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Abstract—With the continuous improvement of computer
vision technology, more and more image information Iis
consumed by machines rather than humans. Image coding for
machines (ICM) is to compress image data such that they can be
more efficiently sent to the receiver side for machines to conduct
visual analysis. A typical deep learning-based ICM structure
contains one codec network which compresses and transmits
images through the Internet and one semantic analysis task
network such as image classification and object recognition. In
the codec part, the side information is the hyper-prior or
hierarchical layers of hyper-priors for the compression of image
latent representations. In this paper, we propose a Side
Information Driven Image Coding (SIIC) framework based on
deep learning. It only compresses and transmits the side
information to the receiver for image classification tasks. We
obtain a top-1 accuracy of 70.38% on the ImageNet1K dataset
with 0.046 bits per pixel.

Index Terms—side information, hyper-prior,
classification, image coding for machines, transformer
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The rapid development of smart cities and Internet-of-
Things (IoT) [4] has greatly accelerated the progress of deep
learning-based image compression and visual recognition.
Deep learning-based image compression uses deep neural
networks such as convolutional networks to compress images.
According to [6], deep learning-based image compression
significantly improves the rate-distortion performance
compared to conventional image compression techniques
such as JPEG [23] and BPG [24]. While traditional image
compression approaches are designed for human vision,
nowadays more and more images are generated by end users
and transmitted to cloud servers to perform visual recognition
tasks such as image classification, object detection and
instance segmentation, etc. The massive amount of images
transmitted to the cloud serves consumes a large Internet
bandwidth. Therefore, image coding for machines (ICM) has
emerged as a new coding paradigm to extract and compress
image features more useful for visual recognition tasks at
cloud servers.

INTRODUCTION

One type of ICM frameworks is to directly extract and
transmit the latent representation from the encoder side to the
decoder side. For example, images are directly fed into a pre-
trained Mask-RCNN networks in [5] to extract the instance
segmentation map which is further compressed as a 16-bit
gray-scale profile and transmitted to perform an object
detection task. This method directly transmits the latent
representation which is the feature tensor produced by the
encoder layers. Other methods first perform special
processing on the image and then transmit it, such as MAGIC
[7]. 1t is used in mountain fire recognition and building crack
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detection. MAGIC transforms the original image into
triangulation, and the sparse points and colors in the
triangulation will cost lower bit-rate. However, MAGIC needs
to learn the knowledge of how to build the triangulation for
each training set. SSSIC [8] inserts backward prediction
modules to remove the redundancy. Because the latent
representation of 37-class classification task is encoded from
the latent representation of 200-class classification task, these
two representations contain redundancy. SSSIC predicts the
second representation through the first one and only encodes
the difference between the predicted representation and the
second representation for the 200-class classification task.

Another type of existing ICM frameworks directly
concatenate an image codec [1] and a visual recognition task
network in an end-to-end manner [3], [9], [10], [12], [13], [14],
as shown in Fig. 1. The codec usually consists of a main
encoder-decoder pair and a hyper encoder-decoder pair. While
the main encoder encodes the image x into latent
representation y, followed by quantization, arithmetic encoder
(AE), and arithmetic decoder (AD), the hyper encoder further
processes y to generate side information to estimate the
probability distribution parameters for the mainstream AE and
AD. Then, the framework uses the output of the codec, that is,
the decoded image X, as the input of the task network to
perform visual recognition tasks. However, the decoded
image X contains redundant information for task inference,
which will increase the transmission burden and is not
conducive to the visual recognition task accuracy.

Compared to the main stream information y generated by
the main encoder, the side information generated by the hyper
encoder not only consumes less bit rates, but also contains
more abstract semantics, which can be further processed to
perform high-level visual recognition tasks.

In this work, for the first time in the literature, we propose
an ICM framework, Side Information Driven Image Coding
(SIIC), which only compresses and sends the side information
generated by the hyperpriors of a learned image codec for
image classification. The extremely low bit rates of the side
information can greatly relieve the transmission bandwidth
pressure and the proposed SIIC can still achieve highly
reliable image recognition results.

We use the coarse-to-fine learned image compression
framework [2] as our codec, Vision Transformer (ViT) [11] as
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Fig. 1. The bmshj2018-hyperprior image codec [1] connected with
machine task network, AE and AD are arithmetic encoding and decoding.
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Fig. 2. The red dotted line zone is our SIIC framework for second stage training. The Concat part in the first stage is to concatenate all decoder outputs

and form X.

the task network, and focus on the combination of side
information and ViT. The coarse-to-fine framework is
improved on the basis of [1] which uses convolution layers to
do the encoding and decoding process. It includes two layers
of hyperpriors, which can further reduce transmission
redundancy. ViT divides an image into small patches, uses the
attention mechanism to calculate the degree of association
among different patches, and finally obtains the image
classification results. It has been proved to perform well on
the ImageNet1K dataset [16].

The remaining of this paper is organized as follows:
Section II introduces the related ICM frameworks, Section III
elaborates our proposed method SIIC in details, Section IV
presents the performance of SIIC through experiments, and
Section V concludes the paper.

II. RELATED WORK

The human-machine interaction-oriented image coding
framework (HMI-IC) [4] compresses and transmits the images
to complete the task of classifying images. The stream of
transmitted information is also capable of generating smaller-
resolution preview images. This method not only provides an
early warning mechanism, but also saves the bandwidth.

The  Semantics-Preserving  Image  Compression
framework (SPIC) [18] and the compressed representation
method [20] both directly feed the quantized feature into task
networks to perform visual recognition, which omits the step
of converting the latent representation to a recovered image.

Image pre-transformation method [19] achieves high
image classification accuracy and low bit-rate by a deep
encoder-decoder network with a bypass structure. In [21],
while the pre-semantic DeepSIC places the semantic analysis
at the encoder side, the post-semantic DeepSIC performs
semantic analysis at the decoder side. The RNN-C + ResNet-
50 model [22] trains a recurrent neural network (RNN) as the
codec, and incorporates with a ResNet-50 network in the
classification task. By this way the compressed image
preserves features relevant for classification.

In [13], a hyperprior codec [1] is linked with a
segmentation task. Only the first 128 channels out of the main
stream information are used for the visual task. Although not
using all the main stream information can objectively reduce
the bit-rate required by the task, more than half of the channels
may still cause data redundancy.
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All the above methods directly use all or part of the
mainstream latent representation, which will cause relatively
large redundant information.

Compared with [3], our proposed method uses the coarse-
to-fine framework in [2] as our codec, and the ViT in [11] as
the task network for image classification. Compared with [13],
we directly utilize the side information instead of layering the
main stream information, which further reduces the bit-rate.

III. PROPOSED METHOD

A. Concatenation of the codec and the task network

The first-stage algorithmic development is to concatenate
an image compression codec and an image classification task
network to form an end-to-end ICM network. As shown in Fig.
2, we take the coarse-to-fine pipeline [2] as the image
compression codec, and the vision transformer (ViT) as the
image classification task network. The output decoded image
X of the codec serves as the input of ViT.

The coarse-to-fine image codec has a main encoder-
decoder pair and two hyper encoder-decoder pairs. The image
x is compressed by the main encoder into a latent
representation y as shown in the following equation

y= Encoder(x; aencoder)s (1)
which is then quantized as ¥y, entropy encoded by an
arithmetic encoder (AE) into a bitstream and transmitted to the
decoder. The decoder then performs arithmetic decoding (AD),
followed by the main Decoder. The first-layer hyperprior 4/
and the second-layer hyperprior 42 are obtained by the
following equations

hl = Encoder_h1(y; Ooncoder n1)s 2)

h2 = Encoder_h2(h1; Ogncoger n2)- 3)

To perform entropy coding of the latent vector ¥ and
convert it to a bitstream, the arithmetic encoder and decoder
need to know the probability distribution of y [2]. Here, we
assume that ¥ has a Normal distribution, and we use
hyperprior Rl to estimate the parameters (&, o)) through the
Prediction Model. Similarly, A1 is NV (iyy, 041) distributed
whose parameters are estimated by A2 and A2 is assumed to



be N (up, = 0,0, = random) distributed. After h1, h2
and y are entropy encoded and transmitted to the cloud server
end, they are parsed by the corresponding decoders: Decoder,
Decoder_hl, and Decoder_h2, spliced along the channel
direction and further processed by the Concat layers to obtain
the decoded image X.

The aforementioned coarse-to-fine image codec has two
layers of hyper-priors, one more hyperprior than [1], which
can further remove the redundancy contained in h1.

Denote the estimated distributions of 9, A1 and h2 as
P(9|h1), P(h1|h2) and P(h2), then the bit-rate required to
transmit the encoded image ¥, the two encoded hyperpriors
1 and A2 can be approximated by their entropy as shown in

eq (4)-(6).

Rmain = Epgyjiny[—1og(P(9|h1))] “4)
Rii = Epgijip)[—log(P (R1|h2))] ®)
Riz = Ep(py[—log(P(h2))] (6)

The total bit-rate R,;; in (7) is the sum of all three bit
streams, while the side information bit rate R;4, refers to the
bitstreams of the two hyperpriors.

Rau = Rimain + Rpx + Ry (7N

Rsige = Rz + Rz (®)

We choose ViT [11] as the task network to perform image
classification. It utilizes the self-attention mechanism and
Transformers [15] originally applied to natural language
processing (NLP) to extract image semantic information. ViT
takes X as input for the classification task.

We adopt the trained coarse-to-fine model [2] and the
trained ViT model [11] to initialize the concatenated network,
then finetune the weights of the entire network on the
ImageNet1K training set.

In order to balance the bit-rates required for transmission
and the image classification accuracy, the loss function we use
at this stage is:

Loss e = A X Ry + LOSSpge + LOSS¢,
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Fig. 3. The encoder structures: Encoder, Encoder_h1 and Encoder_h2 (left
to right). ¢ is the number of output channels, k is the kernel size, s is the
stride. Space2Depth [2] doubles the tensor’s channel and downsizes the
height and width by a factor of 2.
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where A is the hyperparameter to trade off the bit-rates and the
image decoding and classification fidelity, Loss,, is the
mean squared error (MSE) between x and X, and Loss,,;; is the
cross-entropy loss between the ViT predicted image class
label and the ground-truth class label.

B. Side information network for image classification

While existing ICM architectures use the main latent
representation y or the decoded image X to conduct the
classification task, in this work, we propose to use only the
hyperpriors h1 and h2 at the decoder side to perform
classification. This avoids the transmission of J to the decoder,
hence saving the bit rates.

The second stage of algorithmic development is our
proposed side information driven image coding (SIIC)
network, as shown in the red dashed box in Fig. 2. In order to
maximize the use of hyperprior information and let h2 have
the same shape as h1, the proposed SIIC enlarges h2 by
Decoder h2_side to get h2 ', as shown in eq (10).

h2' =Decoder_h2_side(h2; 8 4ecoqer n2 siae) (10)

Then, SIIC adds h2' to h1 to get A. h now contains
information from both A1 and h2. In order to be used as the
input of ViT, h needs to be enlarged by Decoder sidel and
Decoder_side2 to get i . The details are depicted by eq (11)
and (12).

(11

(12)

h' = Decoder sidel(h; Baecoder side1)
h'" = Decoder side2(h'; Baecoder sidez)

Besides, the detailed structures of the proposed new
network components are depicted in Fig. 3 (Encoder,
Encoder hl and Encoder h2) and Fig. 4 (Decoder,
Decoder _side2, Decoder hl, Decoder sidel, Decoder h2
and Decoder h2_side).

To train the proposed SIIC network components which
include Decoder h2 side, Decoder sidel, Decoder side2,
and the ViT parameters, the codec parameters after the first
stage training need to be fixed.
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Fig. 4. The decoder structures: Decoder (or Decoder side2), Decoder hl
(or Decoder sidel) and Decoder h2 (or Decoder h2 side) from left to
right. ¢ is the number of output channels, k is the kernel size, s is the stride
size. Depth2Space [2] doubles the tensor’s height and width and downsizes
the channel by a factor of 2.



The side information A1 and A2 are connected to the SIIC,
and then its output 2" is fed into the ViT trained in the first
stage. The loss function used in the second stage is simply the
cross-entropy loss that captures image classification errors:

Lossypq = L0OSS,;, (13)
the weights of the codec do not participate in training, so the
bit-rate remains unchanged, and it is Rg;4, in (8).

IV. EXPERIMENTS AND RESULTS

We use ImageNet1K [16] as the dataset for experimental
studies. The training set has 1.28M images, the validation set
has 50,000 images, and all images belong to 1,000 categories.
The images need to be resized to 256x256 before being input
into the codec.

A. Two-stage training

We trained the proposed ICM network in two stages. In
the first stage, we concatenate the coarse-to-fine image codec
and the ViT image classifier. The coarse-to-fine framework [2]
provides 7 models pre-trained on the DIV2K dataset [25] for
different bit-rates. We use the first three of them, and the
corresponding hyperparameter A that controls the bit-rate is
1/0.0012, 1/0.0015, 1/0.008, respectively. We adopt the
trained model of ViT provided by [11], which was pre-trained
on ImageNet21k and then fine-tuned on ImageNetlk.
Afterwards, we finetune the concatenated end-to-end ICM
network on the ImageNet1k dataset. In the first-stage training,
the batch size is 32, the learning rate is set to le-6, and the
optimizer is the Adam optimizer [17]. We trained the network
for 2 epochs.

In the second-stage training, we fix the concatenated ICM
network parameters trained in the first stage, extract h1 and
h2 and connect them to the proposed SIIC components. Then,
we trained the parameters of the side decoders with the ViT
parameters finetuned. The batch size is set as 64, and the
network was trained for 7 epochs.

B. Comparison with other DNN based ICM frameworks

Fig. 5 shows the comparison of classification top-1
accuracy between different methods on the ImageNetlK
validation set, with bit-rate on the horizontal axis and top-1
accuracy on the vertical axis. Compared to other methods
which achieve the same classification accuracy, our method
requires much less bit rates. For example, to achieve an
accuracy of about 72.5%, our method only needs 0.0587 bpp,
but SPIC-Q [18], which is the closest to our method, requires
at least 0.143 bpp, which is 2.43 times that of our method. A
detailed comparison is provided in Table I.

TABLE 1. BIT-RATE REQUIRED TO ACHIEVE AROUND 72.5% IMAGE
CLASSIFICATION TOP-1 ACCURACY
Method Bit-rate(bpp) Accuracy (%)
Ours 0.0587 72.84
SPIC-Q[18] 0.143 72.51
HMI-IC[4] 0.847 72.72
J-FT T-FT[3] 0.368 72.34
RNN-C + ResNet-50[22] 1.0 73.16
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Fig. 5. Comparison of the results of different methods on the ImageNet1K
validation set, including J-FT T-FT[3], transformed images[19],
compressed representation[20], SPIC-Q[18], Pre-SA[21], Post-SA[21],
RNN-C + ResNet-50[22], HMI-IC[4], and ours.

V. CONCLUSION

We propose a deep learning-based image compression
network for classification tasks. For the first time in the
literature, we combine the side information that assists the
main stream information encoding with the image
classification network to form the SIIC framework. Since the
hyperprior has more abstract semantic information and
consumes less bit-rates, the proposed method can save the
transmission bandwidth while maintaining a high level of
image classification accuracy. In future work, we will
continue to explore the role of side information in other visual
recognition tasks.
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