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Abstract

We analyze a Higgs transition from a U(1) Dirac spin liquid to a gapless Zs spin liquid. This Zs spin
liquid is of relevance to the spin S = 1/2 square lattice antiferromagnet, where recent numerical studies
have given evidence for such a phase existing in the regime of high frustration between nearest neighbor
and next-nearest neighbor antiferromagnetic interactions (the Ji-J2 model), appearing in a parameter
regime between the vanishing of Néel order and the onset of valence bond solid ordering. The proximate
Dirac spin liquid is unstable to monopole proliferation on the square lattice, ultimately leading to Néel
or valence bond solid ordering. As such, we conjecture that this Higgs transition describes the critical
theory separating the gapless Zso spin liquid of the Ji-J2 model from one of the two proximate ordered
phases. The transition into the other ordered phase can be described in a unified manner via a transition
into an unstable SU(2) spin liquid, which we have analyzed in prior work. By studying the deconfined
critical theory separating the U(1) Dirac spin liquid from the gapless Zsy spin liquid in a 1/Ny expansion,
with Ny proportional to the number of fermions, we find a stable fixed point with an anisotropic spinon
dispersion and a dynamical critical exponent z # 1. We analyze the consequences of this anisotropic
dispersion by calculating the angular profiles of the equal-time Néel and valence bond solid correlation
functions, and we find them to be distinct. We also note the influence of the anisotropy on the scaling

dimension of monopoles.
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I. INTRODUCTION

Quantum antiferromagnetism has been a topic of intense study for many decades, and has led to
many new insights into quantum many-body phenomenon. In particular, a new class of quantum
phases, known as quantum spin liquids (QSLs) [1-3], are predicted to emerge in certain parameter
regimes of antiferromagnets due to the combination of geometric frustration and quantum fluctu-
ations. A generic feature of these QSLs is the existence of fractionalized excitations, which cannot

be created individually by local operators.

A particularly well-studied antiferromagnetic model is the J;-J5 model on the square lattice [4—
9], which has nearest-neighbor and next-nearest-neighbor antiferromagnetic exchange interactions
with coefficients J; and J,, respectively. It is known that the ground state of the nearest-neighbor
square lattice antiferromagnet (J; = 0) has long-range Néel order i.e. global SU(2) spin rotation
symmetry is broken with the spin expectation value (S;) = 7; Ny , where S; is the spin operator
on site %, n; = =1 on the two checkerboard sublattices, and Ny is the antiferromagnetic moment.
The next-nearest-neighbor antiferromagnetic interactions compete against this Néel order, and
the nature of this model as a function of Jy/.J;, in particular in the regime of high frustration,

Jo/Ji = 0.5, remain a key open question.

An early proposal [8—-11] was that there was a direct transition from the Néel state to a valence
bond solid (VBS) (see Fig. 1) which restores spin rotation symmetry but breaks lattice symmetries.
This is followed by a first order transition at larger Jo/J; to a ‘columnar’ state which breaks spin
rotation symmetry, and which we do not address in the present work. This led to the develop-
ment of a theory of ‘deconfined criticality’ [12-14] which allowed for a direct transition between
two symmetry-broken phases, a phenomenon disallowed by conventional Landau-Ginzberg theory.
Numerical evidence has since accumulated for the presence of a VBS phase in the J;-J; model -
in particular, it was recently shown that a non-zero antiferromagnetic third-nearest-neighbor in-
teraction J3 stabilizes a clear VBS phase in a large parameter range of Jo/.J; [15], and this phase
is argued to be stable down to J3 = 0. The nature of the Néel-VBS transition in this model has
remained a question of significant debate. However, in the past two years, a consensus appears
to have emerged [16] among groups investigating this question by different numerical methods
[17-20], and is summarized in Fig. 1: there is a narrow window with a gapless spin liquid phase

between the Néel and VBS states. This gapless phase has been identified [18, 21-24] as a Zj spin
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liquid [8, 9, 25, 26] with gapless, fermionic, S = 1/2 spinon excitations with a Dirac-like disper-
sion [22, 27-30]. Although there is less of a consensus over the precise nature of this spin liquid,
variational wavefunction studies using a Gutzwiller projection [18, 24] identify the ground state as

corresponding to the spin liquid Z2Az2z13 in Wen’s classification [28].

In a recent work with A. Thomson [31], we proposed a unified theory that contains multiple
instabilities of the gapless Z, spin liquid Z2Azz13, which we conjecture correspond to both the
neighboring VBS and Néel orders shown in Fig. 1. The mechanism for these instabilities consists
of considering the Zs spin liquid as a condensed phase of a parent SU(2) gauge theory coupled to
Higgs bosons. This SU(2) theory, identified as the w-flux spin liquid, also has a proximate phase
with U(1) gauge symmetry, known as the staggered flux or Dirac spin liquid. Both these phases
are conjectured to be unstable on the square lattice and ultimately lead to ordered phases, which
gives us a route for explaining the Néel and VBS ordered phases predicted to exist alongside the
Zs spin liquid in the J;-J; model. In our previous work [31], we studied the transition between the
SU(2) and Z, gauge theory using field-theoretic techniques; in this work, we complete our study
by an analysis of the U(1) to Z, transition.

The contents of this work are summarized as follows. In Section II, we review the motivation
behind our continuum model and explain its connection to the microscopic lattice theory. In
Section 111, we derive a large-N effective theory for the U(1) to Z, transition, with N the number
of fermion flavors. This allows us to study the critical theory in a systematic 1/N; expansion. A
renormalization-group analysis is performed in Section [V, where we extract critical exponents of

the theory to leading order in 1/Ny.

The structure of our critical theory bears resemblence to prior studies of transitions between
Dirac spin liquids and a gapped Z, gauge theory [32, 33]. The difference between this theory and
ours is reflected in different forms of Yukawa couplings between the fermions and the Higgs fields.
This difference turns out to drastically change the qualitative features of the critical theory. The
most notable difference is the lack of Lorentz invariance in our theory. It is known [34] that the
symmetries of the square lattice permit a velocity anisotropy term in the fermion action. In the
absence of additional gapless degrees of freedom, it has been shown [34-36] that this anisotropy is
irrelevant in a 1/N; expansion. The Yukawa couplings of previously-studied transitions preserve
Lorentz invariance. However, we will show that the choice of Yukawa coupling necessary to realize

our specific Zs spin liquid of interest will lead to Lorentz symmetry breaking and a dynamical
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FIG. 1. Phases of the S = 1/2 J;-Jo antiferromagnet on the square lattice, from the numerical results
of Refs. [17-20], all of which agree that the spin liquid is gapless. Each ellipse in the valence bond solid

(VBS) represents a singlet pair of electrons. Lower part of figure adapted from Ref. [16].

critical exponent z = 1+ 0.225/N; + (’)(1/]\7]%), where Ny = 1 is the physical case.



II. SUMMARY OF PRIOR WORK AND DERIVATION OF CONTINUUM THEORY

This paper is a continuation of prior work [31], which describes multiple possible instabilities of
gapless Zs spin liquid through a parent 7-flux phase coupled to various Higgs fields. We present a

brief summary of this derivation - further details may be found in Ref. [31].

Our starting point is the fermionic spinon theory of spin liquids, which is derived by re-epressing

the spin operators in terms of spinons fi,, o =1, at site ¢ = (i, ,14,) of the square lattice using

1
Si =35> fluoastis (2.1)
e 7ﬁ
along with the constraints
fifia=1, fiafiseas =0. (2.2)
Introducing the Nambu spinor,
fir
fay

and Pauli matrices 7¢ which act on spinor indices, we can write a mean-field ansatz for our Hamil-
tonian
_ T
H=—% dlugv;, (2.4)
ij
where the hoppings u;; must be determined self-consistently. The additional degrees of freedom

in this representation is reflected by an SU(2), gauge symmetry, under which
SU(2)g s = Ugaths , Uy € SU(2) (2.5)

and a corresponding transformation for u;;. Including gauge fluctuations are necessary to enforce
the constraint in Eq. (2.2), which in the Nambu spinor variables becomes 7,0;[ 7p; = 0. Different
spin liquids may be described by different mean-field ansatzes u;;, which may also spontaneously
break the relevant gauge fluctuations from SU(2) down to U(1) or Z,.

The particular spin liquid of relevance to the J;-Jo model can be labeled as Z2Az213 following

Wen'’s classification [28]. This spin liquid, along with two relevant proximate spin liquids, can be
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described by the mean-field ansatz,

x
Uigts = XT —10T"
x
Uiiry = XT" + 017 (2.6)
— T '
Uiiti+g = =T
T
Uii—g+9 = VT

The three relevant spin liquids are:
e The 7-flux phase with SU(2) gauge symmetry corresponds to x =n # 0 and 7 = 0.

e The staggered flux phase with U(1) gauge symmetry corresponds to x,n # 0, v = 0, and
X 7 1-

e The Zs spin liquid Z2Azz13 is obtained from the staggered flux phase by turning on a

non-zero .

The dispersion relation of all three phases hosts 4 Dirac cones at low energy, and hence, all three
phases are described by N = 4 massless Dirac fermions minimally coupled to the corresponding
gauge field. The Dirac cones of the m-flux phase have an emergent Lorentz invariance, whereas
the staggered flux and Z, phase have anisotropic dispersion relations on a mean-field level (note
that prior studies [34-36] show an emergent Lorentz invariance of the staggered flux phase upon
including gauge fluctuations).

The primary mechanism for our theory of the J;-J5 model is the assumption that both the w-flux
and staggered flux phases on the square lattice are ultimately unstable to ordered phases, either
Néel or VBS. For the staggered flux phase, the instability arises due to the presence of monopoles,
which are allowed by the compactness of the U(1) gauge theory. The scaling dimension of these
monopoles have been calculated to second-order in a 1/N expansion [37, 38|, with N the number
of fermions, and are relevant for N = 4. Moreover, there exists a “trivial” monopole operator that
respects the microscopic symmetries of the square lattice, and hence is allowed by symmetry in
an effective Lagrangian [39]. Proliferation of these monopoles is conjectured to lead to ordered
phases, including Néel and VBS order [40, 41]. The n-flux phase, on the other hand, has been
conjectured to be a dual description of the DQCP separating Néel and VBS order [42], and hence
is generically unstable to these phases. A unified framework for describing the gapless spin liquid

Z2Az213 as well as these two instabilities can hence be obtained from QCD5 with N = 2 fermion
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doublets and an SU(2) gauge group, and coupling it to Higgs fields whose condensation breaks the
gauge group to either U(1) or Zy. The precise manner in which these Higgs fields must couple
to the Dirac fermions in order to realize the specific spin liquids of interest can be determined
by taking the continuum limit of Eq. (2.6) and demanding that the condensation of the Higgs
fields modifies the Dirac dispersion relation in a manner consistent with the lattice theory. This is
the procedure carried out in Ref. [31]. These couplings may also be determined by matching the
fractionalization of the square lattice symmetries on the microscopic level with the symmetries of
the continuum theory, which is done in Appendix A of Ref. [31]. We refer the reader to Ref. [31]
for further details of this calculation; we will simply present the resulting Lagrangian in this work.

This procedure ultimately yields a Lagrangian consisting of four Dirac fermions v, an SU(2)
gauge field A}, and three three-component adjoint Higgs fields ®, 5, a = x,y, z. The SU(2) gauge

(o) and valley (p) Pauli matrices both rotate between the four fermion flavors.

L=Ly+ Lo+ Loy
Ly = ipy" (@L — iAZU“) P

3
Lo =) D,®{D'd; + V(D)

=1
Loy = O Puy 0" + B hu" o + P§pulo® (v Dy + 7Y Dy )t
V(®) = 5 (0IDY + D5DY) + 5 PIDT + w €4p DDy DS
+u (PID] + DIDG)? + U (B5DG)° + vy (PFDBS)” + vy (D1DY) (DEDY)
+v3 [(@I05)° + (B4DT)°] + vy (DIDY + D4DE) (D5DY) + ...

We have absorbed the coefficients of the Yukawa couplings into the Higgs fields. The general form
of the Higgs potential V(@) is constrained by the microscopic symmetries of the square lattice, and
we present only a subset of the possible terms. The manner in which these microscopic symmetries
are embedded in the continuum theory may be derived by starting from the original lattice model,
and these transformation properties are given in Table I. The action of the SU(2) spin rotation
symmetry requires a more careful analysis and is described below. All three Higgs fields transform
trivially under this SU(2) symmetry. Our choice of representing the fermionic degrees of freedom
in terms of Dirac fermions obfuscates the full SU(2) spin rotation symmetry, as rotations around
the x or y axis involve charge conjugation. However, the U(1) subgroup corresponding to rotations

around the z axis is simply given by a phase shift in ¥, 1 — €y. The full SU(2) rotation
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T,|T,| P | P T R/

oo — | +| - - - -
o + | - | - - - — 8
o1 — | — | + + + —

.
O |1 | = O | e

TABLE 1. Listed are the microscopic symmetries of the square lattice and their action on the continuum
fields. T; (P;) indicate translations (reflections) along the i’th axis, 7 is time-reversal symmetry, and R/,
is a m/2 rotation. We omit the action of SU(2) spin rotation symmetry as its action on the fermions 1) is

non-trivial and described in the main text.

symmetry may be made explicit by writing the theory in terms of Majorana fermions [42], but this

will not be necessary for our purposes.

On a mean-field level, this theory admits three phases, illustrated in Fig. 2. When all three
Higgs fields are uncondensed, we recover the m-flux phase with SU(2) gauge group. When &3
condenses, we obtain the U(1) staggered flux phase. The condensation of ®; and ®, yields the
gapless spin liquid Z2Az213. The masses of ®; and ®, are fixed to be equal by the microscopic
square lattice symmetry, so both condense simultaneously. Furthermore, the symmetry-allowed
cubic term eabcq)‘f@gq)g forces @3 to condense along with ®;, ®,. Our conjectured trajectory of the
J1-J2 model as a function of % is shown by the dotted blue line in Fig. 2, where transitions into
either the staggered flux or m-flux phases drive the Néel or VBS ordering. Our theory may also be
compatible with the inclusion of an antiferromagnetic third-nearest-neighbor J; term, which has
been shown numerically [15] to compete against the spin liquid phase, eventually leading to a direct
Néel/VBS transition. This phenomenon can be described in our theory by a deformation of the
Jo/J1 path to a trajectory in the w-flux phase; this deformation introduces first-order transitions

near the tricritical point.

The transition from the m-flux phase to the Z, phase was studied in [31], and the focus of our
work will be the U(1) to Z, transition. Before proceeding with our analysis, we briefly summarize
the results of our study of the SU(2) to Z, transition. The primary order parameters for this
theory are the masses of ®;4, so we neglect fluctuations of ®3. This critical theory is studied

in a 1/Ny expansion, with 4Ny the total number of fermions. Due to the anisotropic couplings
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FIG. 2. Mean field phase diagram of our low energy theory obtained by minimization of the Higgs potential
in Eq. (2.7). Dashed (solid red) lines indicate second (first) order transitions in mean field theory. We
assume the SU(2) m-flux gauge theory confines to a Néel state, the U(1) staggered flux gauge theory
confines to a VBS state, except at their deconfined critical boundaries to Wen’s stable, gapless Zso spin
liquid Z2A2z13. The dotted blue line indicates a possible trajectory of the square lattice antiferromagnet

with increasing Jo/J;.

of the Higgs fields, the leading-order effective propagators for @, are divergent along a one-
dimensional subspace in momentum space. These lines of zero modes may be thought of as a
consequence of an emergent subsystem symmetry. More details on this perspective are presented
in Appendix B. Although these divergences are lifted by higher-order corrections, the leading-
order effective action is non-local and more relevant at long distances than the bare Higgs kinetic
term. Performing a standard momentum-shell renormalization group study of this leading-order

theory is ill-defined and necessitates the inclusion of the irrelevant bare Higgs kinetic terms, which
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become “dangerously irrelevant” due to the singular nature of the leading-order theory. At one-
loop order, these features lead to log® divergences, rather than the more standard single-logarithm
divergences found in conventional field theories. Re-exponentiating these corrections, we predict
that the universal properties of correlation functions at criticality, rather than being power law,
are instead r~®exp (6 In? r), with 8 = —6/7% for the VBS correlator and —12/7% for the Néel

correlator, and « being some non-universal coefficient.

For the remainder of our work, we study the U(1) to Z. transition, which is driven by the
condensation of a charge-2 complex scalar Higgs field. Upon calculating the large-N; effective
action, we perform a renormalization group (RG) analysis to determine the fixed point of our
critical theory. The primary observables of interest that we will study are the dynamical critical
exponent z, which determines the difference between spatial and temporal scaling, and correlations
of the Néel and VBS order parameters, which are given by fermion bilinears in our continuum

theory.

We find that the presence of the massless Higgs fields strongly modify the critical behavior
from the theory of massless QED which describes the pure staggered flux phase without Higgs
fields. The staggered flux phase normally possesses an SU(4) symmetry [34], which relates various
physical order parameters including Néel and VBS. Moreover, the staggered flux phase has an
emergent Lorentz invariance at low energy, as the only velocity anisotropy term allowed by the
square lattice symmetries is irrelevant in a 1/N; expansion. The critical Higgs fields explicitly
break the SU(4) symmetry and generate a non-zero velocity anisotropy, which further breaks
the U(1) spatial rotation symmetry down to the C; symmetry present in the microscopic model.
While correlation functions still have power law decay as in more traditional critical theories, the
angular profiles of the correlation functions are modified by the velocity anisotropy; we calculate

the tree-level effects of these modifications for the Néel and VBS correlation functions.

Recall that in the absence of critical Higgs fields, we postulate that the staggered flux phase
is unstable to monopole proliferation. A key assumption in our analysis of the critical theory is
that monopoles are rendered irrelevant due to the presence of critical Higgs fields and the theory
may be studied using a non-compact U(1) gauge field. Indeed, such an assumption is similar to
the analysis of earlier studies of deconfined criticality between Néel and VBS orders [13, 14]. This
assumption is elaborated further in Section V, where we note that in addition to the critical Higgs

fields, the presence of a non-zero anisotropy in the fermion dispersion relation can also affect the
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relevance of monopoles at criticality. In a large-N; expansion, this has an O(Ny) effect on the

scaling dimension of the monopole, in contrast to the Higgs screening, which is O(1).

III. LARGE N; EFFECTIVE ACTION

Our goal is to study the U(1) to Zy transition of Eq. (2.7). Both phases have the Higgs field
(®%) # 0, so we fix § = §,,P, & # 0. In this theory, the SU(2) gauge symmetry is broken to
U(1), so we only consider A, = A?. It is important to include the consequences of the cubic Higgs
term, whose sign determines the form of the low energy complex Higgs. We choose a gauge where

wP < 0, and the low energy behavior can be described in terms of a single complex Higgs

H=— (D7 + Y+ (DY — D7)) .

N

(3.1)

This field transforms as a charge 2 Higgs field under the unbroken U(1) symmetry, as desired.
Other linear combinations of ®; 5 are massive and can be neglected for the critical theory. As we
will clarify later, we must also assume w < 0 in order for our transition to be continuous - if w
is positive, the aforementioned massive Higgs fields will turn out to have a negative mass at the
O(1/Ny) fixed point, which will lead to a first-order transition.

With these definitions, the Lagrangian that describes the U(1) — Z, transition is

,Csf = £¢ + ,CH + ,Cq.h/,

Ly =iy Do + @ Yp’o” (v Dy + 7" Dy) b

Ly = s|H|* + O, H O"H + u|H|*

Loy = Hp (107" +ip™y) 079 + H Y (0" — ip™y?) o 4p.

with D, = 8, —iA,0% and 0* = 0® +i0¥. This Lagrangian may contain higher-order terms, but
we omit these as they will turn out to be irrelevant in a 1/N; expansion. The term proportional
to @ is a modification to the Lorentz-invariant fermion propagator 1/p allowed by the projective
symmetry group of the staggered flux phase. In the absence of the critical Higgs field, this velocity
anisotropy has a stable fixed point value of & = 0 [34-36]. In our case, terms of this form are

spontaneously generated at one-loop order by the critical Higgs field, and ® acquires a non-zero

value at the fixed point.
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In order to study our critical theory, we proceed in a 1/N; expansion, with N; the fermion
number. Since our theory only makes sense when the number of fermions N is a multiple of 4, we
define 4Ny = N; in other words, we take Ny = 1 to correspond to our physical theory. At leading
order in 1/Ny, our effective bosonic action takes the form

Sy 1
= [l TR0 R + 5T (04, ()4, 1 (33

where the inverse propagators I', II are generated by the one-loop fermion diagrams shown in

p p
/_\ /_\
H------{ - H* AF AY
N NS
p+Ek p+k

FIG. 3. The effective action for the Higgs boson (left) and U(1) gauge field (right) are generated by the

fermions at leading order in a 1/Ny expansion.

Fig. 3. Note that we have taken the bare Higgs mass to scale with Ny, although we will be
interested in the critical theory where we tune the Higgs mass to zero.

To calculate the effective propagators, we need the fermion propagator, which receives correc-
tions to its Lorentz-invariant value of 1/ p due to a non-zero ®. This may be treated perturbatively
in ®, but the existence of a stable fixed point turns out to not be viewable at leading order, so
we instead proceed with a non-perturbative treatment of ®. We include further details of this

calculation in Appendix C, and cite the results in the main text. Defining the variables

B =k £ Oy, ke =k kO, kel = R+ RL R (3.4)
the effective inverse Higgs propagator (obtained from the ®-dependent fermion propagator) is
1 k2 + K2+ 2k, Lk k2 4+ k2 — 2k, _k, _
I'(k) = + T8 T ey | B R i (3.5)
16N, (1 — ?) s ]

Likewise, we need the general form of the effective gauge boson propagator. The presence of a

non-zero ® modifies the gauge coupling, and hence non-Lorentz-invariant corrections arise both
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from ®-dependent modifications to the fermion propagator as well as O(®) vertices. We separate
this calculation into three pieces. The first correction comes from using the O(®) vertices, but

with the full fermion propagator. This one-loop term contributes

H(l) (k) e Z kg <5 — m) (3 6)
v v . .
K Pt 8Nf(1 — D2)|k,| k2
The second correction comes from using one O(®) vertex, which gives the contribution
k2 kuok
H(Q) k) = H(Q) k) = a®r, 5. patya
u:t( ) zu( ) 28Nf(1—®2)|/€a| ny kg
“ (3.7)
D2 kuqk
H(Q) k) = H(Q) k) = a®R, _ Mpalvga )

There is also an extra factor of 2 in H&?,yy due to the two possible vertex orderings. Finally, the

third correction comes from using two O(®) vertices,

H2k2 k2
) (k) = o 1--=
20 =D 5N, = a9l ( k)

a=%+ a
O2f2 k2
I3 (k) = a 1 — Zza
)= 2 - e\ 3
2k, k
3 3 zavya
a=% a

We verify that the combined inverse propagator Il (k) = >, 53 H,(fl),(k:) annihilates the vector
(ko, ks, ky), as required by gauge invariance. Note that II,, requires a gauge fixing term in order
to be invertable. Followin Ref. [34], we add the following non-local gauge fixing term to the

Lagrangian
1
AE| K|

All gauge-invariant observables have been checked to ensure they are independent of the choice of

¢

A kPR A, . (3.9)

IV. RENORMALIZATION GROUP ANALYSIS

We perform a renormalization group (RG) analysis of the O(1/Ny) effective theory. We are

interested in studying the behavior of this theory under the rescaling

k=Fke*
(4.1)

w=we
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We also define a rescaling of the fermion fields
Yk, w) = O (K, w)er @) (4.2)

The Higgs and gauge fields must also be suitably rescaled, although the anomalous dimensions of
these fields will not be needed to calculate our observables of interest. In the absence of a standard
boson kinetic term at leading order in 1/Ny, we define the scaling of the boson field by performing
our RG such that the Yukawa coupling remains fixed under RG.

A. Fermion self-energy

We first evaluate the O(1/Ny) contributions to the fermion self-energy, which come from both
gauge and Higgs one-loop diagrams. The self-energy is UV divergent and requires a UV cutoff A.
The logarithmic derivative of the fermion self-energy with respect to this cutoff takes the general

form

d
dA
for constants Cp ;2. One must verify that only these terms are generated at one-loop order, which

A—3%(k) = Cokoy" + Cy (k7" + kyy¥) 4+ Co®p¥o” (kuy” + kyy”) (4.3)

we have done.
In order to calculate the constants C;, we will use the momentum-shell RG approach outlined

in Ref. [43]. The regularized one-loop contribution to the self-energy schematically takes the form
d’p P’ (k +p)°

(k)= | —=F — 4.4

0= [ Gtsrw+ wowi (5 )k (FH) (4.4

where ' and G are homogeneous functions of the three-momenta, and K(y) serves as a UV cutoff

with the property that K£(0) = 1 and K(y) falls off rapidly for large y. In our calculations, we take
F' to be the fermion propagator, and G to be the boson propagator (either Higgs or gauge), along
with vertex coefficients. The fact that /' and G are homogeneous functions allows us to remove
the explicit dependence on K upon taking the logarithmic derivative and integrating by parts. We
refer to Appendix D for an explicit derivation of this, and state the result here - the logarithmic
derivative of the self-energy takes the form

d k[T T OF(p) . .
— = . 4.
AdAE(k) 87T3Nf/0 dqﬁ/() sin 6 do s G(p) (4.5)

where p = (cos ), sin sin ¢, sin 0 cos ¢). The resulting integrals in Eq. (4.5) are fully convergent

and may be evaluated numerically, from which we can extract the coefficients Cj 1 2.
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B. Fixed points

The RG equations for the velocity anisotropy ® are

4o
3 = (-2 (4.6)

In the absence of the Higgs field, ® has a stable fixed point at ® = 0. The gauge field contribution
to this equation has been calculated to leading order in ® [34], and we verify agreement with this

result.

do
d/

0.05¢

‘ ‘ ®
-05 b~§\_/

-0.05+

FIG. 4. An evaluation of the RG flow of ®, showing a stable fixed point at ®. ~ 0.46.

The evaluation of Eq. (4.6) is plotted in Fig. 4. A stable fixed point is found at ¢, ~ 0.45765.
At this point, the dynamical critical exponent z is given by
z=1—00+01:1+%+0(1/N;). (4.7)
Recall that when we derived this critical U(1) — Zy theory as a component of a parent SU(2)
theory, we made a gauge choice such that w® < 0, where w is the coefficient of the symmetry-
allowed cubic term, weqp P¢PEPS. When (@) = ®d,,, we can diagonalize this term to yield a mass,
w(H*H — M*M), where H is the combination of ®7’J given in Eq. 3.1 and M is a charge-2 Higgs
field of a similar form but with z <> y. If we assume w > 0, & < 0, then H will become massless
first, but the fixed-point value of ® gives a negative mass to M, leading to a first-order transition
driven by the condensation of M. As a consequence, we must fix our parent SU(2) theory to have
w < 0 in order to yield a continuous transition. If we had made a gauge choice such that w® > 0,

then our theory would have been driven by the condensation of M rather than H; this still leads
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to the gapless Z, spin liquid Z2Azz13, and all gauge-invariant observables at the critical point

remain the same, although the sign of &, changes.

C. Néel and VBS order parameter corrections

We now calculate the vertex corrections to the Néel and VBS order parameters. These order
parameters are given by fermion bilinears and can be identified based on the action of the mi-
croscopic square lattice symmetries on the fermions. The VBS order parameter is given by the
bilinears ¢1*®1). As mentioned previously, our particular representation obfuscates the full SU(2)
action of spin rotation symmetry; however, the U(1) subgroup generated by rotations around the
z-axis is given by the global U(1) symmetry ¢ — €?¢ (recall that this is not the U(1) gauge
symmetry, which acts as €°7). As a consequence, we focus on the z-component of the Néel order
parameter, which is given by 1 u¥1). The two-point correlation functions of these bilinears are ob-
tained by coupling them to external sources Jygs, neel and calculating (’)(N 7 1) vertex corrections,
illustrated in Fig. 5. Of note are O(N ; 1) two-loop corrections, the form of which were first found
in Ref. [34]. These two-loop corrections to the Néel and VBS order parameters vanish in the pure
staggered flux phase - this follows immediately from taking the trace over the internal fermion

loop and noting that Tr u* = 0. We verify that these diagrams remain zero upon the inclusion of

both Higgs fields and velocity anisotropy, although this identity is less readily apparent.

1. One-loop vertex corrections

We first outline the procedure from Ref. [43] for calculating the logarithmic corrections to the

vertex functions. At zero external momenta, our one-loop vertex corrections schematically take

== Nif/%[{i(p)l@ (i—z) (4.8)

where H;(p), i = z,y,z, is a homogeneous function of p and illustrated in Fig. 5. The index 14

the form

indicates whether the J vertex includes a factor of y™* (VBS order parameter) or ¥ (Néel order
parameter). Once again, we can take the logarithmic derivative and remove the explicit cutoff

dependence, leading to the equation

d 1 2 s )
A—E; = i H;(p) = B;u'" . 4.9
G5 gy [ a0 [ o0 nm) =By (1.9
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FIG. 5. The O(Nf_l) vertex corrections which contribute to the renormalization of the Néel and VBS order
parameters. The order parameter receives corrections at one-loop order from the Higgs fields (left) and
the gauge boson (center). An additional two-loop O(N 1) contribution (right) is possible - the diagram
shown involves two intermediate Higgs propagators, but additional diagrams with gauge propagators or
mixed gauge/Higgs propagators are possible. These diagrams vanish exactly upon performing the trace

over the internal fermion indices.

The B;’s are not gauge-invariant by themselves, and must be combined with the self-energy to get

a gauge-invariant quantity, which at the fixed-point value ®. gives

nves = Be: + Co = 0.06468N; ' + O(N;?),

(4.10)
MNeel = By + Cp = —0.01634Nf_1 + O(Nf_2) .
The Néel and VBS correlators in momentum space have the scaling form
GNéel k‘)w — GNéel ak7azw a277Néel*1’
(k,w) ( ) 1)

Making a Fourier transform to real space, the equal-time Néel and VBS correlators have the
power law decay
1
e e

1
Gves(r) ~ 5 s

Geer (1)
(4.12)

Note that both the anomalous dimensions for the Néel and VBS correlators are quite small. This
is a rather surprising result and does not seem to be due to any particular small parameter. The

magnitude of these anomalous dimensions do not decrease upon increasing the numerical precision
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of our integration, so we believe them to be small but not identically zero. We find that the gauge
fluctuations generally enhance Néel and VBS correlations, whereas Higgs fluctuations suppress
them - the combined result is the stated anomalous dimensions. As such, we cannot make a strong
statement regarding which ordering the unstable U(1) phase will prefer, as neither the Néel nor
VBS order parameter show exceptionally enhanced correlations. Higher-order corrections may

show a clearer preference to either Néel or VBS ordering.

D. Tree-level effect of velocity anisotropy on correlation functions

As we have emphasized, one of the key features of this critical theory is that the emergent
Lorentz invariance of the staggered flux phase is broken by the presence of critical Higgs fields,
leading to a non-zero value of the symmetry-allowed velocity anisotropy term. This anisotropy
term also has the effect of breaking the emergent SU(4) flavor symmetry. We refer to Ref. [34]
for a more extensive study of the intertwining physical order parameters of the SU(4) theory
and which relations hold in the presence of the velocity anisotropy - for our purposes, we note
that the emergent SO(5) C SU(4) symmetry that relates the Néel and VBS order parameters is
broken down to the microscopic SO(3) x Cy. At tree-level, the scaling dimensions of the two order
parameters are still the same, but the angular profile of their correlation functions are modified
due to the velocity anisotropy. This lack of an emergent SO(2) spatial rotation symmetry in the
Néel and VBS correlation functions may be useful as a numerical probe of the critical behavior,
so we study the angular profile in more detail.

We analytically compute the spatial profile of the Néel order parameter at tree level. This
calculation turns out to be feasible non-perturbatively in the velocity anisotropy ®. The VBS
correlator is more difficult to study non-perturbatively in the velocity anisotropy, and we will later
compute corrections to leading order in .

The two-point function in momentum space is given by, with @(p) the fermion propagator,

Greel(k) = / d3]; Tr[Q(p)n!'Qp + k)]

(2
2 Z/ dp Po(po + ko) + apa (s + kua) + apy(py + ky.a)
1 — P2 P2(p + ki )?

(4.13)

= m ([ |+ [k—]) -
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As before, we define ky = (ko, k, = ®k,, k, £ Pk,). The Fourier transform

dBk ik-r
[ el (.14

can be performed by a change of variables to give
51
Gngel (1) ~ Z fa(0,9) 27,—4 (4.15)
a==+

where we change to spherical coordinates, t = rcosf, x = rsinfsin ¢, y = rsin 6 cos ¢, and

sin? 0 (£2® sin 2¢ + 302 + &%)

fe(0,0) =1+ e (4.16)
Therefore,
Gea(r) ~ 9(6,0) (4.17)

where g(0,¢) = 1/f.(0,9)> +1/f_(6,$)? is plotted in Fig. 6. We note the enhanced correlations
of the Néel order parameter along the diagonals, which holds true for generic values of ®.

An analogous calculation of the VBS order parameter is less analytically tractable, as the one-
loop integral cannot be made isotropic by a coordinate transformation. As such, we resort to a

perturbative study of the velocity anisotropy. This gives

]{2]{?2 _ k2k2
S+ O(0Y) (4.18)

Guns ()~ [H] = @ |20k] + =22

in momentum space, or

1
Gvps(r) ~ " 8 + ®*(cos 20(40 + 12 cos 4¢) + cos 40(6 — 3cos4¢) — 18cosd¢p — 14)]  (4.19)

in real space. The equal-time VBS correlation function is plotted in Fig. 6, showing enhanced
correlations along the cardinal directions. Note that the correlation function changes sign on the
diagonals - this is an unusual feature, and would seemingly indicate lines in real space where the
VBS correlator vanishes. This feature is also present in the O(®?) corrections to the Néel correlator
but ultimately vanishes in the non-perturbative result, so this result may only be an artifact of

the perturbative expansion. Further details on this calculation can be found in Appendix E.
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—— Néel, non-perturbative
—— Néel, perturbative
—— VBS, perturbative

FIG. 6. Plotted are the angular profiles of the equal-time Néel and VBS correlation functions in real space,
at the fixed point value of velocity anisotropy ®.. The Néel order parameter shows enhanced correlations
along the diagonals, whereas the VBS correlations are more enhanced along the x and y directions. Note
that we only plot the absolute value of the correlation function, and the signs of the perturbative Néel
and VBS correlators flip when moving from the x and y axes to the diagonals. As this feature is not
present in the non-perturbative Néel correlator, it is possible that this feature similarly vanishes at higher

orders for the VBS correlator.

V. MONOPOLES

On the square lattice, there exists a monopole operator in the staggered flux phase - the trivial
monopole - that is invariant under all square lattice symmetries, and hence is an allowed perturba-
tion. To leading order, the scaling dimension of the monopole operator scales with the number of
fermions and becomes irrelevant for Ny > 3. Hence, the staggered flux phase by itself is unstable

to monopole proliferation - this is the mechanism which we claim gives rise to ordered phases
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in the staggered flux phase, as condensation of the trivial monopole is conjectured to lead to a
fermion chiral mass generation corresponding to either Néel or VBS order [40, 41]. Our calcu-
lations of the critical theory rely on the assumption that the presence of massless scalar fields
screens monopoles and renders them irrelevant at the critical point. Here, we draw attention to an
additional contribution to the monopole scaling dimension, which is the non-zero anisotropy in the
spinon dispersion. Prior calculations of monopole scaling dimensions in QED4 assume a Lorentz-
invariant action for the fermions, which is natural in pure QED, given that velocity anisotropy
terms are irrelevant in a 1/N; expansion. However, as we have shown, the presence of critical
Higgs fields can give rise to a non-zero velocity anisotropy at the critical point. An important
question is whether this anisotropy increases or decreases the monopole scaling dimension. In
contrast with the direct modification arising from the critical fields, which is O(1), the effect of
the anisotropy on the monopole scaling dimension is O(Nf). Such a modification, if calculated
perturbatively in ®, arises at O(®?) - this is still an appreciable shift given the relatively large
anisotropy @, ~ 0.46. Previous works have studied the effects of a spin Hall mass on the monopole
scaling dimension [44, 45], although this perturbation is more tractable as the spin Hall mass is
diagonal in the basis of spinor monopole harmonics. In Appendix F, we outline the structure of a
perturbative calculation for calculating the O(®?) corrections to the monopole scaling dimension.
An important observation which makes this calculation tractable is that, while the saddle-point
monopole gauge configuration will not take the form of the rotationally-invariant Dirac monopole,
corrections to the scaling dimension arising from this difference only arise at higher orders in ®;
hence, to lowest non-trivial order, one can assume a Dirac monopole background. This calculation
ultimately yields a divergent summation of terms involving Wigner 3-5 symbols; we leave for future

work further study of how to properly regularize this calculation.

Additionally, we briefly comment on the relation between this velocity anisotropy and the
monopole quantum numbers. Prior studies on the effects of a spin Hall mass [44, 45] have found
that the presence of such a term induces a spin polarization on the monopoles. Each fermion flavor
has a zero mode in the presence of a monopole, and half of these zero modes must be filled in order
to maintain gauge neutrality of the monopole. The presence of a spin Hall mass polarizes these zero
modes, which in turn causes a splitting in the scaling dimension of the monopoles, with the most-
relevant monopole being spin polarized. One may wonder whether a similar valley polarization can

arise due to our velocity anisotropy term due to the presence of a ©¥ in the anisotropy; however, we
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check that the first-order energy splitting of the fermion zero modes due to the velocity anisotropy
vanishes. Higher-order corrections including corrections from Higgs and gauge fluctuations will in
general break the six-fold degeneracy of monopole scaling dimensions; in particular, the monopoles
with Néel and VBS quantum numbers will have different scaling dimensions, which may cause a
preference towards a particular type of symmetry-breaking in the staggered flux phase. Further
study of the spectrum of monopoles at this critical point may be useful for determining the IR fate
of the proximate staggered flux phase - our observation is that this behavior is more complicated

than a simple valley polarization of the monopoles.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a large-Ny analysis of a deconfined critical theory separating a gapless Zs
spin liquid Z2Azz13 from the U(1) staggered flux phase, the latter of which we assume to be
unstable to either Néel or VBS ordering on the square lattice. This completes the large-N study of
the phase diagram shown in Fig. 2, where the gapless Zs spin liquid may emerge as a Higgsed phase
from either a U(1) or SU(2) gauge theory. Both of these parent gauge theories are conjectured to
be unstable on the square lattice, and hence we propose the trajectory through the phase diagram
as shown in Fig. 2 as a description of the J;-J; square lattice antiferromagnet, where numerical

studies suggest a gapless Zs spin liquid emerging between Néel and VBS phases.

Our calculations yield several predictions which may be investigated by future numerical studies.
One of the most striking features of both the SU(2) — Zy and U(1) — Z, transitions is the lack of
Lorentz invariance, spatial rotation invariance (aside from the discrete C, rotational symmetry),
and in the case of the SU(2) — Z, transition, even a lack of traditional scale invariance. The lack
of scale invariance takes the form of correlation functions decaying as e~ (" rather than power
law, the difference of which is difficult to detect for small system sizes. As such, it may be more
promising to search for lack of Lorentz invariance (z # 1), or lack of a full SO(2) spatial rotation
invariance of correlation functions. We draw attention to the angular profiles of the Néel and VBS
correlation functions shown in Fig. 6, which come from a mean-field description of the staggered
flux state with the inclusion of a symmetry-allowed velocity anisotropy and predict enhanced Néel

correlations along the diagonals, and enhanced VBS correlations along the cardinal directions.
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Appendix A: Alternative proximate Z- spin liquids

The phase diagram of the theory we have defined contains three phases on a mean-field level -
the SU(2) spin liquid of the 7-flux phase, the U(1) staggered flux phase, and the gapless Zy spin
liquid whose projective symmetry group labels it as Z2A 2213 according to Wen’s classification [28].
Although these spin liquids are the ones we believe to be of relevance to the J;-J, model, additional
Zs spin liquids are accessible in this general framework by a modification of the Higgs couplings [46].
Although there are many Zs spin liquids accessible starting from the 7-flux phase and we will not
attempt to study all of them, we will identify the continuum theories associated with the eight Zo

spin liquids proximate to both the m-flux and staggered flux phase.

1. Symmetry fractionalization in the continuum staggered flux theory

The SU(2) gauge symmetry introduced in the fermionic spinon theory of spin liquids means
that the microscopic symmetries of the square lattice need no longer be realized explicitely, but
may be realized projectively, i.e., up to an overall SU(2) gauge transformation. This concept holds
true in our continuum theory, and we will use this to identify possible Zs spin liquids based off of
how the microscopic symmetries are realized. To see this, consider the field theory describing the
transition from the 7-flux phase to the staggered flux phase, which consists of four Dirac fermions
and a three-component adjoint Higgs field ®3, both minimally coupled to an SU(2) gauge field,

and an additional Yukawa coupling
Do 1Y (7710, + 1Yi0, )b = Pipo M) (A1)

When @3 is uncondensed, it can be integrated out, and the Yukawa couplings generate terms

irrelevant at long distances. When ®3 is condensed - for concreteness, (®4) = ®J,. - we replace
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®¢ by its expectation value, and the fermion bilinear yo? ¥ (v*i0, + Y10, ) naively breaks trans-
lation and rotation symmetry according the symmetry transformations in Table I. However, the
fermion bilinear is invariant under a combination of microscopic symmetries and SU(2) gauge

transformations:

PG : Yo" Myp — YULVI VMU . (A2)

Ug is the action of the microscopic symmetry and Vg is a gauge transformation, given by

Vie = g((ﬁx)iO’x, Vpr = g(¢p$)7 Vi = g((br)io-ma
‘/ty = g(¢y)i0_xa ‘/py = g(¢py)> ‘/t = g(¢t>>

(A3)

where g(¢) = €97 reflects the residual U(1) symmetry. The convention that we use for these
subscripts are as follows. Translations along one lattice site in the x, y direction are represented
by subscripts tx, ty, respectively. Reflections along the x, y axis are indicated by pz, py. The
subscript r corresponds to a m/2 rotation, and ¢ indicates time-reversal symmetry. These projective
symmetry transformations can be deduced by the way the microscopic symmetries act on the Dirac
fermions, given in Table I. The ability to condense additional Higgs fields to yield a Zs spin liquid
is constrained by the requirement that there exists a choice of phases ¢; such that all bilinear terms
are invariant under the same projective symmetry transformation. We use this fact to identify the
Yukawa couplings that correspond to the different possible proximate spin liquids - the phases ¢;
can be read off via the symmetry fractionalization of the spin liquids, as shown in the next section,

which uniquely identifies the Yukawa couplings consistent with these phases.

2. Translationally-invariant spin liquid ansatzes

There are four proximate Z, spin liquids with translationally-invariant mean-field ansatzes
- i.e., there exists a gauge in which translational symmetry is realized explicitly in the mean-
field ansatz. These spin liquids are Z2Azz13, Z2A001n, Z2Azz1n, and Z2A0013. These spin
liquids are classified based off of their symmetry fractionalization; in other words, how symmetry
operations like 7'~ 'T,T,T, " are not directly equivalent to the identity, but equivalent up to a gauge
transformation. These values are shown in Table I, along with the values corresponding to the

continuum U(1) staggered flux phase, which can be read off from the transformations A3. Using
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TABLE II. Symmetry fractionalization of the translationally-invariant Zs spin liquids proximate to the

staggered flux phase.

Group Relation Staggered Flux Z2Az2z13 Z2A0013 Z2Azz1n Z2A001n

| TOTT,TY e 2eetet 1 ! :
2 P, P,T;! e oru” -1 1 ! !
3 Py_lTyPyTy e2idpyo* -1 1 -1 !
4 p; ety -1 1 ! !
5 PJlRW/QPyR;;2 _62i¢pyo'z 1 -1 1 -1
6 33/2 1 ! ! : 1
T RILToR.pT, @bt 1 1 !
8 R,TyRoTy ! el®r—tet)e™ ! ! '
9 TflR;/lzTRw/Q e 2o -1 -1 ! '
10 T-LPTP, ! ! ! 1 1
1 T TT, e % ! ! N N
12 T\ T, et Ho ! ! B N
13 72 o 2idi0” 1 -1 1 1

this table to identify the phases ¢; we find the continuum projective symmetry group for Z2A 2213,

Vie = —i0Y,  Vp, = fio”®

7

=l (A4)
Viy=—to", Vpy=—ioc”, V,=1io"
72Azz1n,
Vig = —ico?, V= Fio”
w——%( * o) (A5)
Viy = —i0", Vp, = —ioc®, V,=1
Z2A0013,

Vigy=—1i0", Vyu=1, V,=1i0"
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and Z2A001n,

Vie =—10", V=1

V, = —%(O”C—i-cry) (A7)

Vigy=—tc", V=1, V,=1.
From this, we can identify the Yukawa couplings consistent with these transformations, given
in Table III. In order to realize these transitions, we require two Higgs fields, ®; and ®, which
transform into each other under square lattice rotations and condense to acquire a non-zero (®7)
and (®4). The fact that these fields are related under the microscopic rotational symmetry requires
both Higgs fields to have the same mass, and hence they can both be condensed simultaneously

by tuning a single parameter. These theories may be studied in a manner analogous to our study

of the Z2A 2213 transition.

TABLE III. Yukawa couplings of the two adjoint Higgs fields which realize the symmetry fractionalization

of the proximate translationally-invariant spin liquids.

Z2A 2213 7Z2A0013 Z2Azz1n Z2A001n

® coupling  p*Y pEyt Ty pFioy

®y coupling  p** wiyY W0y 10y

3. Non-translationally-invariant spin liquid ansatzes

The four additional spin liquid phases proximate to the staggered flux phase are Z2Bzzl3,
72B0013, Z2B001n, and Z2Bzzln. These spin are distinct from the first four as one cannot write
down a translationally-invariant mean-field ansatz for them - note that this does not correspond
to a physical breaking of the translational symmetry, as the symmetry is still realized projectively;
rather, the statement is that the symmetry must be realized projectively. The symmetry fraction-
alization of these spin liquids is identical to their Z2A counterparts in Table II aside from a change

in sign in rows 1, 7, and 8. This leads to the continuum projective symmetry group for Z2Bzz13,
Vie = i0",  Vpp = Fi0”

V, =io” (A8)



Z2Bzzln,
Vie = 10", Vp, = £i0”

V, =io" (A9)

2280013,

V, =io? (A10)

and Z2B001n,

V, =io¥ (A11)
Viw=10", V,, =1, V,=1.

Describing these phases as a Higgsed phase of the m-flux spin liquid turns out to differ signif-
icantly from their Z2A counterparts. The transition from the staggered flux phase to these spin
liquids is driven by the condensation of a single Higgs field ®;, which acquires a non-zero expec-
tation value (®7) in the Z, phase. This prevents a direct transition from the SU(2) n-flux state to
the Z, spin liquid, as the masses of two Higgs fields ®; and ®3 aren’t constrained to be equal by

the microscopic symmetries.

TABLE IV. Yukawa couplings of the single adjoint Higgs fields which realize the symmetry fractionaliza-

tion of the proximate Z2B spin liquids.

72Bzz13 72B0013 Z2Bzz1ln 7Z2B001n

®, coupling p¥9,0,(02 +92)  p¥ i0p  pY (Y0, — ¥"i0y)

Appendix B: Emergent subsystem symmetries in the SU(2) — Z, transition

In this appendix, we provide a more detailed discussion of the emergent subsystem symmetry
in the SU(2) — Z, transition present in our theory. This transition is driven by the simultaneous

condensation of the two Higgs fields ®; 5, whose masses are fixed to be equal by the microscopic

28



(), rotation symmetry of the square lattice. The Lagrangian that describes this transition is

L="Ly+ Lo+ Lay

Ly = ihy" (E)M — iAZa“) (N
i (B1)
Lo =) D,®{D'®} + V(D)

i=1
Loy = QT Yp*y" 0" + O Pu™yo"y
V(@) contains various symmetry-allowed potential terms for @, 5, all of which are irrelevant other

than the mass term which we tune to zero at criticality. Examining this action, we see that the

quadratic fermion action along with the ®; Yukawa coupling in invariant under the transformation

w — eifa(a?),u,zdu‘w

(B2)
O — Uy (2)®] + 0, fo()
and likewise for ®,,
v — eiga(y)uz0“¢
. (B3)
O — Uy (¥) 27 + 0yga(y)
with U(z) the SO(3) rotation corresponding to the adjoint SU(2) action of e/«@)* i.e.
1 , ¢ g i
Uw)ay = 5 Tr |77 a“elf‘i(:’:)”dab] (B4)

and likewise for U (y). The simplest way to see the existence of these symmetries is to consider
®; and P, as the x and y components, respectively, of fictitious gauge fields corresponding to
the SU(2) symmetries ¢ — €"#""1). The Yukawa couplings present in our theory couple these
Higgs fields to the 2 and y components of the respective conserved currents. As such, the ®; (®5)
Yukawa coupling and the fermion quadratic term are invariant under z-dependent (y-dependent)
SU(2) transformations in a manner analogous to gauge invariance. Of course, this symmetry is
ultimately broken in the full Lagrangian, both by the actual gauge field A, as well as the Higgs
potential V' (®); however, in a 1/N; expansion, the leading-order effective action for the Higgs fields
does possess this symmetry. This effective action is more relevant at long distances than subleading
corrections, such as the bare Higgs action <I>‘11,282<I>‘f72, and hence our analysis suggests that these
emergent subsystem symmetries control the behavior of physical observables at criticality. The

O(N ; 1) contributions to the Néel and VBS order parameters have logarithm squared divergences,
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which we conjecture should lead to correlations decaying as r%e_mnz(”, with g = —% for the

VBS correlator an
Interestingly, we note that the logarithm squared divergences for correlations of the scalar spin
chirality exactly cancel at O(N ; 1). We expect that this is related to the invariance of the scalar
spin chirality order parameter under the subsystem symmetries given by Eqs. (B2) and (B3).
Many open questions remain in regards to these emergent symmetries; in particular, the physical
interpretation of them is not clear - while these symmetry transformations are not purely gauge
transformations, they do contain an action on the gauge SU(2) space given by the % operators,

and as such, can rotate gauge-invariant operators such as 1u%1) into non-gauge-invariant ones.

Appendix C: Calculation of effective bosonic propagators

In order to study our critical theory in a 1/Ny expansion, we must calculate the effective prop-
agators for both the Higgs and gauge bosons, which are generated by one-loop fermion diagrams.
These calculations are complicated substantially by the non-Lorentz-invariant nature of the fermion

propagator. As given in Eq. (3.2), the bare fermion action is given by
Ok + oot (Vky + 7Ry 0 (C1)

It is useful to work in an eigenbasis of o*u¥. Inverting this, we get a diagonal 4 x 4 matrix in

gauge/valley space, with elements

ko + v* (ky £ Pky) + 1Y(k, £ Pk,

2
kg + (ky + ®k,)? + (k, + Ok,)? (€2)

As in the main text, we define the variables
ho = ky £ By, kys = ky £ Ohy, [ky| = \/kg F R, K2, (C3)

The inverse Higgs propagator is generated by the one-loop diagram given by Fig. 3 of the main

text, which translates to the integral

Z/ dp Po p0+k0)+apma(pya+kya)+apya<pxa+kxa))

k2(k + p)2 (G4)

To simplify this integral, we perform a change of integration variables to (po, s+, Py,+ ). Performing

this change of variables gives a factor of (1 — ®?)~! in the integral.
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To evaluate this integral, we calculate the two general forms of integrals relevant to Eq. (C4).
/ d®p po(po + ko)
(2m)? p*(p + k)?

_ / d*p  polpotho) K2a(1— 7)
2m)3 [(p+ zk)2 + A

_ /1 d$/ d3p (po — ko) (po + (1 — x)ko)

(p* +A)?
P?[p /3—1:(1 — x)k?]

27?2/ (p? + A)?

I ™A ki
:ﬁ/o da:[— 1 —x(l—x)él\/Z
:_k2+k§ (C5)

64[K]

/ *p pa(py +ky)

(2m)3 p*(p + k)?

/ e /( d’p (pm—xk(])g(+A)(21—x)ky)
/ / )2 (p? +x)Ak)$2ky
=—?ﬁu£?fﬁm@wéilﬁ
_ kaky
© 64/K|

In these calculations, we omit divergent terms which renormalize the boson mass, as this term is
set to zero at criticality. Substituting this expression back into Eq. (3.5) for general p;, k;, we get
the Higgs propagator

A? k2 4+ k2 + 2k, 1 ky o K24k — 2k, _ky

F:
16N, (1 — #?) e [*]

(C6)

Appendix D: Derivation of one-loop renormalization group equations

In this appendix, we give a derivation of the renormalization group equations used in the main
text. The one-loop contributions to the fermion self-energy (k) are UV divergent, and hence
require a UV cutoff A. The behavior of the self-energy upon integrating out high-energy modes
is dictated by the logarithmic derivative with respect to the cutoff, A-LX(k). The fact that our

propagators are homogeneous functions of the three-momenta allow us to calculate this logarithmic
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derivative explicitly without reference to a specific cutoff. We assume that our regularized one-loop
expression for the self-energy takes the form
d*p p’ (k +p)?
(k) = F EYGp)K | —= | K D1
0= [ g ook (5) € () (D1)

where F' and G are homogeneous functions of the three-momenta with degree —1 - we take I’ to

be the fermion propagator, and G to be the boson propagator (either Higgs or gauge) along with
the various vertex coefficients. The function K(y) serves as a UV cutoff with the property that
K(0) = 1 and K(y) falls off rapidly for large y, i.e., K(y) = e Y. Since we are interested in the

behavior at small momenta, we expand around k£ = 0,

st~k [ 52 [P (5) + rocon (5) e ()] o2

We then take the logarithmic derivative,

o (490 oo () (2

~gerwon e (5) (%) e (%)}

We now convert to spherical coordinates, p' = yA(cos 6, sin @ sin ¢, sin 6 cos ¢), and use the homo-

geneity property of F' and G to pull out factors of (yA)~!.

d ko [T 2 OF(p) . ... [ ,
Agpst) = g [Tsnoao [Cao {2 —aim) ) 6o) [ vankeie )

A FOC0) [y (K 6K () + K2 (0) (D4

0

The integral over y can be done explicitly via integration by parts, which causes the dependence
on the cutoff function I to drop out. This leads to the expression cited in the main text

d S o OF(p) ..
— =2 : D5
AdAE(k’) 8%3/0 d(b/o sin @ dé s G(p) (D5)

where p = (cos 8, sin 0 sin ¢, sin 0 cos ¢).
Explicitly, we take, for the Higgs contribution to the self-energy, defining Q(p) as the fermion
propagator,
F(p) = (1™ +iu™y") o~ Q(p) (" —ip™y¥) o™ + (Wy" —ip™y") o7 Q(p) (u™y" +in"y") o™,
1
G(p) = v

I'(p)
(D6)
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For the gauge contribution,

Fu(p) ="+ 2p¥0” (0’ + 0, 7)] Q) [V + Qp¥0” (00,27Y + 0uyv™)]
G*(p) = (I (p))"",

where the fermion self-energy now contains a summation over u,v. A similar approach can be

(D7)

used to regulate the one-loop vertex corrections, which take the form

= = / %Hi(p)/cff (i—i) (D)

where H;(p) is a homogeneous function of degree —3. Upon taking the logarithmic derivative,

d dSp p2 p2
A—=,=— ——H, KA = )K= D
=== [ e () 2 () ©
Converting to spherical coordinates and integrating by parts, we get
dz_ 1 2ﬂd¢/ﬂsin9d6H-(A) (D10)
dAT" 8w 0 2P

Explicitly, the Higgs correction is
) N ;X _ 1 z . x . x
Hi(p) = Q(p)'Q(p) (1" + ip*™yY) 0~ =— (*7* — ip™¥) o
['(p)
h (D11)
+ Q) Q(p) (" —ip™¥) o™ ) (1" +ip™y¥) o~

and the gauge correction,

Hi(p) = Qp)i'Q(p) v + @Yo (87" + 0,,y™)] () ™)™ [7" + @Yo (8,27 + 60y7")]

(D12)
Appendix E: Anisotropic correlation functions in real space
As shown in the main text, the momentum-space Néel correlator is given by
1
Greel(k) = ——— (|ky| + |k_ E1
vea () = gy =gy (ke + 15D (1)

where we define |ky| = \/kZ + (k, = ®k,)? + (k, £ ®k,)2. The Fourier transform of this function
can be computed with the knowledge of the (suitably regularized) Fourier transform in three

dimensions, |k| — ;. We take the Fourier transform

d3k ik-r
/ eIk (F2)
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and perform a change of variables to shift the anisotropy to the spatial coordinates

L[ e,
1—®2 ) (2m)3

ty =1t
' (E3)
=—(xxd
Tt 1— 2 (z y)
1
yr = 7oy = 02)
which yields the real space correlator given in the main text.
To compute the Fourier transform of the VBS correlator, given perturbatively by
k22 — k2k?
Gvps(k) ~ |k] — @ {2|k|+y|k—|30 +0(9%), (E4)
we define the function
Flais k) = \Jaoky + ach? + a k2. (E5)

The Fourier transform of this function can be calculated by a similar change of variables,

3 2 2 2\ —2
[ ek ~ ——— <t— + =+ y—) - (E6)
(2m) V@0lz0y \ o Gy ay

The various terms in the O(®?) corrections to the VBS correlator can be obtained by taking
derivatives of f(a;, k;) with respect to a; and setting a; = 1. This allows us to calculate the real

space VBS correlator and gives the result in the main text.

Appendix F: Perturbative corrections to monopole scaling dimension

In this appendix, we present a partial calculation of the O(Ny) corrections to the scaling di-
mensions of a monopole at our deconfined critical point. As previously established [37], the O(Ny)
scaling dimension for isotropic QED5 is A = 1.06Ny. We present the scaling dimension using our
convention, where QED4 with N = 4 Dirac fermions corresponds to Ny = 1. Although gauge and
Higgs fluctuations give corrections to this value, these corrections are subleading in Ny, and the
only O(Ny) correction comes from taking the saddle-point solutions of the bosonic fields and cal-
culating the shift in free energy arising from the anisotropic Dirac dispersion relation. We proceed
perturbatively in the Dirac anisotropy parameter ® - this is necessary as the anisotropy will in

principle modify the saddle-point monopole configuration of the gauge field. As we will see, to
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leading order in ®, the gauge field configuration corresponding to the isotropic Dirac monopole
will be sufficient.

We start with the action for QED, with the allowed velocity anisotropy term, omitting the
Higgs fields as they will not play any role in the calculation

S = i/d3r (VDY + @Yy (v D, — 7Y Dy)| . (F1)

We leave implicit the summation over the 4Ny fermions. Note that this action is different than
in the main text. This is because we follow the convention used in [34], where the gauge field
is coupled in the usual way, D, = 0, — iA,, and the microscopic SU(2) spin rotation symmetry
is implemented explicitly by the o° matrices. We refrain from using this convention in the main
calculation, as the coupling to the Higgs field is not easily expressible in this form and overall
makes the calculation more complicated.

In the absence of a velocity anisotropy, the saddle-point configurations for the gauge field

corresponding to n units of magnetic flux at the origin are given by
A,(r)= g(l —cosf)d¢ (F2)

The non-zero anisotropy will affect these saddle-point solutions. The leading order corrections to
these solutions are O(®?), as the O(Ny) effective action for the gauge field upon integrating out
the fermions has only corrections of O(®?) and higher. Hence, we write the saddle-point gauge
field solution in the presence of a velocity anisotropy as A, (r) = A,(r) + §A,, with 64, ~ O(®?).

In order to calculate the scaling dimension of this monopole, we set r = ¢” and perform a Weyl

rescaling
—27
Juw = € 7 G
- - (F3)
Voh ey e
This rescaling maps the scaling dimension of the monopole operator to the free energy F' = —log Z

of the system [47].

To leading order in Ny, we ignore gauge and Higgs fluctuations, and the action reduces down
to one of free fermions with a background gauge field. This action can be put in a nearly-diagonal
form with the aid of monopole harmonics [48] and their spinor generalization [37]. By expanding

1 in terms of these harmonics,

dw - : m - : m —iWT
v = [ 5 3 3 WEha®o+ 3 3 WSm.o)| T (F
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where T, o , Snem are eigenvalues of the orbital angular momentum operator [2 in the presence
of a strength n monopole, with orbital angular momentum ¢ and total angular momentum ¢+ 1/2
for T, ¢ and ¢ — 1/2 for S, 4. Explicit expressions for the spinor harmonics T, ¢, and S, ¢, may
be found in [37]. The variables U™ W2 are anti-commuting coefficients.

Expanded in this form, the isotropic action with ® = 0 can be written as

dw S (t=1)m - . \Ilgf_l)m(w)
975 B X (e wrer) N [, 5] 0

with

( _n?
102 \/
M, =
n
2

—3
TL ’I’L2 ’
= e<1—@>

(F6)
Nn,z _ 1— 4£
\/ 20
The free energy is then given by
dw &= ,
log Zy = 4Ny / o Z log det(IN,, ¢(w + iM,, 0)) . (F7)

{=n/2

This expression can be evaluated via zeta function regularization, yielding the aforementioned
scaling dimension of A = 1.06Ny.
Corrections to the free energy as a consequence of a non-zero ® can be calculated perturbatively.

Writing the action as S = Sy + 0.5, with 05 ~ O(P), we have

log Z = log { / DwD@/Je_S] = log {Zg + / Dy Dipe™ (—58 + %552 + .. )} ws)
F8

1
= log Zy — (6S) + 5((552> +...,

where the expectation values are evaluated with the isotropic action. There are two components
of 65 that are O(®?) or lower, as can be seen from Eq. (F1). The first comes from the velocity
anisotropy term ®yYu?(y*D, — 4¥D,)1, where the bar indicates that the covariant derivative is
defined with the isotropic monopole gauge configuration. The second component arises from O(®?)
corrections to the isotropic gauge configuration, which appear in the term 0. Only the first of
these corrections gives O(®?) contributions to the free energy; the corrections to the saddle-point

gauge configuration A4, couple to the conserved current J* = ¢y + O(P), whose expectation
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value vanishes. Hence, the free energy to O(®?) is given by

F =log Z + 28 Tr / Er & (§(r)(y*(Ds — &) — (D, — §))(r)

X Y(r") (v (De — &) = 7"(Dy — §))e(r"))

The additional factors of z, ¢ arise from the Weyl rescaling.

The calculation in Eq. (F9) amounts to calculating the two-point function of the fermion bilinear

Y(r) (VW (Dy — ) +v*(Dy — 9))¢(r). To this end, we denote the matrix elements of the operator

(v(Dy — ) +v"(Dy — 9)) in the spinor harmonic basis

Tn Im
Bn,fm@’m’<w) = /dQ ’

(F10)
These functions are exactly calculable in terms of Wigner 3-j symbols, and are only non-zero for

|0 — 2], m —m/| <2. In order to calculate these functions, we need the matrix elements

<Y;1,€m| T |Yq,€’m’>
<Y ,fm| ?J |Y,€’m’>

! ! (F11)
(Yoom| Dy [Yorm)

{

Y;;,Em| Dj |Y;1,€’m’>

where Y, s, is the scalar monopole harmonic [48] in a background monopole of strength 2¢ = n
and D;i- is the angular component of the covariant derivative D;; the radial component is simply

equal to 86 . For this, we need the integral formula for three monopole harmonics

T

o (20 1D)(20 + 1) (20" +1) [ €0 e
/dﬁyzl,ﬁmyq’,ﬁ’m’y;]//jumn:(_1)[’—6—% \/< - )( il )< + )

47 q q/ q// mm’ m'

(F12)
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The first two matrix elements can be easily computed with the identity

. AT
L= = G (You1—Yo1,-1)
. 4w
y=n"5 (You1 +Yo1,-1)
<Y Y |CZ’ |Y V /> = (—1)€+€’+q+m\/(2€ + 1)(26, + 1) ¢ 1 él 1 El . 14 1 El
q7 7m q? 7m -
2 —q 0 ¢ —-m 1 m —-m —1 m
) 2U+D20+1) [ € 1V ¢ 17 ¢ 1
<Y;],Z,m| g |Y;1,£’,m’> — _Z-(_l)f+€ +q+m\/( + )( + ) +
—q 0 ¢ —-m 1 m -m —1 m/
(F13)
To calculate the last two matrix elements, we must utilize the raising and lowering angular momenta
operators
2L, =2(Ly +L_) =D, — ga% (F14)

and similarly for D;. This equation can be easily verified for the angular momenta operators
without a monopole background, and we verify numerically that this formula correctly generalizes

to non-zero ¢q. This leads to the formula

U +1) [ £ 10
4

q = (— ! g+ 2£—|— |
<Y7£m‘ ECE ‘}/;I,E/m/> — ( )1+€+£ q m\/(

¢ 1 A /1 4
X \/(6’—m’)(€’+m’—|—1) —\/(€’+m')(€’—m’+1)

-m 0 m' +1 -m 0 m' -1

_Z.m/ <Y:17€,m| g |Y;1,€’,m’>

+1)20+1) [ ¢ 170
4

Vgmd D |Vorme) = —i(—1) 4 Fam \/
—q 0 q

e 1 v e 1 v
X |\ (0 =m0 +m + 1) + VWO +m) (¢ —m! +1)
-m 0 m' +1 -m 0 m' —1

=i’ (Yy.om| 9| Yg,0mr)
(F15)
From these matrix elements, the components of B,, ¢y can be assembled by expressing the spinor

monopole harmonics in terms of the scalar harmonics.
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Upon obtaining an expression for B, we have

d
F =logZy — 49? Z / % Tr [Bn,fmé’m/ (w)Np,e(w + iMn,f)BJL,E’m’Em(w)Nn,W (w —iM,,¢)

/
£2,6" m,m

(F16)

The minus sign outside the summation relative to Eq. F9 arises from the fermion loop. What

remains is a suitable procedure for regularizing the divergent expression in Eq. F'16 - as the functions

B, ymermy are rather complicated summations of Wigner 3-5 symbols, this is a non-trivial task and

we leave this as an open question for future study.
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