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The superconducting state and mechanism are among the least understood phenomena in twisted
graphene systems. For instance, recent tunneling experiments indicate a transition between nodal
and gapped pairing with electron filling, which is not naturally understood within current theory.
We demonstrate that the coexistence of superconductivity and flavor polarization leads to pairing
channels that are guaranteed by symmetry to be entirely band-off-diagonal, with a variety of unusual
consequences: most notably, the pairing invariant under all symmetries can have protected nodal
lines or be fully gapped, depending on parameters, and the band-off-diagonal chiral d-wave state
exhibits transitions between gapped and nodal regions upon varying the chemical potential. We
demonstrate that nodal band-off-diagonal pairing can be the leading state when only phonons are
considered, and is also uniquely favored by fluctuations of a time-reversal-symmetric intervalley-
coherent order motivated by recent experiments. Consequently, band-off-diagonal superconductivity
allows for the reconciliation of several key experimental observations in graphene moiré systems.

I. INTRODUCTION

The fascinating physics [1, 2] of correlated graphene
moiré superlattices, such as twisted bilayer (TBG) and
twisted trilayer graphene (TTG), has generated extensive
efforts to uncover the mysteries of their phase diagrams.
Much progress has been made towards understanding
their normal-state physics, including the correlated in-
sulating phases [3–18], and the reset behavior [19, 20],
which is believed to be associated with the onset of fla-
vor polarization, appears in the same density range of and
can coexist with superconductivity [13, 19–34]. However,
the form and symmetry of the superconducting order pa-
rameter and the pairing glue are still unknown, despite
significant theoretical efforts [27–30, 33, 35–47].

Tunneling conductance measurements taken within the
superconducting state reveal V-shaped density of states
(DOS) [48, 49] which can become U-shaped at other elec-
tron concentrations [49]. Setting aside the possibility of
thermal fluctuations as origin [50], this implies a transi-
tion from nodal to fully gapped superconductivity. For
a consistent microscopic theoretical understanding, this
provides the following challenges: (i) electron-phonon
coupling—a widely discussed [33, 35–40] pairing mech-
anism in TBG and TTG—will typically mediate an en-
tirely attractive interaction in the Cooper channel, with
leading pairing state that transforms trivially under all
symmetries and is thus fully gapped [51, 52]. (ii) Even
when the low-energy interactions favor an irreducible pre-
sentation (IR), e.g., E of C3, with nodal basis functions
(p- or d-wave), the generically fully gapped chiral configu-
ration wins over the nodal nematic one within mean-field.
(iii) Even if we assume that the nodal state is energeti-
cally favored, e.g., due to significant corrections beyond
mean-field [27, 53–55], one is still left to explain why there
is a transition to another, fully gapped superconductor
upon changing the filling.

In this work, we show that the combination of flavor
polarization and the representations of the symmetries in
the flat bands of TBG and TTG allow for pairing chan-
nels that are completely off-diagonal in the flat bands and
that such band-off-diagonal states can naturally reconcile
all three key challenges (i-iii). More specifically, we find
two distinct band-off-diagonal states: one of them trans-
forms under the trivial representation A of the system’s
point group C6 (or one of A1,2 of D6 if we set the displace-
ment field to zero) but will nonetheless have a symmetry-
protected nodal lines, akin to Bogoliubov Fermi surfaces
discussed in [56, 57]. The second off-diagonal state trans-
forms under a two-dimensional IR (E2 of C6). Its associ-
ated chiral state, E2(1, i), which is favored in mean-field
over the nematic one, has the unique property of exhibit-
ing nodal lines or being fully gapped depending on the
filling fraction, even when the order parameter is kept
fixed. We supplement our general symmetry arguments
and phenomenological models with Hartree-Fock (HF)
calculations on the continuum model, studying a vari-
ety of different pairing mechanisms. We find that nodal
band-off-diagonal pairing is favored by the optical A1 and
B1 phonon modes and by fluctuations of a time-reversal
symmetric intervalley coherent (T-IVC) state (the T-IVC
state has Kekulé order on the graphene scale [58–60]).
Evidence for the former has been provided by recent pho-
toemission experiments [61] while evidence for the latter
has been provided by recent STM experiments [7]. Fur-
thermore, also fluctuations of a time-reversal-symmetric
sublattice polarized state (SLP+) are attractive in the
band-off-diagonal channel. We also show when fluctua-
tions of both the strong coupling T-IVC ground state and
of a nematic, time-reversal symmetric IVC order [62] are
present, the leading instability is either our A2 state or
an E1 state which may also be nodal, with the winner
being determined by the relative amount of nematic IVC
and T-IVC fluctuations.
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II. RESULTS

A. Possible pairing states

Let us begin by classifying the superconducting insta-
bilities in graphene moiré systems in the limit where the
low-energy bands are spin polarized but allowing for mul-
tiple bands. We denote the spinless low-energy fermionic
creation operators by ck,↵,⌘ with momentum k in valley
⌘ = ±, and of band index ↵ labeling the upper (↵ = +)
and lower (↵ = �) quasi-flat bands. As a result of two-
fold rotational symmetry, C2z, along the out-of-plane
(z) direction or effective spinless time-reversal symme-
try, ⇥, the non-interacting band structure ⇠k,↵,⌘ obeys
⇠k,↵,⌘ = ⇠�k,↵,�⌘ ⌘ ⇠⌘·k,↵ and intervalley pairing is ex-
pected to dominate. A general pairing order parameter
in the inter-valley channel couples as

Hp =
X

k,⌘=±,↵,↵0

c†k,↵,⌘ (�k,⌘)↵,↵0 c†�k,↵0,�⌘ + H.c., (1)

where the order parameter �k,⌘ = ��T
�k,�⌘ is a ma-

trix in band space. The physical spin texture of the su-
perconductor is entirely determined by the form of the
underlying normal state’s polarization: if the spins are
aligned in the two valleys, the superconductor is a non-
unitary triplet, while anti-alignment [24, 28] leads to a
singlet-triplet admixed state [13, 27, 28]. We here focus
on aligned spins for simplicity.

We will classify the pairing states according to the irre-
ducible representations (IRs) of the system’s point group
D6, which is generated by six-fold rotations (C6z) along
the z axis and two-fold rotation symmetry (C2x) along
the in-plane x axis. Note a displacement field (D0 6= 0)
breaks the in-plane rotations leading to the point group
C6. Importantly, all IRs of D6 and C6 are either even or
odd under C2z. Choosing the phases of the Bloch states
such that C2z acts as ck,↵,⌘ ! c�k,↵,�⌘, it holds

C2z : �k,⌘ �! ��k,�⌘ = ��T
k,⌘. (2)

This immediately implies that the pairing states in all
IRs even under C2z (A1, A2, E2 of D6) must be anti-
symmetric in band space and, thus, entirely band off-
diagonal, whereas the order parameters of the other
IRs (B1, B2, E1) are symmetric and can contain both
band-diagonal and band-off-diagonal components. While
superconducting order parameters with finite band-off-
diagonal components are rather common in multi-band
systems, the existence of pairing states that are con-
strained to be entirely band-off-diagonal is rather unique
and follows from the combination of C2z symmetry and
the spin polarization in the normal state. Note that this
observation is consistent with the classification in Ref. 27
where all C2z-even intraband pairings were found to have
no triplet component. In conventional dispersive multi-
band systems, one would expect these purely inter-band

TABLE I: Summary of pairing states in spin-polarized flat
bands. Here �k (�̂k) is a real-valued (real and symmetric)
MBZ-periodic function invariant under C3z. Furthermore,
Xk and Yk (X̂k and Ŷk) transform as x and y under D3,
generated by C3z and C2x, while also being real (and
symmetric). The third column indicates the type of nodes
on a generic Fermi surface for sufficiently small/large
order-parameter magnitudes and the last column shows
which states merge when D0 6= 0, reducing the point group
from D6 to C6.

IR of D6 �k,⌘ = �
T
�k,�⌘ nodes IR of C6

A1 �y�⌘·k, �C2xk = ��k line/point A

A2 �y�⌘·k, �C2xk = �k line/none A

E2(1, 0) �yX⌘·k line/point E2(1, 0)

E2(0, 1) �yY⌘·k line/point E2(1, 0)

E2(1, i) �y (X⌘·k + i Y⌘·k) line/none E2(1, i)

B1 ⌘�̂⌘·k, �z�̂C2xk�z = �̂k none B

B2 ⌘�̂⌘·k, �z�̂C2xk�z = ��̂k point B

E1(1, 0) ⌘X̂⌘·k point E1(1, 0)

E1(0, 1) ⌘Ŷ⌘·k point E1(1, 0)

E1(1, i) ⌘

⇣
X̂⌘·k + iŶ⌘·k

⌘
none E1(1, i)

states to be suppressed; however, graphene moiré sys-
tems have almost flat bands where the bandwidth can
be comparable or smaller than the interactions scale and
the associated energy penalty can be overcompensated,
as we will demonstrate explicitly below.

Choosing the phase conventions of the Bloch states
such that C2x and C3z act as ck,↵,⌘ ! �zc(kx,�ky),↵,⌘ and
ck,↵,⌘ ! cC3zk,↵,⌘, respectively, the resulting candidate
order parameters are summarized in Table I. Note that
a momentum-independent representation of C2x must be
�z due to the band’s eigenvalues at the �-M line, which
in turn is connected to the topological obstruction of the
flat bands [63]. The reality (Hermiticity) constraint in
Table I on �, X, and Y (�̂, X̂, and Ŷ ) comes from the
residual spinless time-reversal symmetry ⇥ of the normal
state [64, 65]. The two two-dimensional IRs E1,2 are each
associated with three pairing states—two nematic phases
E1,2(1, 0), E1,2(0, 1) and one chiral state E1,2(1, i).

B. Spectral properties

We here have the rather unique situation that there
are pairing channels, associated with the IRs A1,2 and
E2, where the pairing is constrained by C2z to be en-
tirely band off-diagonal. One immediate very unusual
consequence is that the superconducting order param-
eter transforming under the trivial representation (A1)
has a symmetry-imposed line of zeros along the �-
M line. This is related to the topology-induced non-
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trivial representation of C2x in band space. We re-
fer to Ref. 39 for the discussion of other topological
nodal points for pairing in obstructed TBG bands. As
we will show next, band-off-diagonal pairing leads to
additional unusual spectral properties with far reach-
ing consequences for graphene moiré systems. To this
end, consider the following effective Hamiltonian, H�y =P

k c†k,↵,⌘ck,↵,⌘⇠⌘·k,↵+
P

k[�k c†k,+�yc
†
�k,�+H.c.], where

the scalar function �k describes the form of pairing. We
will here study two cases which are conventionally consid-
ered to be fully gapped, (i) a momentum-independent “s-
wave state” (A2 pairing in Table I) where �k = �0 and
(ii) a “chiral d-wave” state, or more precisely an E2(1, i)
state, where �k = �0(Xk + iYk) with (Xk, Yk) being
smooth, MBZ-periodic functions transforming as (x, y)
under C3z. Furthermore, we parameterize the dispersion,
⇠⌘·k,↵, of the two flat bands (↵ = ±) in valley ⌘ = ± as
⇠k,↵ = ✏k � µ + ↵ �k, where ✏k and �k are C3z (and, for
D0 = 0, C2x) symmetric functions.

The Bogoliubov spectrum of H�y has four bands, given
by ±�k ±

p
(✏k � µ)2 + |�k|2. Consequently, the excita-

tion gap at momentum k reads as

�Ek =
���|�k| �

p
(✏k � µ)2 + |�k|2

��� , (3)

which is shown in Fig. 1(a), and therefore exhibits nodes
where |�k| =

p
(✏k � µ)2 + |�k|2. As long as the band

structure has Dirac points, there are points kD in the
Brillouin zone with �kD = 0, associated with the blue
cross in Fig. 1(a). Furthermore, for a metallic nor-
mal state, µ must be within the bandwidth and, hence,
there must be a region R in momentum space where
|�k| > |✏k � µ|. For the momentum-independent A2

state, �k = �0, this implies that there exists �c
0 > 0

such that there is k⇤
2 R with parameters (such as the

blue circle) above the red solid line in Fig. 1(a) as long as
|�0| < �c

0. By continuity, this means that there must be
a nodal point on any line connecting kD and k⇤. Con-
sequently, for µ within the bandwidth and �kD = 0 for
some kD, the A2 will always have a nodal line if |�0|

is sufficiently small. We illustrate this in Fig. 1(b) us-
ing a toy model with �k = t

��1 + eia1·k + e�ia2·k
�� and

✏k = t0
P3

j=1 cosaj · k, aj = [C3z]j�1(
p

3, 0)T ; like in
single-layer graphene and twisted graphene systems, the
Dirac cones in this model occur at the K and K’ points
[see red dots in the upper right panel in Fig. 1(b)]. This
leads to the first unexpected conclusion that, for any pair-
ing mechanism, including conventional electron-phonon
coupling, the leading instability either has nodal lines in
a finite region below Tc or transforms non-trivially under
the symmetries of the normal state. For electron-phonon
pairing (or pairing mediated by the fluctuations of any
time-reversal-symmetric order parameter [52], such as
the T-IVC state) this is particularly unexpected since it
is generally believed to always lead to a fully gapped state
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FIG. 1: Spectral properties of interband pairing. (a) k-local
gap of interband superconductivity according to Eq. (3),
where the red line indicates nodal points. If the band
structure has Dirac points, there will be a point on the
horizontal axis (blue cross). Consequently, if there is another
momentum point located above the red line (blue circle),
continuity of the Hamiltonian implies a nodal point on any
path connecting the two momenta. (b) Gap of the isotropic
A2 state and �k, ✏k (zeros indicated in red) for the
normal-state toy model defined in the text. (c) Complex
phase 'k = arg(Xk + iYk) for leading basis function with
small subleading corrections. (d) Shows the gap of the chiral
d-wave E2(1, i) state with �0 = 1.5t and the value of
Dkj := |�kj |� |✏kj � µ| for kj at the three
symmetry-in-equivalent vortices in (c) as a function of µ.
We took t

0
= �2.2t, t > 0, in (b,d).

that transforms trivially under all symmetries. In fact,
this can be proven in general terms [51, 52], even for spin-
orbit-split Fermi surfaces and beyond mean-field theory
[52]. The crucial difference to these works, however, is
that spinful time-reversal is broken in our case such that
the Fermi-Dirac constraint is inconsistent with a non-
sign-changing, band-diagonal pairing state. This leads
to the unique situation that although electron-phonon
coupling will lead to entirely attractive interactions in
the Cooper channel, the superconducting energetics is
frustrated: the dominant pairing state is determined by
whether the energetic loss due to non-resonant band-off-
diagonal Cooper pairs (A2 pairing) or the costs from sign
changes of the order parameter (such as B1) are less
harmful. We will demonstrate this explicitly by a model
calculation in Sec. II E below, where either A2 or B1 is
dominant, depending on the form of the electron phonon
coupling.

Let us first, however, discuss the general spectral prop-
erties of the “chiral d-wave” state which is canonically ex-
pected to be fully gapped as long as the Fermi surfaces
do not cross the zeros of Xk + iYk. Three of these zeros
have to be at the �, K, and K 0 points as a consequence
of C3z symmetry. In the absence of fine-tuning, Xk + iYk
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will have vortices at these points with the lowest possi-
ble vorticity v = +1 (note that v = �1 is inconsistent
with C3z). As can be seen in Fig. 1(c), where we show
the phase of Xk + iYk using an admixture of the two
lowest-order terms, the net vorticity of +3 at these high-
symmetry points has to be compensated by anti-vortices
at generic momenta. The lowest possible number is three
C3z-related vortices, which appear near the M points in
Fig. 1(c). If it holds |�k| > |✏k � µ| at any of these
zeros k = kj , we obtain a point above the red line in
Fig. 1(a) and, thus, a nodal point along any contour be-
tween that kj and kD; as opposed to the A2 state, this
holds irrespective of the value of �0 and therefore all the
way to zero temperature. In summary, we find that also
the E2(1, i) “chiral d-wave” state is not generically fully
gapped but instead will exhibit a nodal line encircling any
zero kj of Xk + iYk with |�kj | > |✏kj � µ|. This leads
to an interesting filling dependence of the superconduct-
ing gap, as we illustrate in our toy model in Fig. 1(d)
along with the criterion Dkj := |�kj | � |✏kj � µ| > 0
evaluated at the vortices at �, K/K’, and near M. De-
pending on µ, Dk is positive only near the � point or
only in a region surrounding the vortices close to the M
points, leading to nodal lines encircling � and near the
M points, respectively, as shown in the inset of Fig. 1(d).
These regimes are separated by a fully gapped region
where Dk < 0 for all k, which could naturally explain
the fully gapped to nodal transition seen in tunneling ex-
periments [49] when the filling fraction is changed. Note
that Dkj = �|✏kj �µ|  0 for kj at the K and K’ points.
In Fig. 1(d), DK = DK0 vanishes close to the top of the
band, which simply means that the Fermi surfaces cross
the K, K’ points and the superconductor has nodal points
for this fine-tuned value of the chemical potential.

C. Fluctuation-induced pairing

Having discussed the unique energetics of pairing and
spectral properties of the resulting superconductors in
spin-polarized quasi-flat-bands with Dirac cones on a
general level, we next study these aspects more explicitly
by solving the superconducting self-consistency equations
in the flat bands common to alternating-twist graphene
systems. We will start with pairing induced by fluc-
tuations of a nearby symmetry-broken phase. To this
end, we will couple the low-energy electrons introduced
in Eq. (1) to a collective bosonic field �j(q) = �†j(�q)
via

H� =
X

k,q,j

c†k+q,↵,⌘�
j
↵,⌘;↵0,⌘0ck,↵0,⌘0�j(q), (4)

where the Hermitian matrices �j capture the nature of
the correlated insulating phase. Both for twisted bi-
[9] and trilayer graphene [14, 15, 29], the stable phases

emerging out of the U(4)⇥U(4) [9] manifold in the chiral-
flat (decoupled) limit are natural candidates. Integrating
out the bosonic modes, we obtain an effective electronic
interaction which in the for superconductivity relevant
intervalley Cooper channel reads as

H
�
int = �

X

k,k0

�k�k0V(⌘,↵,�),(⌘0,↵0,�0)

⇥ c†�k,�,�⌘c
†
k,↵,⌘ck0,↵0,⌘0c�k0,�0,�⌘0 ,

(5)

with vertex

V(⌘,↵,�),(⌘0,↵0,�0) = t�
X

j

[�j�,⌘;�0,⌘0 ]⇤�
j
↵,⌘;↵0,⌘0 , (6)

t� = ±1 encoding whether the order parameter is even
or odd under time-reversal, ⇥�j(q)⇥† = t��j(q), and
�q > 0 denoting the (static) susceptibility of �j .

Before discussing numerical results for the full model,
we first focus on perfectly flat bands. In this limit, one
can show that the leading superconducting instability
within mean-field theory is given by the largest eigen-
value of V in Eq. (6) viewed as a matrix in the multi-index
(⌘,↵,�). Furthermore, if there is an anti-symmetric,
valley-off-diagonal matrix D obeying

[D⌘x,�
j ]�t� ⌘ D⌘x�

j
� t��

jD⌘x = 0, (7)

the associated leading superconducting order parameter
in Eq. (1) is given by (�k,⌘)↵,↵0 = �k(D⌘x)↵,⌘;↵0⌘ with
�k > 0; here ⌘j denote Pauli matrices in valley space and
the precise form of �k is determined by �(q).

D. T-IVC fluctuations

Motivated by recent experiments [7] providing direct
evidence for time-reversal symmetric intervalley coher-
ent (T-IVC) order, we start with T-IVC fluctuations as a
pairing glue. In the U(4) ⇥ U(4) symmetric limit, the
T-IVC state is associated with �j = �0⌘j , j = x, y,
within our conventions. Since t� = +1, we are look-
ing for D⌘x that commutes with �j . Interestingly, there
is a unique anti-symmetric, valley-off-diagonal matrix
D / �y⌘x with that property, implying that the lead-
ing pairing state has the form �k,⌘ = �y�k, �k > 0.
This is exactly the A2 state in Table I, which, as dis-
cussed above, will have nodal lines at least in the vicin-
ity of Tc when a finite band dispersion is taken into
account. Intuitively, the fact that A2 pairing is fa-
vored can be understood by noticing that the valley-
off-diagonal form of �j leads to an attractive interaction
across the valleys, which penalizes the B1 state which
changes sign between the two valleys. In fact, it holds
V(⌘,↵,�),(⌘0,↵0,�0) = (1 � ⌘ ⌘0)

P3
µ=0(�

⇤
µ)↵,�(�µ)↵0,�0 show-

ing explicitly that it is repulsive (attractive) in the B1

(A2) channel.
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FIG. 2: Pairing mediated by T-IVC fluctuations. We show (a) the band structure of the normal state with spin polarization
and (b) the critical temperature Tc (in units of the maximum band splitting W0 ' 9.4 meV) as a function of coupling strength
V measured in units of the critical coupling Vc,1 = 145 meV · nm2. The band structure (with color indicating the
band-projected value of the anomalous correlator) of the A2 state and its order parameter are shown in (c) and (d). The DOS
of the T = 0 superconductor for several different values of coupling strength V is plotted in (e). The DOS was computed as
DOS(!) =

P
k � (Ek � !) where in practice we replace the � function with Lorentzians with half width at half max 0.3 meV.

The critical coupling Vc,2 where the nodal lines disappear is Vc,2 ' 1.4Vc,1.

To go beyond the flat-band limit, we solve the super-
conducting mean-field equations numerically. We take
the flat TBG bands from the continuum model [66] as
the starting point. To capture the spin polarized nor-
mal state, we supplement it with Coulomb repulsion and
a perform HF calculation (see Appendix A for details).
As can be seen in the resulting band structure shown in
Fig. 2(a) for filling fraction ⌫ = 2, this not only pushes
one spin flavor below the Fermi level but also induces sig-
nificant band renormalizations. For our subsequent study
of superconducticity, we project onto the two bands at
the Fermi level and associate them with the creation op-
erators ck,↵ in the interactions in Eqs. (4) and (5). In
our numerical computations shown in Fig. 2, we choose
�(q) = 1

Am

V
↵2+|q|2/k2

✓
where Am is the real space area of

a moiré unit cell, and take ↵ = 0.2 for concreteness, al-
though we checked our main conclusion do not crucially
depend on this form. In all of our numerics, we work at
doping ⌫ = 2.5.

As expected, we indeed find that the A2 state dom-
inates in our numerical calculation, both right at the
critical temperature Tc, obtained from the linearized gap
equation, and at T = 0 as we show by iteratively solving
the full self-consistency equation (see Appendix C). One
crucial effect of the finite dispersion and splitting between
the bands is that a finite interaction strength, V > Vc,1,
is required to stabilize the superconducting phase, as can
be seen in the plot of Tc in Fig. 2(b). Superconductiv-
ity ceases to be a weak-coupling instability as the Bloch
states (k,↵, ⌘) and (�k,↵0, �⌘) are not degenerate for

↵ 6= ↵0, cutting off the logarithmic divergence known
from BCS theory. The quasi-particle spectrum and order
parameter of superconductivity from T = 0 numerics is
shown in Fig. 2(c,d). In accordance with our general dis-
cussion above, we observe that the order parameter only
has finite components proportional to �y, which do not
mix with the band-even contributions / �0,x,z as a result
of C2z symmetry. Furthermore, it does not change sign as
a function of k and, for sufficiently small V but still with
V > Vc,1, the nodal lines in the superconducting spec-
trum persist all the way to T = 0, while the nodal line is
gapped out at low T < Tc if V > Vc,2. The V -dependence
of the superconducting gap can be more clearly seen in
Fig. 2(e), where we show the DOS for the self-consistent
solution at T = 0. For large V , the superconductor be-
comes fully gapped at T = 0, leading to a U-shaped DOS.
With smaller V , the magnitude of the order parameter
decreases and the superconductor eventually exhibits a
nodal lines, as explained above. In the regime just be-
fore these nodal lines appear, the increased DOS near the
Fermi level leads to a V-shaped DOS, roughly when the
order parameter and the maximal band splitting are com-
parable. This behavior of the DOS with V offers another
natural explanation for the U-shaped tunneling conduc-
tance measurements near ⌫ = 2 and V-shaped tunneling
conductance measurements near ⌫ = 3 observed in TTG
[49]; if we are considering T-IVC fluctuations of the in-
sulator at ⌫ = 2, then it may be reasonable to expect
the coupling to these fluctuations could grow weaker as
we dope towards ⌫ = 3, in line with the experimentally
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observed ⌫ dependence. For small V & Vc,1, a peak oc-
curs at ! = 0, which is due to the Van Hove singularity
crossing the Fermi level. However, this feature is highly
dependent on the structure of the normal state, which
we approximate with HF corrections, and may not be
universal or occur at smaller values of V .

E. Electron-phonon coupling

To illustrate that the off-diagonal A2 state is more gen-
erally favored beyond just T-IVC fluctuations, we next
discuss electron-phonon coupling, which is frequently
considered as a plausible pairing mechanism for twisted
moiré systems [33, 35–39]. Similar to Ref. 35, we use that
the optical A2, B1, and E2 phonon modes are known [68]
to dominate the electron-phonon coupling in single-layer
graphene. As these are optical phonons, we further as-
sume that the impact of the interlayer coupling on the
phonons can be neglected and arrive at

HEP =

Z
dr  †

`,s(r)[gA1⇤A1uA1,µ(r) (8)

+ gB1⇤B1uB1,µ(r) + gE2⇤E2 · uE2,µ(r)](vµ)` `,s(r)

for the electron-phonon coupling. Symmetry dictates
that the vertices ⇤g are given by ⇤A1 = ⌘x⇢x, ⇤B1 =
⌘y⇢x, and ⇤E2 = (⌘z⇢y, �⇢x); for this reason, we refer
to the A1, B1 (E2) phonons as intervalley (intravalley)
phonon modes in the following. The coupling constants
obey gA1 = gB1 ' gE2 [68]. The associated displacement
operators in Eq. (8) can be expressed in the usual way in
terms of canonical bosons, bg,↵,µ,q,

(ug,µ(r))j =
X

q

bg,j,µ,qeiq·r + H.c.p
2NM!g(q)

, (9)

where j refers to the two components for the E2 phonon
(is idle for A1, B1), M is the carbon mass, and !g(q) is
the phonon dispersion, characterizing the phononic part
of the Hamiltonian, HP =

P
q !g(q)b†g,j,µ,qbg,j,µ,q. Fi-

nally, vµ in Eq. (8) encodes the (pseudo)layer-structure
of the phonon modes. In case of TBG, ` = 1, 2 refers
to the physical graphene layer and one can, in princi-
ple, choose any orthonormal basis; we will find it con-
venient to use the layer-exchange even and odd states,
u± = (1, ±1)T /

p
2. For TTG, the situation is more in-

volved due to the projection into the mirror-even space:
starting from uncoupled optical A1, B1, and E2 phonons
in the three layers of TTG, we can decompose each
of these modes into two mirror-even and one mirror-
odd modes; upon projection into the mirror-even elec-
tronic sector, the last type of modes vanishes and we
are left with the two mirror-even modes. Their coupling
is of the form of Eq. (8) with v+ = (1, 1)T /

p
3 and

v� = (1, �2)T /
p

6. While we only show numerical re-
sults in the following for the case of TBG, we expect our

arguments about which phonons are attractive in which
pairing channels will hold for both systems.

We project HEP onto the two flat bands (↵ = ±) in
each valley ⌘ of the spin polarized continuum-model flat-
bands, leading to a coupling term similar to Eq. (4) with
momentum-dependent coupling matrices, �j ! �g,j,µk,k0 .
Neglecting the momentum dependence in the phonon fre-
quencies and retardation effects, the resulting electron-
electron interaction in the inter-valley Cooper channel
obtained by integrating out the phonons reads as

H
C
int = �

X

k,k0

Vg[�
g,j,µ
k,�,⌘;k0,�0,⌘0 ]

⇤�g,j,µk,↵,⌘;k0,↵0,⌘0

⇥ c†�k,�,�⌘c
†
k,↵,⌘ck0,↵0,⌘0c�k0,�0,�⌘0 .

(10)

Here, Vg = g2g/(2N!2
g) > 0 are the effective coupling

constants of the three different phonon modes g =
A1, B1, E2. Based on the estimated phonon frequencies
of Ref. 68, we have VA1 = VB1 ' 1.33VE2 . From Eq. (10),
it is clear that the induced interaction would be always
completely attractive if we focused on intra-band pairing,
↵ = ↵0 = � = �0, which in spinful systems generically
favors the trivial pairing channel [51, 52]. In our case, the
combination of two energetically close bands and the triv-
ial pairing being purely band-off-diagonal, thus, leads to
the competition between different superconductors, even
with electron-phonon coupling alone.

To demonstrate this, we study intra-valley pairing
within the mean-field approximation and parametrize the
relative strength of the different phonon modes with an
angle variable ✓ph according to VA1 = VB1 = V0 cos ✓ph,
VE2 = V0 sin ✓ph. Investigating the matrix elements
�g,j,µk,k0 , we notice that they almost vanish for the layer-
odd intervalley (A1, B1) phonons, which can be under-
stood as a consequence of chiral and particle-hole symme-
try. The situation is the reverse for the intravalley (E2)
phonons, where the layer-even matrix elements are nu-
merically small and the layer-odd matrix elements dom-
inate. We therefore focus on layer-even (odd) intervalley
(intravalley) phonon couplings.

The results of the mean-field calculation are summa-
rized in Fig. 3. We see that the A2 pairing state is fa-
vored by the intervalley phonons (✓ph = 0) inspite of
its band-off-diagonal nature leading to a suppressed gap
[see Fig. 3(a)]. This is natural as these phonons me-
diate an attractive interaction between the two valleys
which disfavors the B1 state, similar to T-IVC fluctua-
tions. In fact, focusing on the leading, momentum in-
dependent term, �g,+k,k0 ! �g,+, g = A1, B1, symmetry
dictates �A1,+ / �0⌘1 and �B1,+ / �0⌘2 in the chiral
limit. This maps the problem exactly to that of T-IVC
fluctuations, immediately explaining why the order pa-
rameter has a fixed sign in Fig. 3(b). As ✓ph is increased,
the B1 state is favored as can be seen in Fig. 3(c). This
is expected since the intravalley E2 phonon mediates an
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FIG. 3: Pairing from electron-phonon coupling. We show (a) the band structure and (b) the self consistent order parameter of
the A2 pairing for ✓ph = 0 and T = 0. The eigenvalues corresponding to the A2 and B1 pairings in the linearized gap equation
at T = 5K, which is close to their Tc, are shown in (c) as a function of ✓ph. We show an example of the band structure (d) of
the B1 pairing and its order parameter (e,f,g). In accordance with symmetry, the A2 (B1) state only has order-parameter
components / �y (/ �0,x,z). We took ⌫ = 2.5 and V0 = 600 meV · (nm)2 with a continuum model bandwidth ' 2 meV. We
point out that if A1 phonons are dominant, as suggested by recent experimental work [61] and past theoretical study in
mono-layer graphene [67], we would expect our A2 pairing to dominate assuming the pairing potential is sufficiently large.

attractive interaction within each valley such that the en-
ergy gain due to the enhanced gap [Fig. 3(d)], associated
with the band-diagonal matrix elements of the B1 state,
will overcompensate the energetic loss due to the sign
change of B1’s order parameter between the two valleys.
This picture is consistent with the dominance and non-
sign-changing nature of the band-diagonal components of
the B1 state, see Fig. 3(e-g). Finally, this behavior can
also be understood by applying the commutator criterion
in Eq. (7) in the microscopic sublattice basis.

This shows that, as opposed to the conventional sce-
nario [51, 52], there are two possible leading supercon-
ducting states and the superconducting pairing state
does not transform trivially under the symmetries of
the system even when phonons alone provide the pair-
ing glue. Besides this conceptually important point, we
note, however, that the resulting pairing strength based
on phonons alone is likely not enough to explain super-
conductivity in TBG and TTG, as we discuss in more
detail below. For comparison, estimating V0 based on
Ref. 68, we get 60-70 meV·(nm)2, which is much smaller
than the value we needed to stabilize superconductivity
with a critical temperature of a few K for the normal-
state band structure in Fig. 2(a). As such, additional
particle-hole fluctuations, such as those of T-IVC order,
might also be important for pairing.

F. Other particle-hole fluctuations

Finally, we discuss pairing induced by fluctuations of
other particle-hole instabilities. In Table II, we list the re-
sulting leading superconductors taking �j in Eq. (4) to be

TABLE II: Leading superconducting states in the flat-band
limit, following from Eq. (7), for pairing mediated by
fluctuations of the indicated orders, defined by using �

j in
Eq. (4). Here �k > 0 and states separated by commas are
degenerate. The couplings in the microscopic basis, used in
Fig. 4 for the respective orders, are listed under �̄

j .

Fluctuating Order Leading Superconductor
type �

j
�̄
j

�k,⌘ IR
T-IVC �0⌘x,y ⇢x⌘x,y �y�k A2

K-IVC �y⌘x,y ⇢y⌘x,y �0⌘�k B1

SLP+ �y⌘z ⇢z⌘0 �y�k, �0⌘�k A2, B1

SLP� �y⌘0 ⇢z⌘z �x⌘�k, �z⌘�k B2, B1

any of the different strong-coupling candidate order pa-
rameters [9]. To analyze how sensitive these conclusions
are to the precise (momentum-independent) form of �j ,
we also perform numerics taking the expressions listed
as �̄j in Table II; these are then projected to the flat
bands, leading to momentum-dependent coupling ver-
tices, cf. Eq. (10). The results are shown in Fig. 4, where
we use the angle ✓fluc. to tune the relative strength be-
tween T-IVC and any of the other type of fluctuation-
induced interactions by multiplying the T-IVC pairing
potential with cos(✓fluc.) and the other fluctuation po-
tential with sin(✓fluc.) such that ✓fluc. = 0 corresponds
to purely T-IVC fluctuations. In our microscopic numer-
ics, we have taken a potential form �(q) = 1

Am

V
↵2+|q|2/k2

✓

again with ↵ = 0.2 and with V = 2100 meV·(nm)2. We
chose the value of V such that the transitions between the
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FIG. 4: Pairing for different particle-hole fluctuations.
Similar to Fig. 3(c), we show Tc of the leading pairing
states, where ✓fluc. tunes the relative strength between
T-IVC-induced interactions (/ cos ✓fluc.) and interactions
(/ sin ✓fluc.) coming from fluctuations of (a) SLP+, (b)
K-IVC, (c) SLP�, and (d) N-IVC fluctuations.

different pairing states are clearly visible in Fig. 4 when
varying ✓fluc.. In accordance with the strong-coupling
form, SLP+ fluctuations further stabilize the A2 super-
conductor, see Fig. 4(a). As such, the band-diagonal B1

superconducting channel, where SLP+ fluctuations are
also attractive, can become the leading channel (favored
over A2 as a result of the finite bandwidth) only very close
to ✓fluc. = ⇡/2. K-IVC fluctuations, however, are repul-
sive for A2 pairing and favor the B1 state more strongly.
As the B1 state is generically fully gapped, K-IVC fluctu-
ations providing the dominant pairing glue is less natural
given the V-shaped tunneling data of Ref. 49.

So far, the strong-coupling (�j) and sublattice (�̄j)
form of the couplings in Table II lead to the same conclu-
sions. This is different for SLP� fluctuations [Fig. 4(d)],
where the projection-induced momentum-dependence in
the band basis can stabilize the E1 superconductor. This
can be understood by applying Eq. (7) in the sublattice
basis. We also find the E1 state when fluctuations of the
layer-odd nematic intervalley-coherent state (N-IVC) of
Ref. 62 dominate. While the N-IVC state, characterized
by a matrix order parameter �(j,j

0) = (⌘x, ⌘y)j(⇢0, ⇢z)j0 ,
does not appear in the limit of strong Coulomb repulsion,
we include it here given recent experiments [7]. Exam-
ples of the E1 nematic and B2 order parameter which
emerge for SLP� fluctuations or N-IVC fluctuations are
shown in App. D. We point out the nematic E1 pairing
is also an interesting candidate given that despite having
nonzero pairing in the �0, �x, �z channels, it may still be

nodal as long as the �x components do not gap out the
nodes in the band-diagonal parts.

III. DISCUSSION

Taken together, we see that the proposed band-off-
diagonal A2 superconductor is an especially attractive
candidate for TBG and TTG: first, it can lead to both
V-shaped or U-shaped DOS, see Fig. 2(e), depending on
the coupling strength V . Because V might vary from
sample to sample and within a sample (e.g., decrease
upon doping further away from the insulator), this can
naturally explain the tunneling data of [48, 49]. We em-
phasize however that at least at the level of our mean-
field numerics, we only expect a V-shape in the regime
where the superconducting pairing is of the order of the
bandwidth; this is the regime, where although the pair-
ing is finite and can be quite large, the gap in the BdG
spectrum is either just closing or very small relative to
the pairing. Increasing the pairing further will lead to
an evolution from V to U shaped while decreasing the
pairing will eventually lead to a nodal Fermi surface and
presumably a peak at zero energy in the DOS. Second,
A2 is the unique pairing state that is favored by fluctu-
ations of two out of the four strong-coupling-candidates
we consider for the correlated insulator, see Fig. 4(a-c).
What is more, this includes the T-IVC state, signatures
of which are observed in recent experiments [7]. Finally,
it is also favored by the likely dominant [61, 67] optical
intervalley phonon modes. While in our numerics, we
have assumed couplings generically much larger than es-
timated optical phonon couplings, we emphasize that the
minimum attractive coupling needed to stabilize a purely
band off diagonal state depends on the energy splitting
between the two flat bands; if the bands of our normal
state are closer to degenerate, irrespective of the total
bandwidth, the needed coupling to stabilize the A2 pair-
ing in mean-field will decrease (as will Tc). At the very
least, we have shown that phonons do not generically dis-
favor A2 pairing and, in fact, in the additional presence
of particle-hole fluctuations can further tip the balance
in favor of it.

The other band-off-diagonal superconductor we iden-
tify transforms under the IR E2, i.e., can be thought of as
a d-wave state. Its spectral properties also agree well with
experiment as the chiral configurations, E2(1, i), which
is favored within mean-field theory over a nematic E2

state, can also have nodal regions, depending on filling.
As can be seen in Fig. 1(d), this can lead to a transition
from gapped to nodal when increasing the electron fill-
ing starting at ⌫ ' 2. However, as opposed to the A2

state, E2 does not naturally appear as leading instability
when considering optical phonons or fluctuations of any
of the strong-coupling order parameters of the correlated
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insulator. While this makes it energetically less natural
than A2, we cannot exclude it since its phenomenology
agrees well with experiment and since the precise form
of the coupling of the dominant low-energy collective ex-
citations are not known—significant momentum depen-
dencies beyond �j and �̄j in Table II could stabilize E2

pairing as well. We also find in our numerics a nematic
E1 state which may be preferred over its chiral version in
the presence of sufficient strain or due to fluctuation cor-
rections [27, 53–55]. We find the E1 state is the leading
instability of nematic IVC fluctuations and SLP- fluctu-
ations, and is a subleading instability of T-IVC fluctua-
tions. The E1 state is interesting in its own right, as it
can also be nodal.

For the future, it will be interesting to go beyond
mean-field and analyze the competition of our band-off-
diagonal states with odd-frequency pairing, which we
study in a follow-up work [69]. On a more general level,
our work shows that the observation of nodal pairing in
twisted graphene systems does not immediately exclude
a chiral superconducting state nor an entirely electron-
phonon-based pairing mechanism. It illustrates that a

microscopic understanding of the superconducting states
in graphene moiré systems requires taking into account
their intrinsically multi-band nature.

Note added. Just before posting our work, Ref. 70
appeared online, which discusses pairing induced by A1

phonons in spinful TBG bands.
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where  †
⇢,`,⌘,s creates an electron of spin s =", #, in valley ⌘ = ±, sublattice ⇢ = A, B, and with pseudo-layer

quantum-number ` = 1, 2; in case of TBG, ` refers to the actual two graphene layers, whereas, for TTG, it denotes the
two mirror-even layer-eigenstates, (1, 1, 1)T and (1, �2, 1)T , of the three layers [71]. The continuum model involves
two terms, (h⌘)`,`0 = �`,`0h

(d)
`,⌘(r) + (h(t)

⌘ (r))`,`0 ; the first one, h(d)
`,⌘ = �i~vF ei

⇢z✓`
2 (⌘⇢x@x � ⇢y@y)e�i

⇢z✓`
2 with ⇢j

being Pauli matrices in sublattice space, describes the Dirac cones of chirality ⌘, rotated by ✓` = (�1)`✓/2 in the
two (pseudo)layers `; the second one, h(t), captures the tunneling between the layers, with amplitude w0 and w1

between the same and opposite sublattices, respectively. The modulation of the tunneling on the moiré scale leads
to a reconstruction of the band structure, exhibiting nearly flat bands for magic angles around ✓ ' 1.1� and ✓ ' 1.5�

for TBG and TTG, respectively. We take w1 = 89 meV, w0
w1

= .55, vF = 106 m/s, ✓ = 1.09� in all our numerical
calculations.

As already mentioned above, experiments [19, 20] indicate that the superconducting phase in the density regime
2 < |⌫| < 3 coexists with the reset behavior at half-filling, |⌫| = 2, of the upper or low flat-bands. To model this
effect, we add Coulomb repulsion,

HC =
1

2N

X

q

V (q)⇢q⇢�q (A2)

to our Hamiltonian, where ⇢q is the Fourier transform of the density of the continuum-model electrons cr and the N
the number of moiré unit cells. We assume a double gate screened Coulomb potential of the form:

V (q) =
1

Am

1 � e�2ds|q|

2✏✏0|q|
(A3)

In the above, Am is the area of a real-space moiré unit cell (since we consider TBG and not TTG in our numerics,
we take Am to be the moiré unit cell for 1.09�), ds is the screening distance which we take to be 40 nm, and ✏ is
the dielectric constant we take to be ✏ ' 4. Note that projecting Eq. (A2) into the bands of TTG will also lead to
interactions coupling the mirror-sectors. However, as was shown [13] analytically in a specific limit and numerically
for realistic parameters, also the interacting physics of TTG decays into that of the TBG and that of a single Dirac
cone for D0 = 0. As such, it is justified to focus on the mirror-bands as in Eq. (A1) when discussing the reset physics
in TTG at D0 = 0.

In computing the normal state, we assume the same normal state density matrix as in Ref. 13 where the expectation
value hc†k,↵,⌘c

†
�k,�,⌘i is equal to the 1

2 Id in the subspace of the flat bands of one spin flavor which are half filled in our
normal state and equal to Id in the flat bands of the remaining spin flavor which are fully polarized. We emphasize that
we are assuming a static, momentum independent ansatz for the normal state density matrix which is not obtained
self consistently. As can be seen in Fig. 2, instead of just rigidly shifting one spin species away from the Fermi level,
there are also significant band renormalizations, in particular for the active spin flavor. Similar to the toy model with
t0 < 0 used in Fig. 1, the Dirac cones at the K and K’ points are pushed towards the top of the bands.

2. Gauge Fixing

We will also describe how we fix the phases of the continuum model Bloch wavefunctions we use in our computations.
We denote the wavefunction of band n in valley ⌘ at momentum k by uk,n,⌘. We use C2zT to fix the phase of the
wavefunctions to be either +1 or �1 by enforcing:

C2zT uk,n,⌘ = uk,n,⌘ (A4)

We then fix the relative sign of wavefunctions in opposite flat bands but the same valley with the chiral symmetry
operator C as:

Cuk,±,⌘ = i⌘ ± uk,⌥,⌘/| hu⇤
k,⌥,⌘| C |uk,±,⌘i | (A5)

We fix the relative sign of wavefunctions in opposite bands and opposite valleys with PHC2z, where PH a unitary
particle hole symmetry operator with:

PHC2zuk,±,⌘ = i⌘uk,⌥,�⌘ (A6)

Finally, we use time-reversal symmetry to fix the relative sign between wavefunctions at opposite k, in opposite
valleys, but within the same band:

T uk,n,⌘ = u�k,n,�⌘ (A7)
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Appendix B: Gap Equation at T = 0

In this appendix we will discuss the self consistency equations we solve to obtain our T = 0 solutions. In general,
we write the Hamiltonian in a Nambu basis as:

Hk =
⇣
c†k,+ c�k,�

⌘ ⇠k,+ �(k)

�(k)† �⇠�k,�

! 
ck,+
c†�k,�

!
(B1)

Where we have suppressed spin and band indices, and both ⇠k,± and �k are matrices in band and spin space. ⇠k,±
represents the normal state dispersion in the ± valleys, which we take to be spin polarized and renormalized by
Coulomb interactions as described in App. A. �k can be expressed as:

�↵,⌘;�,�⌘
k =

1

N

X

k,k0

�k,k0�↵,⌘;�,⌘
0

k,k0
�
hc�kcki

T
��,⌘0;�,�⌘0 ⇣

�T�k,k0

⌘�,�⌘0;�,�⌘
(B2)

In the above, �↵,⌘;�,⌘
0

k,k0 represent form factors of some matrix elements which could represent either phonons or
fluctuations projected into the flat bands and may be valley diagonal or off diagonal. Vk,k0 is an isotropic potential
which we will generally take to be attractive and flat for phonons and attractive with some lorentzian form for
fluctuation mediated pairing. Since we will be assuming interactions with strength less than the scale of the coulomb
interactions, we will treat the polarized spin flavor which is fully occupied at ⌫ = 2 as a spectator and assume the
pairing is zero in these bands. The self consistency condition we solve at T = 0 is:

hc�k,↵,�ck,�,+i = U⇤
k�kUT

k (B3)

Where Uk is defined as the unitary operator such that:

U †
kHkUk = Dk (B4)

Here, Dk is a diagonal matrix with the Fermi-Dirac functions of eigenvalues of Hk at T = 0 as its diagonal entries.
�k is the matrix with Fermi-Dirac functions at T = 0 K of the entries of D on the diagonal. We also must impose
Fermi-Dirac statistics as a constraint on our solutions. We enforce this constraint at each iteration by splitting
hc�k,↵,�ck,�,+i into components which go as either ⌘x in valley space (denoted Ek) or ⌘y in valley space (denoted as
Ok) depending on whether the pairing is even or odd under k ! �k and the antisymmetry or symmetry of the band
indices as:

Ok =
1

2
(hc�k,↵,�ck,�,+i + hck,�,�c�k,↵,+i) Ek =

1

2
(hc�k,↵,�ck,�,+i � hck,�,�c�k,↵,+i) (B5)

Our iterative procedure then proceeds as follows. At the zeroth iteration, an ansatz for hc�k,↵,�ck,�,+i satisfying
the desired symmetries is selected. Then at each iteration, the chemical potential is adjusted to give the desired
filling, which we take to be ⌫ = 2.5 in our numerics. Uk and the resulting functions Ok and Ek are then computed
and plugged back into �k, (which also is guaranteed to obey Fermi-Dirac statistics assuming our generalized form
factors obey time reversal symmetry). �k is then used to compute the new Uk, and the procedure is repeated until
convergence is reached in �k and µ. In practice, in our T = 0 numerics, we take q = k � k0 to only be summed over
the first Brillouin zone, an assumption justified for our fluctuation mediated SC by �(q) falling off as 1

|q|2 near the
first Brillouin zone edge.

Appendix C: Gap Equation at Tc

In this appendix, we will describe how we compute solutions to the linearized gap equation at Tc. As in App. B, we
will assume a spin polarized normal state and only consider superconducting instabilities within a single spin flavor. We
recall that for the case of fluctuation-mediated superconductivity, we couple electrons to bosonic modes (j = 1, 2, . . . )
as, e.g., in Eq. (4), with �j↵,⌘;↵0,⌘0 capturing the symmetries broken by the corresponding order parameter. In order
to compactly write down the linearized gap equation, it is convenient to express �j as

⇣
�j↵,⌘;↵0,⌘0

⌘

k,k0
= A↵,⌘;↵0,�⌘

k,k0 �⌘,�⌘0 + B↵,⌘;↵0,⌘
k,k0 �⌘,⌘0 . (C1)
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FIG. 5: Highest eigenvalue pairing obtained from linearized gap equation at T = 16 K, for SLP- and T-IVC fluctuations. The
pairing transforms under the B2 representation of the point group.

Here we also include the momentum dependence of the matrix elements, which arises when we study phonons and
order parameter fluctuations projected from the sublattice basis to the band basis. In Eq. (C1), Ak,k0 are the valley
off diagonal pieces of the form factor �j↵,⌘;↵0,⌘0 and Bk,k0 is the valley diagonal pieces. With this notation in hand,
the linearized gap equation we solve is

�
�(k)†

�↵,�;�+
= �

X

q

Vq

⇣
G
��;�+
k�q B�+;�+

k�q,q (BT
�k+q,�q)↵�;��

� G
��;�+
�k+q A��;�+

k�q,q (AT
�k+q,�q)↵�;�+

⌘
, (C2)

where the Greens function G
↵+;��
k�q defined by

G
↵+;��
k =
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�01
k + �10

k
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↵� +
�01

k � �10
k

⇠k,0 + ⇠k,1
(nF (�⇠k,1) � nF (⇠k,0))(�x � i�y)

↵�

◆
.

(C3)

Here �↵�
k denote the pairing in band space where ↵,� = 0, 1 label the upper and lower flat band.

Finding a solution to the above equation then amounts to computing the right-hand side of Eq. C2, diagonalizing
it in the space of momenta, Nambu index, and band index, and looking at the eigenvectors which attain eigenvalue
1 for some value of T . To enforce Fermi-Dirac statistics, we solve the above equation on half of the moiré Brillouin
zone.

Appendix D: More Superconducting Instabilities

In this appendix, we will discuss the superconducting instabilities we find beyond the A2 and B1 states shown in
Figs. 2 and 3 and focus on the other leading instabilities we find in the presence of fluctuations of different particle
hole orders. For SLP� fluctuations, we find the B2 state can be favored over the B1 when the strength of T-IVC
fluctuations are on the same order as SLP- fluctuations, as shown in Fig. 4. We show the B2 state for parameter value
✓fluc. '

⇡
4 in Fig. 5. For N-IVC fluctuations as well as for SLP- fluctuations, we find the E2 is the leading instability,

as shown in Fig. 4. We show the two components of the E2 state for parameter value ✓fluc. '
⇡
2 in Fig. 5. We point

out that each component of the E1 pairing shown in Figs. 6 and 7 may by themselves be nodal, assuming the pieces
of each pairing which are proportional to �x in band space are smaller than the band splitting. In general, we expect
the lowest energy pairing at T = 0 will be the chiral E1 state which would be fully gapped; however, in the presence
of sufficient strain, a single basis function of the E1 pairing can be favored over the chiral state; offering another route
to nodal superconductivity in the presence of N-IVC fluctuations.
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FIG. 6: First component of the highest eigenvalue pairing obtained from linearized gap equation at T = 16 K for just N-IVC
fluctuations. The pairing transforms under the E1 representation of the point group. The component shown here is
degenerate with the other basis functions which transform under C3 symmetry shown in Fig. 7.
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FIG. 7: Second component of the highest eigenvalue pairing obtained from linearized gap equation at T = 16 K for just
N-IVC fluctuations. The pairing transforms under the E1 representation of the point group. The component shown here is
degenerate with the other basis functions which transform under C3 symmetry shown in Fig. 6.
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