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We describe the confining instabilities of a proposed quantum spin
liquid underlying the pseudogap metal state of the hole-doped
cuprates. The spin liquid can be described by a SU(2) gauge the-
ory of Nf = 2 massless Dirac fermions carrying fundamental gauge
charges—this is the low energy theory of a mean-field state of
fermionic spinons moving on the square lattice with fi-flux per pla-
quette in the Z2 center of SU(2). This theory has an emergent SO(5)f
global symmetry, and is presumed to confine at low energies to the
Néel state. At non-zero doping (or smaller Hubbard repulsion U

at half-filling) we argue that confinement occurs via the Higgs con-
densation of bosonic chargons carrying fundamental SU(2) gauge
charges also moving in fi Z2-flux. At half-filling, the low energy the-
ory of the Higgs sector has Nb = 2 relativistic bosons with a possible
emergent SO(5)b global symmetry describing rotations between a d-
wave superconductor, period-2 charge stripes, and the time-reversal
breaking ‘d-density wave’ state. We propose a conformal SU(2)
gauge theory with Nf = 2 fundamental fermions, Nb = 2 fundamen-
tal bosons, and a SO(5)f ◊SO(5)b global symmetry, which describes
a deconfined quantum critical point between a confining state which
breaks SO(5)f , and a confining state which breaks SO(5)b. The pat-
tern of symmetry breaking within both SO(5)s is determined by terms
likely irrelevant at the critical point, which can be chosen to obtain a
transition between Néel order and d-wave superconductivity. A simi-
lar theory applies at non-zero doping and large U , with longer-range
couplings of the chargons leading to charge order with longer peri-
ods.

cuprates | d-wave superconductivity | spin liquid | stripe order
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The phase diagram of the hole-doped cuprate compounds
has been extensively studied in numerous careful experi-

ments in recent decades, and a remarkably rich picture has
emerged of the quantum phases of matter around the dome of
high temperature superconductivity (1). We present a theoret-
ical approach to these phases designed to address the following
key puzzles:

1. The pseudogap metal (found at intermediate tempera-
tures and low doping) has a suppressed spin spectral
weight and a photoemission gap in the anti-nodal region
of the Brillouin zone. There is a puzzling ‘Fermi-arc’
spectrum in the nodal region of the Brillouin zone (2, 3),
not interpretable in terms of band theory.

2. The quantum oscillations observed at low temperatures
and high magnetic fields in YBa2Cu3O6.5 (4) appear to
have an interpretation in terms of electron pockets induced
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d-wave superconductivity.
Charge order.

Fig. 1. Schematic phase diagram of the hole-doped cuprates as a function of temper-
ature (T ) and doping (p), with the pseudogap metal as the parent state for the cuprate
phase diagram. The main analysis of the present paper concerns the transition to
confining states from the fi-flux spin liquid along arrow A. The physics along arrow
B is described using the bosonic spinon CP1 theory in Ref. (8). But arrow B is
also described in the present paper in a dual theory by the confinement of fermionic
spinons and gapped bosonic chargons as in Fig. 2. The physics along arrow C is
discussed in Refs. (9, 10) (see also Ref. (11)).

by charge density wave order (5). However, computations
of the reconstruction of the Fermi surface of the Fermi
liquid state by charge order also predicts additional gap-
less electronic excitation in the anti-nodal region of the
Brillouin zone (6) which have not been observed.

3. The temperature scales of the d-wave superconductivity
and the charge density wave orders are very similar to each
other (7) suggesting a common origin. In Fermi liquid
theory, the instabilities to such orders are determined by
di�erent interactions, and there is no particular reason
for them to be similar.

Our theory begins (see Fig. 1) with the assumption that the
Fermi-arc spectrum in the pseudogap arises from an underlying
pocket Fermi surface of electron-like particles of charge e and
spin-1/2 (12–25), but with anisotropic spectral weight. This
pocket Fermi surface encloses a volume which does not equal
the free electron Luttinger value, and such a violation requires
the presence of a spin liquid with fractionalized excitations, a
state called the fractionalized Fermi liquid (FL*) in Refs. (26,
27). We will further assume that the spin liquid underlying
the pseudogap metal is the popular fi-flux state of fermionic
spinons (28). As we will discuss below, although this fi-flux
state is now known to be ultimately unstable at T = 0, there
is significant evidence for its stability over intermediate length
scales, and so it can describe fractionalized excitations at the
pseudogap temperatures. Wang et al. (29) have argued that
this fi-flux state is dual to the critical point of another popular
spin liquid state, that described by the CP1 model of bosonic
spinons (30). The bosonic spinon model is a useful starting
point towards studying a confining instability to Néel order
(8). Here we shall exploit the fermionic spinon description to
study confinement to charge order and superconductivity, as
schematically sketched by arrow A in Fig. 1.

The fi-flux spin liquid is a theory of fermionic spinons

coupled as fundamentals to an emergent SU(2) gauge field (31,
32) and moving in a background of gauge-invariant fi-flux in the
Z2 center of SU(2). At low energies, the fermionic spectrum
reduces to that of Nf = 2 massless Dirac fermions whose
quadratic action has an emergent SO(5)f global symmetry
(29, 33–37) (here the subscript f is only an identifying label
specifying that the SO(5) acts on fermionic spinons). To
obtain the superconducting and charge ordered states, we
will condense a Higgs field B (a ‘chargon’ (13–15)) which is a
fundamental of SU(2) and also carries a unit U(1) charge of
electromagnetism (this U(1) is treated as e�ectively global).
The boson B is a spin singlet under the SU(2) global spin
rotation, while the fermionic spinons carry spin 1/2.

Several earlier works have considered the close relationship
between the fi-flux spin liquid and the d-wave superconductor
(13–15, 31, 38–43). However, they assumed that the analog of
the boson B carried all of the doping density, and condensed
in a spatially uniform manner in the d-wave superconductor.
In our approach, the doping density is carried entirely by the
electron-like hole pockets responsible for the observed Fermi
arcs. This is especially clear in the ancilla formulation of the
pseudogap metal phase (8–10, 24, 44) which we discuss in SI
Appendix 1 (but in principle, as our presentation will show,
all the results of the present paper can be obtained without
the ancilla method). Consequently, B should be treated as a
nearly relativistic Higgs boson or a ‘slave rotor’ (45), rather
than a nearly free non-relativistic boson which undergoes Bose-
Einstein condensation. Indeed, the ancilla approach involves a
change in perspective on the physical interpretation of B: in
earlier approaches (15), B was obtained by fractionalizing the
electron into a spinon and a chargon B. In our approach, B is
regarded as a composite of the spinon and the physical electron,
as in Eq. 6. But, at the level of symmetry and emergent gauge
fields, there is no fundamental di�erence between the two
approaches.

Furthermore, while the earlier works recognized that B
carries a fundamental SU(2) gauge charge, this is a property
of the gauge structure crucial to our analysis that has not
been accentuated earlier. Like the fermionic spinons, the B

bosons also move in a background of fi-flux in the Z2 center
of SU(2). This follows immediately from the facts that B is
a composite of the physical electron and a spinon, and the
electron cannot experience any emergent flux. This fi-flux
is SU(2) gauge-invariant, and choosing a gauge in which the
fi-flux spin liquid is transformed (31, 41, 42) into one with d-
wave pairing between the spinons does not remove the Z2 flux.
A key consequence of the Z2 flux is that the dispersion of the
B must have at least two degenerate minima (46). (The works
of Refs. (13–15) employed a distinct ‘staggered flux’ U(1) spin
liquid for the pseudogap at non-zero doping, for which this
additional degeneracy does not apply—see SI Appendix 5.) For
the simplest case with only two minima, the low energy theory
in the vicinities of these minima yields a continuum theory
with Nb = 2 flavors of bosons carrying fundamental SU(2)
gauge charges. For reasons similar to the fermionic sector, the
static action of this low energy bosonic theory can have an
emergent SO(5)b symmetry (where b is an identifying label to
distinguish from the distinct SO(5)f symmetry). Degenerate
bosonic minima and a SO(5)b symmetry were also important
in the recent work of Ref. (47). We note that the global spin
rotation symmetry SO(3) µ SO(5)f , while the electromagnetic
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Confining phase.
SO(5)f broken.

Néel or
valence bond solid

order.

Fig. 2. Schematic phase diagram of the SU(2) gauge theory of fermionic spinons and
bosonic chargons discussed in the present paper, for the case where the chargons
have only two dispersion minima as in Fig. 3. The SU(2) gauge fluctuations are fully
confined in both phases, but the pattern of symmetry breaking is different. The critical
point at r = rc is a possible conformal field theory with SO(5)f ◊ SO(5)b global
symmetry.

charge symmetry U(1) µ SO(5)b, and these are the only exact
continuous global symmetries of the lattice theory.

We determine the physical interpretation of the B bilinears
forming the gauge-neutral SO(5)b vector and find the following
5 orders:
(i)+(ii): A d-wave superconductor; this complex order has 2
real components.
(iii)+(iv): Site-charge density waves (stripes) at wavevectors
(fi, 0) and (0, fi).
(v): The ‘d-density wave’ (48), which has a staggered pattern
of circulating charge currents, and breaks time-reversal sym-
metry.
The choice between these orders is made by additional terms
allowed by the lattice symmetries which break the SO(5)b

symmetry. With additional dispersion minima, we can obtain
charge density waves at other wavevectors, as we discuss in
Sections 5 and 6.

In the combined theory of the fermionic spinons and bosonic
chargons, for the case where the chargon dispersion has two
minima, we can now sketch the schematic phase diagram shown
in Fig. 2. For r > rc, the Higgs boson B is massive and can be
ignored at low energies, where the theory reduces to Nf = 2
massless Dirac fermions coupled to a SU(2) gauge field. The
numerical evidence (49–53) indicates this theory is confining,
and leads to a phase with SO(5)f global symmetry broken by
either Néel or valence bond solid (VBS) order. For r < rc, the
Higgs boson B condenses: this quenches the SU(2) gauge field
completely, and breaks the SO(5)b global symmetry and so one
of the orders listed in the previous paragraph will be present.
At half-filling, r = rc is a possible deconfined critical point (54)
described by a conformal field theory with global SO(5)f ◊
SO(5)b symmetry. This CFT is an attractive candidate for
describing the transition between the Néel state and the d-
wave superconductor numerically observed by Assaad et al.

(55) in the particle-hole symmetric half-filled Hubbard model
with an additional square-hopping interaction term.

We conclude this introduction by noting a few of the many
earlier works (56) which have considered in the interplay of
antiferromagnetism, d-wave superconductivity, and charge or-
der in the context of the cuprates, all in a manner distinct
from ours; this discussion may be skipped on a first reading.
• Zhang (57) considered a SO(5) symmetry mixing antiferro-
magnetism and superconductivity. This is not related to our
SO(5)s, as antiferromagnetism is part of SO(5)f , while d-wave
superconductivity is part of SO(5)b.

• Charge order was obtained in an insulator by the condensa-
tion of vortices (58, 59) in the d-wave superconductor.
• A theory for the transition between an easy-plane Néel state
(in contrast to the fully SO(3) symmetric Néel order in our
case) and a d-wave superconductor without nodal quasiparti-
cles (our d-wave superconductor can have nodal quasiparticles)
was obtained (60) in a dual formulation of vortices in both
the Néel order and the superconductor.
• A direct transition between the Néel state and the d-wave
superconductors was described by Raghu et al. (61) in a weak-
coupling analysis of the Hubbard model. It is possible that
this transition, and that in the quantum Monte Carlo study
of Assaad et al. (55), are both described by the deconfined
critical theory introduced in the present paper.
• The spin density-wave quantum critical point in a two-
dimensional metal was argued to have an instabilities to d-
wave pairing and charge order with nearly the same strength
(62, 63), and theories of the fluctuations of the combined orders
have been examined (64–69). There is no fractionalization
and no emergent gauge field in these approaches.
• The studies in Ref. (70, 71), closest in spirit to the present
study, examined the condensation of chargons from a pseudo-
gap metal described by a Z2 spin liquid.
• A di�erent fractionalized model for the pseudogap metal was
used to study (72, 73) the interplay between spin and charge
density wave orders.

1. SU(2) lattice gauge theory for fermionic spinons

We begin by recalling the theory for the fi-flux spin liquid on
the square lattice. Experimental neutron scattering evidence
for the relevance of this state to square lattice antiferromagnets
was obtained by Dalla Piazza et al. (74) and Headings et

al. (75), and numerical evidence by Hering et al. (76). We
express the spin operators Si on site i in terms of fermions
fi–, where – =ø, ¿ is spin index, by Si = (1/2)f†

i–
‡–—fi—

For
spin liquids with an emergent SU(2) gauge field, it is useful to
introduce the spinor Âi

Âi =
3

fiø

f
†
i¿

4
, [1]

so that the SU(2) gauge transformation acts as Âi æ UiÂi,
where Ui œ SU(2). We describe the fi-flux spin liquid, in the
gauge used by Ref. (29), by the quadratic fermion Hamiltonian

Hf = ≠iJ

ÿ

ÈijÍ

#
Â

†
i eijUijÂj + i ¡ j

$
, [2]

where i,j are nearest-neighbors, J is a real coupling constant
of order the antiferromagnetic exchange, eji = ≠eij is a fixed
element of the Z2 center of the gauge SU(2) which ensures fi

flux per plaquette; we choose

ei,i+x̂ = 1 , ei,i+ŷ = (≠1)x
, [3]

where i = (x, y), x̂ = (1, 0), ŷ = (0, 1). The link field Uij = U
†
ji

is the fluctuating SU(2) lattice gauge field, and the mean-field
saddle point of the fi-flux phase is obtained by setting Uij = 1.
We note that the leading i in Eq. 2 is needed to ensure global
SU(2) spin-rotation invariance.

At the Uij = 1 saddle point, the dispersion of the fermions
in Hf has two Dirac nodes at the Fermi level, as shown in Fig. 3.
Linearizing the dispersion at the nodes, we obtain a theory of

Christos et al. PNAS | May 9, 2023 | vol. XXX | no. XX | 3



<latexit sha1_base64="r181zh/G8zdi1zQOhjs4IFI+VGs=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRahgpRd8etY9OKxgtsW2qVk02wbmk2WJCuUpb/BiwdFvPqDvPlvTNs9aOuDgcd7M8zMCxPOtHHdb6ewsrq2vlHcLG1t7+zulfcPmlqmilCfSC5VO8Saciaob5jhtJ0oiuOQ01Y4upv6rSeqNJPi0YwTGsR4IFjECDZW8qvumXvaK1fcmjsDWiZeTiqQo9Erf3X7kqQxFYZwrHXHcxMTZFgZRjidlLqppgkmIzygHUsFjqkOstmxE3RilT6KpLIlDJqpvycyHGs9jkPbGWMz1IveVPzP66QmugkyJpLUUEHmi6KUIyPR9HPUZ4oSw8eWYKKYvRWRIVaYGJtPyYbgLb68TJrnNe+qdvlwUanf5nEU4QiOoQoeXEMd7qEBPhBg8Ayv8OYI58V5dz7mrQUnnzmEP3A+fwAX/42T</latexit>

(0, 0)
<latexit sha1_base64="Q87IczK6/das9WOXNzfFDFDi3Fg=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBAiSNgVX8egF48RzAOTJcxOJsmQ2dllplcIS/7CiwdFvPo33vwbJ8keNLFghqKqm+6uIJbCoOt+O0vLK6tr67mN/ObW9s5uYW+/bqJEM15jkYx0M6CGS6F4DQVK3ow1p2EgeSMY3k78xhPXRkTqAUcx90PaV6InGEUrPZbasTgl9jvpFIpu2Z2CLBIvI0XIUO0UvtrdiCUhV8gkNabluTH6KdUomOTjfDsxPKZsSPu8ZamiITd+Ot14TI6t0iW9SNunkEzV3x0pDY0ZhYGtDCkOzLw3Ef/zWgn2rv1UqDhBrthsUC+RBCMyOZ90heYM5cgSyrSwuxI2oJoytCHlbQje/MmLpH5W9i7LF/fnxcpNFkcODuEISuDBFVTgDqpQAwYKnuEV3hzjvDjvzsesdMnJeg7gD5zPHyRij+8=</latexit>

(�, �)
<latexit sha1_base64="LHsmAvE2SqRHnpgdlALJF/Lhnyo=">AAAB73icbVDJSgNBEK1xjXGLevTSGIQIEmbE7Rj04jGCWSAZQk+nJmnS0zN29whhyE948aCIV3/Hm39jZzlo4oOCx3tVVNULEsG1cd1vZ2l5ZXVtPbeR39za3tkt7O3XdZwqhjUWi1g1A6pRcIk1w43AZqKQRoHARjC4HfuNJ1Sax/LBDBP0I9qTPOSMGis1S+2EnxL3pFMoumV3ArJIvBkpwgzVTuGr3Y1ZGqE0TFCtW56bGD+jynAmcJRvpxoTyga0hy1LJY1Q+9nk3hE5tkqXhLGyJQ2ZqL8nMhppPYwC2xlR09fz3lj8z2ulJrz2My6T1KBk00VhKoiJyfh50uUKmRFDSyhT3N5KWJ8qyoyNKG9D8OZfXiT1s7J3Wb64Py9WbmZx5OAQjqAEHlxBBe6gCjVgIOAZXuHNeXRenHfnY9q65MxmDuAPnM8fSUuO1g==</latexit>

(�, 0)
<latexit sha1_base64="k0iMARFfzt/DVn/c1RxpZ5iaIHA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQQcJu8HUMevEYwTwgWcLsZDYZMzuzzMwKYck/ePGgiFf/x5t/4yTZgyYWNBRV3XR3BTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdDv1W09UaSbFgxnH1I/wQLCQEWys1Cy7Z8g97RVLbsWdAS0TLyMlyFDvFb+6fUmSiApDONa647mx8VOsDCOcTgrdRNMYkxEe0I6lAkdU++ns2gk6sUofhVLZEgbN1N8TKY60HkeB7YywGepFbyr+53USE177KRNxYqgg80VhwpGRaPo66jNFieFjSzBRzN6KyBArTIwNqGBD8BZfXibNasW7rFzcn5dqN1kceTiCYyiDB1dQgzuoQwMIPMIzvMKbI50X5935mLfmnGzmEP7A+fwBbi+NvQ==</latexit>

(0, 0)

<latexit sha1_base64="WKGtWDoLVYhv+qEHspfgjwmAESk=">AAACJXicbVDLSsNAFJ3UV42vqks3g0VwVZKCj4WLoi7cCBWsLTShTCY37dDJJMxMhBL6M278FTcuLCK48lecPgRtPTBwOOdc7twTpJwp7TifVmFpeWV1rbhub2xube+UdvceVJJJCg2a8ES2AqKAMwENzTSHViqBxAGHZtC/GvvNR5CKJeJeD1LwY9IVLGKUaCN1ShdeAF0mcgpCgxzat0QpDkrhayYJ9TwcgYxNEquUiUQo2wMR/qQ7pbJTcSbAi8SdkTKaod4pjbwwoVlsxik3m9quk2o/J1IzymFoe5mClNA+6ULbUEFiUH4+uXKIj4wS4iiR5gmNJ+rviZzESg3iwCRjontq3huL/3ntTEfnfs5EmmkQdLooyjjWCR5XhkMmgWo+MIRQycxfMe0RU4/pQNmmBHf+5EXyUK24p5WTu2q5djmro4gO0CE6Ri46QzV0g+qogSh6Qi/oDY2sZ+vVerc+ptGCNZvZR39gfX0DHTCmRQ==</latexit>

Massless Dirac
fermion spinons

<latexit sha1_base64="YVUVaGos2GF0MaqvieAYRNqkxOQ=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgQkoivpZFNy4r2Ae0oUymk3bIzCTMTIQS+hEu1Y249Xtc+DdO2iy09cCFwzn3cu89QcKZNq777ZRWVtfWN8qbla3tnd296v5BW8epIrRFYh6rboA15UzSlmGG026iKBYBp50gusv9zhNVmsXy0UwS6gs8kixkBBsrdbJ+IFA0HVRrbt2dAS0TryA1KNAcVL/6w5ikgkpDONa657mJ8TOsDCOcTiv9VNMEkwiPaM9SiQXVfjY7d4pOrDJEYaxsSYNm6u+JDAutJyI4C4RtFtiM9aKdi/95vdSEN37GZJIaKsl8V5hyZGKUv4+GTFFi+MQSTBSz5yIyxgoTY0Oq2By8xa+XSfu87l3VLx8uao3bIpEyHMExnIIH19CAe2hCCwhE8Ayv8OZo58V5dz7mrSWnmDmEP3A+fwAVsZCF</latexit>

k

<latexit sha1_base64="7ySHgnIOpS6K/9bjeeyjfYaEFlY=">AAAB9XicbVDLSgNBEJyNrxhfUY9eBoPgQcKu+DoGvXiMYB6wWcLspDcZMjuzzMxGwpLP8KhexKtf48G/cZLsQRMLGoqqbrq7woQzbVz32ymsrK6tbxQ3S1vbO7t75f2DppapotCgkkvVDokGzgQ0DDMc2okCEoccWuHwbuq3RqA0k+LRjBMIYtIXLGKUGCv5nRFRkGjGpeiWK27VnQEvEy8nFZSj3i1/dXqSpjEIQznR2vfcxAQZUYZRDpNSJ9WQEDokffAtFSQGHWSzkyf4xCo9HEllSxg8U39PZCTWehyHZ2Fsm2NiBnrRnor/eX5qopsgYyJJDQg63xWlHBuJpxHgHlNADR9bQqhi9lxMB0QRamxQJZuDt/j1MmmeV72r6uXDRaV2mydSREfoGJ0iD12jGrpHddRAFEn0jF7Rm/PkvDjvzse8teDkM4foD5zPH69lkp4=</latexit>�

<latexit sha1_base64="Aa/IqtL9UApUtmQMGSzjaGpBDF8=">AAAB63icbVDLSgNBEOz1GeMr6tHLYhA8SNgVX8egF48JmAckS5id9CZDZmaXmVkhLPkCj+pFvPpJHvwbJ8keNLGgoajqprsrTDjTxvO+nZXVtfWNzcJWcXtnd2+/dHDY1HGqKDZozGPVDolGziQ2DDMc24lCIkKOrXB0P/VbT6g0i+WjGScYCDKQLGKUGCvVvV6p7FW8Gdxl4uekDDlqvdJXtx/TVKA0lBOtO76XmCAjyjDKcVLsphoTQkdkgB1LJRGog2x26MQ9tUrfjWJlSxp3pv6eyIjQeizC81DYZkHMUC/aU/E/r5Oa6DbImExSg5LOd0Upd03sTh93+0whNXxsCaGK2XNdOiSKUGPjKdoc/MWvl0nzouJfV67ql+XqXZ5IAY7hBM7AhxuowgPUoAEUEJ7hFd4c4bw4787HvHXFyWeO4A+czx9hRI3L</latexit>

0 <latexit sha1_base64="fyb0X3LCrm2dXOjWI2uot52lpXk=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBItQQcuM+FoW3bisYB8wHUomzbShmWRIMkIZ+hluXCji1q9x59+YtrPQ6oGEwzn3cu89YcKZNq775RSWlldW14rrpY3Nre2d8u5eS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc3U799iNVmknxYMYJDWI8ECxiBBsr+dVuwk7Qqf2Pe+WKW3NnQH+Jl5MK5Gj0yp/dviRpTIUhHGvte25iggwrwwink1I31TTBZIQH1LdU4JjqIJutPEFHVumjSCr7hEEz9WdHhmOtx3FoK2NshnrRm4r/eX5qousgYyJJDRVkPihKOTISTe9HfaYoMXxsCSaK2V0RGWKFibEplWwI3uLJf0nrrOZd1i7uzyv1mzyOIhzAIVTBgyuowx00oAkEJDzBC7w6xnl23pz3eWnByXv24Recj2+P6ZAm</latexit>

(�, ��)

<latexit sha1_base64="yNLnveSPfopF3Mx61dLj4yJbZSE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB1DvHiMaB6QLGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3U795hPXRkTqEccx90M6UKIvGEUrPVS7Z91iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9np07IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/GT4WKE+SKzRf1E0kwItO/SU9ozlCOLaFMC3srYUOqKUObTsGG4C2+vEwa52Xvqnx5f1GqVLM48nAEx3AKHlxDBe6gBnVgMIBneIU3RzovzrvzMW/NOdnMIfyB8/kDs4WNbg==</latexit>

B+
<latexit sha1_base64="s0dObGLdEFPS4sbpmBE5t/AQ1pg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgxbArvo4hXjxGNA9IljA7mSRDZmeXmV4hLPkELx4U8eoXefNvnCR70MSChqKqm+6uIJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqd+84lrIyL1iOOY+yEdKNEXjKKVHqrds26x5JbdGcgy8TJSggy1bvGr04tYEnKFTFJj2p4bo59SjYJJPil0EsNjykZ0wNuWKhpy46ezUyfkxCo90o+0LYVkpv6eSGlozDgMbGdIcWgWvan4n9dOsH/jp0LFCXLF5ov6iSQYkenfpCc0ZyjHllCmhb2VsCHVlKFNp2BD8BZfXiaN87J3Vb68vyhVqlkceTiCYzgFD66hAndQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBto2NcA==</latexit>

B�
<latexit sha1_base64="XcmfqZK1gPcsg+rMJr1wawjpeWU=">AAAB+XicbZBLSwMxFIXv+Kz1NerSzWARXJWZgo9lqRuXFewD2qFk0rQNzSRDcqdQhv4TNy4Uces/cee/MW1noa0HAh/n3EuSEyWCG/T9b2djc2t7Z7ewV9w/ODw6dk9Om0almrIGVULpdkQME1yyBnIUrJ1oRuJIsFY0vp/nrQnThiv5hNOEhTEZSj7glKC1eq5bU0ZJTj06InqopOm5Jb/sL+StQ5BDCXLVe+5Xt69oGjOJVBBjOoGfYJgRjZwKNit2U8MSQsdkyDoWJYmZCbPFy2fepXX63kBpeyR6C/f3RkZiY6ZxZCdjgiOzms3N/7JOioO7MOMySZFJurxokAoPlTevwetzzSiKqQVCNce8AULRllW0JQSrX16HZqUc3JSvHyulai2vowDncAFXEMAtVOEB6tAAChN4hld4czLnxXl3PpajG06+cwZ/5Hz+AH9Uk5U=</latexit>

Bosonic chargons

Fig. 3. Common latice dispersion of the fermionic spinons and bosonic chargons in
Eqs. 2 and 8, for the case in Section 3 where the chargons have only two degenerate
minima. The boson dispersion is shifted by the constant r in Eq. 11. The fermion
and boson low energy theories focus on distinct points in the Brillouin zone. The
degenerate bosonic chargons B± are at (fi/2, ±fi/2).

Nf = 2 relativistic, massless Dirac fermions coupled to a SU(2)
gauge field. This theory has a global SO(5)f symmetry (29, 33–
37, 77), corresponding to rotations among Néel order and VBS
order, which together form a composite order with 5 real
components. The Néel-VBS transition has been intensively
studied by numerical and bootstrap methods, and the emerging
consensus (49–53) is that ground state is ultimately a confining
state with SO(5)f broken: this consensus accounts for the
r > rc portion of the phase diagram in Fig. 2, where the
chargons are massive and unimportant at low energies.

2. SU(2) lattice gauge theory for bosonic chargons

We introduce a chargon field (13–15)

Bi ©
3

B1i

B2i

4
, Bi ©

3
B1i ≠B

ú
2i

B2i B
ú
1i

4
, [4]

on each lattice site, where B1i and B2i are complex boson. We
view the chargon as a Higgs field which couples the spinons
Âi to the physical electrons c̄i–. For the doped system, the
c̄i– annihilates an electron-like quasiparticle near the Fermi
surface of the hole pockets; for the undoped system, the c̄i–

annihilates an electronic quasiparticle just above the charge
gap. After introducing

C̄i =
3

c̄iø

c̄
†
i¿

4
, [5]

the coupling between the chargons, electrons and spinons can
be written as

HH = i

ÿ

i

!
Â

†
i Bi C̄i ≠ C̄

†
i B†

i Âi

"

= i

ÿ

i

!
B

1if
†
i–

c̄i–
≠ B

2iÁ–—
fi–

c̄i—

"
+ H.c. , [6]

where Á–— is the unit antisymmetric tensor. The first line in
Eq. 6 makes the invariance under gauge SU(2), global spin
SU(2), and global charge U(1) transparent. In particular,
we have Bi æ UiBi under gauge SU(2), Bi æ e

i„
Bi under

electromagnetic U(1), and Bi æ Bi under global spin SU(2).
An explicit microscopic derivation of the form of HH can be
obtained in the ancilla model (9, 10), as we describe in SI

Symmetry f– Ba

Tx (≠1)yf– (≠1)yBa

Ty f– Ba

Px (≠1)xf– (≠1)xBa

Py (≠1)yf– (≠1)yBa

Pxy (≠1)xyf– (≠1)xyBa

T (≠1)x+yÁ–—f— (≠1)x+yBa

Table 1. Projective transformations of the f spinons and B chargons
on lattice sites i = (x, y) under the symmetries Tx : (x, y) æ (x +
1, y); Ty : (x, y) æ (x, y + 1); Px : (x, y) æ (≠x, y); Py : (x, y) æ
(x, ≠y); Pxy : (x, y) æ (y, x); and time-reversal T . The indices –, —
refer to global SU(2) spin, while the index a = 1, 2 refers to gauge
SU(2).

Appendix 1. Here, we regard HH as the simplest allowed
coupling consistent with the gauge and global symmetries.

We now obtain the form of the lattice e�ective action for
Bi by requiring invariance under lattice symmetries and time-
reversal under the projective transformations of the fi-flux
phase. The projective transformations of the fermionic spinons
f– have been computed earlier (29), those of the electrons c̄–

must be trivial, and those of the bosonic charges B then follow
from the invariance of Eq. 6. The transformations are listed
in Table 1. The key property is the relation

TxTy = ≠TyTx , [7]

which ensures fi-flux on both spinons and chargons, and at
least two degenerate minima for the chargons.

With the transformations in Table 1 in hand, we write down
the most general e�ective Lagrangian for the Bi, keeping only
terms quadratic and quartic in the Bi, and with only on-site
or nearest-neighbor couplings. In this manner we obtain the
Lagrangian (terms with time derivatives will be considered in
Section 7)

L(B) = r

ÿ

i

B
†
i Bi ≠ iw1

ÿ

ÈijÍ

#
B

†
i eijUijBj + i ¡ j

$
+ V(B) ,

[8]
where r, w1 are real Landau parameters, and the quartic terms
are in V(B). The hopping terms in Eq. 8 are identical to the
hopping terms for the fermionic spinons in Eq. 2. However,
there is a ‘mass’ term, r, present for the chargons, which
was not allowed for the spinons—we will use r as the tuning
parameter across the transition in which the B condense, as
in Fig. 2.

The quartic interaction terms in V(B) are more conveniently
expressed in terms of quadratic gauge invariant observables.
By examining the transformations in Table 1, we can deduce
the following correspondences between bilinears of the B with
those of the bilinears of the gauge-neutral electrons (see SI
Appendix 1 for the di�erence between the renormalized quasi-
particle operator c̄– and bare electron c–):

site charge density:
+
c

†
i–

ci–

,
≥ fli = B

†
i Bi

bond density:
+
c

†
i–

cj–
+ c

†
j–

ci–

,

≥ Qij = Qji = Im
!
B

†
i eijUijBj

"

bond current: i

+
c

†
i–

cj–
≠ c

†
j–

ci–

,

≥ Jij = ≠Jji = Re
!
B

†
i eijUijBj

"

Pairing: ÈÁ–—ci–cj—Í ≥ �ij = �ji = ÁabBaieijUijBbj . [9]
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Symmetry Ba+ Ba≠

Tx ≠iBa≠ ≠iBa+
Ty ≠iBa+ iBa≠
Px Ba+ Ba≠
Py Ba+ Ba≠
Pxy ≠(Ba+ + Ba≠)/

Ô
2 ≠(Ba+ ≠ Ba≠)/

Ô
2

T Ba+ Ba≠

Table 2. As in Table 1, but for the continuum fields of Section 3

We have checked the correspondences in Eq. 9 in a few cases
by computing the expectation values of the c– bilinears in
the ancilla theory presented in SI Appendix 1, and comparing
them to the values of B bilinears. Now we can write an
expression for V(B) by keeping all quartic terms which involve
nearest-neighbor sites:

V(B) = u

2
ÿ

i

fl
2

i + V1

ÿ

i

fli (fli+x̂ + fli+ŷ) + g

ÿ

ÈijÍ

|�ij |2

+J1

ÿ

ÈijÍ

Q
2

ij + K1

ÿ

ÈijÍ

J
2

ij . [10]

3. Low energy continuum theory of chargons with two
dispersion minima

The quadratic form of the chargons in Eq. 8 is identical to
that for the spinons in Eq. 2, and so the dispersion of the
chargons is also that shown in Fig. 3. In the low energy theory
for the fermionic spinons we had to focus on the nodal points
in the Brillouin zone at the Fermi level. In contrast, for the
bosonic chargons, we have to focus on the minima of the same
dispersion. These are at distinct points in the Brillouin zone,
and this is a factor in the distinct lattice symmetries of the
orders described by the chargons.

Specifically, the dispersion of chargons is

Á(k) = r ± 2|w1|


sin2
kx + sin2

ky, [11]

and the band minima are at Q+ = fi

2
(1, 1) and Q≠ = fi

2
(1, ≠1).

We can expand the B in terms of the eigenmodes at the minima
using fields Bas (a = 1, 2 is the gauge SU(2) index, and s = ±
refers to the band minima)

Ba(r) =

Y
_]

_[

≠Ba+e
ifi(x+y)/2 + Ba≠(

Ô
2 + 1)eifi(x≠y)/2

,

x even
Ba+(

Ô
2 + 1)eifi(x+y)/2 ≠ Ba≠e

ifi(x≠y)/2
,

x odd
[12]

This expansion leads to the symmetry transformations in
Table 2, which follow from the transformations in Table 1.
Obtaining the action of Pxy is a little involved, and it is
obtained by requiring

≠Ba+ + Ba≠(
Ô

2 + 1) æ ≠Ba+ + Ba≠(
Ô

2 + 1),
for x even, y even

Ba+(
Ô

2 + 1) + Ba≠ æ ≠Ba+(
Ô

2 + 1) ≠ Ba≠,

for x odd, y odd

and also similar relations when x and y have opposite parity.
The relation in Eq. 7 continues to hold in Table 2.

Symmetry fl(fi,0) fl(0,fi) D �
Tx ≠fl(fi,0) fl(0,fi) ≠D �
Ty fl(fi,0) ≠fl(0,fi) ≠D �
Px fl(fi,0) fl(0,fi) D �
Py fl(fi,0) fl(0,fi) D �
Pxy fl(0,fi) fl(fi,0) ≠D ≠�
T fl(fi,0) fl(0,fi) ≠D �

Table 3. As in Table 1, but for the order parameters of Section 3.

Ba+ Ba≠ fl(fi,0) fl(0,fi) D �
(b, 0) (0, 0) |b|2 0 0 0

(b, 0)/
Ô

2 (b, 0)/
Ô

2 0 |b|2 0 0
(b, 0)/

Ô
2 (≠ib, 0)/

Ô
2 0 0 |b|2 0

(b, 0) (0, b) 0 0 0 b2

Table 4. Representative ansatzes for the phases

We now define the following gauge-invariant order parame-
ters

x-CDW : fl(fi,0) = B
ú
a+B

a+
≠ B

ú
a≠B

a≠

y-CDW : fl(0,fi) = B
ú
a+B

a≠ + B
ú
a≠B

a+

d-density wave : D = i

!
B

ú
a+B

a≠ ≠ B
ú
a≠B

a+

"

d-wave superconductor : � = ÁabBa+Bb≠ [13]

The transformations of these expressions in Table 3 identify
them as the labeled orders. Note that Tx and Ty commute for
these gauge-invariant order parameters, and Eq. 7 does not
apply to Table 3.

We can now write down the Landau potential in this con-
tinuum limit

V (Bas) = r B
ú
asBas + u

!
B

ú
asBas

"2

+ v1

#
fl(fi,0)

$2 + v1

#
fl(0,fi)

$2 + v2 D
2 + v3|�|2 . [14]

At v1,2,3 = 0, this Higgs potential has an enhanced symme-
try also present in the terms displayed in Eq. 8: there is a
SO(8) symmetry of rotations among the 8 real components
of Bas. After including the coupling to the SU(2) gauge field,
we must factor out a SO(3) subgroup, which leaves the adver-
tized SO(5)b symmetry for gauge-invariant order parameters.
Indeed, we can now verify that the order parameters in Eq. 13
do indeed correspond to a 5-component order parameter which
rotates under SO(5)b, after decomposing � into two 2 real
components.

We numerically minimized Eq. 14 for non-zero v1,2,3, and
only found solutions which are either some linear combination
of the two CDW’s, a d-density wave, or a d-wave supercon-
ductor, with no co-existence between di�erent orders. Simple
ansatzes for these solutions are shown in Table 4. From these
ansatzes we can immediately determine the phase diagram of
Eq. 14. The Higgs potential is stable provided all |vi| < u, and
the lowest energy state is that associated with the smallest of
the vi i.e. for v1 < v2,3 the lowest energy state is any linear
combination of the x-CDW and y-CDW, for v2 < v1,3 we ob-
tain the d-density wave with broken time-reversal symmetry,
and for v3 < v1,2 we have a d-wave superconductor. The na-
ture of the nodal Bogoliubov excitations of this superconductor
will be similar to that studied in Ref. (71).
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Phase A
(π,0) stripe 

Phase A
(0,π) stripe 

Phase B
d-wave SC 

Phase C
d-density 

(b)(a)

Fig. 4. Mean-field analysis of the lattice model of chargons in the regime where
the continuum theory with two minima applies. (a) shows the phase diagram as a
function of lattice parameters J1 and K1, while simultaneously varying V1 such that
(V1 + J1)c0 = 4, c0 = 4(1 +

Ô
2)2. Then, taking the continuum limit leads to

v1 = c0J1, v2 = c0K1, and u = 4 in Eq. 14 as explained in SI Appendix 4. We
here further assume w < 0 and g > 0. We obtain three different types of phases,
exactly as in the continuum theory: a continuous set (A) of degenerate CDW states
given by an arbitrary superposition of density modulations with wavevectors (fi, 0),
(0, fi), a d-wave superconductor (B), and a d-density wave (C). These phases are
illustrated on the square lattice in (b), where the shading indicates the on-site and bond
densities, black arrows the currents, and the blue/red wiggly lines nearest-neighbor
pairing with positive/negative amplitude.

4. Chargon lattice-mean-field theory with nearest-
neighbor couplings

In this section we present the results of numerically minimizing
the lattice potential for the chargons in Eqs. 8 and 10 on an
8◊8 real space lattice. As there is a large number of parameters
to minimize over, we will show results for regions of parameter
space where the most general states can be found by varying
only 2 parameters.

Fig. 4 shows the agreement between the continuum and lat-
tice phase diagrams when the lattice parameters are specifically
chosen to reproduce the continuum free energy parameters
in the low energy limit as described in SI Appendix 4. We
also choose r to lie near the band minima. In this case, in
agreement with analytical expectations, we find that lattice
parameters corresponding to v2 < v1 and v2 < 0 lead to a
d-density wave state. This state breaks time-reversal symme-
try and is characterized by a circulating current pattern as
shown in Fig. 4. For v1 < v2 and v1 < 0, we find, exactly as
in the continuum theory, that any linear combination of CDW
order at (0, fi) and (fi, 0) is favored. For v1 > 0 and v2 > 0 we
find a d-wave superconductor appears where the precise phase
boundaries are determined by u and g in Eq. 10. We have
verified in these cases that the forms for Bi in our solutions
obey Eq. 12 to a very good approximation.

We next present a more general phase diagram, with pa-
rameters in the lattice model, Eqs. 8 and 10, chosen to be
far from the limit where the continuum model applies. To
capture a large variety of di�erent ground states, we study
both g < 0 and g > 0 with phase diagrams shown in Fig. 5(a)
and (b), respectively, where we further choose a negative J1

and positive value of u in Eq. 10 for stability. Besides the
d-density wave and the d-wave superconductor already present
in Fig. 4, we also find a CDW with ordering wave vector (fi, fi)
which coexists with either a d-density wave or superconductiv-
ity; furthermore, the previous degeneracy of any superposition
of x-CDW and y-CDW is lifted; depending on V1, we either

Phase E
d-wave SC + CDW at (π,π) 

(b)(a)

Phase D
d-density + CDW at (π,π) 

Phase A1
(π,0) stripe or (0,π) stripe  

Phase A2
CDW at (π,0), (0,π), (π,π)   (c)

Fig. 5. Phases of lattice chargon theory away from the continuum limit. Phase
diagrams as a function of V1 and K1 at fixed J1 = ≠0.15, u = 2.4, r = ≠0.5 are
shown for (a) positive and (b) negative g. Phases B and C are the same as in Fig. 4,
whereas A splits into a unidirectional, nematic stripe state (A1) and a bidirectional,
non-nematic (A2) state. There are additional phases—a d-density wave state (D) and
a d-wave superconductor (E) both coexisting with a bidirectional CDW at (fi, fi).

find a uni-directional 2-site stripe state or a bi-directional
CDW, which preserves the four-fold rotational symmetry of
the lattice. These additional states are illustrated in Fig. 5(c).
In future work, it would be interesting to study if this co-
existence of multiple orders survives the inclusion of SU(2)
gauge fluctuations.

5. Low energy continuum theory of chargons with
more than two dispersion minima

When longer-range hoppings of chargons are present, the dis-
persion can in general have multiple minima. The strategy
here is similar to that followed in Ref. (78) for the confinement
transition out of a Z2 spin liquid model of the pseudogap by
condensation of visons. SI Appendix 2 describes the general
structure of the hopping terms in our present SU(2) gauge the-
ory which are compatible with Table 1. The shortest-ranged
terms are

F0(B) =
ÿ

i

Ó
r

2B
†
i Bi ≠ w2(B†

i Bi+2x̂ + B
†
i Bi+2ŷ)

≠ iw1

#
B

†
i Bi+x̂ + (≠1)x

B
†
i Bi+ŷ

$

≠ iw3

#
(≠1)x

B
†
i Bi+2x̂+ŷ ≠ (≠1)x

B
†
i Bi+2x̂≠ŷ

+ B
†
i Bi+2ŷ+x̂ ≠ B

†
i Bi+2ŷ≠x̂

$Ô
+ h.c.,

[15]
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where w1, w2, w3 are real parameters. Choosing a unit cell
containing two neighboring sites separated in the x-direction,
the free energy density in momentum space is

F0(k) = [r ≠ 2w2 cos(2kx) ≠ 2w2 cos(2ky)]
+ [2w1 + 4w3 cos(2ky)] sin(kx)·x

+ [2w1 + 4w3 cos(2kx)] sin(ky)·z
,

[16]

where ·
i acts in the sublattice space. The example dispersions

associated with Eq. 16 are plotted in Fig. S2 in SI Appendix 2.
When only w1 is present, the minima are at Q±. Adding a
finite w2, the dispersion becomes

Á2(k) = r ≠ |w1|


4 ≠ 2f(k) ≠ 2w2f(k),
f(k) © cos(2kx) + cos(2ky). [17]

When w2 < 0, the positions of the minima remain at Q±.
When w2 > 0, the minimum has a ring degeneracy since the
energy only depends on f(k). When w2 > w1/4

Ô
2 ¥ 0.177w1,

the minima begin to expand from the two points Q± (or f(k) =
≠2) to rings around these points. Upon further increasing w2,
the rings will grow and touch when w2 = w1/4 = 0.25w1 (or
f(k) = 0) and merge to become new rings centered around
(0, 0) and (0, fi). Then when w2 dominates, the new rings will
shrink until they become points.

When w3 is further added, the dispersion relation is com-
plicated. Each ring can split into four minima in axial or
diagonal directions, corresponding to the cases of w3 > 0 and
w3 < 0, respectively. We will focus on the axial splitting case
and for concreteness consider an infinitesimal w3 to split the
ring in the regime of |w2| ' |w1|/4

Ô
2.

The new incommensurate minima are at

Q+,R/L =
1

fi

2 ± q,
fi

2

2
, Q+T/B =

1
fi

2 ,
fi

2 ± q

2
,

Q≠,R/L =
1

fi

2 ± q, ≠fi

2

2
, Q+T/B =

1
fi

2 , ≠fi

2 ± q

2
,

[18]

where the T, B, L, R stand for top, bottom, left and right,
respectively and q is a number depending on r, w1, w2, w3.

We expand the boson fields in terms of eigenmodes at the 8
minima,

B(r) = ≠
ÿ

–

#
e

iQ+–·r
3

1
v–

4
B+– + e

iQ≠–·r
3

v–

1

4
B≠–

$
.

[19]
Here the summation runs over – œ {L, R, T, B}, v– is a compli-
cated real function of q and thus the parameters r, w1, w2, w3.
There is only one independent v–: They satisfy vL = vR,
vT = vB and (1 + vT )(1 + vB) = 2. When q æ 0, the expres-
sion Eq. 19 reduces to Eq. 12. The symmetry transformations
of the low-energy fields in Eq. 19, the expressions for the
gauge-invariant order parameters in terms of these fields, and
the allowed quartic terms in the chargon free energy are all
discussed in SI Appendix 2.

Here, we write down ansatzes for a few interesting states,
along the lines of Table 4 for the commensurate case. Only
the non-zero values of Bas– and order parameters are shown.

• x-CDW: Ba+R = (b1, 0), Ba+L = (b2, 0), fl(nfi+2q,0)Ãb
ú
2b1,

fl(nfi≠2q,0) = b
ú
1b2, fl(nfi,0)Ã|b1|2 + |b2|2. Here n = 0, 1.

• y-CDW: Ba+T = (b1, 0)/
Ô

2, Ba≠T = (b1, 0)/
Ô

2,
Ba+B = (b2, 0)/

Ô
2, Ba≠B = (b2, 0)/

Ô
2, fl(0,nfi+2q) =

b
ú
2b1, fl(0,nfi≠2q)Ãb

ú
1b2, fl(0,nfi)Ã|b1|2 + |b2|2.

• x-CDW and dDW: Ba+R = (b, 0)/
Ô

2, Ba≠R = (b, 0)/
Ô

2,
Ba+L = (b, 0)/

Ô
2, Ba≠L/

Ô
2 = (≠b, 0), fl(nfi+2q,0) = |b|2,

fl(nfi≠2q,0)Ã|b|2, DÃ ≠ 2|b|2 sin(2qx).

• d-wave superconductor: Ba+R = (b, 0), Ba≠L = (0, b),
�Ãb

2, fl(0,0) Ã 2|b|2.

• Pair density wave: Ba+R = (b1, 0), Ba≠R = (0, b1),
Ba+L = (b2, 0), Ba≠L = (0, b2), �Ã2b1b2 + b

2

1e
2iqx +

b
2

2e
≠2iqx, fl Ã 2|b1|2 + 2|b2|2 + 2b

ú
1b2e

2iqx + 2b
ú
2b1e

≠2iqx.

Note that a spatially uniform d-wave superconductor remains
a possible solution even when we only include fields at the
incommensurate points in Eq. 19. However, we have been
unable to find a solution which is a pure incommensurate
charge density wave at wavevectors, say, (fi ± 2q). In the
examples shown above there is either an additional charge
density wave at (fi, 0) or a d-density wave. However a pure
commensurate charge density wave does exist, e.g. at (fi/2, 0),
for then (fi, 0) is an allowed harmonic.

6. Chargon lattice-mean-field theory with further-
neighbor couplings

In this section, we will describe additional charge ordered
phases which emerge when we include quartic couplings beyond
nearest neighbor in Eq. 10. More specifically, we will add

Vadd(B) =
ÿ

a,b

Va,b

ÿ

i

flifli+ax̂+bŷ, [20]

with Va,b = Vb,a = Va,≠b = V≠a,b to V(B), but will not include
the further-neighbor terms w2,3 quadratic in Bi which were
already studied in the previous section. As we will see below,
this is su�cient to stabilize stripe states with 4-site periodicity
and, thus, connect our analysis to the period-4 stripe states
found in cuprate experiments (79).

Exploring all of parameter space of couplings Va,b is not
practical and so we will restrict ourselves to just a few addi-
tional nonzero couplings out to fourth-nearest neighbors. We
find setting all Va,b, including V1,0 = V0,1 = V1, to zero except
for V2,2, V2,≠2, V1,1, and V1,≠1 stabilizes period-4 stripe states,
as summarized in Fig. 6. We find two types of period-4 stripe
states, see Fig. 6(b); the first (phase F) is centered on the
bonds and co-exists with current order with strength which
modulates with the density. The second is a site-centered
period-4 stripe state which may (phase G) coexist with cur-
rent order that modulates with the density or appears without
any additional current order (phase H). We note a small region
(not shown in Fig. 6) at the phase boundary between phases
H and G where another state appears with an additional 2-
site charge modulation along the y (x) direction with much
smaller magnitude compared to the primary period-4 mod-
ulation along x (y). Due to the smallness of this additional
symmetry breaking compared to the part of this state which
is identical to G, we do not separately denote this state on
our phase diagram. We also find a region of pure d-density
wave for small V2,2 and small V1,1, and a region of period 2
uni-directional stripe state for small V2,2 and large V1,1. We
note that these orderings are all obtained within the chargon
mean field theory, and it would be interesting to study their
fate after including SU(2) gauge fluctuations.
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(b) Phase F
Period 4 bond centered 

stripe + d‐density 

Phase G
Period 4 site centered 

stripe + d‐density

(a)

Fig. 6. We show (a) the phase diagram of the chargon lattice theory as a function
of additional further-neighbor density-density quartic terms, Eq. 20, which stabilize
various types of charge-modulated states. We take u = 2.4, w = 0.5, J1 = 0.2,
K1 = 0.25 and g = 0.3. We distinguish between a CDW which orders only at
wave vectors (fi/2, 0) and (0, fi/2) (phase F) and a stripe state which orders at
(fi/2, 0), (0, fi/2), (0, fi), and (fi, 0) (phase H or G if coexisting with d-density
wave), d-density wave order (C) and a period-2 stripe states (A1). We show what the
charge and bond density looks like for phase F ((b) left) and for G ((b) right). Both are
period-4 stripe states and both have additional currents which modulate spatially.

7. Combined SU(2) gauge theory

Let us now collect all the terms in our SU(2) gauge theory for
the underdoped cuprates:

• Hf in Eq. 2 describes the fermionic spinons transforming
as a fundamental of SU(2)

• The chargon Higgs sector is described by L(B) in Eq. 8,
along with additional longer-range terms discussed in
Sections 5 and 6. The chargon Higgs also transforms as a
fundamental of SU(2).

• The hole pockets in the nodal region of the Brillouin zone
are described by Hcg in Eq. S1 in SI Appendix 1.

• All the above sectors are coupled by Higgs-fermion cou-
pling HH in Eq. 6, or more specifically by Hfg is Eq. S2
in SI Appendix 1.

The remarkable similarity of the above structure to the
Weinberg-Salam SU(2)◊U(1) gauge theory of weak interac-
tions (80) may already have been noticed by the alert reader.
The electromagnetic U(1) is treated as e�ectively global in
our case, the spinons map to the neutrinos, the electrons and
chargons map to the electrons and Higgs bosons, and fermions

and bosons are all coupled via the simplest gauge-invariant
Yukawa coupling as in Eq. 6.

In SI Appendix 3, we integrate out the fermions and obtain
an e�ective action for chargons. In addition to the terms
just summarized above, this leads to terms with time deriva-
tives of B. In general, a linear-time derivative term B

†
ˆ· B

is allowed, and this will spoil explicit relativistic invariance.
However, it remains possible that the B

†
ˆ· B term is irrelevant

at strongly-coupled fixed points which describes a quantum
phase transitions. With particle-hole symmetry in the c– elec-
tron band-structure, the B

†
ˆ· B term is absent. We also note

that in the low energy limit of Section 2, the B
†
sˆ· Bs term has

a global symmetry which is smaller than SO(5)b, but |ˆ· Bs|2
does have the full SO(5)b symmetry.

At half-filling, when c– spectrum is gapped, this procedure
of integrating out the c– is safe. Assuming particle-hole sym-
metry, and only two minima in the chargon dispersion, we
obtain a relativistic theory for Nf = 2 massless Dirac fermions
�, and Nb = 2 scalars Bs (s = ±) both coupled minimally to
a SU(2) gauge field with Lagrangian

L = i�“µDµ� + |DµBs|2 + V (Bs) [21]

where the scalar potential V is specified in Eq. 14, “µ are the
Dirac matrices, and Dµ is a co-variant derivative. At v1,2,3 = 0
this theory is explicitly invariant under a SO(5)f ◊SO(5)b

global symmetry, which leads to our proposal of a conformal
field theory at the r = rc critical point in Fig. 2. We propose
this CFT as a description of the phase transition between
the antiferromagnet and the d-wave superconductor found
in the weak-coupling repulsive Hubbard model by Raghu et

al. (61), perhaps extended to strong coupling with additional
antiferromagnetic exchange interactions. Depending on the
fate of the v1,2,3 couplings, as well as possible quartic boson-
fermions couplings, there could also be fixed points with a
smaller global symmetry. We leave a careful examination of
such terms to future work.

We also note the study of Refs. (81–83) which proposed
and obtained numerical evidence for a CFT with a SU(2)
gauge field and the same fermionic content as Eq. 21, but with
Higgs bosons which were adjoints (and not fundamentals) of
SU(2). This CFT described a deconfined critical point between
an antiferromagnet and an ‘orthogonal semi-metal’ with the
topological order of a Z2 spin liquid.

8. Discussion

The fi-flux state with fermionic spinons (28) is one of the
earliest versions of a resonating valence bond spin liquid on the
square lattice. It was realized early on that fluctuations about
this mean-field state are described by a SU(2) gauge theory
(13, 14, 31, 32). Furthermore, early work also recognized
that doping such a spin-liquid state led naturally to a d-
wave superconductor (13, 15, 31, 39–43). This connection is
supported by recent numerical evidence (84, 85) for d-wave
superconductivity in doped antiferromagnets near the Néel-
VBS transition, given the relationship between the fi-flux spin
liquid and the Néel-VBS transition (29, 33–37).

Here we have investigated the consequences of a basic
feature of the fi-flux spin liquid to d-wave superconductor
transition (this feature does not apply to the ‘staggered flux’
spin liquid used elsewhere (13–15)—see SI Appendix 5). This
transition is also a confinement transition of the SU(2) gauge
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field of the spin liquid. By Higgs-confinement continuity (86),
the transition can be implemented by the condensation of
a Higgs field which transforms as a fundamental of SU(2).
For the confining phase to be a superconductor, the Higgs
field must also carry a electromagnetic charge, and these
requirements lead essentially uniquely to the Higgs field being
the bosonic chargon B (13–15). The basic feature is that the
chargon B must also experience fi-flux—this follows from the
fact that the electron, which is a gauge-invariant combination
of the spinon and the chargon, cannot experience any flux
of the SU(2) gauge field. In the presence of a fi-flux, the
chargon dispersion is required (46) to have at least a two-fold
degeneracy in its low energy spectrum. By exploiting this
degeneracy, we have shown that a variety of competing charge-
ordered states also appear naturally as the outcomes of the
confinement of the fi-flux spin liquid.

The minimal SU(2) lattice gauge theory of the spinons
and chargons is given by Eqs. 2 and 8, supplemented by the
time-derivative terms discussed in SI Appendix 3. Longer-
range terms discussed in Sections 5 and 6 can also be included.
The phase diagrams in Sections 4 and 6 were obtained in
a mean-field treatment, in which we set the SU(2) gauge
field Uij = 1, and treated Bi as spatially varying complex
numbers to be optimized. Closer connections to the cuprate
phase diagram require a more complete treatment of the SU(2)
gauge fluctuations: we hope that such lattice gauge theory
simulations will be carried out. The theory of just the chargons
and spinons, and only the second order time-derivative term
in B (SI Appendix 3), has no sign-problem, and determining
its phase diagram will shed considerable light on the cuprate
phase diagram. The phases in Figs. 5 and 6 have co-existing
broken symmetries which are not required by any conventional
symmetry principles, and are instead a consequence of the use
of a mean-field fractionalized order parameter B. It would be
interesting to see if this co-existence is present in a complete
theory which includes SU(2) gauge fluctuations.

After the onset of SU(2) confinement at low temperatures
along arrow A in Fig. 1, it is possible that an e�ective the-
ory involving only the competing superconducting and charge
orders (64–69) will become applicable. However, at higher
temperatures there must be a change to the deconfined char-
acteristics of the pseudogap metal, and the theory presented
here is designed to address this transformation. Such a the-
ory also points to resolutions of the key puzzles noted in the
introduction:

1. The FL* state with an underlying fi-flux spin liquid can
fit the photoemission data in the pseudogap metal in both
the nodal and anti-nodal regions of the Brillouin zone, as
discussed in earlier work (24).

2. The parent pseudogap metal state already has a gap in
the anti-nodal region of the electronic Brillouin zone. So
it is natural this gap is preserved when the pseudogap
metal undergoes a confinement transition to a charge-
ordered state, potentially allowing us to understand the
fermiology of the quantum oscillations.

3. The charge-ordered and d-wave superconducting confining
states are not distinguished by the leading terms in the
continuum static e�ective action for the chargons B. The
degeneracy between these states is only broken by terms
quartic in B, such as v1,2,3 in Eq. 14. This provides

a rationale for the near-equality of the energy scales of
charge-ordering and d-wave superconductivity (7).
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1. Ancilla theory of the pseudogap metal
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density
1 � p

Fig. S1. The original Hubbard model of c– electrons of density 1 ≠ p is equivalent, after a canonical transformation, to a model of free electrons c– (also of density 1 ≠ p)
coupled to two layers of ancilla spins S1 and S2. The pseudogap metal state is obtained when the c– and the S1 spins form a Kondo lattice heavy Fermi liquid state which
has a Fermi volume of 1 ≠ p + 1 ≥= ≠p, yielding the small hole pockets. The S2 spins are assumed to realize the fi-flux spin liquid, which confines as the temperature is
lowered. In the mean field theory, we represent the S1 spins by fermionic spinons g–, and the S2 spins by fermionic spinons f–.

This supplement reviews the ancilla theory (1–4) of the pseudogap metal (see Fig. S1), and outlines one route to obtaining
the SU(2) lattice gauge theory action in the main paper.

The fi-flux spin liquid of the S2 ancilla layer is described by the fermion spinon Hamiltonian in Eq. 2. The heavy Fermi
liquid of the electrons and the S1 ancilla spins is described by the usual mean-field theory of the Kondo lattice (5, 6)

Hcg = ≠
ÿ

i,j

tijc
†
i–

cj–
+

ÿ

i,j

t1,ijg
†
i–

gj–
+

ÿ

i

!
� g

†
i–

ci–
+ � c

†
i–

gi–

"
. [S1]

Here the hybridization � is obtained by a Hubbard-Stratonovich decoupling of the Kondo interaction JK (see Fig. S1). We
treat � as a fixed constant in the present paper, determined by the size of the pseudogap in the antinodal region of the Brillouin
zone, as determined by photoemission experiments (4). When we consider the transition out of the pseudogap into the Fermi
liquid at large doping (as along arrow C in Fig. 1), we do have to include fluctuations of � (1, 2). However, our interest here is
limited to the low temperature behavior within the pseudogap (along arrow A in Fig. 1), and in this case we can treat as a
fixed constant. The hoppings tij are obtained from photoemission data in the Fermi liquid phase at large doping, while the
hoppings t1,ij are obtained by fitting the photoemission spectrum in the pseudogap metal (4): these hoppings extend over first,
second, and third neighbors, and are not constrained by the transformations in Table 1 which apply only to the gauge-charged
fermions forming the S2 spin liquid.

The decoupling of the exchange interaction J‹ between the S1 and S2 layers (analogous to that which obtained � from the
c– and S1 layers) should be performed in a manner consistent with the SU(2) gauge symmetry of the spin liquid in the S2

layer. In this case, the decoupling field is just the Higgs boson B in Eq. 4. We also include a coupling between the c– and f–

layers because it is allowed by all the symmetries, and obtain the Hamiltonian

Hfg = i

ÿ

i

#
–1

!
Â

†
i Bi Gi ≠ G

†
i B†

i Âi

"
+ –2

!
Â

†
i Bi Ci ≠ C

†
i B†

i Âi

"$
, [S2]
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where –1,2 are coupling constants, and

Ci =
3

ciø

c
†
i¿

4
, Gi =

3
giø

g
†
i¿

4
. [S3]

Projecting Hfg onto the low energy quasiparticles of Hcg, we obtain the coupling to the C̄ fermions in Eq. 6.

2. Longer-range terms for chargons

A. General hopping terms. From the symmetry mappings in Table 1, we can deduce the following general structure of allowed
longer-range hoppings terms:

Fh(B) = ≠
ÿ

i

ÿ

m,nœZ
Fh(i, m, n), Fh(i, m, n) = Wm,nB

†
i ei,i+mx̂+nŷBi+mx̂+nŷ, [S4]

where ei,i+mx̂+nŷ is the product of nearest neighbor eij ’s connecting the two endpoints:

ei,i+mx̂+nŷ =

A
m≠1Ÿ

k=0

ei+kx̂,i+(k+1)x̂

B A
n≠1Ÿ

l=0

ei+mx̂+lŷ,i+mx̂+(l+1)ŷ

B
. [S5]

The hopping amplitude Wm,n satisfies

Wm,n =

Y
]

[

0 m = odd, n = odd
iwm,n m = odd (even), n = even (odd)
wm,n m = even, n = even.

[S6]

Here wm,n is an arbitrary real number. Below we will justify the general form of the hopping terms Eq. (S4).

A.1. Time reversal. Time reversal symmetry constrains the hopping amplitudes to be either real or imaginary in the following
way. Recall that

T : Bi æ Bi(≠1)ix+iy
. [S7]

Consequently,
T : Fh(i, m, n) æ (≠1)m+n

W
ú
m,nB

†
i ei,i+mx̂+nŷBi+mx̂+nŷ. [S8]

Time reversal invariance thus requires (≠1)m+n
W

ú
m,n = Wm,n. When m + n is even, Wm,n needs to be real, while when m + n

is odd, Wm,n is imaginary.

A.2. Translations. Recall from Table 1 in the main text that under translations, we have

Tx : Bi æ (≠1)iy
Bi+x̂, Ty : Bi æ Bi+ŷ. [S9]

They lead to

Tx : Fh(i, m, n) æ (≠1)n
Wm,nB

†
i+x̂ei,i+mx̂+nŷBi+(m+1)x̂+nŷ = Fh(i + x̂, m, n),

Ty : Fh(i, m, n) æ Fh(i + ŷ, m, n).
[S10]

In the equations above we have used

(≠1)n
ei,i+mx̂+nŷ = ei+x̂,i+(m+1)x̂+nŷ, ei,i+mx̂+nŷ = ei+ŷ,i+mx̂+(n+1)ŷ.

A.3. Parities. Under parities, we have

Px : B(ix,iy) æ (≠1)ix
B(≠ix,iy), Py : B(ix,iy) æ (≠1)iy

B(ix,≠iy). [S11]

They lead to

Px : Fh((ix, iy), m, n) æ (≠1)m
Wm,nB

†
(≠ix,iy)

ei,i+mx̂+nŷB(≠ix≠m,iy+n)

= (≠1)m
e(ix,iy),(ix+m,iy+n)

e(≠ix,iy),(≠ix≠m,iy+n)

Fh((≠ix, iy), ≠m, n)

= Fh((≠ix, iy), ≠m, n).
Py : Fh((ix, iy), m, n) æ Fh((ix, ≠iy), m, ≠n).

[S12]
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A.4. Reflection. Finally we look at the reflection Pxy:

Pxy : B(ix,iy) æ (≠1)ixiy
B(iy,ix). [S13]

The hopping terms transform as

Fh((ix, iy), m, n) æ (≠1)nix+miy+mn
e(ix,iy),(ix+m,iy+n)

e(iy,ix),(iy+n,ix+m)

Fh((iy, ix), n, m)

= (≠1)nix+miy+mn

C
m≠1Ÿ

k=0

e(ix+k,iy),(ix+k+1,iy )
e(iy+n,i+x+k),(iy+n,i+x+k+1)

D

◊

C
n≠1Ÿ

l=0

e(ix+m,iy+l),(ix+m,iy+l+1)

e(iy+l,ix),(iy+l+1,ix)

D
Fh((iy, ix), n, m)

= (≠1)nix+miy+mn(≠1)m(iy+n)(≠1)n(ix+m)Fh((iy, ix), n, m)
= (≠1)mnFh((iy, ix), n, m).

[S14]

Hence when m, n are both odd such that (≠1)mn = ≠1, the hopping is not allowed.
A contour plot of the dispersion for Eq. 16 with 3 additional hopping terms is shown in Fig. S2 near Q+.

B. Low-energy fields and order parameters. We expand the boson fields in terms of eigenmodes at the 8 minima as in Eq. 19.
The symmetry transformations of these fields are summarized in Table S1, which generalizes Table 2.

Sym. Bas– æ
q

a,sÕ,–Õ ca,sÕ,–Õ Ba,sÕ,–Õ

Tx Bas– æ Bas̄–e≠iQx
s– ,

Ty Bas– æ Bas–e≠iQy
s–

Px Bas,T/B ¡ Bas,T/B , Bas,L/R ¡ Bas,R/L

Py Bas,T/B ¡ Bas,B/T , Bas,L/R ¡ Bas,L/R

Pxy Ba±T ¡ fR(Ba+R ± Ba≠R), Ba±B ¡ fL(Ba+L ± Ba≠L)
Ba±R æ fT (Ba+T ± Ba≠T ), Ba±L æ fB(Ba+B ± Ba≠B)

T Bas,T/B ¡ Bas,B/T , Bas,L/R ¡ Bas,R/L

Table S1. Transformations of the low-energy fields at incommensurate minima under symmetries. For Tx, we have defined +̄ = ≠ and ≠̄ = +.
The parameter v is a function of r, w1, w2, w3, and is defined near equation Eq. (19). This generalizes Table 2.

We can further compose the charge density wave order parameters using the low-energy fields:

fl(fi,0)+Q =
ÿ

a

ÿ

s

ÿ

–,—

s(f–f—)1/2
B

†
as–Bas— ”(q– ≠ q— ≠ Q),

fl(0,fi)+Q =
ÿ

a

ÿ

s

ÿ

–,—

(f–f—)1/2
B

†
as–Bas̄— ”(q– ≠ q— ≠ Q),

fl(0,0)+Q =
ÿ

a

ÿ

s

ÿ

–,—

(f–f—)1/2
B

†
as–Bas— ”(q– ≠ q— ≠ Q).

[S15]

Here QR/L = (±q, 0), QT/B = (0, ±q), and the f– factors are chosen to ensure a nice-looking Pxy transformation law. The

sym. fl(kx,ky )+Q DQ �Q

Tx eikx eiQx fl(kx,ky )+Q ≠eiQx DQ eiQx �Q

Ty eiky eiQy fl(kx,ky )+Q ≠eiQy DQ eiQy �Q

Px fl(kx,ky )+Px·Q DPx·Q �Px·Q

Py fl(kx,ky )+Py ·Q DPy ·Q �Py ·Q

Pxy fl(ky ,kx)+Pxy ·Q ≠DPxy ·Q ≠�Pxy ·Q

T fl(kx,ky )≠Q ≠D≠Q �≠Q

Table S2. Symmetry transformations of the incommensurate order parameters. We have defined Px · Q = (≠Qx, Qy), Py · Q =
(Qx, ≠Qy), Pxy · Q = (Qy , Qx). (kx, ky) can take values (0, 0), (fi, 0), (0, fi). This table generalizes that in Table 3.
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Fig. S2. Dispersion of Eq. 16 for w1 = 1, w2 = 0.2, w3 = 0 (left) and w3 = 0.005 (right), near Q+. When w3 is non-zero, the ring degeneracy splits into four minima in
the axial directions.
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d-density wave is
DQ = i

ÿ

a

ÿ

–,—

(f–f—)1/2
!
B

†
a+–

Ba≠— ≠ B
†
a≠–

Ba+—

"
”(q– ≠ q— ≠ Q). [S16]

The d-wave superconducting order parameter is

� =
ÿ

a,b

Áab

#
(fLfR)1/2(Ba+LBb≠R + Ba+RBb≠L) + (fT fB)1/2(Ba+T Bb≠B + Ba+BBb≠T )

$
. [S17]

� is invariant under translations. We can easily construct pair density waves as well, in general

�Q =
ÿ

a,b

Áab

ÿ

–,—

(f–f—)1/2
Ba+–Bb≠— ”(q– + q— ≠ Q). [S18]

When Q = 0, the expression reduces to Eq. (S17). The transformation laws of these order parameters are shown in Table S2,
which generalizes Table 3.

C. Quartic terms. Using Table S2, we can find the following symmetry allowed quartic terms, generalizing those in Eq. 14:

V(B) = v0|fl(0,0)|2 + v1(|fl(fi,0)|2 + |fl(0,fi)|2) + d1|D0|2 + r1|�|2

+ v2

#
|fl(fi,0)+(2q,0)|2 + |fl(fi,0)≠(2q,0)|2 + |fl(0,fi)+(0,2q)|2 + |fl(0,fi)≠(0,2q)|2

$

+ v3

#
|fl(fi,0)+(0,2q)|2 + |fl(fi,0)≠(0,2q)|2 + |fl(0,fi)+(2q,0)|2 + |fl(0,fi)≠(2q,0)|2

$

+ v4

#
|fl(fi,0)+(q,q)|2 + |fl(fi,0)+(≠q,q)|2 + |fl(fi,0)+(q,≠q)|2 + |fl(fi,0)≠(q,q)|2

+ |fl(0,fi)+(q,q)|2 + |fl(0,fi)+(≠q,q)|2 + |fl(0,fi)+(q,≠q)|2 + |fl(0,fi)≠(q,q)|2
$

+ v5

#
fl(fi,0)+(2q,0)fl(fi,0)≠(2q,0) + fl(0,fi)+(0,2q)fl(0,fi)≠(0,2q) + fl(fi,0)+(0,2q)fl(fi,0)≠(0,2q) + fl(0,fi)+(2q,0)fl(0,fi)≠(2q,0)

$

+ v6

#
fl(fi,0)+(q,q)fl(fi,0)≠(q,q) + fl(fi,0)+(≠q,q)fl(fi,0)+(q,≠q) + fl(0,fi)+(q,q)fl(0,fi)≠(q,q) + fl(0,fi)+(q,≠q)fl(0,fi)+(≠q,q)

$

+ v7

#
|fl(0,0)+(2q,0)|2 + |fl(0,0)≠(2q,0)|2 + |fl(0,0)+(0,2q)|2 + |fl(0,0)≠(0,2q)|2

$

+ v8

#
|fl(0,0)+(q,q)|2 + |fl(0,0)≠(q,q)|2 + |fl(0,0)+(q,≠q)|2 + |fl(0,0)+(≠q,q)|2

$

+ v9

#
fl(0,0)+(2q,0)fl(0,0)≠(2q,0) + fl(0,0)+(0,2q)fl(0,0)≠(0,2q)

$

+ v10

#
fl(0,0)+(q,q)fl(0,0)≠(q,q) + fl(0,0)+(≠q,q)fl(0,0)+(q,≠q)

$

+ d2

#
|D(2q,0)|2 + |D(≠2q,0)|2 + |D(0,2q)|2 + |D(0,≠2q)|2

$

+ d3

#
|D(q,q)|2 + |D(≠q,q)|2 + |D(q,≠q)|2 + |D(≠q,≠q)|2

$

+ d4

#
D(2q,0)D(≠2q,0) + D(0,2q)D(0,≠2q)

$

+ d5

#
D(q,q)D(≠q,≠q) + D(q,≠q)D(≠q,q)

$

+ r2

#
|�(2q,0)|2 + |�(≠2q,0)|2 + |�(0,2q)|2 + |�(0,≠2q)|2

$

+ r3

#
|�(q,q)|2 + |�(≠q,q)|2 + |�(q,≠q)|2 + |�(≠q,≠q)|2

$

+ r4

#
�(2q,0)�(≠2q,0) + �(0,2q)�(0,≠2q) + h.c.

$

+ r5

#
�(q,q)�(≠q,≠q) + �(q,≠q)�(≠q,q) + h.c.

$

3. Effective action for chargons

In the main text, we consider a general e�ective action for the chargons Bi, demonstrating a large class of ordered phases that
can be accessed at mean-field level by tuning di�erent coupling constants. In a full theory of electrons, chargons, and spinons,
this e�ective action can be obtained by integrating out the electrons and spinons. In this appendix, we present some details of
the e�ective action. Consideration of only this one-loop contribution is exact in the large-N limit, where N is the number of
species of electrons and spinons (N = 2 for the physical case).

We start with the theory defined by Hs + Hcg + Hfg in Eqs. 2, S1, and S2 and integrate out the fermions c–, g–, and f– to
obtain an e�ective action for the chargons B. We will work with case with only couplings between neighboring layers, and so
take –1 = 1, –2 = 0. The resulting partition function will take the general form

Z =
ˆ Ÿ

i

DBie
≠Sb

Sb =
ˆ

—

0

d·

ÿ

i

!
a Tr B†

i
ˆ· Bi + b Tr B†

i
ˆ

2

· Bi + . . .

"
+

ÿ

ij

Tr B†
i
VijBj + V

!
B , B†" [S19]
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where V includes higher-order interactions, and we supress higher derivative terms in · . Gauge invariance requires Vij Ã vij1,
in which case the quadratic action is the same for the complex fields B1 , B2.

In order to intergrate out the fermionic fields, we perform a Fourier transform. With this, we can write the action for the f

fermions

Sf = 1
—

ÿ

Ên

ˆ
dk

(2fi)2

!
f

†
–(≠k) f

†
–(≠(k + Q))

" 3
iÊn ≠ J sin kx ≠J sin ky

≠J sin ky iÊn + J sin kx

4 3
f–(k)

f–(k + Q)

4

[S20]

where the integration extends over the reduced Brillouin zone, ≠fi < ky < fi, ≠ fi

2
< kx <

fi

2
, and Q = (fi , 0). A similar

decomposition exists for Sc ,g, but o�-diagonal terms connecting states of di�erent momenta aren’t present. This structure of
the hoppings for Sf means that the e�ective action for B will have a similar structure in momentum space.

The one-loop expression for the ÈB†
1
(≠k , Ên)B1(k , Ên)Í and ÈB†

1
(≠k , ≠Ên)B1(k + Q , Ên)Í correlators are given by

ÈB†
1
(≠k , ≠Ên)B1(k , Ên)Í = ≠–

2

1

—

ˆ
dq

(2fi)2

ÿ

Êm

Èg†
–(≠q , ≠Êm)g–(q , Êm)Í

◊ Èf–(q + k , Êm + Ên)f†
–(≠q ≠ k , ≠Êm ≠ Ên)Í

ÈB†
1
(≠k , ≠Ên)B1(k + Q , Ên)Í = ≠–

2

1

—

ˆ
dq

(2fi)2

ÿ

Êm

Èg†
–(≠q , ≠Êm)g–(q , Êm)Í

◊ Èf–(q + k , Êm + Ên)f†
–(≠q ≠ k ≠ Q , ≠Êm ≠ Ên)Í

[S21]

where the f correlators are given by the diagonal and o�-diagonal components of the inverse of the 2 ◊ 2 matrix in Eq. S20.
3

iÊn ≠ J sin kx ≠J sin ky

≠J sin ky iÊn + J sin kx

4≠1

= ≠ 1
Ê

2
n + J2(sin2

kx + sin2
ky)

3
iÊn + J sin kx J sin ky

J sin ky iÊn ≠ J sin kx

4
.

[S22]

Calculating these correlators for B1 gives a 2 ◊ 2 matrix for the self-energy, which we then need to invert in order to recover
the quadratic part of the e�ective action:

SB =
ˆ

—

0

d·

ˆ
dk

(2fi)2

!
B

†
1
(≠k , ≠Ên) B

†
1
(≠k ≠ Q , ≠Ên)

" 3
�aa �ab

�ba �bb

4≠1 3
B1(k , Ên)

B1(k + Q , Ên)

4

+ (B1 ¡ B2)

�aa(k, Ên) = ≠2–
2

1

—

ˆ
dq

(2fi)2

ÿ

Êm

1
i(≠Ên ≠ Êm) ≠ ‘f (≠k ≠ q) ≠ �2Gc(≠iÊn ≠ iÊm , ≠k ≠ q)

iÊm + J sin qx

Ê
2
m + J2(sin2

qx + sin2
qy)

�ab(k, Ên) = ≠2–
2

1

—

ˆ
dq

(2fi)2

ÿ

Êm

1
i(≠Ên ≠ Êm) ≠ ‘f (≠k ≠ q) ≠ �2Gc(≠iÊn ≠ iÊm , ≠k ≠ q)

J sin qy

Ê
2
m + J2(sin2

qx + sin2
qy)

�ba = �ú
ab

�bb = �aa(k + Q, Ên)

[S23]

The g propagators are determined by their free dispersion ‘f and the hybridization � with the physical electron propagator Gc,
for which we take to be the bare value

Gc(iÊn, q) = 1
iÊn ≠ ‘c(q) . [S24]

By analyzing the e�ective action �≠1 as a function of k at Ên = 0, we can extract out the various local hopping terms via a
decomposition into Fourier components. Furthermore, the iÊn dependency at zero momentum gives insight on the relative
magnitude of the linear and quadratic time derivative terms in the e�ective action.

A. Results. We compute the one-loop e�ective action using the dispersion for the first ancilla layer given in Ref. (4). Starting
from the physical electron dispersion fitted from ARPES data in the overdoped regime,

‘c(q) = ≠2t(cos qx + cos qy) ≠ 4t
Õ cos qx cos qy ≠ 2t

ÕÕ(cos 2qx + cos 2qy) ≠ 2t
ÕÕÕ(cos 2qx cos qy + cos 2qy cos qx) ≠ µc [S25]

with parameters (in units of eV), t = 0.22 , t
Õ = 0.034 , t

ÕÕ = 0.036 , t
ÕÕÕ = ≠0.007 , µc = ≠0.24.

The dispersion on the first ancilla layer is chosen as in Ref. (4) to best reproduce pseudogap ARPES data,

‘f (q) = 2t1(cos qx + cos qy) + 4t
Õ
1 cos qx cos qy + 2t

ÕÕ
1 (cos 2qx + cos 2qy) ≠ µf [S26]
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with t1 = 0.1 , t
Õ
1 = ≠0.03 , t

ÕÕ
1 = ≠0.01 , µf = 0.009 . We first analyze the spatial dependence of the generated hoppings, setting

— = 10, –1 = J = 1, and �2 = 0.2. The magnitude of –1 sets the overall energy scale of the e�ective action.
By decomposing the Fourier modes into its components, we can extract the magnitude of the hoppings. For the nearest-

neighbor hoppings, we verify that these have precisely the structure in Eq. 8. The further neighbor hoppings are as in Eq. 15.
These coe�cients are shown in Table S3. The nearest-neighbor hopping is most prominent, with longer-range hoppings smaller
by several orders of magnitude. The minima in the dispersion still remain at the commensurate points (fi/2, ±fi/2).

Table S3. Coefficients of the various local hopping terms, generated by the one-loop action. Notation F(i, n, m) refers to the hoppings n
sites in the x-direction and m sites in the y-direction. All symmetry-related hoppings are also present, with the expected magnitude.

Hopping Magnitude

F(i, 0, 1) 1.771
F(i, 0, 2) ≠0.03
F(i, 1, 2) ≠0.028
F(i, 2, 2) ≠0.002
F(i, 3, 2) 0.002

Fig. S3. The linear and quadratic time derivative coefficients of the effective chargon action generated by the one-loop process of integrating out the electrons and spinons.

The coe�cient of the linear and quadratic time derivative terms are deduced by analyzing the real and imaginary components
of �≠1(0, iÊn) at the zeroth and first Matsubara frequencies. We calculate these terms for a range of temperatures from
10 6 —J‹ 6 80 and extrapolate down to zero temperature with a quadratic fit, shown in Fig. S3. We also plot the dependence
of the coe�cients on J , the energy scale of the spin liquid. All plots are with �2 = 0.2.

4. From the lattice to the continuum, for two dispersion minima

The lattice theory in Eq. 10 can be mapped to the continuum theory in Eq. 14, by taking the long-wavelength limit of the
expressions in Eq. 9 and comparing them with Eq. 13. In this manner, we obtain the following correspondences

1
N

ÿ

i

fli (fli+x̂ + fli+ŷ) ∆ 8(1 +
Ô

2)2
fl

2

(0,0)

1
N

ÿ

ÈijÍ

Q
2

ij ∆ 4(1 +
Ô

2)2
!
fl

2

(0 ,fi) + fl
2

(fi ,0) + fl
2

(0 ,0)

"

1
N

ÿ

ÈijÍ

J
2

ij ∆ 4(1 +
Ô

2)2
D

2

1
N

ÿ

ÈijÍ

|�ij |2 ∆ 16(1 +
Ô

2)2�2

[S27]

5. Staggered flux spin liquid

In our analysis in the main text, we take our spinons to form a SU(2) fi-flux spin liquid. This assumption imposes constraints
on the e�ective chargon action, leading to two degenerate minima and a low energy theory with Nb = 2 flavors of bosons
carrying fundamental SU(2) gauge charge. It is possible that the SU(2) fi-flux phase competes with a proximate U(1) staggered
flux phase, which has previously been employed to characterize the psuedogap metal (7–9). The transition between the fi-flux
and staggered flux phase can be described by the condensation of an electromagnetic-charge neutral SU(2) adjoint Higgs field
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coupled to a suitably chosen spinon bilinear. The form of this bilinear is dictated by the projective symmetry group (PSG)
of the resulting staggered flux phase, and has been derived in prior works (10–12) - for our purposes, the relevant result of
this analysis is the projective transformations of the adjoint Higgs field which was denoted �̨3, where the vector denotes an
adjoint SU(2) gauge index. In the gauge used in the main text, �̨3 is odd under Tx, Ty, Pxy and even under Px, Py. In order
to implement time-reversal in a manner consistent with the main text, �x ,z are odd under T and �y is even - we omit the
gauge transformation U = i·

y often used in order to simplify the action of T .
If we consider fluctuations of this Higgs field in the fi-flux phase, there exist symmetry-allowed couplings between it and the

low-energy chargons B±. The form of the allowed coupling is dictated by the aforementioned projective transformations of �̨3,
as well as gauge invariance - the latter requires �̨3 to couple to an SU(2) adjoint chargon bilinear of the form B

†
a·̨abBb, where

·̨ are the Pauli matrices in the SU(2) gauge space. To match the projective transformations of �̨3, we have a single allowed
coupling with coe�cient w,

iw �̨3 ·
#
B

†
a+

·̨
ab

B
b≠ ≠ B

†
a≠·̨

ab
B

b+

$
. [S28]

There is also a Higgs potential Vs(�̨3) which controls the nature of the spin liquid. In the body of the paper, we have
assumed that �̨3 is not condensed, placing us in the SU(2) fi-flux spin liquid. When �̨3 condenses, we realize the U(1) staggered
flux spin liquid: now the coupling in Eq. S28 acts as a mass term for the chargons, lifting the degeneracy of the B± modes. We
assume w > 0 and pick a gauge where È�aÍ Ã ”

az, È�zÍ > 0. In this case, we have low-energy chargons

B̄1 = B1+ + iB1≠

B̄2 = B2+ ≠ iB2≠ [S29]

which carry opposite gauge charges under the unbroken gauge U(1) of the staggered flux spin liquid. Suppressing the higher
energy chargons associated with the orthogonal combinations, we can invert (S29) to write

B1+ = 1
2 B̄1 , B1≠ = ≠ i

2 B̄1

B2+ = 1
2 B̄2 , B2≠ = i

2 B̄2 [S30]

Inserting (S30) into Eq. 13 we obtain

x-CDW : fl(fi,0) = 0
y-CDW : fl(0,fi) = 0

d-density wave : D = 1
2

!
B̄

ú
1 B̄1 ≠ B̄

ú
2 B̄2

"

d-wave superconductor : � = i

2 B̄1B̄2 . [S31]

It follows that the condensation of B̄1,2 can lead to d-density wave order or d-wave superconductivity, which combine to form a
SO(3)b order parameter (7–9). However, period-2 stripe order is not a possible outcome for the Higgs condensate from the U(1)
staggered flux spin liquid, in contrast to the SU(2) fi-flux spin liquid. The degeneracy between d-density wave and d-wave
superconductivity is broken by terms quartic in the B̄.
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