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We investigate a model of electrons with random and all-to-all hop-
ping and spin exchange interactions, with a constraint of no double
occupancy. The model is studied in a Sachdev-Ye-Kitaev-like large-
M limit with SU(M ) spin symmetry. The saddle point equations of
this model are similar to appoximate dynamic mean field equations
of realistic, non-random, t-J models. We use numerical studies
on both real and imaginary frequency axes, along with asymptotic
analyses, to establish the existence of a critical non-Fermi-liquid
metallic ground state at large doping, with the spin correlation ex-
ponent varying with doping. This critical solution possesses a time-
reparametrization symmetry, akin to SYK models, which contributes
a linear-in-temperature resistivity over the full range of doping where
the solution is present. It is therefore an attractive mean-field de-
scription of the overdoped region of cuprates, where experiments
have observed a linear-T resistivity in a broad region. The critical
metal also displays a strong particle-hole asymmetry, which is rele-
vant to Seebeck coefficient measurements. We show that the critical
metal has an instability to a low-doping spin-glass phase, and com-
pute a critical doping value. We also describe the properties of this
metallic spin-glass phase.

Strange metal | Spin glass | Random t-J model

Recent experimental works have highlighted certain funda-
mental properties of cuprate superconductors and their

complex and rich phase diagrams. One of the key aspects is
a transformation in the normal state near an optimal doping
p = pc (1–4) indicated most recently by thermal-Hall transport
measurements (1, 3) and by photoemission experiments (4).
While much attention has focused on the anomalous proper-
ties of the underdoped regime (p < pc), it is often assumed
that the overdoped regime (p > pc) is a conventional Fermi
liquid, and thus the latter has not attracted as much attention.
However, careful experimental studies have reported signifi-
cant strange-metal anomalies in transport properties also on
the overdoped side (5–7). These observations indicate the
presence of a non-Fermi-liquid metal in an extended doping
region above optimal doping. On the underdoped side, recent
experiments have established that there is a spin glass phase
(8, 9) in the La-based compounds.

Concordant with these observations, we present here a
theoretical model with an extended non-Fermi-liquid phase at
large dopings, and a spin-glass phase at low doping.

Models with random interactions on a fully connected lat-
tice in the Sachdev-Ye-Kitaev class (10, 11) yield a systematic
route to studying non-Fermi liquids: the exact solutions of such
models serve as dynamic mean-field theories of more realistic
microscopic models (12–14). In this paper we report numerical
and analytic solutions of a t-J model (Eq. 1) with random
and all-to-all hopping and exchange interactions across a wide
range of doping. The model has a global SU(M) spin rotation

symmetry, and we study a particular SYK-like large M limit
with fermionic spinons. A previous study (15) found possible
critical solutions of non-Fermi liquid metals by an analytic
study of the low energy limit of the saddle point equations of
this large M limit. From renormalization group arguments it
appeared that these possible critical solutions only described
a critical point or a small range of intermediate doping, and
that a Fermi liquid solution would appear in the overdoped
regime.

The present paper will present a full numerical solution
of these large M saddle point equations for a wide range of
doping. The solutions are obtained on both the real and
imaginary frequency axes, with mutually consistent results.
We also supplement the numerical results with asymptotic
analytic analyses. Our main results are that the Fermi liquid is
never the solution of the large-M saddle-point equations, and
that one of the low energy critical solutions obtained earlier
(15) extends to an all-energy solution of the large-M equations
in the entire overdoped regime. We further show that there
is a phase transition to a low-doping spin-glass phase and
construct a phase diagram (see Fig. 1).

Notable features of the novel critical non-Fermi liquid phase
in Fig. 1 are
(i) spin correlations decay with an exponent which varies con-
tinuously with doping (unlike a Fermi liquid),
(ii) the electron correlators have the ∼ 1/τ decay with imag-
inary time (as in a Fermi liquid), but with a pronounced
particle-hole asymmetry (which is weak in a Fermi liquid),
and
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Fig. 1. (A) Phase diagram as a function of doping p and temperture T obtained
from numerically solving the fermionic spinon large M saddle-point equations of the
random t-J model in Eq. 1 for t = J = 1. The red circles are critical doping value
(pc(T )) at a given temperature, obtained by looking at the spin-glass instability in the
non-Fermi-liquid solution. The uncertainty for each pc is within 0.003. The critical
doping at T = 0 is obtained by directly solving the saddle-point equations on the
real-frequency axis. (B) Properties of the T = 0 states. The low-doping spin-glass
phase and large-doping critical-metal phase are separated by a quantum critical point
at pc. The critical metal has doping-dependent exponents ∆f,b, and a linear-T
resistivity.

(iii) the mechanism of Ref. (16) applies across the entire
overdoped critical phase, and the resistivity has a linear-T
contribution as T → 0 at all dopings in this phase (unlike the
T 2 resistivity in a Fermi liquid).

We also note here that there is a distinct large M limit of
the random t-J model (17) which yields a Fermi liquid ground
state at all non-zero doping. We will discuss the relation to
this limit in Section 4.

The plan of the paper is as follows. In Section 1 we introduce
the model and discuss its general properties. In Section 2
we consider the critical solutions of the model introduced
in Eq. 1, and show that there is a critical solution with
doping-dependent exponents in the overdoped region. We
then solve this model at zero temperature (Section 2.A), as
well as finite temperature (Section 2.B), and show that it has
an instability to a spin-glass phase. The results for spectral
functions in the spin-glass phase are presented in Section 3
using an alternative bosonic spinon large M limit. In both
phases we report physical observables such as electron and
spin spectral densities at both zero and finite temperatures.
We conclude with a discussion and implication of our results
in Section 4. Technical details and additional results are
presented in the appendices.

1. Model

We consider a model of electrons with random and all-to-all
hopping and exchange interaction with double occupancy be-
ing prohibited. This is the random t-J model which considers
doping a random Heisenberg magnet (10). It is in the class
of SYK models (10, 11) and is suitable for studying metallic
phases obtained upon doping a Mott insulator. The Hamilto-
nian is

H = 1√
N

N∑

i 6=j=1

tijc
†
iαcjα+ 1√

N

N∑

i<j=1

Jij ~Si · ~Sj−µ
∑

i

c†iαciα ,

[1]
with the constraint,

∑
α
c†iαciα ≤ 1, since double occupancy

is not allowed. In the above Hamiltonian, cα is the electron
annihilation operator with α =↑ , ↓, the spin operator is Sai =
c†iασ

a
αβciβ/2, and µ is the chemical potential. The complex

hoppings tij and real exchange interactions Jij are independent
random numbers with zero mean and mean-square values t2
and J2 respectively.

Note that one could also consider a t-J model with non-
random nearest-neighbor hopping and nearest-neighbor ran-
dom exchange interactions on a large dimensional lattice. The
on-site dynamical mean-field equations for such a model are
the same as those obtained for the model in Eq. 1. It also
allows for a definition of transport quantities such as resistivity.

We will consider the problem at finite hole doping (p). This
was recently studied both analytically (15, 18) and numerically
(19, 20). In particular, a deconfined critical point scenario was
proposed in Ref. (15) to describe a quantum phase transition
between a spin-glass phase at low doping with carrier density
p and a Fermi-liquid phase at large doping with carrier density
1 + p. The deconfined critical point proposed therein had the
property that the local spin susceptibility was marginal as in
the SYK models (10, 11). This was based on renormalization
group arguments. However, a large-M analysis (15) led to two
types of critical metallic solutions. One of the critical solutions
corresponds to the deconfined critical point (although it is a
phase in large-M limit), while the other was believed to be
suppressed in favor of a Fermi-liquid phase.

In this work we find that, in fact, the second critical solution
is stable, and a Fermi-liquid phase is never achieved within a
large-M approach at the saddle-point level. This critical phase
has the property that while the exponent of the spin correlation
continuously varies with doping, the linear-T resistivity is
present over the entire overdoped phase. This makes it an
attractive candidate for the overdoped phase of cuprate in the
light of recent experiments (5, 7). In the underdoped region,
below a critical doping pc, we find a spin-glass phase. Thus,
the critical metal at large doping and spin-glass phase at small
doping are separated by a quantum critical point at a finite
doping pc, as shown in Fig. 1.

As a result of the double-occupancy constraint each site
has three states, namely empty (|0〉) and singly-occupied (|↑〉
and |↓〉) states. These can be conveniently described using
holon and spinon operators. The electron is thus fractionalized
into holon and spinons. The critical metallic solutions in the
overdoped region has gapless and critical fermionic spinons
and bosonic holons (Section 2), while the underdoped spin-
glass phase will be described by a fermionic holon and bosonic
spinons (Section 3).
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2. Critical non-Fermi-liquid metal phase

In this section, we show that our model in Eq. 1 admits a
critical metallic solution. This phase is described by fermionic
spinon (fα) and bosonic holon (b) operators. The electron and
spin operators can be then written in terms of these fractional
particles as

ciα = b†fiα , Sai = f†iα
σaαβ

2 fiβ , [2]

with the constraint, f†iαfiα + b†i bi = 1. This theory realizes
a SU(1|2) superalgebra. The strategy to solve the model in
Eq. 1 is to generalize to a larger symmetry. The spin index on
the spinon operator (fα) is generalized to α = 1, . . . ,M and
there is an additional orbital index for holon (b`) such that
` = 1, . . . ,M ′. This theory realizes a SU(M ′|M) superalgebra.
In this larger symmetry the electron and spin operators take
the form,

c`α = b†`fiα , Sa = f†αT
a
αβfβ , [3]

where the matrices T a obey SU(M) algebra. The constraint
now takes the general form,

f†αfα + b†`b` = κM . [4]

The idea is to take a large-M ′,M limit such that k = M ′/M
is finite. This large M limit is taken after we have performed
a disorder average, and taken the large-volume limit. Note
that this large M limit is distinct from the large M limit in
Ref. (17), which had M ′ = 1; the latter limit leads to a Fermi
liquid phase at T = 0 at all non-zero doping.

A detailed analysis of our large M limit can be found in
Refs. (15, 18) and here we simply recall the saddle-point
equations derived therein, which are

Gb(iωn) = 1
iωn + µb − Σb(iωn) , [5]

Σb(τ) = −t2Gf (τ)Gf (−τ)Gb(τ), [6]

Gf (iωn) = 1
iωn + µf − Σf (iωn) , [7]

Σf (τ) = −J2Gf (τ)2Gf (−τ) + kt2Gf (τ)Gb(τ)Gb(−τ), [8]

where Gb and Gf are the boson and fermion Green’s function
respectively, while Σb and Σf are the boson and fermion self
energies respectively. Here τ is the imaginary time and ωn are
the Matsubara frequencies. The chemical potentials µf and
µb are chosen to satisfy

〈
f†f
〉

= κ− kp ,
〈
b†b
〉

= p . [9]

We will restrict our attention to the physical case, κ = 1/2 and
k = 1/2. In terms of the holon and spinon Green’s functions,
the electron Green’s functions and the spin correlator are,

Gc(τ) = −〈Tτcα(τ)c†(0)〉 = −Gf (τ)Gb(−τ) [10]

χ(τ) = 〈~S(τ) · ~S(0)〉 = −Gf (τ)Gf (−τ) . [11]

Similar equations have been obtained by a dynamic mean
field theory of a non-random t-J model on the square lattice
using a ‘non-crossing’ approximation, and studied numerically
(12, 13).

To solve the saddle-point equations on the imaginary-
frequency axis, it is convenient to define

βr = −Gb(iωn = 0) . [12]

Then we can eliminate µb and obtain the following set of
equations to solve

Gb(iωn) = 1
iωn − 1/(βr)− Σb(iωn) + Σb(iωn = 0) [13]

Σb(τ) = −t2Gf (τ)Gf (−τ)Gb(τ) [14]

Gf (iωn) = 1
iωn + µf − Σf (iωn) [15]

Σf (τ) = −J2Gf (τ)2Gf (−τ) + kt2Gf (τ)Gb(τ)Gb(−τ) [16]
−Gb(τ = 0−) = p [17]
Gf (τ = 0−) = κ− kp [18]

Thus we have 6 equations to solve for the 6 variables r, µf ,
Gf , Gb, Σf , Σb. Note that Eq. 13 holds for all ωn.

A. Real-frequency solution at zero temperature. In this sec-
tion we discuss the solutions of the saddle-point equations on
the real-frequency axis at T = 0. The details of real-frequency
equations corresponding to Eqs. 13-18 can be found in SI
Appendix 1. We look for a low-frequency conformal solution
for the fermion and boson Green’s functions with the following
form:

Ga(iωn) = −iCa
(
e−iθa

−eiθa
)

1
|ω|1−2∆a

, [19]

where the subscript a = f, b corresponds to the fermion and
boson Green’s function respectively. In the above ansatz, Ca
is a constant, θa is an asymmetry parameter, and ∆a is the
exponent determining the critical solution. Below we shall
discuss the relation between these parameters and different
possible solutions. The vector notation is introduced to denote
the positive and negative frequency parts of the solution. Using
this form of the Green’s function it is then straightforward to
write the corresponding spectral densities,

ρa(ω) = − 1
π

Im[Ga(iωn = ω + i0+)]

= Ca
π

(
sin(π∆a + θa)
sin(π∆a − θa)

)
1

|ω|1−2∆a
. [20]

The exponents of the fermion and boson Green’s functions
satisfy the constraint ∆f + ∆b = 1/2. The ansataz considered
in Eq. 19 admits three types of solutions (15):

(i) ∆f = ∆b = 1/4: This is the solution that leads to a
marginal spin correlation, i.e., a 1/τ decay as in the SY spin
liquid (10) found in the insulating case. In Ref. (18) it was
shown that such a solution exists only in a very small doping
range near p = 0. This is also the solution that corresponds
to the deconfined critical point discussed in Ref. (15). We will
not discuss this solution any further here, because we believe
the actual ground state at very low doping is a spin glass.

(ii) ∆b = 0 ,∆f = 1/2: Such a solution would be the
analog of the Fermi liquid solution found in the large M
limit of Ref. (17). However, it turns out that such a solution
is not a valid solution of the saddle-point equations of the
large M limit considered here. We provide more details in SI
Appendix 1.B in this regard.

(iii) 1/4 < ∆f < 1/2: In this solution the J term in the
fermion self-energy in Eq. 16 is sub-dominant at low energies,

Christos et al. PNAS | June 3, 2022 | vol. XXX | no. XX | 3



although it does have contributions at higher energies. This
solution results in doping-dependent exponents. As we shall
see below, we find this solution to be present for all values
of doping, and it will be a valid solution in the overdoped
region. Our subsequent analyses in this section will focus on
this solution.

We now briefly discuss our strategy to find the solution
(iii) and more details can be found in SI Appendix 1. The
conformal solution ansataz introduced in Eq. 19 satisfies two
Luttinger constraints (15, 18),

θf
π

+
(1

2 −∆f

) sin(2θf )
sin(2π∆f ) = 1

2 − κ+ kp ,

θb
π

+
(1

2 −∆b

) sin(2θb)
sin(2π∆b)

= 1
2 + p . [21]

For solution (iii) the constants Cf and Cb can not be de-
termined individually but their product is a constant. This
leads to another constraint involving θ′s and ∆′s as shown in
Ref. (15),

k = −Γ(2− 2∆f )Γ(2∆f ) sin(π∆f + θf ) sin(π∆f − θf )
Γ(2− 2∆b)Γ(2∆b) sin(π∆b + θb) sin(π∆b − θb)

,

[22]

where k = 1/2 in our case. Together with the constraint ∆f +
∆b = 1/2 and Eqs. 21-22, there are four equations to solve for
four variables, namely ∆f , ∆b, θf , and θb, at a fixed doping p.
Solving these equations gives us these parameters as a function
of doping, as shown in Fig. 2 and Fig. S3. Determination of the
constants Cf and Cb requires full solution of the saddle point
equation at all frequencies, and the resulting values are shown
in Fig. S3. Of particular interest is the doping dependence of
∆b, shown in Fig. 2.

In the large-M limit, from Eq. 11 it is clear that the
anomalous dimension of the electron operator is ηc = 2(∆f +
∆b) = 1 and that of the spin operator is ηS = 4∆f = 2− 4∆b.
Therefore, from Eq. 11, as a function of the imaginary time
the electron Green’s function and the local spin correlation
have the form,

Gc(τ) ∼ 1
τ
, χ(τ) ∼ 1

τ2−4∆b
. [23]

Thus we find that although the electron Green’s function is
Fermi-liquid like the spin correlation is not. Therefore the
solution we have found is a critical metallic phase with a
doping-dependent exponent of the spin correlation. Only in
the limit p → 1 we have ∆b → 0, leading to a Fermi-liquid
like spin correction with a 1/τ2 decay.

Having established the presence of solution (iii), we now
solve the saddle-point equations on the real-frequency axis
numerically to obtain the full ω dependence of the boson and
fermion spectral densities. Using these we can also obtain
the electron and spin spectral densities. Fig. S1 shows the
full ω-dependent solution for the fermion and boson spectral
densities, while in Fig. 3 we plot the electron and spin spectral
densities. The boson and fermion spectral densities have the
form ρa(ω) ∼ ω2∆a−1 with a = f, b. Since ∆a < 1/2, we plot
the rescaled spectral densities in Fig. S1. Note that the fermion
and boson spectral densities are not observable quantities.
However, the electron and spin spectral densities are observable

in photoemission and neutron scattering experiments. These
are defined as follows:

ρc = − 1
π

Im[Gc(iω → ω + i0+)] [24]

ρs = 1
π

Im[χ(iω → ω + i0+)] = 1
π
χ′′(ω) . [25]

In SI Appendix 1 we present more details on evaluating these
spectral densities.

As noted above, the most striking feature of our solution
is a continuously varying spin-correlation exponent. This is
clearly seen in Fig. 2A which shows the exponent of the spin
correlator χ(τ) ∼ 1/|τ |ηs where ηs = 4∆f , and in Fig. 3B,
where χ′′(ω) ∼ sgn(ω)|ω|4∆f−1 at low frequencies. Only in the
limit p → 1, we see a Fermi-liquid like behavior, χ′′(ω) ∼ ω,
as ∆f → 1/2. The electron spectral density is a constant in
the low-frequency limit with different values for ω → 0+ and
ω → 0− (see Fig. 3A), thus resulting in a discontinuity at ω =
0. It clearly displays a particle-hole asymmetry throughout
this phase, which is relevant in the context of understanding
the measurement of Seebeck coefficient in recent experiments
(21, 22).

As for the SYK model (14), the conformal solutions to
Eqs. 5-8 have time reparameterization symmetry when the
self-energies are singular so that Gf,b(iωn)Σf,b(iωn) ≈ −1.
Ref. (16) discussed a mechanism relating the time reparameter-
ization symmetry to a linear-T contribution to the resistivity,
and the same mechanism applies to the cases (i) and (iii) above.
Briefly, to obtain a model with spatial structure, we consider
the t-J model on a large dimension lattice with non-random
tij but random nearest-neighbor Jij . In the limit of large
dimension, the self-energies become local, and the Green’s
functions and self-energies obey equations closely related to
Eqs. 5-8. The conductivity in this large dimension model is
given by the Kubo formula applied at one loop to the electron
Green’s function. The identity ∆f + ∆b = 1/2 implies that
Gc ∼ 1/τ , and inserting this leading scaling behavior into the
Kubo formula leads to a T -independent residual resistivity. To
obtain temperature dependence, we consider the corrections
to scaling from the time reparameterization operator, whose
scaling dimension h = 2 leads to corrections which depend
linearly on T or ω. Applying such a correction to the residual
resistivity, we obtain a linear-in-T resistivity. The critical
metal phase found here is therefore an attractive candidate
for the overdoped cuprates. We also note that our solution
is consistent with the findings of recent numerical work on a
similar model (20), as we will discuss further in Section 4.

B. Imaginary-frequency solution. We also numerically solve
Eqs. 13-18 on the imaginary-frequency axis at finite tem-
peratures and for different doping values. A critical metallic
solution is found for all values of doping. We calculate the
parton Green’s functions as well as gauge-invariant observ-
ables, namely, electron Green’s function and spin correlation.
These are shown in Fig. 4. The exponent of the bosonic
Green’s function, ∆b, introduced in Eq. 19 can be determined
from the temperature dependence of Gb(iω = 0). In the low-
temperature limit, the bosonic Green’s function of the critical
metallic solution has a conformal form at low frequencies,
which follows the relation

Gb(iω = 0) = C0T
−1+2∆b , [26]
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B

Fig. 2. (A) We plot the doping dependence of the exponent ηs of the spin correlation
χ(τ) ∼ 1/|τ |ηs . We compute ηs = 2 − 4∆b in two independent ways, one
by solving the Luttinger relations and the zero-frequency saddle point equations at
T = 0 as explained in the text (black curve) and by computing ηs from the value
of ∆b obtained from the imaginary-frequency numerics (red curve), as discussed
in Section 2.B. We find the two results in good agreement. At p = 0 we obtain
ηs = 4/3, with ηs increasing monotonically with increasing doping such that ηs → 2
as p→ 1. (B) We plot the doping dependence of ∆b as obtained independently from
the luttinger relations and T = 0 zero-frequency saddle point equations and from
solving the imaginary frequency saddle point equations. We find at p = 0 ∆b = 1/6
and ∆b → 0 as p → 1. Consequently, this means ∆f = 1/3 at p = 0 and
∆f → 1/2 as p→ 1.

where C0 is some constant and T is the temperature. In order
to extract ∆b from the data, we plot log(Gb(iω = 0)) as a
function of log(T ) and perform a linear fit. The slope of this
linear fit then determines ∆b. In Fig. 2 we plot ∆b determined
from this procedure as a function of doping. It is in good
agreement with the result obtained from analytic solution
(shown as black curve in Fig. 2) discussed in Section 2.A. The
lowest temperature that we used for the procedure is T = 0.01.

In the SI Appendix 2 we present additional results obtained
from solving the saddle-point equations on the imaginary-
frequency axis. In particular, we calculate the electron Green’s
function and the spin correlation, which are physical observ-
ables. We find that the spin correlation χ(τ) fits the conformal
form to a very high accuracy and this allows us to extract the
corresponding exponent. Moreover, using Pade approxima-
tion, we also perform a numerical analytic continuation to the
real-frequency axis to obtain the electron and spin spectral
densities. These are discussed in SI Appendix 2.C, and are in
remarkable agreement with those obtained from real-frequency
analysis at zero temperature.

C. Instability to spin-glass phase/quantum critical point. The
critical metallic solution discussed above is expected to be
stable at large doping values. In the low doping region we
expect a spin-glass phase, which is connected to the spin-
glass phase found in the insulating case (23). The critical
metallic phase and the spin-glass phase are separated by a
quantum critical point at a finite doping. The critical value of
doping can be estimated using a Ginzburg-Landau type free
energy considered in Ref. (23). It was derived by considering
fluctuations over the saddle point leading to a 1/M correction
and it has a form,

F =
[

1− J2

M
χ2(iω = 0)

]
Ψ2 + . . . , [27]

where χ(iω = 0) =
∫ β

0 χ(τ)dτ is the local spin susceptiblity
and Ψ is the spin-glass order parameter. In the insulating
p = 0 phase studied in Ref. (23), it was found that χ(iω = 0)
diverged logarithmically at T = 0 because the spin exponent
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Fig. 3. Plot of the electron spectral density (left) and spin spectral density (right)
obtained at t = J = 1. The electron spectral density which discontinuously
approaches two different constants ω = 0, leading to 1/τ decay of the electron
density in imaginary time. The spin spectral density goes as sgn(ω)|ω|4∆f−1 as
ω → 0. Only for large p do we have ∆f approach 1/4, which implies a linear
frequency dependence and 1/τ2 decay behavior in imaginary time characteristic of
a Fermi liquid.

has the ‘marginal’ value ηs = 1. Consequently the co-efficient
of Ψ2 is always negative as T → 0, and spin glass order is
present at T = 0. In our non-Fermi liquid solution, ηs < 1,
and so χ(iω = 0) is finite at T = 0: this allows the possibility
of Ψ = 0 and no spin glass order at T = 0. We find in
the overdoped region the coefficient of the quadratic term
is positive and the free energy is thus minimized by Ψ = 0.
On the other hand, in the underdoped region this coefficient
is negative leading to a non-zero spin-glass order parameter.
A change in the sign of the coefficient of Ψ2 at T = 0 thus
indicates a quantum phase transition to a spin-glass phase and
can be used to estimate the critical value of doping. We plot
this coefficient at zero temperature in Fig. 5A as a function of
doping for different values of J at M = 2. We clearly see that
for larger values of J there is a quantum phase transition at a
finite doping. In particular, for J = 1 we find pc ≈ 0.33 and
for J = 0.5 we get pc ≈ 0.25. Similarly, in Fig. 5B we plot
the coefficient in Eq. 27 as a function of doping for different
values of M at a fixed J = 1 at zero temperature. It is clear
that for large values of M there is no phase transition. We
also plot the critical value of M as a function of doping in
Fig. 6 at zero temperature. We perform a similar analysis at
finite temperature to obtain the critical doping as a function
of temperature (see Fig. S8). The resulting phase diagram is
shown in Fig. 1A. The spin-glass susceptibility increases with
decreasing temperature and thus the spin-glass phase is found
upon cooling the non-Fermi liquid at low doping. However,
note that unlike in the case of the random Heisenberg model
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Fig. 5. Plots of the coefficient of the quadratic term in the free energy in Eq. 27 as a
function of doping for (A) different values of J with t = 1 and M = 2; (B) different
values of M with t = J = 1. In both plots, T = 0.

(10, 24) (where the solution (i) with ∆f = ∆b = 1/4 is
present) the spin-glass susceptibility does not diverge at low
temperature in the present case. This is one of the important
reasons for a stable critical solution at zero temperature in a
broad doping region. We also note that while 1/M corrections
are used in deriving the form of Eq. 27, we have used the
M →∞ solution for the critical metal to compute χ′(0) as it
appears in Eq. 27. While a more accurate estimate of pc may
be obtained by adding 1/M corrections to the critical metal
solution, we emphasize that the M →∞ solution is sufficient
to capture existence of a finite doping phase transition between
the spin glass and critical metal.

3. Spin-glass phase

In this section we discuss the spin-glass phase present at lower
dopings. In this case, we shall use the representation where
spinons are bosonic (b) and holon is a fermion operator (f).
In terms of these operators,

cα = f†bα , ~S = b†α
~σαβ

2 bβ , [28]
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Fig. 6. Plot showing critical value of M for which coefficient of quadratic term in free
energy Eq. 27 changes sign at zero temperature.

and we realize a SU(2|1) superalgebra. Just as before, we
shall now enlarge the symmetry here to SU(M |M ′), which
means α = 1, . . . ,M and the holon operator acquires an index
` = 1, . . . ,M ′. Note that this bosonic spinon large M limit is
distinct from the fermionic spinon large M limit followed in
Section 2, and the two models are the same only for M = 2;
so there is no reason to expect quantitive agreement between
the results of the present section and those of Section 3.

The strategy to obtain the saddle-point equations is similar
to that discussed earlier in Section 2. From Refs. (15, 18), we
have

Gb(iωn) = 1
iωn + µb − Σb(iωn) ,

Gf(iωn) = 1
iωn + µf − Σf(iωn) ,

Σb(τ) = −kt2Gf(τ)Gf(−τ)Gb(τ) + J2Gb(τ)2Gb(−τ) ,
Σf(τ) = t2Gf(τ)Gb(−τ)Gb(τ) ,
Gb(τ = 0−) = −κ+ kp ,

Gf(τ = 0−) = p .

Physically, the spin-glass phase can be understood as a conden-
sation of bosonic spinons. Contrary to the earlier case, since
we are interested in the spin-glass phase we need to retain the
replica off-diagonal terms in the action upon disorder aver-
aging. There is however some simplification and only replica
off-diagonal components of the bosonic Green’s function at
iωn = 0 are relevant. These are captured via the parameter
g which is related to the spin-glass order parameter, as dis-
cussed in detail in SI Appendix 3. After incorporating the
spin-glass order in Gb(τ) = Gr(τ)− g, we obtain the following
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saddle-point equations:

[Gr(iωn)]−1 = iωn − Jg

Θ − [Σr(iωn)− Σr(iωn = 0)] [29]

Gf(iωn) = 1
iωn + µf − Σf(iωn) , [30]

Σr(τ) = J2
(

[Gr(τ)]2 Gr(−τ)− 2gGr(τ)Gr(−τ)− g [Gr(τ)]2

+ 2g2Gr(τ) + g2Gr(−τ)
)
− kt2Gf(τ)Gf(−τ)

(
−g +Gr(τ)

)
,

[31]

Σf(τ) = t2Gf(τ)
(
g2 − gGr(τ)− gGr(−τ) +Gr(−τ)Gr(τ)

)
,

[32]
g −Gr(τ = 0−) = κ− kp [33]
Gf(τ = 0−) = p . [34]

The dimensionless parameter Θ = 1/
√

3, as detailed in SI Ap-
pendix 3. We solve the above equations on real and imaginary-
frequency axes. The main observable in this phase is the
spin-glass order parameter, which we plot as a function of
doping in Fig. 7 at zero temperature. The spin-glass order
parameter is finite at lower dopings and decreases upon increas-
ing doping. We show results for the order parameter computed
for small but finite temperature obtained using the imaginary
frequency analysis in SI Appendix 4. We also calculate the
holon and spinon Green’s functions as well as the electron
Green’s function and spin correlation at finite temperature.
These quantities are detailed in the same SI Appendix 4.

We solve the saddle-point equations Eqs. 29-34 at zero tem-
perature to obtain the fermion and boson spectral functions,
as well as the electron and spin spectral functions for a range
of doping. In terms of the spinon and holon spectral functions
the electron spectral function has the following form:

ρc(ω) =
∫ ω

0
dω1ρr(ω1)ρf(ω1 − ω) + gρf(−ω) . [35]

Similarly, we obtain the expression for the spin spectral func-
tion,

ρs(ω) = g2βωδ(ω) + g [ρr(ω)− ρr(−ω)]

−
∫ ω

0
dω1 ρr(ω1)ρr(ω − ω1) , [36]

as in Ref. (24). The spectral functions at zero temperature for
different values of doping are shown in Fig. 8. We note that
the boson spectral function behaves linearly with frequency
at small frequencies. Consequently, the spin spectral function
also depends linearly on ω at small frequencies. We also note
the double peak structure in the electron spectral function
ρc(ω) in Fig. 8B. Recall that the electron spectral function is
a convolution of the spinon and holon spectral functions, as
well as a term proportional to gρf(−ω). At small dopings the
value of g is larger and hence there is a dominant peak coming
from fermion spectral function. As g decreases with increasing
doping the contribution from the boson spectral function
increases leading to the second peak at positive frequencies.
All the spectral functions satisfy the respective sum rules,
which are detailed in SI Appendix 4.B.

Apart from the numerical analysis at zero temperature, we
also perform a Pade-approximation based numerical analytic

Fig. 7. Plot of spin-glass order parameter, q = g2, as a function of doping obtained
by solving the bosonic spinon saddle-point equations (29 - 34) on the real-frequency
axis at T = 0. The point at p = 0 is obtained by solving equations (S65-S67) at zero
temperature on the real frequency axis. The parameters of the model are J = t = 1.
The critical doping pc at which the spin glass order vanishes in the present bosonic
spinon computation need not be the same as that in the fermionic spinon computation
in Section 2.C because the models are identical only for M = 2.

continuation of the imaginary-axis solution obtained at finite
temperature. We evaluate the holon, spinon, electron, and spin
spectral densities at finite temperature. These are discussed
in SI Appendix 2.C, and are consistent with those obtained
from real-frequency calculation at zero temperature for some
range of doping.

4. Discussion

We have presented a large-M solution for the random t-J
model for the entire doping range. Our main finding is a criti-
cal non-Fermi-liquid metal phase at large dopings. This phase
is characterized by a spin correlation exponent which varies
continuously with doping, a linear in temperature contribution
to the resistivity as T → 0, and an electron spectral function
with a Fermi-liquid-like decay at long time, but with a pro-
nounced particle-hole asymmetry. This critical phase captures
many aspects of experimental observations in the overdoped
cuprates. It has been observed that in the overdoped region
of cuprate materials there is a broad range of doping where
the resistivity display a linear-T behavior (5, 7). Our findings
propose a possible mechanism for this observation. Also, re-
cent Seebeck coefficient measurements (21, 22) hint towards a
particle-hole asymmetric electron spectral density, which our
solution also displays. It turns out that in our solution the elec-
tron Green’s function appears Fermi-liquid like although the
spin correlation does not. This may also explain the fact that
experiments on overdoped cuprates probing electron Green’s
function directly, such as photoemission (4), may observe a
Fermi-liquid behavior and can not access the critical phase.
However, transport measurements obtain properties such as
linear-T resistivity which is starkly in contrast to a Fermi
liquid.

We also show that the overdoped critical phase has an
instability towards a spin-glass phase at lower dopings. The
spin-glass phase is characterized by a spin-glass order parame-
ter, which we calculate using bosonic spinons. We show that
this order parameter decreases upon increasing doping. In
the context of cuprates, recent experiments have reported the
presence of spin-glass phase at low doping (9). Our work
therefore presents a comprehensive analysis of model in Eq. 1
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Fig. 8. (A) Spin spectral function and (B) electron spectral function obtained at zero
temperature via real frequency analysis for several values of doping. Note the linear
in frequency behavior at small frequencies for ρS(ω). Parameters are J = t = 1.

at variable doping and captures the quantum phase transition
between the spin-glass phase and a critical non-Fermi-liquid
metal. We also note that our results are consistent with recent
numerical work on a related model (20).

A notable feature of our results is that we never find a
Fermi-liquid phase in our large M limit of the t-J model, as
discussed in SI Appendix 1.B. This is in contrast to the distinct
large M limit of Ref. (17), in which the boson b condenses at
all non-zero p, leading to a Fermi-liquid phase at all doping.
The two large M limits co-incide only for the physical value
M = 2, and it is an open question which large M limit yields
the correct picture at M = 2 for the random t-J model.
However, we will note that the numerical study of the M = 2
case in Ref. (20) does show indications of non-Fermi liquid
behavior in the overdoped regime over the T range studied,
as their measured spin exponent ηs varies with doping in a
manner consistent with Fig. 2A. Thus, although a Fermi liquid
phase may eventually appear at very low T in the overdoped
regime for M = 2, it does appear that our non-Fermi liquid
solution is an attractive description of the physics over a wide
range of temperatures and dopings accessible in numerics and
experiments.

In conclusion, our work presents a critical metallic phase
as an attractive candidate for the overdoped cuprates which
matches observations over a significant temperature range.
This phase is obtained for a model with random and all-to-all
interactions. Although such a model is far from the microscopic
Hamiltonian of the cuprates, the saddle point equations solved
are closely related to dynamic mean field equations of more
realistic models in finite dimensions (12, 13), as has been
extensively discussed in a recent review (14). At very low
temperatures, we ultimately expect a crossover to behavior
characteristic of finite-dimensional systems, and describing

this crossover remains an important topic for future research.
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Supporting Information Text

1. Real frequency equations for critical metal with fermionic spinons

In this appendix we present details related to solving the saddle-point equations in Eqs. 13-18 of the main text on the
real-frequency axis. We shall focus our attention at zero temperature. In addition, we also present more details of our solution
and present arguments for the absence of a Fermi-liquid solution.

A. Analytic continuation to real frequency. We can separate the zero frequency bosonic greens function into a part which is
regular at iωn = 0 and a part which diverges at zero temperature:

βr = βr −Gb(iωn = 0) [S1]

We can then rewrite the saddle point equations in terms of r and Gb as:

Gb(iωn = 0)− βr = 1
µb − Σb(iωn = 0) [S2]

Gb(iωn) = 1
iωn + µb − Σb(iωn) [S3]

Σb(τ) = −t2Gf (τ)Gf (−τ)
[
−r + Ḡb(τ)

]
[S4]

Gf (iωn) = 1
iωn + µf − Σf (iωn) [S5]

Σf (τ) = −J2Gf (τ)2Gf (−τ) + kt2Gf (τ)
[
r2 − r(Gb(τ) +Gb(−τ)) +Gb(τ)Gb(−τ)

]
[S6]

We wish to solve the above equations on the real frequency axis so that we may obtain physical observables like the electron
and spin spectral functions. The above equations can be rewritten in terms of the spectral functions for fermions and bosons
by analytically continuing the imaginary frequency greens functions to obtain the retarded greens function GRf/b(ω):

ρf/b = − 1
π
Im[Gf/b(iωn = ω + i0+)] = − 1

π
Im[GRf/b(ω)] [S7]

We can similarly define the retarded self energies as ΣRf/b(ω) = Σf/b(iωn = ω + i0+), leading to the following real frequency
expressions for the saddle point equations:

ρf/b(ω) = − 1
π

Σ′′R
f/b(ω)

(ω − Σ′R
f/b(ω))2 + Σ′′R

f/b(ω)2 [S8]

Where we define the imaginary part of the retarded self energy for bosons as: Σ′′R
b (ω)as follows:

Σ
′′R
b (ω) = Σ1

b(ω) + Σ2
b(ω) [S9]

with:
Σ1
b(ω) = t2rπ

∫
dω1ρf (ω1)ρf (ω1 − ω) [nf (ω1)nf (ω − ω1)− nf (−ω1)nf (ω1 − ω)] [S10]

Σ2
b(ω) = t2π

∫
dω1dω2ρf (ω1)ρb(ω2)ρf (ω1 + ω2 − ω)

× [nf (ω1)nb(ω2)nf (ω − ω1 − ω2) + nf (−ω1)nb(−ω2)nf (ω1 + ω2 − ω)]
[S11]

We also define the imaginary part of the retarded self energy for fermions as Σ′′R
f (ω) as follows:

Σ
′′R
f (ω) = Σ1

f (ω) + Σ2
f (ω) + Σ3

f (ω) + Σ4
f (ω) [S12]

Σ1
f (ω) = −J2

∫
dω1dω2ρf (ω1)ρf (ω2)ρf (ω1 + ω2 − ω)

× [nf (ω1)nf (ω2)nf (ω − ω1 − ω2) + nf (−ω1)nf (−ω2)nf (ω1 + ω2 − ω)]
[S13]

Σ2
f (ω) = −t2r2kπρf (ω) [S14]

Σ3
f (ω) = kt2rπ

∫
dω1ρf (ω1) [ρb(ω − ω1)− ρb(ω1 − ω)] [nb(ω1 − ω)nf (−ω1)− nb(ω − ω1)nf (ω1)] [S15]

Σ4
f (ω) = kt2π

∫
dω1dω2ρf (ω1)ρb(ω2)ρb(ω1 + ω2 − ω)

× [nf (ω1)nb(ω2)nb(ω − ω1 − ω2) + nf (−ω1)nb(−ω2)nb(ω1 + ω2 − ω)]
[S16]
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The constraints on the fermionic and bosonic fillings in real frequency can be rewritten as:

r +
∫ ∞

−∞
dω

ρb(ω)
eβω − 1 = p

∫ ∞

−∞
dω

ρf (ω)
1 + eβω

= κ− kp [S17]

The real parts of the bosonic and fermionic self energies are related to their imaginary self energies via the Kramers-Kronig
relation. At zero temperature, the Fermi-Dirac and Bose-Einstein functions in the imaginary self energies are replaced by
θ(−ω) and −θ(−ω) respectively. Then at zero temperature, the saddle point equations become:

Σ
′′R
b (ω) = Σ1

b(ω) + Σ2
b(ω) [S18]

Σ1
b(ω) =

{
−t2rπ

∫ ω
0 dω1ρf (ω1)ρf (ω1 − ω), for ω > 0

t2rπ
∫ 0
ω
dω1ρf (ω1)ρf (ω1 − ω), for ω < 0

[S19]

Σ2
b(ω) =

{
−t2π

∫ ω1+ω2<ω

0 dω1dω2ρf (ω1)ρb(ω2)ρf (ω1 + ω2 − ω), for ω > 0
−t2π

∫ 0
ω1+ω2>ω

dω1dω2ρf (ω1)ρb(ω2)ρf (ω1 + ω2 − ω), for ω < 0
[S20]

Σ
′′R
f (ω) = Σ1

f (ω) + Σ2
f (ω) + Σ3

f (ω) + Σ4
f (ω) [S21]

Σ1
f (ω) =

{
−J2π

∫ ω1+ω2<ω

0 dω1dω2ρf (ω1)ρf (ω2)ρf (ω1 + ω2 − ω), for ω > 0
−J2π

∫ 0
ω1+ω2>ω

dω1dω2ρf (ω1)ρf (ω2)ρf (ω1 + ω2 − ω), for ω < 0
[S22]

Σ2
f (ω) = −t2r2kπρf (ω) [S23]

Σ3
f (ω) =

{
−kt2rπ

∫ ω
0 dω1ρf (ω1)[ρb(ω − ω1)− ρb(ω1 − ω)], for ω > 0

kt2rπ
∫ 0
ω
dω1ρf (ω1)[ρb(ω − ω1)− ρb(ω1 − ω)], for ω < 0

[S24]

Σ4
f (ω) =

{
kt2π

∫ ω1+ω2<ω

0 dω1dω2ρf (ω1)ρb(ω2)ρb(ω1 + ω2 − ω), for ω > 0
kt2π

∫ 0
ω1+ω2>ω

dω1dω2ρf (ω1)ρb(ω2)ρb(ω1 + ω2 − ω), for ω < 0
[S25]

Subject to the filling constraints:

r −
∫ 0

−∞
dωρb(ω) = p

∫ 0

−∞
dωρf (ω) = κ− kp [S26]

B. Absence of a Fermi-liquid solution. In the above saddle point equations, the low frequency structure for r > 0 implies
Gb(iωn = 0) ∼ 1/|ω|. Such low frequency behavior leads to a logarithmically diverging boson density and r, meaning that we
must have r = 0 at T = 0. We then set r = 0 and begin looking for critical solutions to the above equations at T = 0 of the
following form:

Ga(iωn) = −iCa
(
e−iθa

−eiθa

)
1

ω1−2∆a
[S27]

and corresponding low frequency form for the spectral density:

ρa(ω) = Ca
π

(
sin(π∆a + θf/b)
sin(π∆a − θa)

)
1

ω1−2∆a
[S28]

where a = f/b and with the additional constraint ∆f + ∆b = 1
2 . To resolve the low frequency divergences in the spectral

densities in our numerical integration, we absorb the the low frequency ω dependence of the spectral functions into the numerical
integration measure such that the numerical integrals do not contain any divergent pieces. We use 4× 104 frequency points on
our real ω axis and a frequency spacing which is smaller at small ω and larger at large ω.
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Fig. S1. Plot of the boson spectral density (left) and fermion spectral density (right) obtained at t = J = 1. Both the boson and fermion spectral densities show deviations
from the conformal power law behavior for small frequencies.

C. Fixing the low energy solution. In this section we will detail how we fix the coefficients Cf , Cb, ∆f , ∆b, θf , and θb in
Eq. S28. The filling constraints for bosons and fermions will be imposed by the initial conditions we select for θf , θb, ∆f ,
and ∆b. In constraining these coefficients in the low energy solution, we first solve for θf and θb as a function of ∆b at fixed
doping. We do this for a given ∆b and p by separately solving the two Luttinger constraints for fermions and bosons to obtain
corresponding values for θf and θb,

θf
π

+
(1

2 −∆f

) sin(2θf )
sin(2π∆f ) = 1

2 − κ+ kp ,

θb
π

+
(1

2 −∆b

) sin(2θb)
sin(2π∆b)

= 1
2 + p . [S29]

For a fixed doping, we can then use θf and θb calculated as a function of ∆b to compute the coefficient k as a function of ∆b

using its expression in terms of the self-consistency conditions,

k = −Γ(2− 2∆f )Γ(2∆f ) sin(π∆f + θf ) sin(π∆f − θf )
Γ(2− 2∆b)Γ(2∆b) sin(π∆b + θb) sin(π∆b − θb)

, [S30]

We then fix ∆b by selecting the value of ∆b at which k attains its physical value k = 1
2 . We show for 3 different dopings the k

we compute in this way as a function of ∆b in Fig. S2 and the values of θf , θb, ∆f , ∆b we obtain by choosing k = 1
2 in Fig. S3.

We then have fixed every free parameter in Eq. S28 except for Cb and Cf . Cf and Cb are parameters which are unconstrained
in the original low frequency ansatz and generally have values which depend on the full ω dependent solutions ρf (ω) and ρb(ω).
We solve for these constants at each step of our iterative procedure by taking the Hilbert transform of the spectral densities to
obtain the bosonic and fermions greens functions from which we may extract the constant Cf at low frequency and a small
temperature T = 10−5. Cb can then be obtained from Cf via the self consistency equations and these extracted values for Cf
and Cb are then plugged in to the next step of numerical iteration. Their values are shown in Fig. S3. Results for the boson
and fermion spectral densities computed in this manner are shown in Fig. S1.

We also compute the physical observables, the spin and electron spectral functions, ρs(ω) = 1
π
χ′′(ω) and ρc(ω). In the limit

r = 0,these observables have the following expressions on the real frequency axis:

ρc(ω) =
∫ ∞

−∞
ρf (ω1)ρb(ω1 − ω) [nf (ω1) + nb(ω1 − ω)] , [S31]

χ′′(ω) = πρs(ω) = π

∫ ∞

−∞
ρf (ω1)ρf (ω1 − ω) [nf (ω1 − ω)− nf (ω1)] . [S32]

Results for these spectral functions appeared in Fig. 3. The electron spectral density satisfies the sum rule,
∫ ∞

−∞
dω ρc(ω) = 1 + p

2 . [S33]

Note that for canonical fermions this sum rule results in unity. However, here the electron operator is being fractionalized
and the Hilbert-space has only three states. Hence the sum rule is modified. There is a also a simple way to understand this
modification. The electron spectral density sum is equal to 〈{cα, c†α}〉. For canonical fermions, {cα, c†α} = 1, but in our case
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Fig. S2. Plot of the value of k as computed from the zero frequency self consistency conditions for three different dopings. The values of θf and θb are computed from the
Luttinger relations at fixed ∆b (and fixed ∆f = 1

2 − ∆b) and are then used to compute k via the self consistency condition. We find in general there are two possible values
of θb which are compatible with the Luttinger constraints, leading to the two distinct branches of the function for k shown in red and blue above. The correct value of ∆b is
selected by choosing the value of ∆b where k = 1

2 . The physical value k = 1
2 is denoted with a dashed black line. As is shown in the above plot, for p > 1

3 , this leads to
selecting the first (smallest) value of θb and for p < 1

3 leads to selecting the second (largest) value of θb, with the two values of θb coinciding at p = 1
3 and k = 1

2 .

{cα, c†α} = b†b+ f†αfα, which gives the modified sum rule in Eq. S33. The sum rule for the spin spectral density is not easy to
obtain at finite temperature. But at zero temperature we have,

∫ ∞

0
ρs(ω) = 1− p2

4 . [S34]

D. Varying J . In this section, we will discuss the behavior of the spectral functions as J is varied between 0 ≤ J ≤ t. For the
case where 0 < ∆b <

1
4 and 1

4 < ∆f <
1
2 , the Luttinger constraints and saddle point equations exactly at zero frequency have

no dependence on J , meaning the values of ∆b, ∆f , θb, and θf we solve for do not depend on the value of J (though Cf and
Cb which depend on the full ω dependent forms of ρf (ω) and ρb(ω) do depend on J). We then follow the same procedure as
for t = J = 1 and solve the saddle point equations for 0 ≥ J ≥ t = 1. We find mostly qualitative changes for high doping,
however we find a curious feature in the electron spectral density at low doping as shown in Fig. S4. We find that for small
enough doping around p < .3 that the electron spectral density acquires a second local maximum or peak at finite ω < 0 for
small J which does not appear for larger values of J or larger values of doping p. We find that this peak originates from a
similar peak in the bosonic spectral density that occurs when ω = Σ′b(ω) and ρb(ω) = − 1

πΣ′′
b

(ω) . While we do not have an
analytic reason for this behavior of the boson and electron spectral functions, we reason that this feature originates from strong
corrections to the conformal solutions for ρb and ρc away from ω = 0.

2. Additional results from imaginary-frequency calculation

In this appendix we present additional results obtained from the imaginary-frequency analysis. In particular, we will discuss an
independent way to extract the exponent ∆f and numerical analytic continuation to real frequencies.

A. Holon and spinon Green’s function in the critical metal phase. The strategy to solve the saddle-point equations, Eqs. 13-18,
is straightforward. We first fix r̄ and solve Eqs. 13-16 until we find a converged solution. Then we check if these solutions
give the same doping value using Eqs. 17 and 18. If it does then we have our final solution for a given doping. Else, we go
back to step one and change r̄, and repeat the next steps until we find the final solution. In this fashion, we obtain the holon
and spinon Green’s functions on the imaginary frequency axis, which are shown in Fig. S5. Recall that in the critical metal
phase, holon is a bosonic and spinons are fermionic operators. We have checked that these satisfy the respective sum rules:
Ga(0+) − ζaGa(β−) = −1 = −

∫∞
−∞ ρa(ω)dω, where ζa = ±1 for a = b, f respectively. Once we have the holon and spinon

Green’s functions it is then straightforward to obtain the electron Green’s function and the spin correlator.
As discussed in the main text, using the temperature dependence of the holon Green’s function at iω = 0 we can estimate

the exponent, ∆b. In Fig. S6 we show the data points used to estimated ∆b at different dopings.

B. Spin-correlator in the critical metal phase. Let us consider the spin correlator,

〈~S(τ) · ~S(0)〉
2 = Q(τ) = Gf (τ)Gf (−τ) . [S35]
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(b)

Fig. S5. (a) Imaginary part of the fermionic spinon Green’s function on the Matsubara-frequency axis for different dopings at T = 0.01. (b) Real part of the bosonic holon
Green’s function on the Matsubara-frequency axis for different dopings at T = 0.01. We have used t = J = 1.
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Fig. S6. Log-log plot of the relation in Eq. 26

for different dopings. We find that the data fits a linear curve to a good accuracy. Thus we can use the value of slopes of these
curves to determine ∆b, as discussed in Section B.
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(b)

Fig. S7. (a) Log-log plot of Eq. S36 near τ = β/2 for different temperatures at p = 0.91. The data considered for the plot is in the range 1/2 ≤ τ/β . 0.7. (b) Plot of ∆f

as a function of temperature T for different dopings. Note that 4∆f is the exponent of the spin correlation.
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Fig. S8. (a) Coefficient of quadratic term in Eq. 27 as a function of doping for different temperature. As explained in the text, a sign change of this coefficient gives the critical
doping. (b) Enlarged plot for T=0.062.

In the critical metal phase, the solution has a conformal form in the low-frequency or large-time limit. At a finite temperature,
in terms of the imaginary time this limit corresponds to τ = β/2, where we expect the conformal form,

Q(τ)
Q(β/2) ∼

1
[sin(πτ/β)]4∆f

. [S36]

Thus if we make a log-log plot then we can extract ∆f from the slope of the resulting linear curve. In Fig. S7A we show such a
plot for several different temperatures at a fixed doping, p = 0.91. These curves fit to a linear curve. In Fig. S7 (b) we plot
the extracted value of ∆f as a function of temperature for different dopings. Remarkably, the extrapolated zero-temperature
values of ∆f in the overdoping region for p & 0.3 are in agreement with those found analytically earlier. At lower dopings we
find some disagreement with the analytic result.

As discussed in Section C, using the local spin susceptibility, χ(iω = 0), we can estimate the critical doping below which
the spin-glass is stabilized. We therefore plot the coefficient of quadratic term in Eq. 27 as a function of doping for different
temperatures in Fig. S8. This gives the critical doping as a function of temperature, which is used to plot the phase diagram in
Fig. 1B.

C. Numerical analytic continuation. We also perform numerical analytic continuation to real frequency. In general, performing
analytic continuation is an ill-posed problem if the function on the imaginary axis is known only at a finite number of points.
There are several techniques to do analytic continuation. But for simplicity we use the Pade approximation method. This
technique parametrizes the function on imaginary axis as a ratio of two polynomials or by terminating a continued fraction.
There are several ways for implementing Pade approximation. We adopt the simple strategy outlined in Ref. (1) of evaluating
the coefficients of the two polynomials recursively, which is based on Thiele’s reciprocal difference method. Details of the
algorithm can be found in the Appendix of Ref. (1). Briefly, we first solve the saddle-point equations on the imaginary-frequency
axis to obtain the required Green’s function, say F (iω), at non-negative Matsubara frequencies. The number of Matsubara
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Fig. S9. Comparison of electron and spin spectral densities obtained for similar dopings from the T = 0 real-frequency numerics and analytic continuation of the imaginary
frequency solution to real frequency at T = 0.006.

frequencies used in our calculation is 105. Then we evaluate the required polynomials, An(z) and Bn(z), to approximate the
imaginary-frequency function, F (z) = An(z)/Bn(z). The accuracy of these polynomials depends on the number of Pade points,
n, and in our calculation we find that n = 200 points are sufficient to obtain accurate results. We have checked our results
by increasing or decreasing n and it does not result in any significant improvement. The resulting ratio of polynomials then
corresponds to the retarded Green’s function on real-frequency axis, once we identify z = ω + iη. Using the imaginary part of
this function we then readily obtain the spectral densities.

In the critical non-Fermi-liquid metal phase, we find the electron and spin spectral densities using this approach. In Fig. S9,
we plot the results of analytic continuation at T = 0.006 alongside the results from real-frequency analysis at zero temperature.
The agreement is remarkably good. We have also checked that the electron and spin spectral densities obtained via numerical
analytic continuation satisfy to a good accuracy the appropriate sum rules in Eqs. S33 and S34. In this phase, as shown earlier,
the spinon and holon spectral densities have a ω1−2∆a divergence. In principle, we can adopt our method if we scale this
divergence, as done in the real-frequency analysis. However, we do not attempt to do it here. Anyways, these quantities are
not gauge-invariant observables.

In the spin-glass phase the holon and fermion spectral densities do not have divergences. So in this case we calculate the
holon and spinon spectral densities in addition to the spin and electron spectral densities. In Figs. S10 and S11 we plot these
spectral densities at p = 0.027 and p = 0.2 respectively, obtained by analytic continuation of imaginary-frequency results at
T = 0.01. Alongside it we also plot the results obtained at T = 0 for a nearby doping value. The agreement is remarkable. The
spectral densities obtained via numerical analytic continuation satisfy the respective sum rules listed in Eqs. S82, S85, and S86.

3. Insulating SY model with bosonic spinons

This appendix will recall the solution of an insulating spin glass obtained using bosonic spinons in Ref. (2). We consider the
spin model

H = 1√
NM

N∑

i<j=1

M∑

α,β=1

JijSαβ (i)Sβα(j) [S37]

where Sαβ (i) = [Sβα(i)]† are generators of SU(M) on each site i. Each site contains states corresponding to the symmetric
product of κM fundamentals, and these are realized by bosonic spinons with

Sαβ (i) = b†β(i)bα(i)− κδαβ ,
∑

α

b†α(i)bα(i) = κM [S38]

on each site i. We have made the spin operators traceless. The exchange constants Jij are mutually uncorrelated and selected
with probability P (Jij) ∼ exp(−J2

ij/(2J2)).
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(c) <latexit sha1_base64="H0+vPkOYIB9WILVirvWzNP/lO+0=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BItQL2VXinosevFY0X5Au5RsNtuGZrNLkhXK0p/gxYMiXv1F3vw3pu0etPXBwOO9GWbm+Yng2jjONyqsrW9sbhW3Szu7e/sH5cOjto5TRVmLxiJWXZ9oJrhkLcONYN1EMRL5gnX88e3M7zwxpXksH80kYV5EhpKHnBJjpYdqcD4oV5yaMwdeJW5OKpCjOSh/9YOYphGThgqidc91EuNlRBlOBZuW+qlmCaFjMmQ9SyWJmPay+alTfGaVAIexsiUNnqu/JzISaT2JfNsZETPSy95M/M/rpSa89jIuk9QwSReLwlRgE+PZ3zjgilEjJpYQqri9FdMRUYQam07JhuAuv7xK2hc197JWv69XGjd5HEU4gVOoggtX0IA7aEILKAzhGV7hDQn0gt7Rx6K1gPKZY/gD9PkDkCiNVg==</latexit>(d)

Fig. S10. Comparison of spectral densities in the spin glass phase at small doping obtained via analytic continuation at T = 0.008 for p = 0.027 and via real frequency
analysis at zero temperature for p = 0.029. From (a) to (d), we plot the holon, spinon, electron, and spin spectral densities respectively.
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Fig. S11. Comparison of spectral densities in the spin glass phase at small doping obtained via analytic continuation at T = 0.008 for p = 0.2 and via real frequency analysis
at zero temperature for p = 0.21. From (a) to (d), we plot the holon, spinon, electron, and spin spectral densities respectively.
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We introduce replicas a = 1 . . . n, and average over Jij to obtain the averaged, replicated partition function

Zn =
∫
Dbαa (i, τ)Dλa(i, τ) exp [−SB − SJ ]

SB =
∑

i

∫
dτ
[
b†aα(i)∂τbαa (i) + iλa(i)

(
b†aα(i)bαa (i)− κM

)]

SJ = − J2

4NM

∫
dτdτ ′

[∑

i

Sαaβ(i, τ)Sγbδ(i, τ ′)
][∑

j

Sβaα(j, τ)Sδbγ(j, τ ′)

]
[S39]

We can now decouple SJ with a Hubbard-Stratonovich field Qαγab,βδ(τ, τ
′) and take the large N limit. Then the problem reduced

to finding saddle points of the action

S[Q]
N

= J2

4M

∫
dτdτ ′|Qαγab,βδ(τ, τ ′)|2 − lnZf [Q] [S40]

where Zf [Q] is the single site partition function

Zb[Q] =
∫
Dbαa (τ)Dλa(τ) exp [−SB − Sb] [S41]

SB =
∫
dτ
[
b†aα∂τb

α
a + iλa

(
b†aαb

α
a − κM

)]
[S42]

Sb = − J2

2M

∫
dτdτ ′Qαγab,βδ(τ, τ

′)
[
b†aα(τ)bβa(τ)− κδβα

] [
b†bγ(τ ′)bδb(τ ′)− κδδγ

]
[S43]

Note that we have taken the N →∞ limit, and there is no remaining path integral over Q. We simply have to find the
saddle points of S[Q] in Eq. S40. Let us assume that the saddle point does not break spin rotation symmetry: this is true in
both the spin glass, and spin liquid phases. So we take the ansatz

Qαγab,βδ(τ, τ
′) = δαδ δ

γ
β Qab(τ − τ ′) [S44]

where Qab(τ) is a real function. Also, because there is no path integral over Q, we can also assume from now on that Qab(τ) is
independent of τ for a 6= b. Then Eq. S40 is replaced by

S[Q]
N

= J2M

4

∫
dτdτ ′[Qab(τ − τ ′)]2 − lnZb[Q] [S45]

while Eq. S43 is replaced by

Sb = − J2

2M

∫
dτdτ ′Qab(τ − τ ′)

[
b†aα(τ)bβa(τ)b†bβ(τ ′)bαb (τ ′)− κ2M

]
[S46]

The saddle point equations for Q from Eqs. S45 and S46 are

Qab(τ − τ ′) = 1
M2

〈
b†aα(τ)bβa(τ)b†bβ(τ ′)bαb (τ ′)

〉
Zb[Q]

− κ2

M
[S47]

Now we need to evaluate Zf [Q]. This is conveniently done using G-Σ theory, where we define

Gab(τ, τ ′) = − 1
M

∑

α

bαa (τ)b†bα(τ ′) [S48]

Then we can write

Zb[Q] =
∫
DGab(τ, τ ′)Σab(τ, τ ′)Dλa(τ) exp

[
−MI[Q]− κ2J2

2

∫
dτdτ ′

∑

a,b

Qab(τ − τ ′)
]

I[Q] = ln det
[
−δ′(τ − τ ′)δab − iλa(τ)δ(τ − τ ′)δab − Σab(τ, τ ′)

]
− iκ

∫
dτλa(τ)

+
∫
dτdτ ′

[
Σab(τ, τ ′)Gba(τ ′, τ)− J2

2 Qab(τ − τ ′)Gab(τ, τ ′)Gba(τ ′, τ)
]

[S49]

Unlike the fermionic case, it is sufficient to work at M =∞ to obtain the spin glass phase, and there is no need to consider
1/M corrections. The large M saddle-point equations of Eq. S49 are

Σab(τ) = J2Qab(τ)Gab(τ) [S50]
Gab(iω) =

[
(iω + λ)δab − Σab(iω)

]−1 [S51]
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where iλ = −λ at the saddle-point. The saddle-point equation Eq. S47 now becomes

Qab(τ) = Gab(τ)Gba(−τ) [S52]

Then Eqs. S50, S51 and S52 combine to yield the bosonic SY equations (3) for replica diagonal case. We also have to include
the saddle-point equation for λ which is

T
∑

ωn

Gaa(iωn) = −κ [S53]

A. Spin glass. The spin glass phase was described in Ref. (2). In this phase, we must include replica off-diagonal components
for Gab(ωn = 0), while other ωn remain replica diagonal. We characterize the replica off-diagonal components of Gab(τ) by a
n× n matrix gab which is independent of τ . In other words, in frequency space

Gab(iωn) = −βgabδωn,0 , a 6= b [S54]

In Parisi’s theory of the infinite-range spin glass, the n→ 0 limit of the matrix gab is defined by a function g(u), with u ∈ [0, 1].
We make the one-step replica symmetry breaking ansatz

g(u) = g , for x < u < 1
= 0 , for u < x. [S55]

i.e. it is a step function at the ‘breakpoint’ u = x. The matrix gab is therefore fully defined by the values of g and x. For the
replica diagonal components, it is convenient to define

Gaa(iωn) = −βgδωn,0 +Gr(ωn) [S56]

At the moment, there is no prescribed frequency dependence for Gr, and so this ansatz can be made without loss of generality.
However, as we will see below, this ansatz is convenient because it leads to solutions in which Gr is a smooth function of
frequency.

Similarly, for the self-energy, we have from Eqs. S50 and S52

Σab(iωn) = −βJ2g3
abδωn,0 , a 6= b , [S57]

and for the diagonal component we write

Σaa(iωn) = −βJ2g3δωn,0 + Σr(ωn) [S58]

Now we need to insert the ansatz Eqs. S54, S55, S56, S57, S58 into Eqs. S50, S51, S52, S53 and obtain equations for the
unknowns x, g, Gr(ωn), Σr(ωn) and λ. To do this, we need an expression for the inverse of a matrix in replica space. To
obtain this, we use the following results for the product of 2 matrices in replica space (4). We consider the matrix Aab whose
off-diagonal elements are parameterized by the function a(u), u ∈ [0, 1], and the diagonal element Aaa = ã. Similarly, we have
matrices Bab and Cab. Then if C = AB, we have

c̃ = ãb̃− 〈ab〉

c(u) = (b̃− 〈b〉)a(u) + (ã− 〈a〉)b(u)−
∫ u

0
dv(a(u)− a(v))(b(u)− b(v)) [S59]

where

〈a〉 =
∫ 1

0
du a(u) [S60]

So if B = A−1 and C = 1, then c̃ = 1 and c(u) = 0. Applying these results to the one-step replica symmetry breaking ansatz
for a(u) and b(u), we obtain

b = −a
(a− ã)(a(1− x)− ã)

b̃ = ã+ (x− 2)a
(a− ã)(a(1− x)− ã) [S61]

where a(u) and b(u) have the same breakpoint x.
Applying Eqs. S61 to S51 we obtain the equations

Gr(iωn) = 1
iω + λ− Σr(iωn)

, for all ωn

[gJGr(iωn = 0)]2 = 1 + βJ2g3xGr(iωn = 0) [S62]
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Notice that same equation applies for Gr(iωn) for ωn = 0 and ωn 6= 0, and this was the rationale for ansatz in Eq. S56.
It is useful to now introduce the dimensionless variable Θ, defined by

Θ = −JgGr(iωn = 0) [S63]

Using Eq. S62, we see that Θ is related to x by

βx = 1
Jg2

( 1
Θ −Θ

)
, [S64]

and so we eliminate x in favor of Θ. We also use the ωn = 0 equation in Eq. S62 to express λ in terms of Θ and Σr(iωn = 0).
Now the saddle-point equations are expressed in terms of Gr(iωn), Σr(iωn), Θ, and g. The complete set of equations

determining these parameters is

[Gr(iωn)]−1 = iωn − Jg

Θ − [Σr(iωn)− Σr(iωn = 0)] [S65]

Σr(τ) = J2
(

[Gr(τ)]2 Gr(−τ)− 2gGr(τ)Gr(−τ)− g [Gr(τ)]2

+2g2Gr(τ) + g2Gr(−τ)
)

[S66]

g −Gr(τ = 0−) = κ . [S67]

These equations leave the parameter Θ undetermined.
Following Appendix B.2 in Ref. (2), we determine the value of Θ by the requirement that Gr have a gapless spectrum. For

a gapless spectrum, we expect the low frequency expansion for Gr for real ω

Gr(ω + iη) = Θ
gJ

+ (a+ ib)ωαθ(ω) + (a′ + ib′)|ω|αθ(−ω) + . . . [S68]

where θ(ω) is a step function, for some α > 0, and with b < 0, b′ > 0. Then from Eq. S66 we find that the leading singularity
in Σr is given by the last 2 terms in Eq. S66

ImΣr(ω + iη) = g2J2 [(2b− b′)ωαθ(ω) + (2b′ − b)|ω|αθ(−ω)
]

[S69]

But from Eq. S65 we have

ImΣr(ω + iη) = −Im [Gr(ω + iη)]−1 = g2J2

Θ2

[
(b ωαθ(ω) + b′ |ω|αθ(−ω)

]
[S70]

Comparing Eqs. S69 and S70 we have

(1/Θ2 − 2)b+ b′ = 0
b+ (1/Θ2 − 2)b′ = 0 [S71]

These equations are compatible only for Θ = 1, 1/
√

3. The replica symmetric choice Θ = 1 is excluded because it yields b = b′,
which is not allowed by the positivity constraints on the spectral weight: b and b′ need to have opposite signs. So the only
choice is

Θ = 1√
3
. [S72]

4. Additional details for the metallic spin-glass phase

In this appendix we present details regarding the spectral densities in the metallic spin-glass phase. We show explicit form of
the equations that are solved at zero temperature as well as details on spin and electron spectral densities at zero and finite
temperatures.

A. Details of the solution at zero temperature. The analytic continuation of the equations Eq. (29)-Eq. (34) at zero temperature
leads to the following equations for the spectral functions

ρr(ω) = − 1
π

Σ′′r (ω)
(ω − Jg

Θ − (Σ′r(ω)− Σ′r(0)))2 + (Σ′′r (ω))2
; [S73]

ρf(ω) = − 1
π

Σ′′f (ω)
(ω − µf − (Σ′f(ω)− Σ′f(0)))2 + (Σ′′f (ω))2 . [S74]
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Fig. S12. Plot of spin-glass order parameter, q = g2, as a function of doping at different temperatures.

Equations for self energies are more cumbersome and we list them in several parts. For the imaginary part of the boson self
energy we have three terms Σ′′r (ω) = Σ′′r,1(ω) + Σ′′r,2(ω) + Σ′′r,3(ω). The linear term reads

Σ′′r,1(ω) = πJ2g2[ρr(−ω)− 2ρr(ω)] [S75]

Σ′′r,2(ω) = πg

∫ +∞

−∞
dω1(θ(−ω1)θ(ω1 − ω)− θ(ω1)θ(ω − ω1)) [S76]

× (J2ρr(ω1)[−2ρr(ω1 − ω) + ρr(ω − ω1)] + kt2ρf(ω1)ρf(ω1 − ω))

Σ′′r,3(ω) = π

∫ +∞

−∞
dω1dω2(θ(−ω1)θ(−ω2)θ(−ω + ω1 + ω2) + θ(ω1)θ(ω2)θ(−ω1 − ω2 + ω))

× (J2ρr(ω1)ρr(ω2)ρr(ω1 + ω2 − ω) + kt2ρf(ω1)ρf(ω2)ρr(ω1 + ω2 − ω))

Similarly, the imaginary part of the fermion self energy can be written as Σ′′f (ω) = Σ′′f,1(ω) + Σ′′f,2(ω) + Σ′′f,3(ω), in particular

Σ′′f,1(ω) = −πt2g2ρf(ω) [S77]

Σ′′f,2(ω) = πt2g

∫ +∞

−∞
dω1ρf(ω1)[ρr(ω − ω1)− ρr(ω1 − ω)](θ(−ω1)θ(−ω + ω1)− θ(ω1)θ(−ω1 + ω))

Σ′′f,3(ω) = πt2
∫ +∞

−∞
dω1dω2(θ(−ω1)θ(−ω2)θ(−ω + ω1 + ω2) + θ(ω1)θ(ω2)θ(−ω1 − ω2 + ω))

× ρf(ω1)ρr(ω2)ρr(ω1 + ω2 − ω)

We obtain the real parts of the self energies by using the Kramers-Kronig relation. The filling constraints read

g −
∫ 0

−∞
dωρr(ω) = κ− kp [S78]

∫ 0

−∞
dωρf(ω) = p [S79]

We fix parameters to J = t = 1 and κ = k = 1/2 everywhere for the spin glass phase. The solution of these equations is showns
in Fig. 8 for different p. For the boson spectral density ρr(ω) we see linear in frequency behavior at small frequencies.

B. Spectral functions. In this section we find spectral functions of gauge invariant observables: spin and electron spectral
densities. We also compute the sum rules for these functions at finite and zero temperatures. Recall that in the spin-glass
phase we use the SU(M |M ′) representation where the holon is fermionic and spinons are bosonic operators. From Eq. 28,

Gc(τ) = Gb(τ)Gf(−τ) = [Gr(τ)− g]Gf(−τ) . [S80]

Therefore the electron spectral density is

ρc(ω) = − 1
π
Im[Gc(ω + i0+)] = gρf(−ω) +

∫ ∞

−∞
dω2 ρf(ω2)ρr(ω + ω2)[nB(ω + ω2) + nF (ω2)] . [S81]

It is straightforward to obtain the sum rule, ∫ ∞

−∞
dω ρc(ω) = 1 + p

2 . [S82]
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Fig. S13. Spectral functions obtained at zero temperature via real frequency analysis for several values of doping. Parameters are J = t = 1.

Recall that this is same as that obtained in the critical metal phase.
For the spin correlator we have,

χ(τ) = Gb(τ)Gb(−τ) = g2 − g [Gr(τ) +Gr(−τ)] +Gr(τ)Gr(−τ) . [S83]

Here, χ′′ = Im[χ(τ)], where χ(τ) = 〈~S(τ) · ~S(0)〉. This gives the spin spectral density,

ρs(ω) = χ′′(ω)
π

= g2βωδ(ω) + g [ρr(ω)− ρr(−ω)]−
∫ ∞

−∞
dω2 ρr(ω2)ρr(ω + ω2) [nB(ω + ω2)− nB(ω2)] . [S84]

The sum rule for the spin spectral density at non-zero temperature is not easy to obtain and we do not have an exact expression
for it. At zero temperature, however, we obtain

∫ ∞

0
dω ρs(ω) = (1− p)(3− p)

4 − g2 . [S85]

In addition, we have the usual sum rules,
∫ ∞

−∞
dω ρf(ω) =

∫ ∞

−∞
dω ρr(ω) = 1 . [S86]

Solution of these equations for several values of doping is presented in Fig. S13.
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