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Abstract— Many (semi-)autonomous systems are equipped

with mechanisms that provide a window of projecting into the

future. Predictions/projections of future exogenous inputs or

disturbances, commonly referred to as preview or lookahead,

have been widely studied in predictive control systems to

yield less conservative controllers that would otherwise have

to consider them as worst-case disturbances. However, the

incorporation of such preview information has been less studied

in the context of safety. Thus, this paper proposes a preview

control barrier function (Prev-CBF) that can enforce the con-

trolled invariance of a safe set for a class of linear continuous-

time systems with previewable disturbances. Specifically, our

approach can leverage future information about external dis-

turbances, e.g., road gradients or predictive trajectories of other

agents/vehicles, for a (small) window into the future and can

explicitly take input constraints/bounds into consideration to

provide strong safety guarantees in a less conservative manner

than existing approaches that do not leverage such information.

I. INTRODUCTION

Autonomous or semi-autonomous cyber-physical systems
are often equipped with mechanisms, e.g., forward looking
sensors such as cameras or LIDAR, map or forecast infor-
mation, or more complicated predictive models of external
agents, that provide a window of projecting into the future.
Through these mechanisms, at run time, the systems have a
preview of what lies ahead. Therefore, using this information
to enhance system performance while keeping strong safety
guarantees holds significant promise, particularly since many
cyber-physical systems such as self-driving cars and smart
grids are safety-critical.

Although some optimal controllers (e.g., [1], [2]) and
model predictive controllers (e.g., [3], [4]) can take ad-
vantage of certain forms of preview information, where
preview information is naturally incorporated into the state
propagation constraints, these approaches in general lack
controlled invariance or recursive feasibility properties to
provide strong safety guarantees. On the other hand, safety
in the sense of staying in a safe region indefinitely (and
equivalently, avoiding a user-defined unsafe region) is often
achieved via robust controlled invariant set computation (e.g.,
[5]) or via control barrier functions (CBFs) (e.g., [6]–[10]),
that have recently garnered considerable attention in various
applications including autonomous vehicles (e.g., [6], [8]),
exoskeleton robots (e.g., [11]) and bipedal robots (e.g., [9],
[12]). However, most of these safety control approaches do
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not leverage preview information but instead enforce robust
safety by considering the worst-case (future) disturbances.

Some recent exceptions are the studies in [13], [14], where
it was shown that there is (much) value in preview informa-
tion in safety control for discrete-time systems in terms of en-
larging the associated maximal controlled invariant sets with
increasing preview time. However, to our best knowledge, the
same has not been established for systems with continuous-
time dynamics. A related but distinct approach for incor-
porating predictions into safety control for continuous-time
systems has been recently proposed in the form of a predic-
tive CBF in [15], where the “predictions” relate to a future
reference/desired trajectory that can be proactively modified,
somewhat similarly to a reference governor, but it does
not directly apply to previewable disturbances we consider
in this paper, e.g., road gradients, curvatures or friction
coefficients, or predicted/communicated future trajectories of
other agents, that can often not be modified or controlled.
Contributions. Inspired by the work in [13], [14] that
demonstrated the value of information about previewable
disturbances for discrete-time systems, this paper considers
its continuous-time (CT) counterpart by introducing a novel
preview control barrier function (Prev-CBF) that combines
the framework of the standard CBFs for CT systems (without
preview), e.g., [6], with the predictor feedback idea of using
future predictions of the system states/outputs in the literature
on time-delay systems, e.g., [16], [17]. Specifically, we
propose Prev-CBFs to provide safety guarantees for linear
continuous-time systems of relative degree 2 with preview-
able (but generally immutable/uncontrolled) disturbances,
e.g., of road curvatures, gradients, or friction coefficients, or
information/prediction of future trajectories of other agents,
for a (brief) window into the future that can often be obtained
from forward looking sensors, maps or forecasts/predictions.

In contrast to standard CBFs, the proposed Prev-CBFs can
leverage available preview information to construct poten-
tially less conservative CBFs in the sense of minimizing the
required interventions for guaranteeing safety by rendering
the associated Prev-CBF constraints more permissive (i.e.,
the constraints are more likely than not to be inactive).
Further, our approach explicitly takes input constraints into
consideration when constructing Prev-CBFs. The effective-
ness of the proposed methods is demonstrated on examples
of an assistive shoulder robot with interaction torque preview
and of vehicle lane keeping with road curvature preview.

This paper is organized as follows. In Section II, we intro-
duce some preliminary material and formulate the problem
of interest, while in Section III, we introduce the proposed
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Prev-CBFs. Then, we demonstrate the usefulness of our
approach using two illustrative examples in Section IV and
also discuss the (empirical) value of preview for continuous-
time systems. Lastly, we conclude our paper with a summary
of our contributions and some future directions in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations and Definitions

Rn and R+ represent the sets of real numbers of dimension
n and non-negative real numbers, respectively. In represents
an identity matrix of size n and 0m⇥n a matrix of zeros of
size m⇥n. Moreover, all vector inequalities are element-wise
inequalities, while sgn(·) and | · | are element-wise signum
and absolute value operators, respectively, and for a vector
v, diag(v) is a matrix whose diagonals are elements of v.
Further, a function ↵ : [0,1) ! [0,1) is of class K1, if ↵
is continuous, strictly increasing, unbounded, and ↵(0) = 0.

B. Problem Formulation

Consider a linear continuous-time control system with
additive previewable disturbances, ⌃, given by

⌃ :

(
ẋ(t) = Ax(t) +Bu(t) +Bdd(t),

y(t) = Cx(t),
(1)

with states x(t) 2 X ✓ Rn, a scalar output y(t) 2 R, control
inputs u(t) 2 U ⇢ Rm, and bounded previewable distur-
bances d(t) 2 D ✓ Rl. Moreover, we assume that the system
⌃ in (1) has relative degree 2, i.e., CB = 0 and CAB 6= 0,
and the control input is bounded as U , {u | |u|  um},
with um 2 Rm. Note that we use the term previewable
disturbance in this paper to represent any exogenous inputs,
signals or parameters for which preview or predictions of
their future values may be available. For instance, the ref-
erence signal in a tracking problem or predicted trajectories
of other agents can be treated as “previewable disturbances”
and so can road curvatures, gradients or friction coefficients
in driving scenarios that can be measured by (limited range)
sensing and perception modules.

Definition 1 (System with Preview). We denote a system

⌃ with Tp-horizon preview as ⌃p, where the disturbances

within the next time horizon of Tp(t), dp(t) , {d(⌧) 2
D, t  ⌧  t + Tp(t)} 2 D[0,Tp], can be measured at each

time t, with D[0,Tp] being the set of all dp(t). Thus, the

control input u(t) at time t can be determined based on the

state x(0) and the disturbances d(⌧) for ⌧ from 0 to t+Tp(t).

Assumption 1. For a known (potentially time-varying) pre-

view horizon Tp(t) at given time t 2 R+, the previewable

disturbance dp(t) , {d(⌧) 2 D, t ⌧  t+Tp(t)} is known.

Definition 2 (Safe Sets). Let Sx ✓ Rn
be a safe set of

⌃p that describes desirable/given safety constraints on the

states, and let Sx,p ✓ Rn ⇥ D[0,Tp] be the Tp-augmented
safe set of ⌃p, defined as

Sx,p , {(x,dp) | x 2 Sx,dp 2 D[0,Tp]}.

Definition 3 (Controlled Invariant Set). A set C ✓ Sx is a

controlled invariant set of ⌃p in a safe set Sx ✓ Rn
if for

all x(0) 2 C, there exists some u(t) 2 Rm
such that for all

d(t) 2 D, we have x(t) 2 C ✓ Sx, 8t � 0. Cmax is the
maximal controlled invariant set in Sx if Cmax contains any

controlled invariant set of ⌃ in Sx.

Further, a set Cp 2 Sx,p is a controlled invariant set of

⌃p in an augmented safe set Sx,p if for all (x(0),dp(0)) 2
Cp, there exists some u(t) 2 Rm

for all t � 0 such

that (x(t),dp(t)) 2 Cp ✓ Sx,p, 8t � 0. Cmax,p is the
maximal controlled invariant set in Sx,p if Cmax,p contains

any controlled invariant set of ⌃p in Sx,p.

Further, the above definitions can be viewed as the
continuous-time counterpart to the discrete-time definitions
in [13]. More importantly, it was proven in [13] that in the
discrete-time setting, there is much value in having preview
in that the maximal controlled invariant sets for systems
without preview is a subset of the maximal controlled
invariant sets for systems with preview. Motivated by this
work, we hypothesize that there is also value in preview for
continuous-time systems.

In particular, instead of finding the maximal controlled
invariant set for ⌃p, this paper will focus on control barrier
functions with preview for ⌃p that renders some time-varying
Cx,t ✓ Sx controlled invariant by constructing a time-varying
preview safe set Cx,p,t ✓ Sx,p that is controlled invariant and
implies the controlled invariance of Cx,t ✓ Sx.

Definition 4 (Preview safe set). Given a system with preview

⌃p (with known dp) and a corresponding safe set Sx, a

set Cx,p,t defined over a time-varying preview-dependent

nonlinear function h : X ⇥D[0,Tp] ⇥ R+ ! R:

Cx,p,t , {(x,dp, t) | h(x,dp, t) � 0}, (2)
@ Cx,p,t , {(x,dp, t) | h(x,dp, t) = 0}, (3)

Int(Cx,p,t) , {(x,dp, t) | h(x,dp, t) > 0}, (4)
is a preview safe set for ⌃p if (x(t),dp(t), t) 2 Cx,p,t for all

t � 0 implies that x(t) 2 Sx for all t � 0.

Then, the problem of interest can be formally written as:

Problem 1 (Safety with Preview). Given a system with

preview ⌃p and a safe set Sx (cf. Definitions 1–2), construct

a preview control barrier function corresponding to Cx,p,t in

(2) that guarantees controlled invariance of ⌃p in Sx.

III. MAIN RESULTS

The proposed approach to solve Problem 1 is detailed here.

A. Preview Control Barrier Functions (Prev-CBFs)

First, we expand the conventional definition of control
barrier functions (CBFs) and safety to take advantage of the
available preview information of disturbances.

Definition 5 (Preview CBF). Given a system with preview ⌃p

satisfying Assumption 1 and a safe set Sx (cf. Definitions 1–

2), a continuously differentiable map h : X⇥D[0,Tp]⇥R+ !
R of a preview safe set Cx,p,t in (2) is a preview CBF for

⌃p and Sx, if a class K1 function ↵ exists such that

sup
u2U

ḣ(x, u,dp, t) � �↵(h(x,dp, t)), (5)
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for all x 2 X , t 2 R+. Further, for any (x(t),dp(t), t) 2
Cx,p,t, we define the corresponding safe input set:

KCx,p,t(x, t)={u 2 U | ḣ(x, u,dp, t)��↵(h(x,dp, t))}. (6)

Theorem 1 (Safety with Preview). Let Sx be the safe

set for the system with preview ⌃p. If h is a Prev-CBF

corresponding to the preview safe set Cx,p,t in (2), then

any Lipschitz continuous controller u(x, t) 2 KCx,p,t(x, t)
for ⌃p with x(0) 2 Sx renders the preview safe set Cx,p,t
controlled invariant. Consequently, such a controller u(x, t)
also renders some set Cx,t ⇢ Sx for ⌃p controlled invariant,

thus ⌃p is safe with preview, i.e., x(t) 2 Sx for all t � 0.

Proof. Since h is a Prev-CBF corresponding to the preview
safe set Cx,p,t, any controller u(x, t) 2 KCx,p,t(x, t) satisfies
ḣ(x, u,dp, t) � �↵(h(x,dp, t)) for all t � 0, thus Cx,p,t

is controlled invariant, i.e., h(x,dp, t) � 0 for all t � 0.
Finally, by construction (cf. Definition 4), the controlled
invariance of Cx,p,t implies that the system ⌃p is safe with
preview for all t � 0 with respect to Sx.

B. Closed-Form Candidate Preview CBF

First, we present a framework for deriving a closed-form
candidate preview CBF (Prev-CBF) to obtain a preview safe
set (cf. Definition 4) for the system with preview ⌃p (cf.
Definition 1) from given desired output/state bounds that
must be satisfied at all times in the form of

|y(t)| = |Cx(t)|  ym, 8t � 0, (7)
with inputs that are bounded as |u(t)|  um, where ym 2 R
and um 2 Rm are constant vectors1. Our framework is
motivated by the observation that the design of a control
input at the current time t with a future preview of the
disturbances for a horizon of Tp is similar in spirit to the
design of a control input at time t� T for the current time
in a linear time-delay system with input delay T :

ẋ0(t) = Ax0(t) +Bu0(t� T )

with state x0(t) and input u0(t). For such problems, one
effective method to control the system is to consider a
predictor-based model reduction approach, e.g., [16], [17],
where a change of state to the future state

x0(t+ T ) = eATx0(t) +

Z t+T

t
eA

0(t+T�⌧)Bu0(⌧ � T )d⌧

is considered.
In our problem with ⌃p (cf. Definition 1), the “predicted”

state Tp seconds into the future is given by

x(t+ Tp)= ✏(t, Tp)+

Z t+Tp

t
eA(t+Tp�⌧)Bu(⌧)d⌧, (8)

where ✏(t, Tp) , eATpx(t) +
R t+Tp

t eA(t+Tp�⌧)Bdd(⌧)d⌧ .
Then, to ensure the satisfaction of the output/state bounds in
(7) at all times, we enforce that that maxima or minima of the
output trajectories in the (immediate) future under maximum

1Note that a simple modification can be carried out to also handle
interval bounds on the output/state and the input that are asymmetric
by designating the midpoints of the intervals as a known/previewable
disturbance and the deviation from the midpoints as symmetrically bounded
auxiliary output/states or inputs.

deceleration or acceleration, respectively, always satisfy the
output/state bounds at all times. By enforcing the constraints
for the maxima or minima, this also ensures the constraint
satisfaction for all times between the current time t to the
time corresponding to the maxima or minima, which we call
the (minimum) stopping time, as defined in the following:

Definition 6 (Stopping Time Ts). For the system ⌃ in (1), at

any given time t � 0, we define the (minimum) stopping time

Ts(t) as the minimum time such that ẏ(t + Ts) = 0 under

maximum deceleration when ẏ � 0 or maximum acceleration

when ẏ  0 (since we consider a relative degree 2 system).

Then, since at all times, we enforce the satisfaction of the
output/state constraints for the moving future time horizon
that includes the current time, this is equivalent to ensuring
the controlled invariance of a time-varying set that is guaran-
teed to not violate the output/state constraints. In other words,
the satisfaction of output/state bounds in (7) for all times is
guaranteed by enforcing that the predicted outputs/states Ts

seconds into the future, where Ts is the stopping time, always
satisfy the output/state bounds, as follows:

|Cx(t+ Ts)|  ym, 8t � 0. (9)
Note that this idea of utilizing the maxima or minima
of a future “predicted” output trajectory is similar to the
concept of maximizers/minimizers in [15] for a “predicted”
reference/desired trajectory, and the notion of (minimum)
stopping time is similarly used in the derivation of the closed-
form CBF for a lane keeping example in [6] under the as-
sumption of a constant maximum acceleration/deceleration.

Moreover, we make a simplifying assumption henceforth
in this paper for the sake of ease of exposition, as given
below. It is possible to have shorter or longer preview horizon
than the stopping time with some modifications, which we
will further explore in a future work.

Assumption 2. The stopping time and the preview horizon

coincide, i.e., Tp(t) = Ts(t) for all t � 0.

Then, under this assumption, we present a candidate Prev-
CBF for obtaining a controlled invariant preview safe set.
For better readability, the time dependence of Tp and Ts is
dropped for the remainder of the paper, except for emphasis.

Lemma 1 (Closed-Form Candidate Preview CBF). Suppose

Assumptions 1–2 hold, Then,

h(x(t),dp(t), t) = ym+D(t)um�sgn(ẏ(t))C✏(t, Ts) � 0,
(10)

with D(t) , (
R t+Ts

t CeA(t+Ts�⌧)Bd⌧)diag(sgn(CAB))
and ✏(t, Ts) defined below (8) (with Tp = Ts), is a valid

candidate Prev-CBF to guarantee the satisfaction of the

safety bounds in (9) corresponding to Cx,p,t and, in turn,

the safety bounds in (7) corresponding to Sx, as is required

by the construction of Cx,p,t in Definition 4.

Proof. First, under the assumption of a relative degree 2
system, we can find the output acceleration as
ÿ(t)=CA2x(t)+CABu(t)+CABdd(t)+CBdḋ(t). (11)
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Then, in accordance to the definition of the (minimum)
stopping time Ts (cf. Definition 6) that the control input
leads to the maximum deceleration when ẏ > 0 or to
the maximum acceleration when ẏ < 0, it can be shown
that this maximum deceleration/acceleration is achieved by
u(⌧) = �sgn(ẏ(t))diag(sgn(CAB))um, 8⌧ 2 [t, t + Ts],
which can also be shown to trivially satisfy |u(⌧)|  um, and
we can further find that CABu(⌧) = �sgn(ẏ(t))|CAB|um.

Then, from (8), the output Ts seconds into the future is
y(t+ Ts) = C✏(t, Ts)� sgn(ẏ(t))D(t)um (12)

when ẏ(t) > 0, with ✏(t, Ts) and D(t) defined below (8) and
(10), respectively, with Tp = Ts. Thus, enforcing C✏(t, Ts)�
D(t)um  ym trivially implies y(t + Ts)  ym. Similarly
for ẏ(t) < 0, we can obtain the lower bound C✏(t, Ts) +
D(t)um � �ym. The two constraints can be combined2 as

ym +D(t)um � sgn(ẏ(t))C✏(t, Ts) � 0,

the satisfaction of which guarantees the satisfaction of the
safety bounds in (9), Tp = Ts seconds into the future. Thus,
this is a valid candidate preview control barrier function
(Prev-CBF) where there always exists a sequence of inputs
u(⌧), specifically u(⌧) = �sgn(ẏ(t))diag(sgn(CAB))um,
such that |u(⌧)|  um for all ⌧ 2 [t, t+ Ts] that can satisfy
h(x(t),dp(t), t) � 0 for all t � 0. Finally, by virtue of the
constraint in (9) being satisfied at a minima or maxima (i.e.,
when ẏ(t+ Ts) = 0), the safety bounds is also satisfied for
the entire time horizon from t to t+Ts; hence, (7) holds.

C. Stopping Time

As is evident from (10) in Lemma 1, the construction
of the candidate Prev-CBF depends on the stopping time
Ts(t) and further, we will find its time derivative Ṫs(t) for
enforcing the safety constraint in (5).

Lemma 2 (Stopping Time). The stopping time Ts(t) is given

by the (smallest positive) solution to the following equation:

CAx(t) + CEd(t) +
R t+Ts

t CA2[eA(⌧�t)x(t)
+
R ⌧
t eA(⌧�s)(Bdd(s)�sgn(ẏ(t))Bdiag(sgn(CAB))um)ds]

�|CAB|um + CABdd(t) + CBdḋ(t)d⌧ = 0, (13)
and its time-derivative is given by:

Ṫs(t) = �1��(t)�1[(CAB +G(t))u(t)
+sgn(ẏ(t)(|CAB|+G(t)diag(sgn(CAB)))um],

(14)

with G(t) and �(t) defined as:

G(t) =
R t+Ts(t)
t CA2eA(⌧�t)Bd⌧,

�(t)
= CA2eATs(t)x(t)�sgn(ẏ(t))|CAB|um + CBdḋ(t+Ts(t))

+CABdd(t+ Ts(t)) +
R t+Ts(t)
t CA2eA(t+Ts(t)�s)

(Bdd(s)� sgn(ẏ(t))Bdiag(sgn(CAB))um)ds.

Proof. As described in the proof of Lemma 1, u(⌧) =
�sgn(ẏ(t))diag(sgn(CAB))um, 8⌧ 2 [t, t + Ts] as per the
definition of stopping time provided by Definition 6. In this
case, the maximal output deceleration/acceleration from (11)
corresponding to the input is given by:
ÿ(⌧)=CA2x(⌧)�sgn(ẏ(t))|CAB|um+CABdd(⌧)+CBdḋ(⌧).

2This also applies when ẏ(t) = 0 since Ts(t) = 0 and thus, D(t) = 0.

Then, we can derive the stopping time Ts by integrating
the above with respect to time and setting the corresponding
output velocity to 0, i.e.,

ẏ(t+ Ts) = ẏ(t) +
R t+Ts

t (CA2x(⌧)�sgn(ẏ(t))|CAB|um

+CABdd(⌧) + CBdḋ(⌧)d⌧) = 0,

with x(⌧) = eA(⌧�t)x(t) +
R ⌧
t eA(⌧�s)Bdd(s) �

sgn(ẏ(t))eA(⌧�s)Bdiag(sgn(CAB))umds and ẏ(t) =
CAx(t) + CEd(t), which reduces to (13).

Further, to obtain Ṫs, we carry out an implicit differenti-
ation of (13) with respect to time to yield

CABu(t) +�(t)(1 + Ṫs) + sgn(ẏ(t))|CAB|um

+G(t)(u(t) + sgn(ẏ(t))diag(sgn(CAB))um) = 0,

with G(t) and �(t) defined below (14), from which Ṫs(t)
can be found as in (14).

D. Closed-Form Preview Control Barrier Function

Equipped with the candidate Prev-CBF in Lemma 1 and
the stopping time and its time derivative in Lemma 2, we
next show that it is indeed a valid Prev-CBF according to
the definition in Definition 5.

Proposition 1 (Closed-Form Preview CBF). Given a system

with preview ⌃p (cf. Definition 1) that satisfies Assumptions 1

and 2 with stopping time Ts(t) and its time-derivative Ṫs(t)
in Lemma 2, the mapping h : Rn ⇥D[0,Tp]⇥R+ ! R given

by (10) is a preview control barrier function (Prev-CBF) for

⌃p, if a class K1 function ↵ exists such that (5) holds with

ḣ(x, u,dp, t) = Ḋ(t)um � sgn(ẏ(t))C ✏̇(t, Ts), (15)

where Ḋ(t) and ✏̇(t, Ts) can be computed as

Ḋ(t) =
⇥ R t+Ts

t CAeA(t+Ts�⌧)Bd⌧(1 + Ṫs)� CeATsB
⇤

diag(sgn(CAB)),

✏̇(t, Ts) = AeATsx(t) +Bdd(t+ Ts) + CeATsBu(t)

+(1 + Ṫs)
R t+Ts

t AeA(t+Ts�⌧)Bdd(⌧)d⌧.

Further, (9) holds and thus, the output/state bounds (7) holds.

Proof. This proposition follows directly from applying Theo-
rem 1 to the closed-form candidate Preview CBF in Lemma
1. In particular, the closed-form condition for (5) can be
found by deriving the time derivative of the candidate Prev-
CBF that can be obtained as in (15) with Ḋ(t) and ✏̇(t, Ts(t))
that can derived as follows:
Ḋ(t) = [ ddt (

R t+Ts(t)
t CeA(t+Ts(t)�⌧)Bd⌧)]diag(sgn(CAB))

= [(
R t+Ts(t)
t CAeA(t+Ts(t)�⌧)Bd⌧)(1 + Ṫs(t))

�CeATs(t)B]diag(sgn(CAB)),

✏̇(t, Ts(t))

= d
dt (e

ATs(t)x(t) +
R t+Ts(t)
t eA(t+Ts(t)�⌧)Bdd(⌧)d⌧)

= AeATs(t)x(t) +Bdd(t+ Ts(t)) + eATs(t)Bu(t)

+(1 + Ṫs(t))
R t+Ts(t)
t AeA(t+Ts(t)�⌧)Bdd(⌧)d⌧,

by applying chain and Leibniz integral rules, with Ts and Ṫs

given in Lemma 2.

E. Optimization-Based Safety Control

Next, we show that these Prev-CBFs can be coupled with a
legacy (stabilizing) controller to stabilize/control the system
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while guaranteeing safety.

Proposition 2 (Optimization-Based Safety Control). Given

any (legacy) feedback controller u = k(x, t) for the system

⌃p, we can minimally modify this controller to guarantee

safety for each time instance t using u(x,dp, t) that is

obtained from solving the following quadratic program (QP):

u(x,dp, t) = argmin
u2U

1
2ku� k(x, t)k

s.t. P (t)u  q(t),
(16)

with Ts(t), G(t) and �(t) from Lemma 2, ✏(t, Ts(t)) defined

below (8), and any class K1 function ↵, as well as

P (t) , sgn(ẏ(t))CeATs(t)B + �(t)(CAB+G(t)),
q(t) ,↵(ym +D(t)um � sgn(ẏ(t))C✏(t, Ts(t)))

�sgn(ẏ(t))(CAeATs(t)x(t) + CBdd(t+ Ts(t)))
�CeATs(t)Bdiag(sgn(CAB))um

�sgn(ẏ(t))�(t)(|CAB|+G(t)diag(sgn(CAB)))um,

�(t) ,�(t)�1
R t+Ts(t)
t CAeA(t+Ts(t)�⌧)

(Bdiag(sgn(CAB))um�sgn(ẏ(t))Bdd(⌧))d⌧.

Proof. The Prev-CBF constraint in Theorem 1 with h from
Lemma 1 and ḣ from Proposition 1 can be written as:

Ḋ(t)um � sgn(ẏ(t))C ✏̇(t, Ts(t))
� �↵(ym +D(t)um � sgn(ẏ(t))C✏(t, Ts(t))).

Then, by substituting the definitions of D(t), Ḋ(t) and
✏(t, Ts(t)) in Lemma 1, Proposition 1 and below (8) into the
above and rearranging, we obtain the constraint P (t)u  q(t)
in (16).

Solving (13) analytically to find Ts(t) for the applica-
tion of Proposition 2 is non-trivial, but it can be found
numerically, e.g., using MATLAB functions fsolve or
fzero. Moreover, it was observed in simulations that the
computational time of solving the QP in (16) can further be
reduced by symbolically solving (13), e.g., with MATLAB
Symbolic Math Toolbox (including vpasolve), and using
the symbolic solution when solving the QP at run time.

IV. ILLUSTRATIVE EXAMPLES

A. Assistive Shoulder Exoskeleton Robot

First, we consider the problem of an industrial shoulder
exoskeleton robot system [18] with the following dynamics:

Ij ë+Bj ė+Kje = ⌧e + u, (17)
where e(t) = ✓(t) � ✓d(t) is the angular deviation/error
from a desired trajectory ✓d(t), and ė, ë are the associated
error velocity and acceleration, respectively. Ij , Ih + Ir,
Bj , Kh+Kr and Kj , Kh+Kr represent inertia, damping
coefficient and stiffness of the joint human-exoskeleton sys-
tem, with Ih, Bh and Kh being the human shoulder inertia,
damping coefficient and stiffness, while Ir, Br and Kr are
the robot inertia, damping coefficient and stiffness.

We assume that the shoulder robot and human shoulder
joint are matched and that the interaction torque between
robot and human, ⌧e, is previewable and satisfies Assump-
tions 1 and 2. The control input u act like a damping or
stiffness torque that induces acceleration or deceleration to
prevent system states from exceeding predetermined safety

limit. In this example, the safety constraint we consider is
|e(t)|  � for all t � 0.

Putting the system into the state space form ⌃ in (1) with
state x(t) =

⇥
eT (t) ėT (t)

⇤T , input u(t) and previewable
disturbance d(t) = ⌧e(t), the system matrices are given by

A =


0 I

�I�1
j Kj �I�1

j Bj

�
, B =


0

I�1
j

�
, Bd =


0

I�1
j

�
,

C =
⇥
1 0

⇤
,

where the system output y(t) = e(t) = Cx(t) satisfy the
safety constraint, i.e., |e(t)|  �, that can be expressed in the
form of (7) with ym = � and the control input is bounded
as |u(t)|  um.

The system parameters/signals used in this example are
Ij = 1Nms2/rad, Bj = 2Nms/rad, Kj = 2Nm/rad,
⌧e(t) = 0.43 sin(0.2⇡t)Nm and � = 0.2 rad, while um

is varied between 1.0 to 3.0 in this example to study its
impact on both our proposed preview CBF approach in
Section III and the standard (“lane keeping”) CBF approach
in [6], which are described in more detail below. Moreover,
for simplicity and ease of exposition, the legacy controller
we consider when applying an optimization-based safety
controller (including in (16) for the proposed preview CBF
approach) is considered to be identically zero, i.e., k(x, t) =
0, and as such, the control input u(t) also represents the
deviation/intervention that the safety controller must provide
to ensure safety, which will also be compared when applying
both the preview CBF and standard CBF approaches.

1) Preview CBFs: The proposed Prev-CBF (cf. Section
III) enforces the safety/controlled invariance guarantees for
the shoulder robot to satisfy |e(t)| = |Cx(t)|  ym = �
with control input u(t) that is constrained by |u(t)| 
um. Specifically, we consider the optimization-based safety
controller (16) in Proposition 2 with “zero” legacy control,
i.e., k(x, t) = 0, and the closed-form Prev-CBF described in
Lemmas 1 and 2 and Proposition 1.

2) Standard CBF: For comparison, we also applied the
standard CBF approach in [6], specifically the CBF for the
lane keeping example in [6, Section V-B], where, in addition
to the output constraint:

|y(t)| = |e(t)| = |Cx(t)|  ym,

it was assumed that the output acceleration is bounded, i.e.,
|ÿ(t)| = |ë(t)| = |Cẍ(t)|  amax,

by a constant amax, which in the presence of input constraints
|u|  um, is implicitly bounded by the dynamics in (17):

u = Idë+Bdė+Kde� ⌧e.

Thus, under the assumption of “preview” information about
the bounds ėmax, emax and ⌧e,max of |ė(t)|  ėmax, |e(t)| 
emax and |⌧e(t)|  ⌧e,max for all t � 0, by triangle
inequality,

|u|  Idamax +Bdėmax +Kdemax + ⌧e,max = um

such that the output acceleration bound amax must satisfy
amax = I�1

d (um �Bdėmax �Kdemax � ⌧e,max). (18)
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Fig. 1: Angular error (left) and input (right) trajectories: (i) Without
CBFs (exceeds black dashed bounds), (ii) standard CBF [6] with
um = 1.115, (iii) Prev-CBF with um = 1.115, (iv) standard CBF
[6] with um = 1.8 and (v) Prev-CBF with um = 1.8.

Fig. 2: First intervention times (left) and stopping times (right; as
box plots) when varying um between 1 and 2; standard CBF [6]
generally intervenes earlier and has longer stopping times than the
proposed Prev-CBF with diminishing benefits as um is increased.

Moreover, in order to satisfy the output acceleration bound,
the control input of the standard CBF approach must satisfy

u(t) 2 [�Idamax + F0(t), Idamax + F0(t)], (19)

where F0(t) , Bdė(t) +Kde(t)� ⌧e(t).
Under the above problem formulation, the standard lane

keeping CBF approach in [6, Section V-B] proposed the
following CBF:

h(x) = (ym � sgn(ẏ(t))y(t))� ẏ(t)2

2amax
. (20)

In our simulation, we assume the following parameters:
ėmax = 0.1326, emax = 0.2 and ⌧e,max = 0.43, and by vary-
ing the input bounds um from 1.0 to 3.0, we correspondingly
consider amax from 0.0046 to 1.9046 in order to satisfy (18).

Figure 1 shows the simulation results of the angular error
and input trajectories when no safety controller is applied
(without CBFs) as well as when the standard CBF in [6]
and Prev-CBF are applied with um = 1.115 and um =
1.8. We observe that without a safety controller, the safety
constraint (black dashed lines) is violated, while the angular
errors with both standard CBF and Prev-CBF (i.e., with the
safety constraints) are safe. However, when um is small,
the standard CBF leads to a large deviation from the case
without CBFs while Prev-CBF remains relatively close to
the (desired) trajectory without CBFs. This is also observed
in the input trajectories where the intervention input u(t) is
large and starts very early with the standard CBF, whereas
Prev-CBF only intervenes close to the safety boundaries. On
the other hand, when um = 1.8, both standard CBF and
Prev-CBF do not need to intervene much or early, although
the standard CBF still intervenes earlier than the Prev-CBF.

Moreover, we investigated the impact of varying the input
bound um on the first intervention time T1, defined as the

first time the (intervention) input is non-zero. The closer this
time is to 3.2089 s (the time of safety violation without
CBFs), then the later the safety intervention needs to be
initiated. In other words, smaller T1 indicates that the safety
controller is more permissive and does not modify the legacy
controller unnecessarily. Further, we studied the impact of
varying the input bound on the (minimum) stopping time
Ts, where a larger stopping time indicates that the associated
safety controller needs a longer time (and has less control
authority) to bring the system to a stop and to avoid a
safety violation. As can be observed in Figure 2, Prev-CBFs
intervene later than standard CBFs and has shorter stopping
times, indicating that Prev-CBFs are able to take advantage
of preview information to be more permissive and less
conservative than standard CBFs. It is also noteworthy, that
when um = 1.0, amax in (18) becomes negative, indicating
that the input set in (19) becomes empty and as a result,
the standard CBF is infeasible, which is the reason why the
results of the standard CBF only starts at um = 1.1, while the
Prev-CBF remains feasible and the plot starts at um = 1.0.

B. Lane Keeping with Road Curvature Preview

Next, we consider the example of centering a vehicle in
its lateral direction given a preview of the road curvature.
Specifically, we consider the lane-keeping problem in [6,
Section V-B], whose dynamics can be written as in (1) with

A =

2

6664

0 1 v0 0

0 �Cf+Cr

Mv0
0 bCr�aCf

Mv0
� v0

0 0 0 1

0 bCr�aCf

Izv0
0 �a2Cf+b2Cr

Izv0

3

7775
, B =

2

664

0
Cf

M
0

aCf

Iz

3

775 ,

Bd =
⇥
0 0 �1 0

⇤>
, C =

⇥
1 0 0 0

⇤
,

where the state is x := [y, ⌫, , r]>, with lateral displacement
y, lateral velocity ⌫, error yaw angle  and yaw rate r. The
front tire steering angle constitutes the input u to the system.
The desired yaw rate rd = v0

R , where v0 is the constant
longitudinal velocity and R is the road curvature. Moreover,
the system parameters/signals are taken from [6, Section V-
B]: Vehicle mass M = 1650 kg, moment of inertia about
center of mass Iz = 2315.3 kgm2, distances of front and
rear wheels from center of mass a = 1.11m and b = 1.59m,
respectively, and front and rear tire stiffness parameters Cf =
98800N/rad and Cr = 133000N/rad, respectively.

Similar to [6], a legacy controller k(x, t) = �K(x�xff ),
with xff = [0 0 0 rd]>, is considered for centering the
vehicle in the lane, while safety constitutes satisfaction of the
lateral displacement constraint |y|  ym owing to the vehicle
not crossing the lane boundaries, where ym is chosen as 0.6
m in this example. Moreover, the actuation limit |u|  um

is considered with different values of um for comparison.
1) Preview CBFs: The lane-keeping Prev-CBF directly

enforces the safety/controlled invariance guarantees to satisfy
|y(t)| = |Cx(t)|  ym, given actuation constraints |u(t)| 
um using the optimization-based safety controller (16) in
Proposition 2 with the legacy controller u = �K(x� xff ),
and the closed-form Prev-CBF described in Lemmas 1 and
2 and Proposition 1.
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Fig. 3: Lateral displacement trajectories y(t) (left) and trajectories
of CBF intervention of u(t) (right) given by �u(t) , u(t) �
k(x(t), t), where k(x(t), t) is the legacy controller.

2) Standard CBF: For comparison, we consider the stan-
dard CBF approach for lane-keeping devised in [6, Section V-
B] given in (20), where y(t) and ẏ(t) = ⌫+ v0 are obtained
from the system dynamics, ym represents the lane width from
the center and the acceleration limit amax are obtained from
input constraints |u|  um and the relationship between the
acceleration ÿ and input u from the system dynamics:

Mÿ = Cfu� F0,

with F0 = Cf
⌫+ar
v0

+ Cr
⌫�br
v0

+Mv0rd that is assumed to
satisfy |F0|  F0,max. Specifically, amax can be found as

amax = 1
M (Cfum � F0,max)

and the control input must satisfy:
u(t) 2 [ 1

Cf
(�Mamax+F0(t)),

1
Cf

(Mamax+F0(t))]. (21)
From Fig. 3 (left), it can be observed that the vehicle

crosses the lane boundary (black dashed lines) without any
CBFs, while both Prev-CBF and the CBF in [6] guarantee
safety with input limits um = 0.18 and um = 0.5. If
we further decrease the input limits to a very small value
of um, both Prev-CBF and standard lane-keeping CBF [6]
lack sufficient actuation authority to drive the system to
safety. However, Prev-CBF is applicable for a broader input
range than standard CBF in [6], indicating that the preview
information provides an advantage. This can be observed
in Fig. 3 (left) for um = 0.1, where Prev-CBF guarantees
safety, while standard CBF failed (and hence, not depicted).
Additionally, Fig. 3 (right) demonstrates that for any given
input constraint um, such as um = 0.18, the proposed Prev-
CBF requires an intervention to modify the legacy controller
later than the CBF in [6], while still ensuring safety.
Discussion of Results: In summary, there is value for preview
information in both simulation examples in terms of delaying
the intervention and decreasing the amount of intervention,
but this value of preview decreases as um increases. This is
as expected since when the input range is larger relative to
the worst-case magnitudes of the previewable disturbances,
then the stopping time is dominated by the input bounds
and the feasible input sets for the standard CBF in (19) and
(21) become essentially unbounded. Moreover, this result
confirms the findings in [13] for the value of preview in
discrete-time systems and shows that there is similarly value
in preview information for continuous-time systems.

V. CONCLUSION

In this paper, we presented a novel preview control barrier
function for linear systems with previewable disturbances

for a (brief) window in the future, as the continuous-
time counterpart of some recent work in [13], [14] for
discrete-time systems, and similarly show that there is value
in preview information in terms of minimally interven-
ing/modifying the inputs of a legacy/human controller while
guaranteeing safety. In comparison with standard CBFs, the
preview information enables us to utilize the full range of
the control authority and is thus less conservative, which
was demonstrated using assistive shoulder robot and lane-
keeping examples. Future directions include the extensions of
preview CBFs to consider nonlinear continuous-time systems
with higher relative degrees as well as the presence of non-
previewable uncertainties or insufficiently long preview.
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