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Abstract: This paper introduces robust control barrier functions for uncertain control a�ne
systems, where the (parametric) uncertainties can be time-varying and nonlinearly a↵ecting the
system dynamics and/or safety sets. In particular, we propose two methods based on mixed-
monotone decomposition and robust optimization where the controlled invariance condition
remains linear in the control inputs despite nonlinear uncertainties. We show that these
functions guarantee the robust controlled invariance of a given parameter-dependent safety set
while existing adaptive approaches may not. Moreover, we propose alternative robust control
Lyapunov functions where the control inputs also appear linearly; thus, these robust control
barrier and Lyapunov functions can be coupled and remain a quadratic program that can be
solved online. Finally, we demonstrate using two illustrative examples that our approaches have
comparable performance with adaptive approaches while guaranteeing robust safety.

Keywords: Safety; Constrained control; Control problems under uncertainties; Nonlinear
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1. INTRODUCTION

Control barrier functions (CBFs) are an extension of bar-
rier certificates that provide a way to impose the forward
controlled invariance of safety sets (Ames et al. (2016)).
However, since internal/external uncertainties such as
noise or disturbances are inevitable in the real world, it is
often impossible to obtain precise mathematical models of
the (cyber-physical) system dynamics for ensuring safety
using standard CBFs. The degradation of safety under
model uncertainty was studied in Kolathaya and Ames
(2018) and an analysis on the robustness of CBFs to
additive perturbations was given in Xu et al. (2015).

Of more interest to this paper are control design ap-
proaches for handling model/parametric uncertainties.
These methods can be generally categorized into adaptive
and robust approaches. In adaptive methods, the paramet-
ric uncertainties are often assumed to appear linearly and
be constant. Under these assumptions, Taylor and Ames
(2020); Lopez et al. (2020) introduced adaptive and robust
adaptive CBFs, respectively, that involve adaptation laws
to estimate the unknown and constant (linear) parameters.
Further, under the additional assumption of persistence of
excitation, Black et al. (2021) proposed an approach that
guarantees fixed-time convergence of parameter estimates
to their true values, thereby making the controller less con-
servative. Nonetheless, these approaches often do not guar-
antee safety for the true parameter (but for the estimated
parameter) and/or when the parametric uncertainties are
time-varying or nonlinear.
?
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On the other hand, robust CBF methods that ensure
safety for all possible values of (parametric) uncertain-
ties have been proposed in Jankovic (2018); Breeden and
Panagou (2021) under the assumption that the uncertain-
ties are additive and bounded. These approaches also tend
to conservatively bound the uncertainties when they ap-
pear nonlinearly by assuming a compact/bounded domain.
Further, similar to adaptive methods, these approaches
do not guarantee robust safety when the safety sets are
dependent on unknown parameters. Additionally, Buch
et al. (2021) and Seiler et al. (2021) considered input-
dependent uncertainties that satisfy specific structures
such as sector-boundedness or integral quadratic con-
straints, respectively, in contrast to polytopic and inter-
val/hyperbox parametric uncertainties considered in this
work.

Contributions. In this paper, we propose robust control
barrier functions to guarantee robust safety of uncertain
control a�ne systems, where, unlike in most existing
adaptive and robust CBF methods, the bounded (para-
metric) uncertainties can be time-varying and a↵ect the
system dynamics and/or safety sets nonlinearly. These
uncertainties can stem from dynamic or static sources
including process noise or unmodeled dynamics or chang-
ing system parameters, e.g., due to wear and tear or
change in user/passaenger weight. Our approaches are
built upon mixed-monotonicity (e.g., Moisan and Bernard
(2010); Coogan and Arcak (2015); Khajenejad and Yong
(2023); Yang et al. (2019); Coogan (2020)) for general
nonlinear parametric uncertainties and robust optimiza-
tion/dual linear programming (Bertsimas et al. (2011)) for
the a�ne parametric uncertainty case to obtain controlled
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invariance conditions that are linear in the control inputs.
Furthermore, using similar techniques, we propose alter-
native robust control Lyapunov functions that also lead
to conditions where the control inputs appear linearly.
Thus, the proposed approaches can be used to design
novel quadratic program-based rCLF-rCBF controllers
that guarantee that the system satisfies (uncertain) safety
conditions at all times and that the system converges to
a reference/the origin if the system is su�ciently safe, in
presence of time-varying, nonlinear parametric uncertain-
ties. The proposed methods are demonstrated on adaptive
cruise control and safe assistive shoulder robot examples.

2. PRELIMINARIES

2.1 Notations and Definitions

Rn represents the set of real numbers of dimension n � 0,
while In represents an identity matrix of size n and 0m⇥n

represents a matrix of zeros of size m ⇥ n. Further, all
vector inequalities are element-wise inequalities.

Definition 1 (Locally Lipschitz Functions). A function
f : X ✓ Rn ! T ✓ Rm is locally Lipschitz continuous if
for all x 2 X , there exist an open neighborhood Nx of x and
a constant Lf � 0 such that kf(x0) � f(x00)k2  Lfkx0 �
x
00k2, 8x0, x00 2 Nx.

Definition 2 (Mixed-Monotone Mappings and Decompo-
sition Functions). (Yang et al., 2019, Definition 4) A map-
ping f : X ✓ Rn ! T ✓ Rm is mixed-monotone if there
exists a decomposition function fd : X⇥X ! T satisfying:
(i) fd(x, x) = f(x), (ii) x1 � x2 ) fd(x1, y) � fd(x2, y),
and (iii) y1 � y2 ) fd(x, y1)  fd(x, y2).

Note that all locally Lipschitz continuous functions are
mixed-monotone (Khajenejad and Yong (2023)) and their
decomposition functions are generally not unique and
can be computed in a tractable manner, as described in
Yang et al. (2019); Khajenejad and Yong (2023); Coogan
(2020). All results of this paper apply for any of the
above methods for computing decomposition functions,
although we mainly used the remainder-form variant from
Khajenejad and Yong (2023) in our simulations. Further,
a function ↵ : [0,1) ! [0,1) is of class K1, i.e., ↵ 2 K1,
when ↵ is continuous, strictly increasing, unbounded, and
↵(0) = 0.

2.2 Problem Formulation

Consider the following control a�ne system with time-
varying, nonlinear parametric uncertainties:

ẋ(t) = f(x(t), ✓⇤(t)) + g(x(t), ✓⇤(t))u(t), (1)

where x(t) 2 X ⇢ Rn and u(t) 2 U ⇢ Rm are state
and input vectors, respectively, while ✓

⇤(t) 2 ⇥ ⇢ Rp

represents an unknown parameter vector that is time-
varying with unknown variation ✓̇

⇤(t) 2 ⇥d ⇢ Rp, where
the sets ⇥ and ⇥d are known and bounded polytopes.
Moreover, f : X ⇥ ⇥ ! Rn and g : X ⇥ ⇥ ! Rn⇥m

are locally Lipschitz continuous functions. This system is
a generalization of the uncertain control a�ne systems
considered in existing literature, where a fixed uncertain
parameter ✓⇤ is assumed to enter the system dynamics
linearly. Note that in the rest of this paper, we omit
the explicit dependence on time of all signals to improve
readability when it is clear from context.

Furthermore, safety is generally defined as forward invari-
ance of a safety set that is only dependent on known
states of a system. However, safety of a system can also be
directly e↵ected by uncertainties in the system. Thus, we
consider uncertainty-dependent safety sets.

Definition 3 (Uncertainty-Dependent Safe Set). S✓ is
a superlevel set defined on a continuously di↵erentiable
function h : X ⇥ ⇥ ! R that is parameterized by ✓ such
that S✓ , {x 2 X | h(x, ✓) � 0} and @S✓ , {x 2 X |
h(x, ✓) = 0}.
Then, the problem we seek to address in this paper can be
formally written as:

Problem 1 (Robust Safety). Given an uncertain control
a�ne system (1) and an uncertainty-dependent safety
set S✓⇤ , construct a robust control barrier function that
guarantees the robust controlled invariance of all possible
safety sets, i.e., S✓ for all ✓ 2 ⇥ and ✓̇ 2 ⇥d (and thus,
for all unknown time-varying ✓⇤(t) and ✓̇⇤(t), 8t � 0).

Note that robust safety is a stronger condition that must
hold for all time-varying ✓(t) 2 ⇥ and ✓̇(t) 2 ⇥d in contrast
to adaptive safety conditions that are only required to hold
for the estimated ✓̂(t) (under the assumption of fixed ✓⇤).
While the definitions in Taylor and Ames (2020); Lopez
et al. (2020) are also parameter-dependent, upon closer
review, their proposed controllers in (Taylor and Ames,
2020, Theorem 3) and (Lopez et al., 2020, Theorem 2)
only enforce safety for the estimated parameters and not
the true parameters. In fact, our simulation in Section
4.1 shows that adaptive safety may lead to the violation
of the invariance of the true but unknown S✓⇤ , since
in general, ✓̂(t) 6= ✓

⇤ either during the transient (if
the estimate converges) or if ✓̂(t) does not converge to
✓
⇤. It is also noteworthy that since we require robust
safety for all possible ✓(t), in some cases, it may also
be possible (and beneficial) to directly consider a robust
parameter-independent function h(x) , min✓2⇥ h(x, ✓) if
this function remains smooth. Our proposed approaches in
this paper also directly apply to this special case. Further,
since the robust safety condition in Problem 1 typically
involve nonlinearities and require semi-infinite constraints
(i.e., an infinite number of constraints for all ✓(t) in an
infinite dense set ⇥), we also consider the problem of
finding su�cient and/or necessary conditions that can be
obtained in a computationally tractable manner.

Problem 2 (Tractable Robust Control Barrier Function
Conditions). Given an uncertainty-dependent safety set
S✓⇤ , find su�cient and/or necessary robust control bar-
rier function (rCBF) conditions that are computation-
ally tractable, i.e., without semi-infinite constraints nor
optimization subroutines, for several classes of uncertain
control a�ne systems.

3. MAIN RESULTS

In this section, the definitions and the proposed theories
to solve Problems 1 and 2 are described in detail.

3.1 Robust Control Barrier Functions (rCBFs)

To address Problem 1, we extend conventional definitions
of control barrier functions to the setting with uncertain
parameters that may be time-varying.
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Definition 4 (Robust Control Barrier Function (rCBF)).
For an uncertain control a�ne system (1), a continuously
di↵erentiable function h : X ⇥ ⇥ ! R is a robust control
barrier function (rCBF) for the uncertainty-dependent
safety set S✓⇤ (cf. Definition 3), if there exists a class K1
function ↵(·) such that

supu2U ḣ(x, u, ✓, ✓̇) � �↵(h(x, ✓)), (2)

for all x 2 X , ✓ 2 ⇥, ✓̇ 2 ⇥d, and t � 0, where

ḣ(x, u, ✓, ✓̇) , @h
@x (x, ✓)(f(x, ✓) + g(x, ✓)u) + @h

@✓ (x, ✓)✓̇.
(3)

Moreover, for any x 2 S⇥ , T
✓2⇥ S✓, we define the

corresponding safe input set:

KS⇥(x) = {u 2 U | ḣ(x, u, ✓, ✓̇) � �↵(h(x, ✓)),
8✓ 2 ⇥, ✓̇ 2 ⇥d}.

(4)

Theorem 1. (Robust Safety). Let S✓⇤ be the true
uncertainty-dependent safety set defined as the superlevel
set of a continuously di↵erentiable function h : X ⇥⇥ ! R
and S⇥ , T

✓2⇥ S✓. If h is a robust control barrier function

(rCBF) on S⇥ and @h
@x (x, ✓) 6= 0, 8x 2 @S⇥, then any

Lipschitz continuous (with respect to (w.r.t.) the state x)
controller u(x) 2 KS⇥(x) for the system (1) renders the
set S⇥ robustly safe, i.e., it also renders h(x, ✓⇤) � 0,
8x 2 S⇥ ✓ S✓⇤ . Thus, the system (1) is safe for the true
uncertain time-varying parameters ✓⇤(t) that are bounded
by polytopes or intervals/hyperboxes, 8x 2 S⇥ ✓ S✓⇤ , t �
0.

Proof. If h is an rCBF on S⇥ for the system (1), then
any controller u(x) 2 KS⇥(x) satisfies ḣ(x, u, ✓, ✓̇) �
�↵(h(x, ✓)) for all ✓ 2 ⇥ and ✓̇ 2 ⇥d, thus S⇥ is forward
invariant, i.e., h(x, ✓) � 0 for all ✓ 2 ⇥. Then, since
by definition, S⇥ =

T
✓2⇥ S✓ ✓ S✓⇤ , this means that

the true unknown parameter-dependent safety set S✓⇤ is
also rendered controlled invariant for all x

0 2 S⇥, i.e.,
h(x, ✓⇤) � 0.

3.2 Tractable rCBF Condition

Note that the robust safety condition in (2) involves
semi-infinite (i.e., ‘for all’) constraints. Hence, this section
addresses Problem 2, where we propose two su�cient
and/or necessary conditions for satisfying (2) that can
be obtained in a computationally tractable manner with
only finitely many constraints, under various assumptions
about the uncertain parameter and parameter variation
sets (⇥,⇥d) and how ✓

⇤, ✓̇⇤ enter (2), with increasing levels
of assumptions/restrictions but with possibly decreased
conservatism.

3.2.1. Robust CBF via Mixed-Monotone Decompositions
(rCBF-MM)

First, we consider the case with general nonlinear para-
metric uncertainties without any restriction on the non-
linearity besides continuity as described in the following.

Assumption 1. The parameter and parameter variation
sets, i.e., ⇥ and ⇥d, are bounded sets that are contained
within known intervals/hyperboxes I⇥ , [✓, ✓] and I⇥d ,
[✓d, ✓d], respectively. Moreover, the continuously di↵eren-
tiable safety function h(x, ✓) (with respect to x) and the

choice of class 1 function ↵ are such that ḣ(x, u, ✓, ✓̇) +
↵(h(x, ✓)) (for a known state x and to-be-designed u, this
function is only dependent on ✓ and ✓̇) is a locally Lipschitz
continuous function in ✓ and ✓̇ with known bounds for its
Jacobian with respect to [✓>, ✓̇>]>, i.e., J(✓, ✓̇) 2 IJ ,
[J, J ] for all ✓ 2 I⇥ and ✓̇ 2 I⇥d. These bounds can either
be state/input-dependent or uniform over x and/or u.

Under the above assumption, we propose a robust CBF
that leverages mixed-monotonicity theory (e.g., Khajene-
jad and Yong (2023); Coogan (2020)) to bound the terms
that are nonlinear in the parametric uncertainties.

Definition 5 (rCBF-MM). Consider an uncertain control
a�ne system (1), a continuously di↵erentiable function
h : X⇥⇥ ! R for the uncertainty-dependent safety set S✓⇤

and a class K1 function ↵(·) that satisfy Assumption 1,
i.e., there exist mixed-monotone decomposition functions
hd, f̃d, g̃d, and h̃d for h(x(t), ✓), f̃(✓) , @h

@xf(x(t), ✓),

g̃(✓) , @h
@xg(x(t), ✓), and h̃(✓) , @h

@✓ (x(t), ✓), respec-
tively (during optimization at each time instance, x(t) is
known/measured; hence these functions are (nonlinear)
functions of the parameter only, with implicit dependence
on the known x). Then, the function h is a robust con-
trol barrier function via mixed-monotone bounding (rCBF-
MM) if the following holds for all x 2 X , t � 0:

8
><

>:

sup
u+,u�

g̃d(✓, ✓)u+�g̃d(✓, ✓)u�

s.t. u
+�u� 2 U ,

u
+ � 0, u� � 0

9
>=

>;
� �↵(hd(✓, ✓))

�f̃d(✓, ✓)��,
(5)

with � , min{h̃d(✓, ✓)✓d, h̃d(✓, ✓)✓d, h̃d(✓, ✓)✓d, h̃d(✓, ✓)✓d},
where u

+ and u
� are non-negative auxiliary vector vari-

ables from which the safe input can be obtained as u = u
+�

u
�. Moreover, for any x 2 S⇥ , T

✓2⇥ S✓, we define the
corresponding safe input set:

K
MM
S⇥

(x) = {u = u
+�u� 2 U | (5) holds}. (6)

Theorem 2. [Su�cient Condition for rCBF-MM]. Let
S✓⇤ be the true uncertainty-dependent safety set defined as
the superlevel set of a continuously di↵erentiable function
function h : X ⇥ ⇥ ! R that satisfies Assumption
1. If h is a rCBF-MM on S⇥ (cf. Definition 5) and
@h
@x (x, ✓)g(x, ✓) 6= 0 for all x 2 @S⇥, then any Lipschitz
continuous (w.r.t. x) controller u(x) 2 K

MM
S⇥

(x) for the
system (1) renders the set S⇥ robustly safe; thus, the
system (1) is safe for the true uncertain time-varying ✓⇤(t)
for all x 2 S⇥ ✓ S✓⇤ , t � 0.

Proof. From (3), ḣ(x, u, ✓, ✓̇) = f̃(x, ✓)+g̃(x, ✓)u+h̃(x, ✓)✓̇.
By mixed-monotonicity (Coogan and Arcak, 2015, Theo-
rem 1), f̃(x, ✓) � f̃d(✓, ✓) and g̃d(✓, ✓) � g̃(x, ✓) � g̃d(✓, ✓).
Moreover, we equivalently decompose u as u = u

+ � u
�

with u
+
, u
� � 0 (since any vector u can be decom-

posed into a di↵erence of two element-wise positive vectors
u
+ and u

�). Then, since g̃(x, ✓)u+ � g̃d(✓, ✓)u+ and
�g̃(x, ✓)u� � �g̃d(✓, ✓)u�,

g̃(x, ✓)u � g̃d(✓, ✓)u
+�g̃d(✓, ✓)u�.

Further, from interval multiplication in interval arithmetic
(Jaulin et al. (2001)), we obtain h̃(x, ✓)✓̇ � �, where
� is defined below (5). Since h being an rCBF-MM
for the uncertain control a�ne system (1) implies that
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ḣ(x, u, ✓, ✓̇) � f̃d(✓, ✓) + g̃d(✓, ✓)u+� g̃d(✓, ✓)u� + � �
�↵(hd(✓, ✓)) � �↵(h(x, ✓)), by Theorem 1, the controller
renders S⇥ robustly safe.

The above rCBF-MM is only su�cient since the interval
bounding using MM decompositions may sometimes be
conservative. Moreover, it is noteworthy that when f̃(x, ✓)
is linear in ✓, i.e., f̃(x, ✓) = A(x)✓, the inequality A(x)�✓�
A(x) ✓  A(x)✓ holds by (Efimov et al., 2013, Lemma 1),
where A(x)� , max{A(x), 0} and A(x) , A(x)��A(x).

3.2.2. Robust CBF via Robust Linear Programs (rCBF-L)

Since bounding with MM decompositions in the previous
subsection may be conservative, we also consider the case
when the parametric uncertainties appear linearly. In this
case, we can also directly consider polytopic parametric
uncertainties, as follows.

Assumption 2. The parameter and parameter variation
sets, i.e., ⇥ = {✓ 2 Rp | P✓✓  q✓} and ⇥d = {✓̇ 2
Rp | P✓d ✓̇  q✓d}, are convex polytopes in their hyperplane
representations with known P✓, P✓d , q✓ and q✓d . Moreover,
the continuously di↵erentiable safety function h(x, ✓) with
respect to x) and the choice of class 1 function ↵ are
such that h(x, ✓) and ḣ(x, u, ✓, ✓̇)+↵(h(x, ✓)) are linear in
✓ and ✓̇.

The assumption of the ‘linear/a�ne’ structure/nature of
the parametric uncertainties allows us to leverage robust
linear optimization (Bertsimas et al. (2011)) to tightly
bound the impact of the parametric uncertainties on
safety, as described next.

Definition 6 (rCBF-L). Consider an uncertain control
a�ne system (1), a continuously di↵erentiable function
h : X⇥⇥ ! R for the uncertainty-dependent safety set S✓⇤

and a class K1 function ↵(·) that satisfy Assumption 2,
i.e., ḣ(x, u, ✓, ✓̇) + ↵(h(x, ✓))2 R is in the following a�ne
form:

(�(x) + ⇢(x)u)>✓ +  (x)>✓̇ + �(x) + ⌧(x)u, (7)

where ḣ(x, u, ✓, ✓̇) is defined in (3), with �(·) 2 Rp, ⇢(·) 2
Rp⇥m,  (·) 2 Rp, �(·) 2 R and ⌧(·) 2 R1⇥m. Then, the
function h is a robust control barrier function via robust
linear optimization (rCBF-L) if the following holds:8

>>><

>>>:

sup
u,µ

�
⇥
q
>
✓ q

>
✓d

⇤
µ+ �(x) + ⌧(x)u

s.t.


P✓ 0
0 P✓d

�>
µ=�


�(x)+⇢(x)u

 (x)

�
,

u 2 U , µ � 0,

9
>>>=

>>>;
�0. (8)

for all x 2 X , where µ is non-negative auxiliary vector
variable. Moreover, for any x 2 S⇥ , T

✓2⇥ S✓, we define
the corresponding safe input set:

K
L
S⇥

(x) = {u 2 U | (8) holds}. (9)

Theorem 3. [Necessary and Su�cient Condition for
rCBF-L]. Let S✓⇤ be the true uncertainty-dependent safety
set defined as the superlevel set of a continuously di↵er-
entiable function function h : X ⇥ ⇥ ! R that satisfies
Assumption 2. If h is a rCBF-L on S⇥ (cf. Definition
6) and @h

@x (x, ✓)g(x, ✓) 6= 0 for all x 2 @S⇥, then any
Lipschitz continuous (w.r.t. x) controller u(x) 2 K

L
S⇥

(x)
for the system (1) renders the set S⇥ robustly safe; thus,

the system (1) is safe for the true uncertain time-varying
✓
⇤(t) for all x 2 S⇥ ✓ S✓⇤ , t � 0.

Proof. For any x 2 S⇥, the satisfaction of (2) with
ḣ(x, u, ✓, ✓̇) + ↵(h(x, ✓)) in the form of (7) for all ✓ 2 {✓ 2
Rp | P✓✓  q✓} and ✓̇ 2 {✓̇ 2 Rp | P✓d ✓̇  q✓d} is equal to:
8
><

>:

sup
u

inf
✓,✓̇

(�(x)+⇢(x)u)>✓+ (x)>✓̇+�(x)+⌧(x)u

s.t.


P✓ 0
0 P✓d

� 
✓

✓̇

�



q✓

q✓d

�
.

9
>=

>;
�0,

Then, by robust optimization Bertsimas et al. (2011), we
obtain the condition in (8). Thus, S⇥ is robustly safe.

Note that Assumption 1 is generally less restrictive than
Assumption 2 since any locally Lipschitz continuous func-
tion, including linear functions, is mixed-monotone (Kha-
jenejad and Yong (2023)). However, when both rCBF-
MM and rCBF-L apply, i.e., when Assumption 2 is sat-
isfied, rCBF-MM may result in more conservative results
than rCBF-L. More importantly, our proposed robust
approaches demonstrate that the estimation/adaptation
of ✓̂(t) alone is not necessarily beneficial because we would
still need to be robust to the worst-case parametric uncer-
tainties, unless bounds on the parameter estimation errors
can also be computed, in which case, we only need to be
robust to the worst-case estimation errors. Further, while
our work mainly focused on systems with relative degree
1 (i.e., @h

@x (·)g(·) 6= 0), similar ideas can also be applied
to systems with higher relative degrees to obtain robust
exponential CBFs.

3.3 Optimization-Based Control

Next, we show that robust CBFs can be coupled with a
safe legacy controller or with robust (and adaptive) control
Lyapunov functions, which will be introduced in Section
3.3.2, to stabilize/control the system while guaranteeing
safety.

3.3.1. Safe Legacy Controller: Suppose we are given a
legacy feedback controller u = k(x) 2 U for the uncertain
control a�ne system (1) and we wish to guarantee safety.
To minimally modify this controller while guaranteeing
safety, we can consider the following Quadratic Program
(QP):

u(x) = argmin
u2U

1
2ku� k(x)k (10a)

s.t. (5) holds, (10b)

for the general case with rCBF-MM. A similar QP can be
obtained with rCBF-L by replacing (5) with (8) in (10).

3.3.2. Unifying with Lyapunov: Moreover, robust CBFs
can be unified with robust control Lyapunov functions as
follows for the uncertain control a�ne system (1):

Definition 7 (Robust Control Lyapunov Function (rCLF)).
A continuously di↵erentiable function V : X ! R is a
robust control Lyapunov function (rCLF) for the uncertain
control a�ne system (1) if there exist extended class 1
functions ↵1,↵2, and ↵3 such that:

↵1(kxk)  V (x)  ↵2(kxk), (11)

inf
u2U

V̇ (x, u, ✓)  �↵3(kxk), 8 ✓ 2 ⇥, (12)
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for all x 2 X and where V̇ (x, u, ✓) is defined as

V̇ (x, u, ✓) , @V
@x (x)(f(x, ✓) + g(x, ✓)u). (13)

It can be shown that if such rCLF exists, then there
exist a controller that robustly asymptotically stabilizes
the system to the origin. Moreover, similar to rCBF, the
rCLF condition in (12) contains semi-infinite constraints.
Thus, corresponding rCLF-MM and rCLF-L functions
with finitely many constraints (hence, tractable) can be
defined under the assumptions of local Lipschitz continuity
(hence, mixed-monotonicity) and linearity with respect to
✓ in an interval and polytope ⇥, respectively, as summa-
rized below. Their robust stability proofs are analog to the
proofs for rCBF-MM and rCBF-L, and are omitted for the
sake of brevity.

Definition 8 (rCLF-MM). Consider an uncertain control
a�ne system (1), a parameter set contained within known
intervals I⇥ , [✓, ✓] and a continuously di↵erentiable func-
tion V : X ! R satisfying (11) such that V̇ (x, u, ✓) (cf.
(13)) is locally Lipschitz, i.e., there exists mixed-monotone
decomposition functions (LfV )d and (LgV )d for the Lie
derivatives LfV , @V

@x f(x, ✓) and LgV , @V
@x g(x, ✓), re-

spectively. Then, V is a robust control Lyapunov function
via mixed-monotone bounding (rCLF-MM) if the following
holds: (

inf
u+,u�

(LgV )d(✓, ✓)u+�(LgV )d(✓, ✓)u�

s.t. u
+�u� 2 U , u+ � 0, u� � 0,

)

 �↵3(kxk)� (LfV )d(✓, ✓),

(14)

for some K1 function ↵3, where u
+ and u

� are non-
negative auxiliary variables from which the safe input can
be obtained as u = u

+ � u
�.

Definition 9 (rCLF-L). Consider an uncertain control
a�ne system (1), a polytopic parameter set ⇥ = {✓ 2
Rp | P✓✓  q✓} and a continuously di↵erentiable function
V : X ! R satisfying (11) such that V̇ (x, u, ✓) (cf. (13))
is in the following a�ne form:

V̇ (x, u, ✓) = (�(x) + ⇢(x)u)>✓ + �(x) + ⌧(x)u. (15)

Then, the function V is a robust control Lyapunov function
via robust linear optimization (rCLF-L) if the following
holds:8

<

:

inf
u,µ

q
>
✓ µ+ �(x) + ⌧(x)u

s.t. P✓
>
µ = �(x) + ⇢(x)u,

u 2 U , µ � 0,

9
=

;  �↵3(kxk), (16)

for some class K1 function ↵3, where µ is non-negative
auxiliary vector variable.

Having introduced various forms of rCLFs and rCBFs,
we can combine robust stabilization and robust safety
objectives in a optimization-based control approach. In
particular, combining rCLF-MM and rCBF-MM yields the
following QP:

u(x) = argmin
u2U,�2R

1
2u

T
H(x)u+ p�

2 (17a)

s.t. (14) holds + �, (17b)
(5) holds, (17c)

where (17b) represents (14) with �↵3(kxk) + � on the
right hand side, H(x) is any positive definite matrix
(pointwise in x) and � is a relaxation variable that ensures
solvability of the QP with a penalty weight p > 0 (i.e.,

(a) Time-invariant vl, i.e., v̇l = 0 (b) Time-varying vl, i.e., v̇l 6= 0

Fig. 1. ACC-TTC with known mass, where ha(·, ·) repre-
sents aCBF (Taylor and Ames (2020)), hr(·, ·) rep-
resents RaCBF (Lopez et al. (2020)), hrCBF�L and
hrCBF�MM represent the proposed robust CBFs.

to guarantee safety while relaxing stability if both cannot
be simultaneously satisfied). A QP for combining rCLF-L
and rCBF-L can be similarly obtained by replacing (14)
with (16) and (5) with (8) in (17).

4. SIMULATION EXAMPLES

4.1 Adaptive Cruise Control with Safe Time-to-Collision

We consider the problem of adaptive cruise control (ACC)
similar to Taylor and Ames (2020), but with unknown lead
vehicle velocity and with a time-to-collision (TTC) safety
constraint instead of a time headway (TH) constraint that
leads to an uncertainty-dependent safety set 1 . The system
dynamics is given by:

d

dt


v

D

�
=


0
�v

�
�


1
m

v
m

v2

m 0
0 0 0 �1

�2

4
f0
f1
f2
vl

3

5+


1
m
0

�
u,

where v is the ego/follower vehicle velocity, D is the
distance between the ego and lead vehicles, m is the mass
of the ego vehicle, and u is the force input. The unknown
parameters are composed of unknown rolling friction force
parameters f0, f1, f2 and the unknown lead vehicle velocity
vl. Further, the time-to-collision (TTC) safety constraint
is given as

D � Tc(v � vl), (18)
where Tc > 0 represents the time-to-collision and to ensure
safety, we consider the following uncertainty-dependent
safety set S✓⇤ (cf. Definition 3) with:

h(x, ✓⇤) , D � Tc(v � v
⇤
l ) � 0, (19)

where v
⇤
l is one of the true unknown parameters. Further,

we consider rCLFs with V = (v � vd)2 to enable tracking
of a desired velocity vd, when possible. All (known or
unknown) system parameters are taken from Ames et al.
(2016).

Next, we consider two cases where the vehicle mass m is
known or unknown such that g(x, ✓⇤) in (1) is independent
or dependent on the unknown parameter ✓⇤, respectively:

Known Mass: Since m is assumed to be known, g(x, ✓⇤)
in (1) is independent of ✓⇤ and the uncertain parameter

vector in this setting is ✓⇤ = [f⇤0 f
⇤
1 f

⇤
2 v

⇤
l ]
>
. Moreover, we

consider the cases when v̇l = 0 and v̇l 6= 0. In the first case
1

A detailed discussion on the pros and cons of TTC and TH as

safety indicators can be found in Vogel (2003).
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with v̇l = 0, the aCBF and RaCBF (with corresponding
adaptive CLFs) approaches in Taylor and Ames (2020);
Lopez et al. (2020) apply, and the adaptation gains are
chosen to satisfy the lower bounds given in Taylor and
Ames (2020); Lopez et al. (2020). For a fair comparison,
we only consider the RaCBF method in Lopez et al.
(2020) and not RaCBF+SMID. However, as shown in
Figure 1 (left), when we start close to the safety boundary,
these approaches in Taylor and Ames (2020); Lopez et al.
(2020) (that only guarantee that D � Tc(v � v̂l) � 0)
resulted in a violation of the TTC constraint D � Tc(v �
v
⇤
l ) � 0 for RaCBF while aCBF happened to satisfy
the TTC constraint, presumably due to its very high
level of conservatism. On the other hand, our proposed
approach guarantees the satisfaction of the (unknown)
TTC constraint D�Tc(v� v

⇤
l ) � 0. Note further that the

fixed-time adaptive approach in Black et al. (2021) is not
applicable due to the absence of persistence of excitation.

Moreover, note that (Taylor and Ames, 2020, Theorem
3) and (Lopez et al., 2020, Theorem 2) only guaran-
tee/require safety for S✓̂ by proving h(x, ✓̂) � 1

2 ✓̃
>��1

✓̃ �
0 for all t � 0, where ✓̃ , ✓

⇤ � ✓̂ represents the estimation
error, ✓⇤ is the true parameter and � � 0 represents
the adaptive gain used for parameter estimation. Conse-
quently, this does not necessarily prove that h(x, ✓⇤) � 0
(i.e., that S✓⇤ is invariant/safe) since generally, h(x, ✓̂) 6=
h(x, ✓⇤). If we consider a linear safety function of the form
h(x, ✓) = H1x + H2✓, where H1 and H2 are matrices of
appropriate dimensions then h(x, ✓̂) = h(x, ✓⇤)�H2(✓⇤ �
✓̂) = h(x, ✓⇤) � H2✓̃. Hence, h(x, ✓̂) � 1

2 ✓̃
>��1

✓̃ implies

h(x, ✓⇤) � 1
2 ✓̃
>��1

✓̃+H2✓̃, where the right-hand side can

be negative based on the values of �, ✓̃ andH2. Specifically,
it is evident that for any fixed/chosen � and H2, H2✓̃ may
be negative and smaller than 1

2 ✓̃
>��1

✓̃ for small enough

magnitudes of ✓̃; thus, h(x, ✓⇤) � 1
2 ✓̃
>��1

✓̃ + H2✓̃ is not
necessarily non-negative for all t � 0.

In the second case with v̇l 6= 0, from Figure 1 (right),
the aCBF and RaCBF approaches in Taylor and Ames
(2020); Lopez et al. (2020) both fail to guarantee safety,
which is expected because the controllers proposed in
Taylor and Ames (2020); Lopez et al. (2020) do not
take into consideration time-varying parameters. On the
other hand, it is evident that both our proposed methods
guarantee safety when v̇l 6= 0.

Unknown Mass and Time-Varying Lead Vehicle Velocity:
We additionally assume that m is unknown and con-
sider a nonlinear friction term f0 using the Magic For-
mula for tires, f0 = µsmg(sin(Cstan

�1(Sf⇠ � Es(Sf⇠ �
tan

�1(Sf⇠))))) (Pacejka, 2005, Ch.1, Eq.1.6), where we
consider the coe�cient of friction µs = 1, the shape factors
Cs = 2 and Es = 1, the sti↵ness factor Sf = 10 and the
uncertain wheel slip ⇠ is such that |⇠|  ⇡⇥10�6. Thus, the

uncertain parameter vector is ✓⇤ =
h
⇠
⇤ f1

m

⇤ f2
m

⇤
v
⇤
l

1
m

⇤
i>

.

Here we also allow the lead vehicle velocity vl to be time-
varying. In this case, the approaches in Taylor and Ames
(2020); Lopez et al. (2020); Black et al. (2021) do not apply
because by definition, ḣ = @h

@x ẋ+
@h
@✓ ✓̇, and the approaches

proposed in Taylor and Ames (2020); Lopez et al. (2020);

Fig. 2. ACC-TTC with unknown m and time-varying vl.

Black et al. (2021) do not take into consideration the
second term and because g(x, ✓⇤) in (1) is dependent of
✓
⇤. However, with our proposed rCBF-MM, Figure 2 shows
that the TTC safety constraint was satisfied and the ego
vehicle slows down when it is close to the safety bound-
ary and tends towards the average lead vehicle velocity
when su�ciently safe. Further, Figure 2 shows that the
TTC safety constraint is also satisfied when using rCBF-L
(albeit with |f0|  1 instead of the magic formula due to
unmet system/structural assumptions).

In summary, we observed that even when all the preced-
ing assumptions are satisfied for the aCBF and RaCBF
methods proposed in Taylor and Ames (2020); Lopez et al.
(2020), they may not always guarantee safety (RaCBF)
or are very conservative (aCBF), whereas our proposed
methods guarantee safety and are less conservative while
being applicable to a broader class of systems.

4.2 Safe Assistive Shoulder Robot

In our second example, we consider the problem of render-
ing the (second-order) impedance control for an assistive
shoulder exoskeleton robot given by

Id�̈+Bd�̇+Kd(�� �e) = ⌧e (20)

safe using our proposed robust CBF+CLF approaches,
where �, �̇ and �̈ represent the vectors of Euler angles,
angular velocities and angular accelerations, respectively.
�e and ⌧e are known values. Id, Bd and Kd represent the
inertial matrix, damping matrix and sti↵ness matrix of
human-robot system. Assuming that we wish to control
Bd , Bh + Br in order to decrease the “e↵ective”
damping that is experienced by the human user (to reduce
muscle fatigue), where Bh is the unknown human shoulder
damping coe�cient and Br is our (robot) control input,
the dynamics given in (20) can be rearranged into a state
space representation given as:

ẋ = Fx+ ⇤bh + ⇤br + E, (21)

where x = [�> �̇
>]> represents the state vector of

joint angular displacements and angular velocities, the
uncertain parameter bh is a column vector whose entries
are the elements of the human damping matrix and br

represents the control input (column) vector whose entries
are the elements of Br, while the matrices F , ⇤ and E are:

F =


0 I

�I
�1
d Kd 0

�
,⇤=


0

�I
�1
d �

�
, E=


0

I
�1
d (Kd✓e+⌧e)

�
,

where � is an appropriate matrix-valued function of �̇.
Specifically, from (20), the term Bd�̇ = (Bh + Br)�̇ is
rearranged such that (Bh+Br)�̇ = �(bh+br), where br and
bh are column vectors whose elements are the elements of
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Fig. 3. Safe assistive shoulder robot control.

damping matrices Br and Bh, respectively. If the damping
matrices are assumed to be diagonal, then � reduces to a
diagonal matrix whose entries are the angular velocities
�̇. Further, the safety conditions of avoiding awkward
shoulder orientations and limiting the joint torques that
the human experiences can be simplified to bounds on the
angular displacements and accelerations, i.e., the safety
constraints are |�i|  �max and |�̈i|  �̈max. Inspired by
the lane keeping example in Ames et al. (2016), we can
encode safety using:

hi = (�max � sgn(�̇i)�i)� 1
2

�̇2
i

�̈max
� 0 (22)

for each joint i. Moreover, we construct rCLFs based on:

V = (�� �e)
>(�� �e) + �̇

>
�̇ (23)

to enforce reference tracking of �e and consider control
input bounds kbrk1  umax.

In this simulation example, the system parameters are
chosen as Id = 0.5I, Bh = 3I, Kd = 50I, �max = 1,
�̈max = 10, �e = 1, ⌧e = 0.11 and umax = 20. From Figure
3 (only trajectories of �1 and h1 are shown for brevity),
we observe that the shoulder robot with rCBF-MM and
rCBF-L can achieve the desired reference angle �e without
exceeding �max, while providing a little more margin from
�max than when bh is exactly known, whereas without any
robust CBF, the safety conditions are violated (i.e., �max

is exceeded).

5. CONCLUSION

We presented two computationally tractable robust con-
trol barrier functions that guarantee safety for control
a�ne systems with time-varying, nonlinear parametric un-
certainties. We leveraged theories of mixed-monotonicity
and robust optimization to formulate novel robust control
barrier functions that provide tools to ensure controlled in-
variance of safe sets, thereby ensuring safety. We extended
these ideas to construct robust control Lyapunov functions
and coupled them with robust control barrier functions to
develop safety controllers that ensure safety and stability.
The e�cacy of our proposed approaches was demonstrated
on two examples, where our proposed approaches have
comparable performance to adaptive methods, while en-
suring that the system is robustly safe even in cases where
the adaptive methods failed to ensure safety. For future
work, we will consider parameter estimation as an exten-
sion of Lopez et al. (2020) to further improve performance.
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