forward pass. It
explores temporal correlations on a larger time span. Two recent models
3DS_MM [75] and F3DsCNN [76] combined the MIMO strategy with 3D
separable CNN, which significantly increase the inference speed, so that they
are suitable for computation-resource-limited and delay-sensitive applications.

3.14 Summary

Among the efficient techniques discussed above, the two-branch network [76,
166] and skip connection [111, 205] are very effective for scenarios such as
MOS and semantic segmentation in which both high-level semantics and
low-level details are needed. The two-branch network and skip connection
extract high-level semantics by deep network layers to infer segmentation
class labels, and extract low-level details by shallow network layers to recover
segmentation boundaries. These two techniques also have the merit of reducing
computational complexity, since only small-resolution features are processed
by deep layers, while large-resolution features are processed by shallow layers.
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Figure 13: The input-output relationship of MOS models: single-input single-output (SISO),
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Besides, channel merging by addition can be used after these two schemes to
reduce the feature volume and computation.

When the dilated convolution is combined with multi-scale processing,
it is very effective for dense prediction tasks [190], such as MOS, semantic
segmentation, super-resolution, and image denoising. The reason is that multi-
scale dilated convolution with different dilation rates can extract features
from small to large receptive fields to model both local and global patterns.
Meanwhile, it avoids increasing the kernel size.

The multi-input multi-output (MIMO) strategy is very effective in in-
creasing the inference speed for MOS [73, 75, 76] and other video-related
tasks, such as video frame prediction. Since multiple video frames can share
the intermediate layers of the network, the computational complexity can be
effectively reduced. On the other hand, decoder size reduction [74-76, 228|
is useful to reduce the complexity of segmentation networks such as those
for MOS and semantic segmentation. In these networks, a deep encoder is
needed to extract high-level semantic features from pixels, while the decoder
can be shallow, which only needs to generate the segmentation mask without
recovering texture details.

Other techniques such as asymmetric convolution, depth-wise convolution,
group convolution, reduce feature map’s volume, simplified network architec-
ture, quantization, and small convolution kernel can be used for not only MOS,
but also general computer vision tasks, such as image classification and object
detection. In particular, asymmetric convolution, depth-wise convolution, and
group convolution are similar in the sense that they all decompose a standard
convolution into several steps. Recent research [75, 76, 156, 205] shows that
they effectively reduce model parameters (kernel weights) and computation
for MOS tasks.
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4 Datasets

Table 3 provides numerous existing datasets for the training and evaluation
of MOS models [4, 12, 16, 17, 22, 23, 44-46, 52, 66, 87, 90, 97-101, 103,
125, 126, 129, 130, 138, 143, 149, 150, 164, 165, 167, 178, 179, 184, 192, 196,
197, 200, 201, 209, 214, 215, 223, 227, 233, 238]. Most of these datasets are
for object-level segmentation, such as CDnet 2014 [215], DAVIS 2016 [164],
UCSD [126], etc., hence the ground-truth masks contain binary labels. Some
of the datasets are for instance-level segmentation, such as DAVIS 2017 [165]
and YouTube-VOS [227], in which the ground-truth masks contain multi-class
segmentation labels. Videos in these datasets are captured by various types of
cameras, including RGB cameras, thermal cameras, RGB-D cameras which
capture RGB images and their corresponding depth images, and multi-spectral
cameras. From a citation perspective, CDnet, DAVIS, and YouTube-VOS
datasets have the most citation counts, followed by other popular datasets
such as LASIESTA [44] and SABS [22].

In Table 3, each column lists the appearance year, dataset name, scene
category, segmentation labels (binary or multi-class labels) provided, frame
resolution, number of videos, provider, and the access link of the datasets. The
datasets are grouped by different scene categories. Within each scene category,
the datasets are separated by the type of segmentation labels. In the following,
we will introduce some representative datasets.

4.1 Indoor € Outdoor Category

The biggest scene category is Indoor & Outdoor, which covers indoor scenes
such as human activities and outdoor scenes such as traffic, sports, shadow,
night videos, etc.

4.1.1 CDnet 2012 & CDnet 2014 Datasets

The CDnet 2012 [66] and CDnet 2014 datasets [215] provide realistic, camera-
captured videos of diverse surveillance scenes. CDnet 2012 was developed as
part of the CVPR 2012 Change Detection Workshop challenge. This dataset
consists of 31 videos (~70,000 frames) spanning 6 categories which include
diverse change detection and motion detection challenges. CDnet 2014 was
developed as part of the CVPR 2014 Change Detection Workshop challenge.
It includes all the videos from CDnet 2012 and 22 additional videos (~70,000
new frames) spanning 5 new scene categories that incorporate challenges not
addressed in the CDnet 2012 dataset.

The complete CDnet dataset (2012 & 2014) contains 11 video categories:
baseline, dynamic background, camera jitter, shadow, intermittent object
motion, thermal, bad weather, low frame-rate, night scenes, PTZ (pan, tilt,
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zoom), and air turbulence. Each category has four to six videos, resulting
in a total of 53 videos. For example, the baseline category has sequences
highway, office, pedestrians, and PETS2006. Each video has 900 to 7,000
frames. The videos were captured by different type of cameras ranging from
low-resolution IP cameras, mid-resolution camcorders, PTZ cameras, to far-
and near-infrared cameras. The spatial resolutions of these videos vary from
240 x 320 to 576 x 720 pixels.

4.1.2 DAVIS 2016 & DAVIS 2017 Datasets

Densely Annotated Video Segmentation (DAVIS) 2016 [164] and DAVIS 2017
[165] are benchmark datasets of video object segmentation. They contain 50
full high-definition (FHD) videos, featuring diverse types of object and camera
motion. They include challenging examples with occlusion, motion blur and
appearance changes. Accurate pixel-level annotations are provided for the
moving objects in all video frames. In DAVIS 2016, binary segmentation
labels are provided for each of the 20 videos, and in DAVIS 2017, multi-class
segmentation labels are provided for each of the 30 videos.

4.1.3  YouTube-VOS Dataset

YouTube-VOS [227], first released in 2018 in conjunction with a workshop
challenge, is the first large-scale benchmark that supports multiple video
objects (instance-level) segmentation tasks. The dataset has a total of 197,272
object annotations which is 15 times more than those of DAVIS 2017. The
object categories in this dataset include person, animals, vehicles, furniture,
and other common categories.

The training set of YouTube-VOS has 3,471 videos with 65 unique object
categories. The validation set used to evaluate model performance has 474
videos with 91 unique object categories. Among these 91 object categories, 65
are the “seen” categories which appear in the training set, and the remaining
26 are the “unseen” categories which do not exist in the training set, and can
be used to evaluate the generalization capability of MOS algorithms.

4.2 Owutdoor Category
4.2.1 BMC Dataset

The Background Models Challenge (BMC) dataset [201] is a benchmark dataset
created in 2012 built from both synthetic and real videos. It focuses on outdoor
scenarios with weather variations such as wind, sun or rain. The dataset is
divided into learning and evaluation subsets. There are two scenes: a street and
a rotary. For each scene, there are 5 event types: cloudy without acquisition
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noise, cloudy with noise, sunny with noise, foggy with noise, and windy with
noise. The learning set has 10 synthetic videos, while the evaluation set has
10 synthetic videos and 9 real videos acquired from static cameras in video-
surveillance contexts. This dataset can test the influence of some difficulties
encountered during the object segmentation phase, such as casted shadows,
the presence of a continuous car flow near the surveillance zone, fast light
changes in the scene, and the presence of big objects.

4.2.2 UCSD Dataset

The UCSD background subtraction dataset [126] is used for background
subtraction in highly dynamic scenes, which are extremely challenging problems.
The video scenes are comprised of complicated moving backgrounds and camera
motion. The dataset provides video frames in JPEG format and ground-truth
masks in MATLAB array form, where 1’s indicate foreground pixels and 0’s
indicate background pixels. Compared to the complete CDnet dataset which
has 53 videos, UCSD is a small-scale dataset with only 18 videos. For some
sequences, the frames of ground-truth masks are less than the frames in the
original video sequences.

4.8 Thermal Category
4.8.1 TU-VDN Dataset

The TU-NVD dataset [179] is provided for MOS tasks in atmosphere-degraded
outdoor scenes in night vision. The dataset consists of 60 video sequences
under different atmospheric conditions, such as low light, dust, rain, and fog.
54 videos are taken with a forward-looking infrared (FLIR) camera mounted 90
degree alignments on a tripod stand by maintaining 200 meters to 2 kilometers
distance from objects, and the other 6 videos are taken with a motion camera
mounted on a moving vehicle (20~30 kilometers/hour) where the objects,
camera, and background are moving simultaneously. Each frame contains
multiple types of moving objects, e.g., pedestrians, various types of vehicles,
bicyclists, motorbikes, trains, and pets.

4.8.2  OSU Thermal Pedestrian Dataset

The OSU thermal pedestrian dataset [45] was captured by a Raytheon 300D
thermal sensor at pedestrian intersection on the Ohio State University campus
in order to detect persons in thermal imagery. The camera was mounted on
the rooftop of an 8-story building. It has 10 video sequences in grayscale
containing 284 images in a resolution of 360 x 240 pixels. For the ground
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truth data, only those people who were at least 50% visible in the image were
selected (i.e., highly occluded people were not selected).

4.4 RGB-D Category
4.4.1 SBM-RGBD Dataset

The SBM-RGBD dataset [23] was created in order to evaluate and compare
scene background modeling methods for MOS on RGBD videos. It has a diverse
set of synchronized color and depth sequences acquired by the Microsoft Kinect
sensors. The dataset consists of 33 videos (~15,000 frames). The length of the
videos varies from 70 to 1,400 frames, and the spatial resolution is 640 x 480.
The depths are recorded at either 16 or 8 bits. The videos span 7 categories,
selected to include diverse background modeling challenges related only to the
RGB channels (RGB), related only to the depth channel (D), or related to
all the channels (RGB+D). For example, the “Illumination Changes” category
includes challenges related only to the RGB channels, the “Out of Sensor
Range” category includes challenges related only to the depth channel, and
the “Shadows” category includes challenges related to all the channels.

4.5 Multi-Spectral Category
4.5.1 FLUXDATA FD-1665 Dataset

Different from datasets captured by a normal camera sensor with RGB channels,
FluxData FD-1665 dataset [12] was captured by the FD-1665 multi-spectral
camera system. It has 1 indoor and 4 outdoor video sequences containing
between 250 and 2,300 video frames. This dataset was created in order to
investigate the use of multi-spectral videos of more than three channels (red,
green, blue) for background subtraction. Multi-spectral imaging can allow the
extraction of additional information which human vision cannot capture with
just red, green, and blue receptors.

4.6 Underwater Category
4.6.1 UnderwaterCD Dataset

The Underwater Change Detection dataset [200] is a collection of 5 videos
with pixel-level manually segmented ground-truth masks. This dataset was
created to evaluate MOS algorithms against the difficulties of an underwater
environment. The moving objects in the videos are always fish, which swim
in swarms or separately. In the segmentation masks, fish are considered
as foreground labeled as 0, all others are considered as background labeled
as 255, and unsure classes are labeled as 120. Many special difficulties of
an underwater environment are present in the videos, such as marine snow
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(challenging weather), illumination variations, dynamic background, strong
shadows, camouflage, and bad lighting conditions.

There are also other datasets designed to be applied in specific application
scenarios. For example, ATON [167] is a dataset with fast motion of cars on a
highway and with strong shadows and small camera jitter. CAVIAR is a dataset
[52] specifically for human detection in entrance lobby, and MarDCT (Maritime
Detection, Classification, and Tracking) [17] is to evaluate different computer
vision algorithms such as foreground segmentation and object detection in
maritime environment. The foreground masks, object bounding boxes, and
identification numbers are included as ground-truth annotations in the dataset.

5 Metrics

While existing MOS papers only introduced a limited number of performance
evaluation metrics, in this section, we provide a comprehensive summary of
both segmentation accuracy metrics and model efficiency evaluation metrics.

5.1 Segmentation Accuracy
5.1.1 Models Trained on Change Detection Datasets

Some MOS models are trained and evaluated on traditional change detection
or background subtraction datasets, such as CDnet 2014 [215] and BMC
[201]. The objective focuses on detecting all foreground moving objects from
the background and generating binary segmentation masks. To evaluate the
detection accuracy, the following metrics have been adopted.

1. Precision P and Recall R: They are defined based on true positives
(TP), true negatives (TN), false positives (FP), and false negatives
(FN) of the foreground segmentation algorithms. TP is the number
of correctly detected foreground pixels, TN is the number of correctly
detected background pixels, FP is the number of background pixels
detected as foreground and FN is the number of foreground pixels
detected as background. Given these four quantities calculated based on
the full frames of ground-truth masks and full frames of predicted masks,
the recall and precision are defined as R = % and P = TPT+7PFP,
respectively. Recall R quantifies the model’s capability of identifying
ground-truth foreground pixels, while precision P quantifies the accuracy
of predicted foreground pixels. A good MOS model should generate a
high recall without sacrificing precision.
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2. F-measure: In most existing works, the F-measure defined below is

reported to represent a balance between the recall R and precision P:

2xPxR
F— = —_— ]_
measure n (1)

or
TP
F-measure = . (2)
I(FN+FP)+TP

. F-measure Mean: The F-measure Mean is obtained by taking the

average of F-measure values over all frames in a video sequence.

. EF-measure: While the F-measure only quantifies pixel-level detection

errors, cognitive vision studies have shown that human vision is highly
sensitive to both global information and local details in scenes. To
this end, the enhanced-alignment measure (E-measure) was recently
proposed [56] for binary foreground map evaluation. It jointly captures
image-level statistics and local pixel matching information with a newly
defined alignment matrix.

Let I be the ground-truth foreground map (GT') or the predicted fore-
ground map (FM), that is, I € {GT, FM}. I(z,y) is the element of T
at the (z,y) location, uy is the global mean of I. Then, the (z,y)-th
element of the mean-shifted foreground map is

er(z,y) = I(x,y) — pr- (3)

An alignment matrix £pp; measures the similarity between g and
wrM, and its (z,y)-th element is defined as

2¢0cr (@, y)prm (T, y) (4)

(@) = o e D+ @)

Since £pas(z,y) is the element-wise similarity between GT and FM,
it captures local pixel matching information. Besides, pgr(z,y) and
wrm(z,y) depend on global means pgr and gy, which capture global
statistics. Further, a convex function of {rps(z,y) is used to define an
enhancement alignment matrix ¢gps, the (z,y)-th element of which is

brn(e,y) = 3 (1+ Erni ()’ )
Finally, the E-measure is defined as:
1 oeL
E-measure = — Z Zd)pM(a:,y), (6)

z=1y=1
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where h and w are the height and width of the predicted foreground
map F'M.

5. S-measure: For salient object detection where the purpose is to accu-
rately detect and segment the most attractive object in a scene, a new
metric S-measure was proposed [55] to evaluate the similarity between
the predicted saliency map (SM) and the ground-truth object mask
(GT). The method first evaluates the region-aware structural similarity
S, and the object-aware structural similarity S, between SM and GT,
then the S-measure is calculated as

S-measure = a X S, + (1 —a) x Sy, (7

where a € [0, 1] is a weight to balance the contribution of S, and S,.

More specifically, the region-aware structural similarity S, measures the
similarity between SM and GT block by block. First, each of SM and
GT is divided into K blocks, then the structural similarity measure
(SSIM) [218] between the k-th block of SM and the k-th block of GT is
calculated as SSIM(k), and S, is defined as

K
S = wy x SSIM(k). (8)

k=1

The weight w;, assigned to the k-th block is proportional to the ground-
truth foreground region this block covers.

In contrast, the object-aware structural similarity .S, measures the sim-
ilarity of SM and GT holistically. Let xpg represent the predicted
foreground probability values in the ground-truth foreground region of
SM, and calculate the mean and standard deviation of xpg as Trpg and

Ozpas Tespectively. Then, the object-level foreground similarity between
SM and GT is

.
Spa = rrG 9)

e +1+2XA X 04,

where A > 0 is a constant. Similarly, let xgg represent the predicted
background probability values in the ground-truth background region of
SM, and calculate the mean and standard deviation of xpg as Tpg and

Oupe, respectively. Then, the object-level background similarity between

SM and GT is
2ZBc
Lo+ 142X\ X 04y

Note that both Spg and Spg are between 0 and 1. A higher Spg (SBa)
indicates SM and GT have more similar foregrounds (backgrounds).

Spe = (10)
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Afterwards, the object-aware structural similarity S, is calculated as
So = pux Spa+ (1 —p) x Spa, (11)

where p is the ratio of foreground area in GT to image area (width x
height).

5.1.2 Models Trained on DAVIS and YouTube-VOS Datasets

Many recent MOS models are trained and evaluated on the DAVIS 2016 [164],
DAVIS 2017 [165], and YouTube-VOS [227] datasets. The goal is to perform
object-level or instance-level segmentation from a visual recognition or object
tracking perspective. The segmentation accuracy is evaluated by the Jaccard
index J, contour accuracy F, and the J&F score.

1. Jaccard Index J: It is also called the intersection over union (IoU)

of the predicted object mask and the ground-truth object mask. The
Jaccard index J has been widely adopted to measure the region sim-
ilarity between ground-truth objects and segmented objects since its
first appearance in PASCAL VOC2008 [54]. For a specific instance class,
given the predicted segmentation mask M and the ground-truth object
mask G, J is defined as

|M NG|
= 12
7= Gia (12)
With TP, FN, and FP, J can also be defined as
TP
= . 1
J FN+FP+TP (13)

. Contour Accuracy F: It is not measured based on the region of objects,

but based on the boundary of objects. For a specific instance class, the
boundary recall R. and boundary precision P, are first calculated based
on the boundaries of objects in the ground-truth masks and those in the
predicted masks, then the contour accuracy F is defined as:

2x P, xR,

Contour Accuracy F = P+ R.

(14)

. J&F: The overall score J&F is calculated as the average of J and F

by
T&F = ‘7;”?. (15)
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4. J Mean, F Mean, and J&F Mean: For a specific instance class,
these three metrics are calculated as the average Jaccard index J, the
average contour accuracy JF, and the average J&JF score over all frames
in a video sequence, respectively.

Besides, for multiple-instance segmentation, the per-class (per-instance)
Jaccard index 7, contour accuracy JF, and J&F score are first calculated,
then each of these metrics is averaged over all instance classes. Afterwards,
the J Mean, F Mean, and J&F Mean are calculated as the average
scores over all frames in a video sequence.

5.2 Model Efficiency

Model efficiency is a critical aspect to consider when we develop and deploy
MOS models on resource-constrained devices and for real-time applications.
We can evaluate the efficiency of a model from the perspectives of model size,
inference speed, number of model parameters, and computational complexity.

1. Model Size: Model size is measured in megabyte (MB) or gigabyte
(GB), which is to quantify the storage space required to store the model
in memory or in hard disks. Embedded and mobile devices usually have
limited storage space, therefore it is important to design lightweight
models to be deployed on these devices.

2. Inference Speed: Inference speed is one of the most informative
indicators to compare the efficiency of different MOS models. It is
measured in frames per second (fps), which refers to the number of video
frames that are processed within a second during the inference stage.

3. Number of Model Parameters: The number of model parameters is
measured in millions (M). It is used as an indirect indicator of model
complexity and memory usage (during the inference stage). Trainable
parameters are network weights updated by back-propagation during the
training process, and they contribute to the prediction power of an MOS
model. Parameters that are not updated during the training process are
called non-trainable parameters, such as pre-trained weights, pre-defined
fixed filters, the number of hidden layers, and the number of nodes in
the network.

4. Computational Complexity: Computational complexity is measured
in floating-point operations (FLOPs). It refers to the number of floating-
point multiplication-and-addition operations to run a single instance of
a given MOS model. Gigaflops (GFLOPs) is used in this paper, and one
gigaflop has one billion FLOPs.
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6 Performance Comparison of Efficient MOS Models

Tables 4 to 7 compare the performance of state-of-the-art MOS models in
terms of segmentation accuracy and model efficiency on CDnet 2014, DAVIS
2016, DAVIS 2017, and YouTube-VOS datasets. Each column lists the index
number, year of publication, method name, GPU, accuracy, inference speed in
fps, number of trainable parameters (M), and model size (MB).

The methods in each table are grouped by the GPU models used and
GPU models are listed in a descending order of their inference efficiency scores
according to the deep learning hardware ranking [1]. Within each GPU group,
the methods are listed in a descending order of inference speed. The test
images of CDnet 2014 (Table 4), DAVIS 2016 (Table 5), DAVIS 2017 (Table
6), and YouTube-VOS (Table 7) are resized to 240 x 320, 480 x 864, 480 x 864,
and 256 x 448, respectively.

Table 4 shows the performance comparison on the CDnet 2014 dataset.
For this dataset, the objective focuses on detecting moving objects as the
foreground from the video frames, hence the segmentation accuracy is evaluated
by F-measure.

For Table 4, we will discuss the segmentation accuracy, model efliciency
(inference speed, trainable parameters, and model size), and their trade-off
for different groups of GPUs. For the Titan Xp GPU group, the Lightweight
U-Net-like network [111] achieved the highest accuracy (97.7% in F-measure),
since the design of long and short skip connections effectively ship the low- and
high-level features across the network. Meanwhile, this model achieved the
fastest speed of 250 fps and is extremely lightweight, because the short skip
connections allow the bottleneck blocks to be very compact and to have very
few convolution layers. Models using MIMO and/or separable convolution
techniques such as 3DS__ MM [75], F3DsCNN [76] and 2D _ Separable CNN [74]
also have fast inference speeds, few trainable parameters, and small model sizes,
while achieving high segmentation accuracy. ChangeDet [133] is a shallow
network with reduced feature map volumes, while 3DFR [127] uses only a
few 3D filters and most filters are 2D or 1D, therefore these two models are
extremely lightweight. However, such lightweight designs led to accuracy
degradation, and their multi-input single-output (MISO) strategy reduced the
inference speeds.

For the GTX 1080Ti GPU group of Table 4, Frame-Level Weakly Supervised
model [139] has a relatively deeper network, hence its trainable parameters are
more and model size is bigger. However, the network adopts a single path and
two-channel input (a gray-scale frame and estimated background) and only
small convolutional kernels (3 x 3) are used, so it achieved a fast inference speed
of 134 fps. Although MvRF-CNN [3]|, Guided Multi-Scale CNN [107], and
3D CNN-LSTM |[2] have few parameters and small model size, their inference
speeds are slow, since MvRF-CNN adopts multi-scale processing with larger
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kernel sizes such as 5 x 5 and 9 x 9, Guided Multi-Scale CNN is pixel-wise
processing, and 3D CNN-LSTM has a 16-channel input (four RGB frames)
and relies on 3D convolution, which has high computational complexity. In
terms of accuracy, multi-scale processing with larger kernel sizes (MvRF-CNN)
and spatio-temporal processing (3D CNN-LSTM) achieved higher F-measure
scores, while very shallow network architecture (Guided Multi-Scale CNN) led
to much lower accuracy.

For the GTX 970 GPU group of Table 4, FgSegNet M [96] has more
parameters and a larger model size since it’s a deeper network with multi-scale
processing. The MSCNN+Cascade [216] network is extremely lightweight due
to its simple network architecture. However, since it generates segmentation
results pixel-by-pixel, the inference speed is slower than FgSegNet M. Besides,
the multi-scale deeper network FgSegNet M achieved much higher accuracy
than the shallower MSCNN+Cascade network, at the expense of more trainable
parameters and a larger model size.

In terms of overall performance, the Lightweight U-Net-like model [111],
3DS_MM [75], 2D _Separable CNN [74], F3DsCNN [76], MvRF-CNN [3],
and 3D CNN-LSTM |[2] achieved relatively higher detection accuracy, faster
inference speeds, fewer trainable parameters and smaller model sizes, which
demonstrates their potential of performing MOS tasks in delay-sensitive envi-
ronments and resource-constrained devices.

For DAVIS 2016, DAVIS 2017, and YouTube-VOS datasets, the goal is to
segment objects in video frames from a visual recognition or object tracking
perspective, therefore the segmentation accuracy is evaluated by the Jaccard
index J, contour accuracy F, and the J&F score.

Table 5 shows the object segmentation performance comparison on the
DAVIS 2016 dataset. Again, we analyze the trade-off between segmenta-
tion accuracy and model efficiency for different groups of GPUs. For Tesla
V100, models with faster inference speeds tend to have fewer trainable pa-
rameters and smaller model sizes. However, larger models do not always
generate higher segmentation accuracy. For example, AOT-T [232] utilizes
a long-term attention for matching with the first frame’s embedding and a
short-term attention for matching with several nearby frames’ embeddings,
therefore it achieved quite high segmentation accuracy. Meanwhile, it has
light-weight backbone encoder and decoder, adopts only 1 layer of the pro-
posed long short-term transformer (LSTT) block, hence its inference speed is
also quite fast and it has few parameters and small model size. In contrast,
RMNet [225] has a larger model but its accuracy is not as competitive as
AOT-T [232].

For Titan Xp in Table 5, again the faster model RANet [219] has fewer
trainable parameters and smaller model size. Although the model size of RANet
is smaller than that of DDEAL (Res101) [236], its segmentation accuracy is on
par with that of DDEAL (Res101), since RANet applies a ranking system to the
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matching process between multiple templates and the input to extract reliable
segmentation results. While DDEAL (Res101) learns static cues from the
labeled first frame and dynamically updates cues of the subsequent frames for
good object segmentation accuracy, it adopts a heavier backbone ResNet-101,
therefore the model size and parameters are quite big.

For Tesla P100 in Table 5, SwiftNet (ResNet-18) has faster speed, fewer
parameters and smaller model size than SwiftNet (ResNet-50) [206] since it
adopts a lighter backbone ResNet-18. Besides, SwiftNet achieved the highest
accuracy among all models in Table 5, and it provides quite high inference
speed (considering that it was run on a less powerful GPU). The reason is,
as a real-time template-based VOS model, SwiftNet updates fewer frames
in memory and adaptively selects incremental frames that have variations
for memory update and ignores static ones. Besides, it abandons full-frame
operations and incrementally processes with temporally varying pixels.

In Table 5, another model which also achieved a good trade-off between
accuracy and model efficiency is TTVOS (HRNet) [154]. It is a template-
based approach with a lightweight backbone network HRNet. To improve
the segmentation accuracy, it utilized short-term matching to enhance target
object localization, and utilized long-term matching to improve fine details
and handle object shape-changing. Moreover, it proposed a new temporal
consistency loss for better temporal coherence between neighboring frames.

Table 6 evaluates model performance on the DAVIS 2017 dataset. We
also analyze the trade-off between segmentation accuracy and model efficiency
for models in different GPU groups. For Tesla V100, AOT-T [232] has
faster inference speed, fewer trainable parameters and smaller model size than
RMNet [225], while RMNet offers higher accuracy (83.5% in J&F Mean) at
the expense of worse model efficiency.

For RTX 2080Ti in Table 6, SAT-fast [32] achieved faster inference speed,
has fewer parameters and smaller model size than SAT [32], but SAT achieved
higher segmentation accuracy (72.3% in J&F Mean).

For Titan Xp in Table 6, the inference speeds among AGSS [112], TVOS
[247], and PiWiVOS-F [152] are increasing, while their trainable parameters
and model sizes are decreasing. Although TVOS [247] is not the largest
model among the three, it offers the highest segmentation accuracy (72.3%
in J&F Mean), because it proposed a label propagation approach which
attempts to capture information all the way from the first frame to the frame
preceding the current frame, therefore its segmentation accuracy is enhanced.
To limit the computational overhead, TVOS [247] performed sampling densely
within the recent history and sparsely in the more distant history, yielding a
model that accounts for object appearance variation while reducing temporal
redundancy. SwiftNet (ResNet-50) and SwiftNet (ResNet-18) [206] in the
Tesla P100 GPU group were already analyzed during the discussion of Table 5
models.
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Table 7 evaluates model performance on the YouTube-VOS dataset. As
introduced earlier in Section 4, the validation set of YouTube-VOS has 65
“seen” object categories which appeared in the training set, and 26 “unseen”
object categories which did not exist in the training set. To evaluate the
segmentation accuracy, the Jaccard index J and contour accuracy JF are each
calculated independently for the “seen” and “unseen” category, then the four
resultant metrics are averaged as the overall J&F score.

For Table 7, we again analyze the trade-off between model accuracy and
efficiency for models in different groups of GPU. For Tesla V100, the inference
speeds of RMNet [225], FRTM [170], and FRTM-fast (ResNet-18) [170] are
increasing, while their trainable parameters and model size are decreasing.
Besides, the larger model RMNet [225] achieved much higher accuracy (81.5%
in J&F Mean) than smaller models FRTM and FRTM-fast (ResNet-18). The
reason that FRTM and FRTM-fast (ResNet-18) [170] are lightweight and faster
is, these methods take previous segmentation masks as training data to learn
a lightweight target appearance model during the inference stage using fast
optimization.

For Titan Xp in Table 7, AGSS [112] has more parameters and larger model
size than TVOS [247], correspondingly, its segmentation accuracy is higher
(71.3% in J&F Mean). The SwiftNet models [206] in Tesla P100 GPU group
were already discussed earlier.

In terms of the overall performance of models in Table 7, AOT-T [232],
SwiftNet (ResNet-18) and SwiftNet (ResNet-50) [206] offer good trade-off
among segmentation accuracy (79.7%, 73.2%, 77.8% in J&F Mean, respec-
tively), trainable parameters (5.7 M, 32.5 M, 37.4 M, respectively), and model
sizes (23.3 MB, 130 MB, 149 MB, respectively).

We also provide a comprehensive list of the access links of lightweight and
non-lightweight MOS models with implementation languages in Tables 8 and 9.

7 Challenges and Future Directions

In this section, we identify existing challenges in the field of MOS indicated by
the deep learning-based methods reviewed in this paper, and present future
research directions.

7.1 Automatic Neural Architecture Search

From the analysis of efficient model design techniques in Section 3, we observe
that well-designed network architectures can improve the efficiency while
maintaining the accuracy of MOS models, such as carefully selected number of
network layers and feature map channels, two-branch network, using smaller
decoder size than the encoder size, multi-input multi-output structures, etc.
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However, it is difficult to select the best network architecture purely by
experience.

Neural Architecture Search (NAS) designed by Google is currently a very
hot sub-topic of Automated Machine Learning (AutoML), aiming at automati-
cally designing neural network architectures, hence minimizing the reliance on
expert experience and knowledge. It has been applied to object detection and
semantic segmentation, such as the Auto-DeepLab [114] and the Customiz-
able Architecture Search (CAS) [246]. Besides, it has been utilized to find
lightweight semantic image segmentation networks [113, 146]. However, rare
effort has been put in MOS yet. Therefore, NAS-based methods would be a
valuable future research direction in the area of MOS.

7.2 Transformer-Based MOS Models

Among the deep-learning-based MOS methods reviewed in this paper, most
are using CNN structures. Although CNN is successful in extracting local
features, it is weak at capturing long-term temporal dependencies. While the
recurrent neural network (RNN) is able to explore long-term correlations, it
suffers from long back-propagation process due to the seriality of recurrent
structures.

In recent years, the Transformer [148] has emerged as a popular architecture
to explore the global correlations among a sequence of inputs. The potential of
transformers for video object segmentation has been recently studied [50, 136,
232|, but it is not thoroughly investigated. Besides, it is prohibitively expensive
to scale transformers to long sequences, because self-attention mechanism has
quadratic time and memory complexities with respect to the input sequence
length [260]. More and more research focuses on how to reduce the complexity
of transformer-based models. Some transformer-based models have been proved
to outperform previous models in both accuracy and inference speed in semantic
segmentation. For example, SETR [252] deploys a pure transformer to encode
an image as a sequence of patches with a simple decoder. Swin Transformer
[119] adopts a shifted windowing scheme, which brings greater efficiency by
limiting self-attention computation to non-overlapping local windows while
also allowing for cross-window connection. Seg-B/L [183] is built on the Vision
Transformer (ViT) with a point-wise linear decoder. Due to these successful
examples, developing transformer-based MOS models along with complexity
reduction schemes would be a promising future research direction.

7.3 The Generalization Capability of MOS Models

Existing MOS algorithms have achieved good segmentation accuracy when
the training and test sets have the same or similar distribution. However,
the performance could severely deteriorate when the test set has unknown
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distribution shifts, which is the domain shift problem. This was demonstrated
in Table 7, where the Jaccard Index J and the contour accuracy F of the
“Unseen” scenario are significantly worse than the “Seen” scenario. In future
research, it is important to find solutions to improve the generalization capa-
bility of MOS models, which refers to the models’ ability to adapt properly to
new, previously unseen data [60]. The following are three methods that can
be considered.

7.83.1 Domain Adaptation

Domain adaptation (DA) is the technique to adapt a model learned from
training data (source domain) to test data (target domain). It can reduce
performance degradation caused by domain shift. DA techniques have been
applied to tasks such as image classification [57, 199] and semantic segmentation
[7, 83, 106], but it was less frequently used in VOS tasks, due to the challenge of
high complexity of video data. DAVOS [242] applied adversarial DA techniques
to the VOS task with a domain confusion loss for unsupervised training in the
target domain. Another example is VOSTR [33], which proposed a self-learning
framework to segment objects in unseen videos. It consists of three steps:
(1) refining responses of the trained source model, (2) selecting object-like
proposals via a segment mining module, and (3) learning a CNN model with
a transferable module for adapting seen categories in the source domain to
the unseen target video. In this way, existing annotations in source images
are exploited and visual information is transferred to segment videos with
unseen object categories, without using any annotations in the target video. In
[239], conditional GAN (¢cGAN) and DA were utilized to adapt a background
subtraction model trained on the CDnet 2014 natural images to the target
domain of very high resolution (VHR) optical remote sensing videos. It
significantly improved the F-measure of the segmented foreground mask for
the target domain.

7.83.2  Continual Learning

Another way to improve models’ transferability from old data to new data is
continual learning, in which machine learning models are adapted to continuous
streams of information [153]. It has been applied to semantic segmentation [49]
and object detection [176, 243], where old models are updated by sequentially
adding new classes [49]. For example, a deep model consolidation (DMC)
module is proposed in [243] to tackle continual learning of image classification
and object detection with a distillation-based method. Besides, these three
works [49, 176, 243] also properly address the “catastrophic forgetting” problem
commonly seen in continual learning, which refers to an abrupt degradation of
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performance on the original dataset, when the training objective is adapted to
the new data.

Nevertheless, continual learning has not been applied to MOS problems
yet, hence it would be an interesting future research direction. For applications
on mobile and embedded devices, in particular, the memory to store data
is limited, hence continual learning becomes quite important because it can
learn from only the new data while the old data can be discarded. Besides,
model design is important to continual learning as well, because the choice
of architecture can significantly impact the continual learning performance,
and different architectures lead to different trade-offs between the ability to
remember previous tasks and learning new ones [140].

7.3.8 General Dataset

In the future, more general video datasets are also desired to improve the
robustness and generalization capability of trained models, and to facilitate fair
performance comparison among different models. For example, the training
set is desired to have diverse scene content and various conditions such as
noisy and compressed frames, diverse appearance and trajectory of the moving
objects. When models are trained on a dataset with a specific video scene, such
as dynamic background or extreme weather, this would limit the generalization
capability of the trained model, unless the model is purposely designed for
specific use. Besides, for performance evaluation and comparison, it is desired
to create benchmark training sets such that different models can be trained
on the same data, resulting in a fair performance comparison among different
models. Although some existing datasets are collections of assembled public
datasets, such as SBI2015 [125] and SBM-RGBD |[23], in the future, more
general video datasets are still needed.

7.4 Unsupervised Learning on Unlabeled Data

Most existing deep learning-based MOS methods are supervised learning, which
requires extensive amounts of annotated data to improve the performance
and to avoid over-fitting. However, obtaining pixel-wise segmentation labels
is labor-intensive and expensive. Therefore, unsupervised learning is desired
to address this problem. It is noteworthy that unsupervised learning here
means that ground-truth segmentation masks are not available for training,
while the unsupervised VOS discussed in Sections 1 and 2 refers to the lack
of human intervention or manual annotation at test time, but it does require
ground-truth labels to train the model.

Recently, a few unsupervised learning methods have emerged for MOS. For
example, MuG [122] models video object patterns by comprehensively explor-
ing supervision signals from different granularities of unlabeled videos. The
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effectiveness of this approach was demonstrated in both unsupervised VOS and
semi-supervised VOS. The adversarial contextual model [231] achieved better
or similar performance compared to prior unsupervised learning methods, and
even edged out methods that rely on supervised pre-training. Nevertheless,
compared to supervised learning, its segmentation accuracy is still not com-
petitive. Also, it was only applied to single-instance MOS datasets, such as
DAVIS 2016, and how it will perform on multi-instance segmentation scenarios
is unknown. Such kind of unsupervised learning is a future direction for MOS
research.

7.5 Knowledge Distillation

Knowledge distillation [71] is a well-studied model compression technique. It
learns a small “student” model to mimic a large “teacher” model and to leverage
the knowledge source of the teacher to obtain similar or higher prediction
accuracy. The small student model can achieve a faster inference speed
and be deployed on devices with limited resources, e.g., mobile phones and
embedded devices. Knowledge distillation has been extensively applied to
image classification [31, 226, 243|, object detection [30, 243|, and semantic
segmentation [229]. For example, knowledge distillation is leveraged in an
incremental learning framework in [243] for image classification and object
detection. The proposed deep model consolidation (DMC) module adopts a
novel double distillation training loss to allow the final student model to learn
from two teacher models simultaneously.

Several works also adopted it for video-related tasks. JITNet [144] employed
knowledge distillation for video semantic segmentation. This method trained
the student network in an online fashion on the live video, intermittently
running the teacher network to provide a target for learning. Such online
distillation yields semantic segmentation models that closely approximate their
Mask R-CNN teacher with 7 to 17x lower inference runtime cost. In [191], a
lightweight network tailored for video salient object detection (VSOD) through
spatiotemporal knowledge distillation is proposed. It achieved competitive
performance against prior works and the runtime of this lightweight model is
very fast with 0.01s per frame.

Nevertheless, knowledge distillation has not been extensively applied to
MOS problems, which is a promising future research direction.

7.6 Model Deployment and Performance Evaluation on Edge Devices

Although many fast and lightweight MOS models have been developed, cur-
rently most inference tasks are conducted on GPU severs. In future research,
it is desirable to deploy efficient MOS models and evaluate their performance
on commercially available edge devices, such as the edge TPU developed by
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Google [26], the Neural Compute 2 developed by Intel [65], Jetson Nano, Jetson
TX1, and Jetson AGX Xavier developed by Nvidia [25], and AT Edge developed
by Xilinx [221]. It is important to compare the accuracy and efficiency of
various models on these devices. The test results can provide necessary insights
to advance technologies in edge Al applications such as autonomous vehicles
[5] and mobile robots [102].

8 Conclusion

In this paper, we presented a comprehensive review of deep learning-based
MOS algorithms. Under the motivation of delay-sensitive MOS scenarios
and applications on mobile and embedded devices, we summarized efficient
MOS models in detail. In particular, we introduced 13 efficient MOS model
design techniques, summarized a variety of MOS datasets, thoroughly reviewed
performance evaluation metrics including accuracy metrics and efficiency met-
rics, compared model performance on popular MOS datasets and analyzed
essential techniques of competitive models. The access links to each model and
each dataset were also provided. Last but not least, we pointed out existing
challenges in MOS and present future research directions from the perspectives
of automatic network architecture search, leveraging transformer approaches,
improving models’ generalization capabilities, unsupervised learning, model
compression through knowledge distillation, and model deployment and evalu-
ation on edge devices. We believe this review brings rich information about
different aspects of deep learning-based MOS and provides readers with useful
insights into future research endeavors.
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