Foundations and Trends® in Signal Processing
Learning with Limited Samples —
Meta-Learning and Applications to
Communication Systems

Suggested Citation: Lisha Chen, Sharu Theresa Jose, Ivana Nikoloska, Sangwoo
Park, Tianyi Chen and Osvaldo Simeone (2022), “Learning with Limited Samples —
Meta-Learning and Applications to Communication Systems”, Foundations and Trends®
in Signal Processing: Vol. xx, No. xx, pp 1-131. DOI: 10.1561 /XXXXXXXXX.

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit
Publisher approval.




Contents

1

Introduction and Background

1.1 Introduction . . . . . .. . ...
1.2 Meta-Learning . . . . . . ... ...
1.3 Organization of the Monograph . . . . . .. .. ... ...

Meta-Learning Algorithms

2.1 Overview of Meta-Learning Algorithms . . . . . . . . . ..
2.2 Second-Order Optimization-Based Meta-Learning . . . . .
2.3  First-Order Optimization-Based Meta-Learning . . . . . .
2.4 Bayesian Meta-Learning . . . . .. ... ...
2.5 Modular Meta-Learning . . . . ... ... ... ...
2.6 Model-Based Meta-Learning . . . . ... .. .. .. ...
2.7 Conclusions . . . . . ... ...

Bilevel Optimization for Meta-Learning

3.1 A Brief Introduction to Bilevel Optimization . . . . . . ..
3.2 A Unified Bilevel Optimization Framework . . . . . . . ..
3.3 Convergence Analysis for Bilevel Optimization . . . . . . .
34 Conclusions . . . . ...

Statistical Learning Theory for Meta-Learning
4.1 Generalization Error for Conventional Learning . . . . . . .

ot W W

14

16
16
18
24
28
33
34
36

37
37
40
45
47

48



4.2 Generalization Error in Meta-Learning . . . . . . ... .. 54
4.3 Information-Theoretic Bounds on Meta-Generalization Error 57

4.4 PAC-Bayes Analysis of Meta-Generalization Error . . . . . 63
4.5 Minimum Excess Meta-Risk for Bayesian Meta-Learning . . 65
4.6 Sharper Meta-Risk Analysis in Meta Linear Regression . . 68
47 SomeProofs . . . . ... ... ... ... 69
48 Conclusions . . . . . .. ... 71
5 Applications of Meta-Learning to Communications 72
51 Overview . . . . . . ... 72
5.2 Demodulation . . . ... Lo 73
5.3 Encoding and Decoding . . . . ... ... .. .. ... .. 80
5.4 Channel Prediction . . . ... ... ... ... ...... 84
55 Power Control . . . . .. ... .. ... ... ... 88
5.6 Conclusions . . . . ... ... 93
6 Integration with Emerging Computing Technologies 94
6.1 Neuromorphic Computing . . . . . . .. .. ... ... .. 95
6.2 Quantum Computing . . . . . . . . ... ... ... ... 99
6.3 Conclusions . . . .. ... . 103
7 QOutlook 104
7.1 Methods . . . ... ... . ... ... 104
72 Theory . . . . . . e 109
7.3 Applications . . . . ..o 110
Acknowledgements 111

References 112



Learning with Limited Samples —
Meta-Learning and Applications to

Communication Systems

Lisha Chen*, Sharu Theresa Josef, Ivana Nikoloska!, Sangwoo
Park®, Tianyi Chen* and Osvaldo Simeone!

T King’s College London
*Rensselaer Polytechnic Institute

ABSTRACT

Deep learning has achieved remarkable success in many
machine learning tasks such as image classification, speech
recognition, and game playing. However, these breakthroughs
are often difficult to translate into real-world engineering
systems because deep learning models require a massive
number of training samples, which are costly to obtain in
practice. To address labeled data scarcity, few-shot meta-
learning optimizes learning algorithms that can efficiently
adapt to new tasks quickly. While meta-learning is gaining
significant interest in the machine learning literature, its

The first four authors are listed in alphabetical order. Lisha Chen is the main
author of Section 2 excluding Section 2.5, as well as Sections 3, 4.6, and 7.2; Sharu
Theresa Jose is the main author of Section 4; Ivana Nikoloska is the main author of
Sections 2.5, 5.5 and 6.2; Sangwoo Park is the main author of Section 5 excluding
Section 5.5, as well as Sections 7.1 and 7.3; Tianyi Chen is the main author of
Section 3; and Osvaldo Simeone is the main author of Section 1 and Section 6.1. This
monograph is based on a tutorial delivered by Tianyi Chen and Osvaldo Simeone at
IEEE ICASSP 2022. Tianyi Chen and Osvaldo Simeone have supervised the writing
process, and Osvaldo Simeone led the editing of the document.

Lisha Chen, Sharu Theresa Jose, Ivana Nikoloska, Sangwoo Park, Tianyi Chen
and Osvaldo Simeone (2022), “Learning with Limited Samples — Meta-Learning
and Applications to Communication Systems”, Foundations and Trends® in Signal
Processing: Vol. xx, No. xx, pp 1-131. DOI: 10.1561/XXXXXXXXX.

©2022 ...



working principles and theoretic fundamentals are not as
well understood in the engineering community.

This review monograph provides an introduction to meta-
learning by covering principles, algorithms, theory, and en-
gineering applications. After introducing meta-learning in
comparison with conventional and joint learning, we de-
scribe the main meta-learning algorithms, as well as a gen-
eral bilevel optimization framework for the definition of
meta-learning techniques. Then, we summarize known re-
sults on the generalization capabilities of meta-learning from
a statistical learning viewpoint. Applications to communi-
cation systems, including decoding and power allocation,
are discussed next, followed by an introduction to aspects
related to the integration of meta-learning with emerging
computing technologies, namely neuromorphic and quantum
computing. The monograph is concluded with an overview
of open research challenges.




1

Introduction and Background

1.1 Introduction

One of the main principles underlying the design of data-efficient ma-
chine learning is knowledge sharing across learning tasks. As an
example, consider the problem of few-shot classification. In it, one is
interested in designing a classifier based on few examples for each class.
The limited availability of data is typically an insurmountable problem
for conventional machine learning solutions, unless one has detailed
information about the structure of the problem that can be used to
handcraft a well-performing classifier. When such domain knowledge
is not available, it may be, however, possible to collect data sets from
distinct classification tasks that are deemed to be related to the task
of interest. Transferring knowledge from such auxiliary tasks to the
target task may compensate for the lack of sufficient data or domain
knowledge.

The specific way in which knowledge sharing can be realized depends
on the setting of interest and on the availability of data. Central to these
distinctions is the notion of a learning task. A learning task generally
refers to a specific supervised, unsupervised, or reinforcement learning
instance characterized by an underlying data-generation distribution

3



4 Introduction and Background

and loss or reward function. For instance, a learning task may amount
to the problem of classifying images in a number of categories based
on labelled examples. With this definition, at a high level, we can
distinguish the following methodologies (see, e.g., [1]).

o Transfer learning: In transfer learning, one is concerned with
two learning tasks — a source task and a target task. Data are
typically available for both tasks, although data for the target
task may be limited. The goal is to address the target task by
utilizing also data from the source task with the aim of reducing
data requirements for the target task. In the image classification
example, transfer learning would facilitate the optimization of a
classifier for a target classification task, e.g., distinguishing images
of cats and dogs, using data for another classification task, e.g.,
distinguishing images of teapots and mugs.

e Multi-task learning and joint learning: In multi-task learning,
there are K > 1 learning tasks, and one is interested in learning
a machine learning model that is able to address all the tasks
based on data pooled from all the tasks. Generally, the machine
learning model has some shared components, e.g., layers of a
neural network, and also separate parts pertaining each task, e.g.,
“heads” of a classifier. When the model is fully shared across
tasks, multi-task learning is also known as joint learning. In the
image classification example, multi-task learning would optimize
a classifier producing decisions for a set of classification tasks.

e Meta-learning: In meta-learning, we have access to data for a
number of tasks, but we are not interested in training a machine
learning model for them as in multi-task learning. Rather, we
would like to use data from multiple tasks in order to design a
training procedure, and not to produce a single machine learn-
ing model. Specifically, the goal is ensure that the meta-learned
training procedure can efficiently optimize a machine learning
model for any, a priori unknown, learning task. Accordingly, in
a meta-learning setting, one does not know a priori what the
target task will be, although one expects it to be similar to those



1.2. Meta-Learning 5

for which data are available. By optimizing the learning process,
meta-learning implements a form of learning to learn. In the
image classification example, meta-learning would produce a pro-
cedure able to optimize a classifier for any new classification task
by using data from a pool of other similar classification tasks.

This review monograph provides an introduction to meta-learning
by covering principles, algorithms, theory, and engineering applications.
In this section, we start by providing a first exposition to meta-learning
by contrasting it with conventional machine learning and multi-task
learning. The chapter concludes with a description of the organization
of the rest of the monograph.

1.2 Meta-Learning

In meta-learning, we target an entire class of tasks, also known as
the task environment, and we wish to “prepare” for any new task
that may be encountered from this class. As we will review in this
subsection, conventional learning aims at optimizing model parameters,
such as the weights of a neural network, by applying a given training
algorithm, which is defined by a set of hyperparameters. Training
algorithms typically involve local search procedures, e.g., based on
gradient information, and hyperparameters include the learning rate —
i.e., the size of the updates at each iteration — and the initialization. In
contrast, the goal of meta-learning is to optimize hyperparameters
with the goal of identifying a training algorithm that may perform well
on new tasks.

1.2.1 Meta-Training and Meta-Testing

The working assumption underlying meta-learning is that, prior to
observing the — typically small — training data set for a new task, one
has access to a larger data set of examples from related tasks. This is
known as the meta-training data set. Meta-learning consists of two
distinct phases:
e Meta-training: Given the meta-training data set, a set of hyper-
parameters is optimized;



6 Introduction and Background

o Meta-testing: After the meta-learning phase is completed, data
for a target task, known as meta-test task, is revealed, and model
parameters are optimized using the meta-trained hyperparameters.

As such, the meta-training phase aims at optimizing hyperparameters
that enable efficient training on a new, a priori unknown, target task in
the meta-testing phase.

1.2.2 Reviewing Conventional Learning

In order to introduce the notation necessary to describe meta-learning,
let us briefly review the operation of conventional machine learning.
Training and testing. In conventional machine learning, the starting
point is the selection of a model class H and of a training algorithm. The
choice of model class and training algorithm determines the inductive
bias applied by the learning procedure to generalize from training to
test data. The model class ‘H contains models parameterized by a vector
¢, such as neural networks. Model class and training algorithm are
ideally tailored to information available about the problem of interest.

Furthermore, both model class and training algorithm generally
depend on a fized vector of hyperparameters, denoted as 6. Thereafter,
hyperparameters may specify, for instance, a mapping defining the
vector of features to be used in a linear model, or the initialization and
learning rate of an iterative optimizer.

The training algorithm is applied to a training set D', which may
include also a separate validation set. The training algorithm produces
a model parameter vector ¢ by minimizing the training loss

Lpu(¢), (1.1)

which is obtained by evaluating an empirical average of the loss accrued
over the data points in the training set D%. Note that regularized
versions of the training loss can also be used. Finally, the trained model
is tested on a separate test data set DY by evaluating the validation
loss Lpva(¢), in which the loss is averaged over the test data in data
set DV?. The overall process is summarized in Fig. 1.1.

Drawbacks of conventional learning. As anticipated, conventional
machine learning suffers from two main potential shortcomings that
meta-learning can help address, namely:



inductive bias:
hyperparameters

model class H

|model parameters¢|

|

inducti
hyperpatr

| trainlng | | testing |

training .
data P

Figure 1.1: Illustration of conventional machine learning.

e Large sample complexity: By training a model “from scratch”,
conventional learning generally requires a large number of training
samples, N, to obtain a suitable test performance. The number
of samples needed to obtain some level of accuracy is known as
sample complexity.

o Large iteration complexity: By relying on a generic optimization
procedure, conventional learning may require a large number of
iterations to converge to a well-performing model.

Both issues can be potentially mitigated if the inductive bias —i.e.,
the selection of model class and training algorithm — is tailored to the
problem under study based on domain knowledge. For instance, as
part of the inductive bias, we may choose an architecture for a neural
network model that satisfies known symmetries in the data; or select an
initialization point for the model parameters that ¢ is suitably adapted
to the learning task at hand. With such informed inductive biases, one
we can generally reduce both sample and iteration complexities.

When one does not have access to sufficient information about the
problem to identify a tailored inductive bias, it may become useful to
transfer knowledge from data pertaining related tasks.

=7 (=



inductive bias: inductive bias:
yperparameters 0 hyperparameters

[model parameters ¢ |

model class H | model class %

odel parameters ¢

g | | testing |

Dtr

Figure 1.2: Illustration of joint learning.

1.2.3 Joint Learning

Suppose that we have access to training data sets D}’ for a number of
distinct learning tasks in the same task environment that are indexed
by the integer £ = 1,..., K. Each data set D}’ contains N training
examples. We now review the idea of joint learning, which is a special
case of multi-task learning in which a common model is trained for all
K learning tasks.

Training and testing. Joint learning pools together all the training
sets {Dg}ﬁ(zl, and uses the resulting aggregate training loss

1 K
L{’D;g}kK:1 (¢) = K ]; LD;;(QS) (1.2)

as the learning criterion to train a shared model parameter ¢.

As illustrated in Fig. 1.2, joint learning inherently caters only to the
K tasks in the original pool, and is hence generally unable to provide
desirable performance for new, as of yet unknown, tasks.

Joint learning is a natural first attempt to transfer knowledge across
tasks with the aim of improving sample and iteration complexities. First,
by pooling together data from K tasks, the overall size of the training
set is K - N, which may be large even when the available data per task
is limited, i.e., when N is small. Second, training only once for K tasks



1.2. Meta-Learning 9

amortizes the iteration complexity across the tasks, yielding a potential
reduction of the number of iterations by a factor equal to K.
Drawbacks of joint learning. Joint learning has two potentially
critical shortcomings.

« Bias: The jointly trained model may improve the performance of
conventional learning only if there is a single model parameter ¢
that “works well” for all tasks. This may not be the case if the
tasks are sufficiently distinct.

e Lack of adaptation: Even if there is a single model parameter
¢ that yields desirable test results on all K tasks, this does not
guarantee that the same is true for a new task. In fact, by focusing
on training a common model for all tasks, joint learning is not
designed to enable adaptation to a new task.

As a remedy for the second shortcoming just highlighted, one could
use the jointly trained model parameter ¢ to initialize the training
process on a new task — a process known as fine-tuning. However,
there is generally no guarantee that this would yield a desirable outcome,
since the training process used by joint learning does not account for the
subsequent step of adaptation on a new task. This is a key distinction
between joint learning and meta-learning, which will be introduced
next.

1.2.4 Introducing Meta-Learning

As for joint learning, in meta-learning one assumes the availability of
data from K related tasks from the same task environment, which are
referred to as meta-training tasks. However, unlike joint learning, data
from these tasks are kept separate, and a distinct model parameter ¢y
is trained for each k task. As illustrated in Fig. 1.3, meta-learning tasks
only share a common hyperparameter vector 6 that is optimized
based on meta-training data. As a result, meta-training data is not used
to optimize a common model, but only a shared inductive bias. In
other words, the optimization carried out by meta-learning operates
at a higher level of abstraction, leaving the model parameters free to
adapt to each individual task.



10 Introduction and Background

inductive bias:

A 4

hyperparameters
model class
l model parameters ¢ model parameters¢

< >
‘1.

el meta-testing

K
Figure 1.3: Illustration of meta-learning.

We now introduce meta-learning by emphasizing the differences

with respect to joint learning and by detailing the meta-training and
meta-testing phases.
Inductive bias and hyperparameters. As discussed, the goal of
meta-learning is optimizing the hyperparameter vector # and, through
it, the inductive bias that is applied for the training of each task. To
simplify the discussion and focus on the most common setting, let us
assume that the model class H is fixed, while the training algorithm is
a mapping ¢"(D|#) between a training set D and a model parameter
vector ¢ that depends on the hyperparameter vector 0, i.e.,

¢ = ¢'"(D]0). (1.3)

As an example, the training algorithm ¢'"(D|#) could output the last
iterate of an optimizer.

The hyperparameter § can affect the output ¢'*(D|0) of the train-
ing procedure in different ways. For instance, it can determine the
regularization constant; the learning rate and/or the initialization of
an iterative training procedure; the mini-batch size; a subset of the
parameters in vector ¢, e.g., used to define a shared feature extractor;
the parameters of a prior distribution; and so on.



1.2. Meta-Learning 11

The output ¢ (D|f) of a training algorithm is generally random.
This is the case, for instance, if the algorithm relies on stochastic
gradient descent (SGD). In the following discussion, we will assume for
simplicity a deterministic training algorithm, but the approach carries
over directly to the more general case of a random training procedure by
adding an average over the randomized of the trained model ¢**(D|0).
Meta-training. To formulate meta-training, a natural idea is to use
as the optimization criterion the aggregate training loss

1 i r T
Lippyr ,(0) = 4+ ;LD;; (6™ (D10)), (1.4)

which is a function of the hyperparameter 6. This quantity is known as
the meta-training loss. The resulting problem

of minimizing the meta-training loss over the hyperparameter 6 is
different from the ERM problem ming L{D?}szl(qﬁ) tackled in joint
learning for the following reasons:
o First, optimization is over the hyperparameter vector 6 and not
over a shared model parameter ¢.

e Second, the model parameter ¢ is trained separately for each
task k through the parallel applications of the training function
¢ (-0) to the training set D of each task k =1,..., K.

As a result of these two key differences with respect to joint training,
the minimization of the meta-training loss (1.4) inherently caters for
adaptation: The hyperparameter vector 6 is optimized in such a way
that the trained model parameter vectors ¢, = ¢tr(D,t€r]9), adapted
separately to the data of each task k, minimize the aggregate loss across
all meta-training tasks k=1, ..., K.

Advantages of meta-training over joint training. While retaining
the advantages of joint learning in terms of sample and iteration com-
plexity, meta-learning addresses the two shortcomings of joint learning:

¢« Knowledge sharing via hyperparameters: Meta-learning does
not assume that there is a single model parameter ¢ that “works



12 Introduction and Background

well” for all tasks. It only assumes that there exists a common
model class and a common training algorithm, as specified by
hyperparameters 6, that can be effectively applied across the
class of tasks of interest.

e Optimization for adaptation: Meta-learning prepares the train-
ing algorithm ¢ (D|) to adapt to potentially new tasks through
the selection of the hyperparameters ¢. This is because the model
parameter vector ¢ is left free by design to be adapted to the
training data D}’ of each task k.

Meta-testing. As mentioned, the goal of meta-learning is ensuring
generalization to any new task that is drawn at random from the same
task environment. For any new task, during the meta-testing phase, we
have access to training set D% and validation set D'?. The new task is
referred to as the meta-test task, and is illustrated in Fig. 1.3 along
with the meta-training tasks.

The training data D' of the meta-test task is used to adapt the
model parameter vector to the meta-test task, obtaining ¢ (D'|0).
Importantly, the training algorithm depends on the hyperparameter 6.
The performance metric of interest for a given hyperparameter 4 is the
test loss for the meta-test task, or meta-test loss, given by

L (4" (D"]0)). (1.6)

In (1.6), the population loss of the trained model is estimated via the
test loss evaluated with the test set D¥2.

We have just seen that meta-testing requires a split of the data for
the new task into a training part, used for adaptation, and a validation
part, used to estimate the population loss (1.6). We now discuss how
the idea of splitting per-task data sets into training and validation parts
can be useful also during the meta-training phase.

As explained in Section 1.2.4, the training algorithm ¢(D'™|0) is
defined by an optimization procedure for the problem of minimizing
the training loss on the training set D¥. We can write the learning
procedure informally as

#"(DV19) - min Lpw (9), (17)



1.2. Meta-Learning 13

highlighting the dependence of the training algorithm on the training
loss Lpt:(¢) and on the hyperparameter 6.

Because of (1.7), in problem (1.5) one is effectively optimizing the
training losses LD};(@ for the meta-training tasks k = 1, ..., K twice,
first over the model parameters in the inner optimization (1.7) and then
over the hyperparameters € in the outer optimization (1.5). This reuse
of the meta-training data for both adaptation and meta-learning may
cause overfitting to the meta-training data, and thus result in a training
algorithm ¢ (-|6) that fails to generalize to new tasks.

The problem highlighted above is caused by the fact that the meta-
training loss (1.4) does not provide an unbiased estimate of the sum
of the population losses across the meta-training tasks. The bias is a
consequence of the reuse of the same data for both adaptation and
hyperparameter optimization. To address this problem, for each meta-
training task k, we can partition the available data into two data sets,
a training data set D} and a validation data set D}*. Therefore, the
overall meta-training data set is given as D™ = {(D{F, Dy*)K | }.

The key idea is that the training data set D}’ is used for adaptation
using the training algorithm (1.7), while the test data set D}* is kept
aside to estimate the population distribution of task k for the trained
model. The hyperparameter 6 is not optimized to minimize the sum of
the training losses as in (1.5). Rather, they target the sum of the test
losses, which provides an unbiased estimate of the corresponding sum
of population losses.

Meta-learning as nested optimization. To summarize, the general
procedure followed by many meta-learning algorithms consists of a
nested optimization of the following form:

e Inner loop: For a fixed hyperparameter vector 6, training on each
task k is done separately, producing per-task model parameters

61 = 9(DE10) - min Loy (6) (1.9
for k=1,..., K;
¢ QOuter loop: The hyperparameter vector 6 is optimized as

Opmer = arg mgin Lpmi:(6), (1.9)



14 Introduction and Background

where the meta-training loss is (re-)defined as

K
£’Dmtr (9) = % Z L'D;C/a((ﬁtr(Z)g‘e)) (110)
k=1

As we will detail in Section 2, the specific implementation of a meta-
learning algorithm depends on the selection of the training algorithm
" (D]0) and on the method used to solve the outer optimization.

1.2.5 Meta-Inductive Bias

While the inductive bias underlying the training algorithm used in the
inner loop is optimized by means of meta-learning, the meta-learning
process itself assumes a meta-inductive bias. The meta-inductive bias
encompasses the choices of the hyperparameters to optimize in the outer
loop — e.g., the initialization of an SGD training algorithm — as well as
the optimization algorithm used in the outer loop. There is of course no
end to this nesting of inductive biases: any new learning level brings its
own assumptions and biases. Meta-learning moves the potential cause
of bias at the outer level of the meta-learning loop, which may improve
the efficiency of training.

It is important, however, to note that the selection of a meta-
inductive bias may cause meta-overfitting in a similar way as the
choice of an inductive bias can cause overfitting in conventional learning.
In a nutshell, if the meta-inductive bias is too broad and the number
of tasks insufficient, the meta-trained inductive bias may overfit the
meta-training data and fail to prepare for adaptation to new tasks.

1.3 Organization of the Monograph

The rest of the monograph is organized as follows.
Section 2. Meta-learning algorithms: This section provides
a taxonomy and an introduction to the most common meta-learning
algorithms, including model agnostic meta-learning (MAML).
Section 3. Bilevel optimization for meta learning: Section
3 presents a general optimization-based perspective on meta-learning,
which views meta-learning as a form of stochastic bilevel optimization.



1.3. Organization of the Monograph 15

Section 4. Statistical learning theory for meta-learning:
This section revisits meta-learning through the different perspective of
generalization. Specifically, it investigates from a theoretical viewpoint
the performance of meta-learning algorithms in terms of their capacity
to generalize outside the meta-training data set to new tasks.

Section 5. Meta-learning applications to communications:
The section turns to several examples of applications of meta-learning to
the engineering problem of designing communication systems. Examples
of reviewed applications include demodulation and power control.

Section 6. Integration with emerging computing technolo-
gies: This section highlights the potential synergies between meta-
learning and two emerging computing technologies, namely neuromor-
phic and quantum computing.

Section 7. Outlook: The last section presents an outlook on the
area of meta-learning by offering a brief review of open problems and
further directions for reading and research.



2

Meta-Learning Algorithms

In this section, we review the main classes of meta-learning algorithms
by focusing on selected notable representatives from each class.

2.1 Overview of Meta-Learning Algorithms

Existing meta-learning algorithms can be roughly grouped into three cat-
egories according to the principle underlying the transfer of information
among tasks [2]. We specifically distinguish among: (i) metric-based
methods, in which information shared across tasks is encoded in a
distance measure used to instantiate non-parametric predictors; (ii)
model-based methods, whereby data from multiple tasks is used to
determine a “hyper-model” that maps data from a new task to a model;
and (iii) optimization-based methods, which target the design of the
hyperparameters of an optimization procedure for training on new tasks.
We now briefly review each class in turn.

2.1.1 Metric-Based Meta-Learning

Metric-based methods assume that the training and testing tasks in
the given environment share a common feature representation mapping

16



2.1. Overview of Meta-Learning Algorithms 17

that can be used to gauge the similarity between data points. A similarity
metric meta-learned based on data from multiple tasks can be leveraged
to implement non-parametric predictive models without the need for
training on a new task. Modern metric-based meta-learning methods
include the Matching Network [3], the Prototypical Network [4], and
the Relation Network [5]. The approach is aligned with empirical Bayes
methods that are routinely used in models such as Gaussian Processes,
with the caveat that data is collected here from distinct tasks. In this
monograph, we will concentrate on parametric models, which have been
more commonly adopted for engineering problems, and hence we will
not elaborate further on metric-based meta-learning.

2.1.2 Optimization-Based Meta-Learning

Owing to their performance and relative ease of implementation,
optimization-based methods constitute the dominant class of meta-
learning solutions for parametric models. Recently, the most common
approach within this class optimizes the initialization of the model
parameters used by the training procedure. The rationale underlying
such optimization-based methods is that a good initialization can help
the training procedure quickly adapt the model parameters to new tasks
with few optimization steps. Notable examples of initialization-based
schemes are model agnostic meta-learning (MAML) algorithm and its
variants (see e.g., [6], [7]). More broadly, optimization-based methods
may design other hyperparameters of the training algorithm such as
the learning rate [8].

Existing optimization-based methods that address model initializa-
tion can be further divided into two main categories, depending on the
type of optimization used for training, namely second-order algorithms
and first-order algorithms. Second-order algorithms, to be presented
in Section 2.2, require second-order derivatives of the per-task loss
functions during meta-learning; while first-order algorithms, described
in Section 2.3, only need first-order gradient information of the per-task
loss functions to be available.

As a distinct example of optimization-based methods, we will also
study modular meta-learning. Modular meta-learning relies on the



18 Meta-Learning Algorithms

assumption that suitable models for the given environment share a
common repository of modules that can be recombined to address
each individual task. Accordingly, modular meta-learning optimizes the
hyperparameters as a set of modules that can be assembled in different
ways to yield models for new tasks using combinatorial optimization.
Modules may consist of instance of layers of a neural network. We refer
to Section 2.5 for details.

2.1.3 Model-Based Meta-Learning

Model-based methods optimize a hyper-model that directly maps the
training set from a task to a model. This mapping can be realized using
recurrent neural networks [9], [10], convolutional neural networks [11],
or hypernetworks [12], [13]. In Section 2.6, we will elaborate on a simple
representative of model-based meta-learning, whereby the training set
for the new task is used to optimize a context vector that determines
the operation of a model shared across tasks.

2.2 Second-Order Optimization-Based Meta-Learning

In this subsection, we introduce second-order optimization-based meta-
learning methods by covering the key representatives, MAML [6], im-
plicit MAML (iMAML) [7], and Bayesian MAML [14]-[16].

2.2.1 MAML

Figure 2.1: Ilustration of MAML: MAML aims at finding an initial parameter
vector 6 that allows quick adaptation to new tasks via gradient descent of loss function
for the k-th task, L, = LDZr(G). The adapted parameter for task k is denoted as

¢r = ¢(D}r]0), and is obtained as shown in the figure via a single gradient step.



2.2. Second-Order Optimization-Based Meta-Learning 19

As illustrated in Figure 2.1, MAML aims at finding an initial pa-
rameter vector 6 that allows quick adaptation to new tasks via gradient
descent [6]. In the simplest form of MAML, as seen in Figure 2.1,
starting from the initial parameter vector 6, the per-task parameter ¢
is adapted using a one-step gradient update for the task-specific loss
function Lpu(¢) for each k-th task. We recall from (1.1) that we write
as LDItCr(Qﬁ) the empirical loss evaluated on a training set D} when model
parameter ¢ is used. Data for the k task comprises the train set D},
which is used for training, as well as the validation set D}* that is used
to estimate the population loss via the validation loss LDZa(¢). Let
putr = (pmriK = [Dir DyalK | denote the overall meta training
dataset. With these definitions, the meta-training loss function

Dt (0) for MAML is the average of the validation loss across all
meta-training tasks. Following (1.3), we also write as ¢™*(D}"|6) the
updated model parameter vector based on training data D,tcr for task k
with initialization 6, and aim to optimize

: ma 1 K ma r
min LB () = 7 kz::l Lpw (6™ (DfF16)) (2.1a)
s.t. o™ (Dyr10) =6 — aVoLp (0) . (2.1b)

Where « is predefined stepsize. Note that the updated model from (2.1b)
corresponds to the one-step gradient update illustrated in Figure 2.1.
The MAML algorithm is summarized in Algorithm 1.

Algorithm 1 MAML

1: Input: Initial iterate 6; meta-training data D™; loss function
0(z]¢); stepsizes « and

2: while not converged do

3 Sample batch of tasks K C K = {1,..., K}

4 for all k € K do

5 Compute per-task parameter ¢™*(D}’|6) using (2.1b)
6: end for

7 Update hyperparameter vector 0 as

8 0 < 0 — Vo LB (0) using in (2.1a)

9: end while




20 Meta-Learning Algorithms

In order to apply MAML, in line 8 of Algorithm 1, we need to

compute the gradient VoLF%. () of the meta-training loss in (2.1a).

Using the chain rule of dlfferentiation, with I denoting the identity
matrix, the gradient VoL (0) is computed as

VLB (0 vam DY 10)V o Loy (8) ] o—o(pir0)

1
T K Z (1= aV3Loy (0)) VoLoy(9)ls=goyrio) (2.2)

where Vo™ (D}*|0) represents the Jacobian of the updated parameter
in (2.1b) with respect to the initial parameter §. Therefore the update
of # in line 7 of Algorithm 1 is specified as

06— Z (1= aV3Loy (0)) VLo ()l g—gma(opey:  (2:3)

The convergence rate of MAML has been first established in [17], and
later been improved in [18].

2.2.2 Implicit MAML

In implicit MAML (iMAML), the per-task parameter ¢ is updated
using hyperparameter vector 6 by solving an ls-regularized empirical
risk minimization problem that penalizes deviations between per-task
parameter ¢ and the hyperparameter 6. Accordingly, the meta-training
loss function L. (0) is defined as

. 1 X .
Buer (6) = 2 > Loye (6™ (D}10)) (2.4a)
k=1

. A
s.t. ¢"™(DiF|6) = arg min {LDEY (¢) + 5 o — 6”2} , (2.4b)
¢

where A > 0 is a regularization constant. As compared to MAML, the
gradient update in (2.1b) is replaced by the minimizer of problem (2.4b).
Note that, if the loss function LD;J(QS) is replaced in (2.4b) by its first-
order Taylor expansion at 0, i.e., by

Loy (6) = Loy (6) + Vi (6) (6 - 0) (25)



2.2. Second-Order Optimization-Based Meta-Learning 21

then problem (2.4) coincides with problem (2.1a).

The adapted parameter ¢™(DI’|0) in (2.4b) can be explained in
terms of the proximal mapping for the per-task training loss Lpu (¢) [19].
This function is defined as

A
prox,,, »(0) = argmin 5 [|¢ — 01 + Lpu (). (2.6)
k ¢
Therefore, the constraint in (2.4b) can be written as
¢"™(Di10) = Proxz, . A(0): (2.7)

Based on the chain rule of differentiation and the implicit function
theorem, the gradient descent update of hyperparameter 6 during meta-
learning is obtained from problem (2.4)-(2.4b) as [7]

Bs~(;. 1 -

The iMAML algorithm is summarized in Algorithm 2.

Algorithm 2 iMAML

1: Input: Initial iterate #; meta-training data D; loss function ¢(z|¢);
stepsize (; regularization weight A

2: while not converged do

3 Sample batch of tasks K C K = {1,..., K}

4 for all k € K do

5: Compute per-task ¢'™ (D) by solving problem

6: (2.4b)

7 end for

8 Update hyperparameter vector § via the gradient update (2.8)
9: end while

2.2.3 Implicit MAML for Ridge Regression

In this subsection, we instantiate the iMAML scheme for the example
of linear prediction via ridge regression. Consider a linear prediction
problem in which each k task amounts to the optimization of a linear



22 Meta-Learning Algorithms

prediction over the model parameter vector ¢ € R? given input vector
z, € R?, which is computed as

gk =0 . (2.9)

The training data set is given as Djf = (X', yl), where
X =[ziq, - x,IN“]T is the N" x d matrix that contains by row the
transpose of the input vectors {a:kvn}ﬁfl, and yi¥ = [yk1,..- ,yk’Ntr]T
as the N* x 1 vector that collects the corresponding labels {yg, }N",
Similarly, we define D}* = (X, y)/?) as X = [1{,17 . ,a:ZNva]T as the
N'2 x d input data and y}® = [yk1,...,YkNva] as the N'® x 1 target
labels for the validation data of the k-th task.

Given the task-specific model parameter ¢, the mean squared error
(MSE) prediction loss given the data set D§f can be written as

Loy (9) = |IXE6 — v 1% (2.10)

With the quadratic loss in (2.10), the solution of the inner problem
(2.4b), i.e., the proximal function in (2.7), can be obtained analytically
as

¢™ (D(9) = (X,Q”X,‘;f+%1) (xiTyir + A 39)- (2.11)

As a result, the solution of the meta-training problem (2.4) can also be
computed in closed form as

K
0 = argmin »_ || X370 — 57|
0 k=1
= X1y, (2.12)

where the NY® X d matrix X,‘g’a contains by row the transpose of the pre-
conditioned input vectors {5 (A}") "z Y0, with A = (XF) TXfF +
%I ;g is N¥ x 1 vector contaimng vertically the transformed out-
puts {y}%, — (i) TXF(Ar! )t M. the KN'* x d matrix X =
[X72,..., X327 stacks vertically the N¥® x d matrices {X}*} |; and
the KNY® x 1 vector § = [§{?,...,73] " stacks vertically the N'* x 1
vectors {y72 1 . Further discussions can be found in [20]-[22].



2.2. Second-Order Optimization-Based Meta-Learning 23

2.2.4 Sharp-MAML

The nested structure of the MAML problem (2.1a)-(2.1b) may cause
the optimization landscape in the space of the hyperparameter 6 to
have many saddle points and local minima. To illustrate this point,
Figure 2.2 shows the loss landscapes of MAML on %?m(ﬁ) given by
(2.1a), as compared to a standard joint learning model (see [23] for
details). Reference [23] provides a formal statement of the observation
in Figure 2.2 that the loss landscape of MAML is more involved as
compared to joint learning, making the optimization problem potentially
difficult to solve.

10
10

Figure 2.2: Loss landscapes for the MAML loss L15.. (6) (left) and for joint learning
(see (1.2)) (right) for a single task on CIFAR-100 dataset [23].

While some of the local minimizers in the loss landscape of MAML
are indeed effective few-shot learners, there are a number of sharp
local minimizers in MAML that may have undesired generalization
performance. Therefore, it is of interest to develop a method that can
find local minimizers with better generalization ability, which motivates
the Sharp-MAML algorithm introduced in [23].

Sharp-MAML is inspired by the recent development of the sharpness-
aware minimization (SAM) algorithm [24], which avoids sharp local
minimizers of the loss landscape to improve the generalization ability
of the algorithm. The idea is to find a solution such that the maximum
loss of the parameter in the neighborhood of this solution is minimized.

Since MAML is formulated in (2.1a) as a bilevel optimization prob-
lem, ideally the solutions of both inner-level and outer-level problems
should have good generalization. Sharp-MAML applies the idea of SAM
to both the inner- and outer-level problems (2.1a) and (2.1b). The



24 Meta-Learning Algorithms

resulting minimax problem is approximated by adding perturbations
along the gradient ascent direction for both inner- and outer-level pa-
rameters, which are denoted as €;(0) and €(6). The loss function of
Sharp-MAML is accordingly given as

1 K
Biur (0) = 22 >~ Lo (¢Sm(p,t;ye)) (2.13a)
k=1

st. ¢"(DE0) = 0+ € (0) — aVLpu (0 +€(0) + € (0)), (2.13D)

where the perturbations e (6) and €(6) are given as

ex(0) = ainVoLpy (0)/ | VoLpy (6)|2 (2.14a)
€(0) = ot Vo Ly (6(D}10)) /[ Vo Lo ($(DJ10)) 12 (2.14b)
with ¢(D}|0) = § — aVgLpy (6 + e (6)), (2.14c¢)

with iy and e denoting the scalar hyperparameters for inner and
outer-level perturbations to be used in (2.13b).
The outer-level update for Sharp-MAML is

ﬁ K S I
00— kz:jl VoLoy (¢ (D19)) - (2.15)

2.3 First-Order Optimization-Based Meta-Learning

In this section, we cover optimization-based meta-learning algorithms
that, unlike the second-order methods described in Section 2.2, do not
require computing the second-order Hessian of the loss function during
training, leading to significantly reduced computational complexity.
These methods include first-order MAML [6], ES-MAML, Reptile [25],
and Proximal MAML (Prox-MAML) [19].

2.3.1 FOMAML

First-order MAML (FOMAML), originally proposed in [6], uses the
same formulation as MAML in (2.1a). However, for the update of the
hyperparameter §, FOMAML replaces the Jacobian V@™ (Di'|0) in



2.3. First-Order Optimization-Based Meta-Learning 25

(2.2) by an identity matrix, hence foregoing the computation of the
Hessian ngthf(e)' The outer update of FOMAML is given by

K=
where the function ¢ (D{|0) is computed by
¢°(Di10) = § — aVoLpy (6) . (2.17)

The FOMAML algorithm is summarized in Algorithm 3.

Algorithm 3 FOMAML

1: Input: Initial iterate #; meta-training data D; loss function ¢(z|¢);

stepsizes a, 8
2: while not converged do
3 Sample batch of tasks K C K = {1,..., K}
4:  forall k€K do
5: Compute per-task parameter ¢(D{|0) using (2.1b)
6 end for
7 Update hyperparameter vector 6 via the gradient update (2.16)
8: end while

2.3.2 ES-MAML

ES-MAML [26] addresses the MAML problem in (2.1a) via evolution
strategies (ES), a black-box optimization algorithm [27]. In a nutshell,
similar to MAML, the task-specific parameter ¢* is also obtained
via one-step gradient update initialized at the hyperparameter 6. The
difference with MAML concerns the meta-update in lines 5 and 8 of
Algorithm 1, in which the gradient ngfDlt; (0) is replaced with the
ES multi-point gradient estimator. Accordingly, the update of the
hyperparameter 6 is obtained as
RS -
00—+ kzl (I — aH}?) Vo Loy ()| g—g(pi o) (2.18)

b5
oras 0<+ 60— E g \Y% vaa |¢ $es( Dtr\G) (219)



26 Meta-Learning Algorithms

Algorithm 4 ES-MAML

1: Input: Initial iterate #; meta-training data D; loss function ¢(z|¢);
stepsizes «, 3

2: while not converged do

3 Sample batch of tasks K C K = {1,..., K}

4 for all k € K do

5: Compute per-task parameter ¢*(D}'|f) using

6 ¢ (Dyr|0) =6 — aﬁgLD;f (0) estimated via (2.20)

7 end for

8 Update hyperparameter vector 6 via the gradient update (2.18)

9: or (2.19)
10: end while

where @quD%a((;S) is the ES multi-point gradient estimator of VyLpya(¢),
which queries multiple points in the parameter space of the hyperparam-
eter 0, along with their loss function values. And H}® denotes the ES
Hessian estimator of VgLDZr (#). The gradient is estimated by the sample
average of the function value difference in randomly sampled directions.
Specifically, the n-point ES gradient estimator of a loss function L(¢)
is computed as

a 1& i

Vol(d) == [X( (6 +0us)) |, (2.20)

n =1
where u; is a random vector sampled from distribution N (0,1) in the
same space as ¢; and ¢ is a fixed parameter that controls the distance
between the two points used to estimate the gradient.

Analogously, the ES Hessian estimator H® can be computed by
applying the gradient estimator twice, yielding

H® = 1( ZL¢>+5uz)uZ —lzn:quJr(Suz)) (2.21)

n

The ES-MAML algorithm is summarized in Algorithm 4.



2.3. First-Order Optimization-Based Meta-Learning 27

2.3.3 Reptile

Reptile [25] shares the same general formulation as FOMAML. Consid-
ering the one-step per-task gradient update

¢(D}10) = 0 — aVoLpy (6), (2.22)

which coincides with the FOMAML update (2.17). Reptile follows an
approach akin to the Fed Avg algorithm [28] to update the hyperpa-
rameter 8. Specifically, the hyperparameter vector 6 is updated in the
direction of the average of the task-specific parameters in (2.22) as

K
0« (1—5)0+ % > ¢ (D]0), (2.23)

where § > 0 is a constant. Reptile is summarized in Algorithm 5.

Algorithm 5 Reptile

1: Input: Initial iterate #; meta-training data D; loss function ¢(z|¢);
stepsizes «, 3

2: while not converged do

3 Sample batch of tasks K C K = {1,...,K}

4 for all k € K do

5: Compute per-task parameter ¢*¢(D}|0) using (2.22)

6 end for

7 Update hyperparameter vector 6 by the gradient update (2.23)
8: end while

2.3.4 Prox-MAML

Prox-MAML [19] adopts a bilevel formulation where the inner-level
loss function is the same as that of iIMAML in (2.4b), and the outer-
level meta-loss is the average of the inner-level loss across all tasks.
Mathematically, the bilevel problem is formulated as

L 6) ZLDm (7 @p10)) + 5 ooy — o 220

s.t. qur(Dmtrw) = proxLDmmA(G), (2.25)



28 Meta-Learning Algorithms

where we have used the definition of proximal mapping in (2.6).
The gradient of the hyperparameter 6 can be derived as

T ]' us T mtr )\
VoL (0)=p 3 Voo (DE"10)V (Lops @)+ 316 =0)| _,,

K
+ % Z (O — ¢P"(D19)). (2.26)
k=1

Furthermore, by (2.25), for all k € [K], we have the equality

A 2
Vo(Lo, (@) + 5 llo— 0] )’¢:¢pr(Dk|9) =0, (2.27)
implying that the gradient VoL, (6) in (2.26) can be simplified as
1 K
VoL (0) =72 D A0 — 6™ (DI]0))- (2.28)
k=1

It follows that the update equation for Prox-MAML is given as

0« 60— BA (9-2%@* (Dk\9)>. (2.29)
k=1

The Prox-MAML algorithm is summarized in Algorithm 6.

Algorithm 6 Prox-MAML

1: Input: Initial iterate 6; meta-training data D™; loss function
0(z]9); stepsizes «, 3
while not converged do
Sample batch of tasks K C K = {1,..., K}
for all k € K do
Compute per-task parameter ¢P*(D}"|6) using (2.25)
end for

Update hyperparameter vector # via gradient update (2.29)
end while

2.4 Bayesian Meta-Learning

MAML optimizes a conventional frequentist learning process that out-
puts an optimized model parameter ¢ for each task k. Frequentist



2.4. Bayesian Meta-Learning 29

learning is well known to be ineffective at quantifying uncertainty,
and at providing well-calibrated decision (see e.g., [1], [29]). In con-
trast, Bayesian learning, retains information about uncertainty in the
model parameter space by evaluating, ideally, the posterior distribution,
p(¢| DI, 0) of the task-specific parameter ¢, given the training data set
Djr. According to the Bayes rule, the posterior distribution is

where p(DI’|¢) is the likelihood of parameter ¢; p(4|6) is the prior of the
parameter ¢, which is allowed to depend on the hyperparameter 6; and
p(D}r|0) is the evidence or the normalizing constant, with p(DI’|0) =
[ p(Di*|¢)p(4|0)dé. Importantly, by (2.30), we assume that the prior
distribution p(¢|f) can be controlled via a vector 6 of hyperparameters,

(2.30)

paving the way for the use of meta-learning.

l@mqﬂe)
22 p(@IDY,6)

o

e % P(@IDY,0)

Figure 2.3: Illustration of Bayesian meta-learning: Bayesian meta-learning obtains
a posterior distribution p(¢|D}, #) of the k-th task parameter by updating a prior
distribution p(¢|0) shared across tasks and determined by the hyperparameter 6.

In problems of practical interest, the normalizing constant in (2.30)
is typically intractable. Therefore, instead of the exact computation of
the posterior (2.30), Bayesian learning algorithms obtain an approxi-
mation, p(¢|DyF, ). Among the most common techniques, the posterior
distribution can be approximated by Laplace approximation [14], by
parametric or non-parametric variational inference [15], [16], or via
Monte Carlo sampling methods [30] (see also reviews in [1], [31]).

Here we focus on the variational inference formulation, which mini-
mizes the divergence between the approximate and the true posterior
distributions. For two distributions p(¢) and ¢(¢) defined on a common



30 Meta-Learning Algorithms

space, the Kullback-Leibler (KL) divergence is defined as

DxL(p(¢)ll9(9)) = Ep(g)l[log p(¢) — log q(¢)]. (2.31)

Bayesian meta-learning aims at optimizing the hyperparameter 6 of the
prior distribution p(¢|0) that is shared across all tasks. Bayesian learning
via variational inference optimizes the approximate posterior p(¢|D}r, 6)
within a set Q of parametric distributions, e.g., the set of Gaussian
distributions parameterized by the mean and covariance. Bayesian
meta-learning aims at optimizing the prior distribution p(¢|6). This is
achieved by minimizing the KL divergence Dk, (p(¢| D}, 0)||p(¢| DI, 6)),
equivalent to minimizing the variational free energy [1], [32], given by

B(#{DF.6) = srgmin — Eyg [log p(D[6)] + D, (a(0)Ip(416)).
q
(2.32)

The variational free energy in (2.32) is the average training log-loss —
first term in (2.32), penalized by the deviation of the approximation
q(¢) from the prior ¢(¢|f) via the second term in (2.32). Accordingly,
the meta-training loss for Bayesian meta-learning is given as

L (p(0]0)) ZLDva( (/D" 0)) (2.33)

B(#[Df.6) = argmin — Eyqy 1oz p(D|9)] + Dt (a(6) [(616) )
q €

(2.34)

where the loss function Lpye (p(¢| DL, 0)) is typically specified as the
negative log-loss computed on validation data based on the approximate
posterior p(¢|DY, 0), i.e., [15]

Lop (6D}, 0)) = ~log [ (D @)p(@[DF . 0)do.  (235)

The objective is typically estimated via the Monte Carlo sampling [15].

Theoretically, the performance of Bayesian meta-learning compared
to MAML and iMAML has been established in [22]. Practically, there
exist a variety of Bayesian meta-learning algorithms [14]-[16], [33], [34],
which mainly differ in the definitions of the set Q used in (2.34), and



2.4. Bayesian Meta-Learning 31

Algorithm 7 BMAML

1: Input: Initial particles 6; meta-training data D; loss function
0(z|p); stepsizes «,

2: while not converged do

3 Sample batch of tasks K C K = {1,..., K}

4 forallke K do

5: Update per-task parameter particles ¢, (D}|0) using (2.36a)
6 end for

7 Update hyperparameter vectors 6 via the SVGD update (2.36b)
8: end while

in the approximation methods used to approximate the solution of
the variational free energy minimization problem (2.34). BMAML [15]
adopts a non-parametric variational inference approximation method,
which approximates the posterior p(¢|Di',6) via a set of particles ¢, =
{bk1,---, 0k}, and also specifies the prior distribution p(¢|6) via a
set of particles @ = {01, ...,0,r}. Specifically, BMAML adopts the Stein
Variational Gradient Descent (SVGD) algorithm [35] to update the
particles ¢, when addressing problem (2.34). Accordingly, the updates
for the per-task particles ¢, and the set of hyperparameter vectors 6
are, respectively, given as

¢.(D}F10) + SVGD(6, D}, ) (2.36a)
and 6« 0 — SVLP2.. (6). (2.36b)

In (2.36a), the SVGD update is given by [35]

SVGD(8, DI, a)
M

1 m m r m
=0+a- > [n(e ,0)Vom log p(8™|DIF) + Vm k(8 ,9)},\19 co,

m=1

(2.37)

where a > 0 is the step size, and k(6,6") is a positive definite kernel,
e.g., the radial basis function kernel [15].

The BMAML algorithm is summarized in Algorithm 7.



32 Meta-Learning Algorithms

5 5
e ——T s
45 S (S & a5t 45
L iMAML R R {...,{ _____ T I
4 BMAML L e e St T i Rt e S
o
gs = - s -L-JL
. 7 —J—MAML z —F—MAML
% 825 T MAML = —T—iMAML
& 3 2 —F— BMAML z —F—BMAML
R is M 2.5 \I\
1
0s 2. \
o ! 23 e R ‘Iﬂ‘ 10? 10° ! 5\0‘ 10 10 10
Meta-train iterations <10 Number of samples per task Number of tasks
(a) Training curve (b) Best test loss vs. N (c) Best test loss vs. K

Figure 2.4: Comparison of the performance of joint learning (JL), MAML, iMAML
and BMAML in the sinusoidal regression problem introduced in [22]: (a) Test loss vs.
meta-training iterations; (b) best test loss vs. number of data per task N; (c) best
test loss vs. number of tasks K.

2.4.1 Discussion on Empirical Performance

In this subsection, we evaluate the empirical performance on regres-
sion and classification tasks of some of the meta-learning algorithms
introduced in this section.

We first consider the standard benchmark regression problem in
which testing tasks are characterized by different ground-truth sinusoidal
regression functions [6]. Compare the empirical performance of joint
learning (JL), MAML, iMAML and BMAML with the same neural
network architecture (see [15], [16], [22] for details) in Figure 2.4. For
more results under different hyperparameters, refer to [15], [16], [22]. JL
is observed to be unable to effectively adapt to new tasks, in contrast
to meta-learning methods. Among meta-learning algorithms, BMAML
is observed to outperform iMAML and MAML when a small number
of training data and tasks are given because of its ability to manage
uncertainty. All three meta-learning methods have close to zero test
loss when a sufficiently large number of training data per task, or when
a sufficiently large number of tasks are given.

We then turn to the more complex benchmark of few-shot image
classification on the Mini-Imagenet dataset. The results reported in
Table 2.1 highlight that Sharp-MAML outperforms other meta-learning
methods in this setting, with BMAML generally outperforming other
non-Bayesian methods. For results on other datasets and for further



2.5. Modular Meta-Learning 33

Table 2.1: Accuracy (%) of few-shot image classification on Mini-Imagenet (5-way).

Algorithms 5-way 1-shot 5-way 5-shot
MAML [6] 48.70 63.11
iMAML [7] 49.30 -
CAVIA [36] 47.24 59.05
FOMAML [37] 48.07 63.15
Reptile [25] 49.97 65.99
Prox-MAML [19] 50.77 67.43
BMAML [15] 49.17 64.23
Sharp-MAML [23] 50.28 65.04

discussion, we refer to [16], [19], [23], [38].

2.5 Modular Meta-Learning

The methods described thus far aim at parametric generalization. In con-
trast, modular meta-learning aims at fast combinatorial generalization.
Rather than transferring knowledge across tasks via hyperparameter,
modular meta-learning generalizes to new tasks by optimizing a set
of reusable neural network modules that can be composed in different
ways to solve a new task. By reusing modules across tasks, modular
meta-learning makes, in a sense, “infinite use of finite means”, and
represents a scalable approach towards generalization, particularly in
settings which are heavily constrained in terms of data [39]-[41].

More formally, modular meta-learning assumes a shared module set
M =0, ..., 6] of size M which is optimized during meta-training.
During meta-testing, the module-set is fixed, and a subset of the modules
are selected, combined and applied to the new task. This enables an
efficient adaptation based on limited data via the selection of modules
from the set M.

Let Sk (M) denote the assignment of a subset of modules from set M
to a particular task k. Let also ¢(Sx(M)) represent the model obtained
by combining the selected modules Si(M). The meta-training loss for



34 Meta-Learning Algorithms

Algorithm 8 Modular Meta-learning

1: Input: Initial module set M; meta-training data D; loss function
0(z|p); stepsizes «,

2: while not converged do

3 Sample batch of tasks K C K = {1,..., K}

4 forallke K do

5: Compute assignment parameters Sy (M) via problem (2.38b)

6 Compute shared module parameters M via problem (2.38a)

7 end for

8: end while

modular meta-learning problem is given by

mo 1 K mo I
Lhk (M) = = 3 Lpye (o™ (DfrIM) (2.38a)
k=1
st ¢"(DFIM) = arg min Ly (¢(5M)). (2.38b)
Sk (M)

The inner optimization in (2.38b) selects the module set for task k, while
the outer problem (2.38b) optimizes over the module set M. The outer
problem in (2.38a) is typically tackled by gradient descent, while the
optimization of the assignment in the inner problem (2.38b) is a discrete
optimization problem. Previous works have addressed this problem by
adopting combinatorial optimization techniques like simulated annealing
[39], [40], or using reparametrization and gradient descent [41].
Modular meta-learning is summarized in Algorithm 8.

2.6 Model-Based Meta-Learning

As an example of model-based meta-learning, in this section, we review
the Context Adaptation Via Meta-Learning (CAVIA) algorithm intro-
duced in [36]. Unlike optimization-based schemes, the model is shared
across all tasks, and not adapted based on training data from each task.
Therefore, the model parameter vector can be considered to be the
hyperparameter 6 shared across tasks. What is adapted to each task is
a context parameter ¢ that serves as an additional input vector to



2.6. Model-Based Meta-Learning 35

the model as illustrated in Figure 2.5. The rationale for this choice is
that vector ¢ can embed information about the task that can control
the output of the model. Let us define as LD?(H, ¢) the training loss

(#)
N boy
6§O

Figure 2.5: Illustration of CAVIA: While the model parameter vector 6 are shared
across tasks, the per-task context parameter vector ¢, consisting of entries ¢! ..., ¢%,
is adapted to the training data of each task, and it serves as an additional input
vector to the model.

¢

for task k given model parameter § and context vector ¢. By reducing
the number of parameters to be updated, CAVIA can be more sam-
ple efficient than optimization-based scheme. The meta-training loss
function L% (0) is given by

e ( Z Loy (0,6°(D}110)) (2.39a)
s.t. (bca(,Dlt;r’e) - 0 - av(]ﬁoLDg (07 (b(]) ) (239b)

where ¢q is some fixed initialization, e.g., the all-zero vector. Setting
¢o = 0 and using the chain rule of differentiation, the update of the
hyperparameter 6 during training procedure of CAVIA is given by

_0 - = Z VQLDVH (9 Ca) ’(bca:qsca(p;:crle)
k 1

af
ula Z Vg Loy (8, 60) Vs Loy (6, 9) |gmgen(pirgy.  (2:40)
k=1

The CAVIA algorithm is summarized in Algorithm 9.



36 Meta-Learning Algorithms

Algorithm 9 CAVIA

1: Input: Initial iterate #; meta-training data D; loss function ¢(z|¢);

stepsize (§; regularization weight A
while not converged do

Sample batch of tasks K C K = {1,..., K}

for all k € K do

Compute per-task parameter ¢°*(D}|6) by solving (2.39b)

end for

Update hyperparameter vector 6 via the gradient update (2.40)
end while

I L S

2.7 Conclusions

In this section, we have provided an overview of meta-learning algo-
rithms by mostly focusing on optimization-based strategies. We have
categorized optimization-based algorithms into second-order and first-
order algorithms based on whether they require second-order derivatives
during meta-training. All algorithms were formulated as solutions to
bilevel optimization problems, which follows a generic form as

1 K

Loms(60) = 2= > Loy (¢(Dy110)) (2.41a)
k=1

s.t. ¢(Di'|0) = arg min .Z/'D;ccr(07 o), (2.41b)

pER

where the lower-level function INJD;;(H, ¢) can be different from the
upper-level function LDZa(') and it depends on both 6 and ¢. Different
meta-learning algorithms introduced in this section mainly differ in
the corresponding inner-level problem (2.41b). In the next section, we
will elaborate on the unifying perspective of meta-learning as a bilevel
optimization problem, and review results on the convergence of gradient-
based bilevel optimization algorithms for such problems.



3

Bilevel Optimization for Meta-Learning

In the previous sections, we have reviewed the meta-learning setup and
the main meta-learning algorithms. In this section, we take a unified
view to describe the operation of meta-learning algorithms through the
lens of bilevel optimization.

3.1 A Brief Introduction to Bilevel Optimization

Stochastic optimization methods, including stochastic gradient descent
(SGD) [42] are prevalent for solving large-scale machine learning prob-
lems. Plain-vanilla SGD is applicable to stochastic optimization prob-
lems such as empirical risk minimization, which underlies conventional
learning. As we have seen in Section 2, most meta-learning algorithms go
beyond the single-level minimization structure of conventional learning
by adopting nested formulations based on bilevel optimization [43]. In
this section, we review a unified bilevel optimization framework to de-
scribe meta-learning algorithms. We start this subsection by presenting
a brief history of bilevel optimization, as well as by introducing its
mathematical formulation.

37



38 1ing
A Brief History of Bilevel Optimization

Mathematical Programs with Optimization Problems

in the Constraints

T Bilevel
n N Programming
,, Problems
o e NP-Complete il s i
= computa- \J’ \ .
Original bilevel '
, rigina B
Stackelbergﬂs game formulation P .
E % |
| | Single-level Hardness Descent Bilevel
ingle-leve results algorithms for optimization for
reformulation of bilevel problems ML problems
bilevel optimization
|
1952 1973 1980s Early 1990s 1990s Early 2000s

FighPBraorL S Bt e BT s PHERBAI (B it GRS from [44]-[47).

3.1.1 History of Bilevel Optimization

Bilevel optimization (BLO) is a hierarchical optimization framework,
whereby the set of solutions of the lower-level problem serves as a
constraint for the upper-level problem [48], [49]. It can be viewed as
a generalization of two-stage stochastic programming [50], in which
the upper-level objective function depends on the optimal lower-level
objective value rather than on the lower-level solution set. As illustrated
in Figure 3.1, BLO has a long history in operations research, which
dates back to von Stackelberg’s seminal work on leader-follower games
in the 1950s [43]. Research interest on BLO has intensified since the
1970s [45], with researchers soon realizing that BLO is very challenging:
Even an “easy” class of linear BLO problems is strongly NP-hard [51].

Recently, bilevel optimization has gained growing popularity in
a number of machine learning applications such as meta-learning [7],
reinforcement learning [52], continual learning [53], and image processing
[54]. Many recent efforts have been made to address bilevel optimization
problems. One successful approach is to reformulate the bilevel problem
as a single-level problem by replacing the lower-level problem by its
optimality conditions [49], [55], which belongs to the general class of
mathematical programs with equilibrium constraints [56]. Recently,
gradient-based methods for bilevel optimization have gained popularity,



3.1. A Brief Introduction to Bilevel Optimization 39

whereby the (stochastic) gradient of the upper-level problem is iteratively
approximated [57]-[68]; see also two recent surveys [69], [70].

3.1.2 Generic Formulation

Bilevel optimization problems of interest for meta-learning can be
expressed in the form of the stochastic bilevel problem [18], [65],
[66], [68], [71]

min £(0) = Be[f (0,0 (0):€) (wpper)  (3.1a)
st ¢7(0) = argmin Eg[g(6, ¢; &) (lower), (3.1b)
pER?

where f(6,¢;&) and g(0, ¢; ¢ ) are differentiable but possibly nonconvex
functions of 6 and ¢; and & and é are random variables with given
distributions P(¢) and P(£), respectively. In (3.1), the upper-level
optimization problem over the upper-level variable § € R? depends on
the solution ¢*(6) of the lower-level optimization over vector ¢ € R
Crucially, the solution of the lower-level problem, ¢*(6), depends on
the upper-level variable 6 through the lower-level objective function
9(0, ¢; é ). In the following, for convenience, we define the deterministic
functions (0, ¢) := E[g(0, ¢; £)] and f(0, ) := Ee[f (0, ¢; €)).

Many meta-learning problems reviewed in Section 2 can be for-
mulated as the stochastic bilevel problem (3.1). For example, we can

recover the iIMAML formulation in (2.4) by defining the vector ¢*(0) :=
[¢>{(0)T, T 7¢*K(0):r]—ra g = [gla e ’gK]T7 6 = [gb o 7£K]T7 with

DP* = &, DY = &, and with the upper- and lower-level functions

£(0,¢:€) and g(0,¢:) as [7], [18], [72], [73]
K
F0.6°00:6) = = > Lop (67 () (32)
k=1

and g(6, ;&) == % 311 gr(0, ér; &), where we have

R A
9k (0, O3 €) 1= Ly (dn) + 5 llon — 0. (3-3)

The goals of the rest of this section are to provide a unified bilevel
optimization algorithm for meta-learning that addresses problem (3.1),
and to review the convergence properties of the unified bilevel algorithm.



40 Bilevel Optimization for Meta-Learning

3.2 A Unified Bilevel Optimization Framework

In this section, we introduce a unified algorithmic framework for solving
the bilevel problem (3.1), and we discuss its connection to some of the
meta-learning algorithms reviewed in Section 2.

3.2.1 Bilevel SGD: Definition and Challenges

Solving bilevel stochastic problems via traditional stochastic optimiza-
tion techniques faces a number of challenges. In this subsection, we
highlight the technical issues that arise when applying SGD directly to
the bilevel problem (3.1).

To address the bilevel problem (3.1), a natural solution is to apply
alternating SGD updates on the vectors # and ¢ based on their respective
stochastic gradients as

S = i 5%2 and ot = 01 — ol (3.4)

where hg is an unbiased stochastic gradient for the lower-level objective
9(0, ¢) at the iterate (6, ¢) = (6", ¢'); I is the (possibly biased) stochas-
tic gradient for the upper-level objective £(0) at § = 6*; and, 5* and o
are stepsizes. More precisely, the updates in (3.4) are typically run in a
way that alternate between the upper- and lower-level problems.

A first approach is to run SGD updates on the lower-level variable ¢
in (3.4) multiple times before updating the upper-level variable 6, which
yields a double-loop algorithm. To guarantee convergence, this approach
typically requires either increasing number of lower-level ¢-update, or
growing the batch size used to estimate the gradient h; [65], [67]. The
second method is to update vector ¢* with a larger learning rate so that
the iterates ' are relatively static with respect to ¢°. This can be done
by setting learning rates that satisfy the limit lim; . a!/B3° = 0 [66].
The third method is to modify the update direction h; by incorporating
additional momentum and acceleration terms [58]-[60], [68], [74].

The challenge of running the iteration (3.4) in one of the ways
described above is that the (stochastic) gradient h} for the upper-level
variable 6 is often prohibitively expensive to compute. To illustrate
this point, we now derive the gradient of the upper-level function £(6)



3.2. A Unified Bilevel Optimization Framework 41

in (3.1). To this end, we first define the Hessian matrix V3,g(6, ¢) of
function ¢(6, ¢) with respect to ¢ as

02 52
00,90, 0) -+ mg(& 9)

Voeg(0:0) = | 2
86)(38019(97 ¢) - %9(9, b)

as well as the matrix V§¢g(0, ®) as

2 2
aa?aasl 9(0,0) - %3%9(97 P)

V§¢9(97¢) = , - .

o) o)

g0.05,90,0) - mﬂ(ea ?)

Under certain differentiability assumptions of the upper and lower-level
functions, the gradient VL() is obtained as [65]

VL) =Vof (6, 6°(6))
~ V3o0(0.6"(0))[V0(6.6°0))] Vof(6.6°0).  (35)

By (3.5), evaluating an unbiased stochastic estimate of the gradient
VL(0) faces the following main difficulties:

e The gradient VL(#) depends on the solution of the lower-level
problem ¢*(6), which is estimated via SGD in (3.4) and hence
varies across the iterations (see Figure 3.2);

e The gradient VL(#) requires the second derivatives V3 ¢g(9,¢>)
and v;¢g(9, @) of the lower-level objective function g.

e An unbiased estimate of the gradient V.L(€) cannot be obtained
via the empirical average over functions g(6, ¢; é) with samples
£ ~ P(€) due to the nonlinear term [V%g(@, *(0))]7L.

These challenges can be addressed via implicit-gradient or explicit-
gradient methods. Implicit gradient methods treat the lower-level
solution ¢*(#) as an implicit function of €, and they directly attempt to
evaluate the gradient V.L(6) via the expression (3.5). We will discuss
an example of such methods in the next subsection. Explicit gradient



¢i

¢"(0")

Figure 3.2: An illustration of minimizers’ drift in bilevel SGD.

methods model the optimal lower-level solution ¢*(f) as an explicit
function of vector . This is typically done by unrolling the iterations
of an optimization algorithm such as SGD in (3.4), and by then using
the final iteration as a proxy for the lower-level solution ¢*(6) [62], [75].
Explicit gradient methods suffer from the high-memory cost of storing
the algorithm’s trajectory in the ¢-space. In practice, this cost can be
controlled by truncating the rolling horizon.

While these methods deal with bilevel optimization problems with
a unique solution for the lower-level problem, recent works have also
studied the case in which the lower-level problem may have multiple
solutions, which will be further discussed in Section 7.

3.2.2 Implicit-Gradient SGD Methods

In this subsection, we describe a representative implicit-gradient algo-
rithm for the bilevel problem (3.1), and then provide a convergence
result. The algorithm, proposed in [76], is referred to as the ALternating
Stochastic gradient dEscenT (ALSET) method.

To overcome the challenge in evaluating the gradient V.L(6) reviewed
above, the ALSET algorithm estimates the gradient

Vol (6,6) == Vol (0.6) ~ Vis9(0.) [V349(0.9)]  Vai(60.6) (36)

for a fixed value ¢. Unbiased estimates of the terms Vyf(6,¢) and
Vsf(0,4) can be obtained by averaging the gradients Vo f (6, $;&)
and V,f(0, ¢; &) over one or multiple samples £ ~ P(§). Similarly, an



3.2. A Unified Bilevel Optimization Framework 43

unbiased estimate of the term V§¢g(9, ¢) can be obtained by averaging
the matrix Vg¢g (0, ¢; é) over one or multiple samples € ~ P(€). For the

-1
term [V?M)g 0, cb)} , an estimate is evaluated as

N N

{vipg(ev ¢>} - ~ {fg 1;[1 (I - l;lgviqbg(ev é; é(n)))}? (37)

where L, is a constant that depends on function Vg(, ¢) [76]; integer N’
is drawn from {1,2,..., N} uniformly at random; and {é(l), ... ,S(N/)}
are i.i.d. samples from the distribution P(€). It was shown in [65] that
the bias of the estimate (3.7) decreases exponentially with N.

At each iteration k, ALSET alternates between stochastic gradient
updates on the lower-level vector ¢* and on the upper-level vector 6 by
running 7" steps of SGD on the lower-level variable ¢’ before updating
upper-level variable #°. With o’ and 3’ denoting the stepsizes used for

the 6- and ¢-updates, respectively, the ALSET updates are given as

P =gt — BPRS t=0,...,T with ¢'*! = ¢ (3.8a)
o't =60 —a'h}, (3.8b)
where index ¢ runs over the inner-loop of ¢-updates, while index k£ runs

over the #-updates. In (3.8), the update direction for vector ¢ is the
stochastic gradient

hy' = V(07,6 €) (3.9)
with £ being i.i.d. samples from distribution P(f); and, with the

Hessian inverse estimator (3.7), the update direction of 6 is given by
the biased gradient

]’L} = V@f(m, ¢i+1§fi> - ngbg(ei’ @éfo))

N N 1 L o .
S J— — 2 il i+1, & o' i+1, ¢4 1
o nll( T Vaeg0', ™€) | Vos (0,675, (310)
where ¢ and {ézn)}ﬁio are i.i.d. samples from distribution P(&). Al-
gorithm 10 provides a summary of the ALSET algorithm. Similar
algorithms include BSA [65], TTSA [66] and stocBiO [67]. We refer to
[76] for a comparison among these algorithms.



44 Bilevel Optimization for Meta-Learning

Algorithm 10 ALSET for the stochastic bilevel problem (3.1)
1: initialize: 8°, ¢°, stepsizes {a’, '}
2: for i =0,1,...,Ih1a,x — 1 do
3: fort=0,1,...,7—1do

4 update ¢"**1 = ¢ — B'hL! using (3.9) > set ¢h0 = ¢
5 end for

6:  update 67! = ' — a’h}; using (3.10) > set ¢itl — il
7: end for

3.2.3 Application to Meta-Learning

Next we will illustrate how we can recover various meta-learning algo-
rithms introduced in Section 2 as special cases of the ALSET algorithm.
MAML. The MAML algorithm in Algorithm 1 is recovered by applying
ALSET in Algorithm 10 to the following problem

: ma 1 i ma T

min LB (6) = 2 > Loy (o™ (Dir10)) (3.11)

k=1 ——

fr(0,¢38k)
1

s.t. ¢™*(D}’|0) = arg min VLDI:;(G)T(QS —0)+ %HQS — 0%, Vk.

@

i (0.¢36k)

Note that in this case we have d = a?, and thus the stochastic gradients
Vo fi(0, ;&) and Vg fi(0, ¢; &) used in the upper-level gradient (3.6)

become

Vo fi(0, ;&) =0 and Vi fi(0,$; &) = Vg Lpya (qﬁma(D,ﬁf\H)) , (3.12)
and the stochastic Hessian and the Jacobian matrices Vid)gk (6, ¢; ék)
and Vg¢gk(0, qb;fk) used in (3.6) reduce to

1

Vo010, 65 &) = 3

2 1
I, Vigo0,6:6) = ViLoy (0) = 51, (313)

where I € R%*d ig an identity matrix.



3.3. Convergence Analysis for Bilevel Optimization 45

iMAML. We can recover the iMAML algorithm in Algorithm 2 by
applying ALSET in Algorithm 10 to the following problem

: im 1 us im r
min LB (6) = 7 kZlLDZa (o™ (Df10)) (3.14)
- Fr(0.6:6x)
. 1
st. ¢™(DY|0) = argmin Lpu (¢) + — || — 0%, Vk.
¢ 8 25

9k (0.6:€x)

3.3 Convergence Analysis for Bilevel Optimization

In this subsection, we will present a convergence result of ALSET that
was established in [76]. Given the connection between ALSET and the
algorithms in Section 2, performance guarantee for ALSET that we
will introduce next will also apply to specific MAML algorithms by
using the corresponding upper- and lower-level functions. The results
rely on the following assumptions, which are common in the bilevel
optimization literature [59], [65]-[67], [76].

Assumption 3.1 (Lipschitz continuity). Functions f(6,¢), Vf(0,®),Vg(6, @)
and V2g(6, ¢) are Lipschitz continuous with respect to § and ¢.

Assumption 3.2 (Strong convexity of g(0,¢) in ¢). For any fixed 0,
g(0, @) is strongly convex in ¢.

Assumption 3.3 (Bias and variance). The stochastic derivatives V f(0, ¢; &),
Vg(0,9;€), V2g(0,y,£) are unbiased with bounded variances.

Theorem 3.1 (Bilevel problems [76, Theorem 1]). Suppose Assumptions
3.1-3.3 hold. With some proper constants o > 0 and S > 0, choose the
upper- and lower-level stepsizes as

al — - and ﬁl = 5 fOl“ Z - 1,23 tte ;Irna)u (315)

V Imax Vv Imax’

where I.x is the total number of upper-level iterations. Set N =
O(log I'max) in the Hessian inversion estimator (3.7). For any 7' > 1, the




¢i

o (0") A B A IR

Figure 3.3: An illustration of vanishing minimizers’ drift in ALSET.

iterates {0, ¢’} generated by Algorithm 10 satisfy the condition

11 IZE U’vg(ei) 2} = o(ﬂli) (3.16a)
max = max

B ot 7 (07)

2} _ o(\/ﬁg) (3.16b)

where ¢*(§7max) is the minimizer of the lower-level problem in (3.1b).

Theorem 3.1 demonstrates that the alternating SGD-type algorithm

ALSET can achieve the same convergence rate (’)( \/[17) of SGD (see

e.g.,[77]). Therefore, the given class of bilevel learning problems can
be efficiently solved by ALSET without sacrificing iteration efficiency

as compared to the standard single-level learning problems. Recent
advances improving the above unified result also include relaxing the
assumption [78], replacing the inner-loop (3.10) via fully single-loop
update [79], and allowing online update [80].

Figure 3.3 gives some intuition as to why ALSET can preserve

the same convergence rate of SGD for single-level learning problems.

Specifically, given the decaying stepsizes o = O( \/]17) for the upper-

level #-update, the drifts of the lower-level minimizers ¢*(6) tend to
vanish with k at the rate of (’)(\/%) As a result, the performance

in terms of the meta-loss £(f) are dominated by the variance of the
upper-level f-gradient, as for the single-level SGD, without introducing
additional noise due to the lower-level updates.



3.4. Conclusions 47

3.4 Conclusions

In this section, we have revisited the bilevel learning framework and
its connection to the meta-learning problems. We have described a
unified ALternating Stochastic gradient dEscenT (ALSET) method
for bilevel optimization problems, and connected it to many of the
meta-learning algorithms reviewed in Section 2. For a certain class of
bilevel optimization problems, ALSET requires O(e~?) iterations in
total to achieve an e-stationary point of the bilevel learning problem.
This matches the iteration complexity of SGD for single-level problems.



4

Statistical Learning Theory for Meta-Learning

While the previous section described meta-learning as an optimiza-
tion process, this section studies the generalization performance of
meta-learning algorithms from a statistical learning-theoretic view-
point. Generalization of a meta-learning algorithm, also known as
meta-generalization, refers to the capacity of the algorithm to pro-
vide solutions that perform well outside the meta-training data, i.e., for
new tasks. Towards this goal, we first introduce basic statistical learning-
theoretic concepts for conventional learning in Section 4.1, and then
extend the presentation to meta-generalization in Section 4.2. Adopting
an information-theoretic approach, Section 4.3 presents generic upper
bounds on the expected generalization error of meta-learning algorithms.
The meta-generalization error measures the discrepancy between the
losses accrued on meta-trainining and meta-test data sets. In contrast,
Section 4.4 is dedicated to high probability, so-called PAC-Bayes, upper
bounds on the meta-generalization error. We end this section with a
discussion on information-theoretic analysis of the optimality error,
i.e, the discrepancy between actual and optimal meta-test losses, of
Bayesian meta-learning in Section 4.5.

48



4.1. Generalization Error for Conventional Learning 49

4.1 Generalization Error for Conventional Learning

In this subsection, we study the generalization error incurred in con-
ventional learning that targets a single learning task. Let T} denote
the kth task under study. Task T} is described by an unknown data
distribution p(Z|T}), which generates data samples Z ~ p(Z|T}). Note
that the data sample Z can denote a tuple (X,Y) of feature vector
X and label Y as in supervised learning, or it can denote unlabelled
data as in unsupervised learning problems. We use upper case letters
to emphasize that these quantities are treated as random variables in
statistical learning theory.

A learning algorithm, also called base-learner, observes a training
data set DY = (Z1,...,Zy) of N samples generated i.i.d. according
to the data distribution p(Z|T}). Assuming that the model class H is
parameterized with model parameter vector ¢ taking values in space
®, the base-learner uses the observed training data set D}’ to optimize
the model parameter vector. The performance of the optimized model
parameter ¢ on a data sample Z is measured using a positive real-valued
loss function ¢(Z|¢).

Ideally, the goal of the base-learner is to find the model parameter
vector that minimizes the population loss,

L1, (¢) = Epzm) [L(Z]9)], (4.1)

which is the average loss incurred on a test data point Z ~ p(Z|T})
drawn randomly from the data distribution p(Z|T}). In (4.1) and
throughout this section, we use E, to denote the expectation taken over
the distribution e in the subscript. However, the population loss in (4.1)
cannot be computed, since the underlying data distribution p(Z|T}) is
unknown. Instead, the base-learner uses the training loss,

N
1
Lpx(¢) = z:lf(zjkﬁ)a (4.2)
j:
which is the empirical average loss incurred on the training data set

N
Dltcr = {Zj}j:r
The difference between the population loss and the training loss is



50 Statistical Learning Theory for Meta-Learning

the generalization error,

ALkz(¢) = LTk (¢) - LD;: (¢)> (4'3)

which is a measure of how well the empirical training loss approximates
the population loss. If the learning algorithm producing model parameter
vector ¢ overfits the training data, and hence the training loss is close
to zero, the trained model ¢ may not perform well on the unseen test
data, thereby resulting in large population loss, and thus in a large
generalization error. Therefore, understanding the generalization error
of a learning algorithm can help diagnose and quantify problems with
the test performance of a trained model.

Of central interest in statistical learning theory is the problem of
understanding and quantifying the generalization capacity of learning
algorithms. This is typically accomplished by studying upper bounds on
the generalization error (4.3). Traditional bounds hold uniformly with
high probability for all models in the model class H, and are referred
to as probably approzimately correct (PAC) bounds. These bounds hold
with high probability with respect to any random distribution p(Z|T})
of the training data, and they quantify the generalization error as a
function of the “complexity” of the model, in a manner that is agnostic
to the true data distribution p(Z|T}). The model complexity is captured
via properties of the model class H such as the Vapnik-Chervonenkis
(VC) dimension [81] or the Rademacher complexity [82]. PAC bounds
demonstrate that highly complex models tend to overfit, i.e., to yield
large generalization errors (4.3), when trained on few data samples.

The above insights obtained from PAC bounds, however, fail to
explain the exceptional generalization performance of highly complex
deep neural network models. A major reason for the failure of PAC
bounds is attributed to the fact that they ignore the fit of the model
class to the specific data distribution, as well as the properties of training
algorithms such as SGD.

PAC-Bayes theory also obtains high-probability bounds on the
generalization error, but PAC-Bayes bounds are functions of the training
algorithm, which is modelled as a random transformation [83]. Finally,
information-theoretic bounds have been introduced to quantify the
average generalization error, and they account for the properties of



4.1. Generalization Error for Conventional Learning 51

the learning algorithm, data distribution, as well as the specific loss
function (see [84] for an introduction).

In the rest of this subsection, we first review information-theoretic
bounds and then we present PAC-Bayes bounds, which are then ex-
tended to meta-learning in the following subsections.

4.1.1 Information-Theoretic Generalization Bounds

In the PAC-Bayes and information-theoretic approaches to the study
of the generalization error, a base-learner is modelled via a conditional
distribution p(¢|D}"), which in turn describes a stochastic mapping
from training data D}’ to model parameters ¢. Examples of stochastic
learning algorithms include SGD and its variants; as well as Bayesian,
sampling-based, schemes such as stochastic gradient Langevin dynamics
(SGLD) [85], [1]. Given the randomness of training data, as well as the
learning algorithm, the information-theoretic framework aims to obtain
upper bounds on the absolute average generalization error,

[Ep(ptr o) [ALk(D)]]; (4.4)

where the expectation is taken with respect to the joint distribution

p(Di’ ¢) = p(D)p(4ID) (4.5)

of training data and model parameter, with p(D}') = Hé\f:l p(Z;|Tk).
Under appropriate assumption on the loss function ¢(Z|¢), the anal-
ysis in [86] gives an upper bound on the absolute average generalization
error in (4.4) as a function of the mutual information (MI), I(¢; D}"),
between the model parameter vector ¢ and the training data D!, and
of the number N of training data samples. For any two jointly dis-
tributed random variables A and B with the distribution p(A, B), and
corresponding marginal distributions p(A) and p(B), the MI

p(A, B) ]
p(A)p(B)

is a measure of statistical dependence between A and B. We first state

I(4;B) = By [1og (4.6)

the main technical assumption, and then give the main result.



52 Statistical Learning Theory for Meta-Learning

Assumption 4.1. The loss function ¢(Z|¢) is o%-sub-Gaussian! with
respect to the data distribution Z ~ p(Z|T}) for all model parameters
¢ e o.

Theorem 4.1. Under Assumption 4.1, the following upper bound on
the absolute average generalization error holds

202
By ) [ALK(6)]| < \| 5= 1(6: DY), (4.7)

where I(¢; D}F) is the mutual information under the joint distribution
p(¢, DiF) defined in (4.5).

The detailed proof of Theorem 4.1 can be found in Section 4.7.1. The
MI I(¢; D}F) in (4.7) is a measure of the sensitivity of the base-learner
p(¢|D}F) to the input training data. A highly-sensitive base-learner may
overfit the training data, resulting in a larger generalization error as
reflected by the bound (4.7). The upper bound of (4.7) also depends on
the unknown data distribution p(Z|T}) through the MI term, as well as
on the sub-Gaussian parameter o2, which is also a function of the the
loss function ¢(Z|¢) via Assumption 4.1.

4.1.2 Information-Risk Minimization

The bound (4.7) provides useful quantitative insights into the general-
ization performance of a learning algorithm for a given data distribution.
However, its dependence on the data distribution makes it impossible
to directly evaluate the bound (4.7). We now present a relaxation of
the bound of (4.7) that motivates a generalized Bayesian learning crite-
rion known as information risk minimization [87]. Unlike the bound
(4.7), this criterion, already used in (3.3), only depends on the training
algorithm and on the training data set D}’

The relaxed bound is based on the the following variational bound
on the mutual information [88],

I($: DY) = Eypur) Dkw. (p(6 1D 1p())]
< Eyppr[Dice (p(#DF) la(#))), (48)

'A random variable X ~ p(X) is said to be o*-sub-Gaussian if the inequality
1og Eyx) [exp (AM(X — Epx)[X]))] < 222 holds for all A € R.




4.1. Generalization Error for Conventional Learning 53

which holds for any distribution q(¢) on the space ® of model parameters.
In (4.8), the distribution p(D}") represents the marginal of the joint
distribution (4.5). Together with the inequality vab < % + %b for § > 0,
the inequality (4.8) on the bound of (4.7) yield the following upper
bound on the population loss

Epptr ) [ L1, (9)]

D Dir 2
< Eypp) Epoinp) | Loy () + KL(p(¢’6k>”Q(¢>) +g; ‘

(4.9)

7B
=L ®)

Inequality (4.9) upper bounds the average population loss in terms
%tr(qb). The regularized training
loss presents the KL divergence betwéen the learning algorithm and
the distribution ¢(¢) as a regularizer that measures the sensitivity of
the learning algorithm p(4|D}) to the training data. The bound (4.9)

motivates the use of regularized training loss as a training criterion.

of a regularized training loss L

This yields the information risk minimization (IRM) problem
[87]

i Emg | Loy (9 +SDREDllae)|. (@10)
where the minimization is over the set of all probability distributions
defined on the space of model parameters ®. The minimization (4.10)
corresponds to a generalized form of Bayesian learning [1], [89]. In fact,
the solution of the above unconstrained optimization problem is given
by the Gibbs posterior,

P (GIDY) o (6) exp(—BLpy (4)). (4.11)

The Gibbs posterior (4.11) “tilts" the “prior" distribution g(¢) by an
amount that depends on the training loss Lpzr(qzﬁ) through the exponen-
tial function eXp<—ﬁLD}t€r(¢)). In particular, for 8 = 1 and loss function

U Z|p) = —logp(Z]|¢), the Gibbs posterior reduces to the conventional
Bayesian posterior [89].



54 Statistical Learning Theory for Meta-Learning

4.1.3 PAC-Bayesian Bounds

The information-theoretic bounds discussed in Section 4.1.1 considered
the absolute average of the generalization error ALg(¢) in (4.4) over
the randomized base-learner as well as over the training dataset. In
contrast, PAC-Bayes theory seeks to bound the generalization error,
Eppir) [ALg(¢)], on average over the models output by the base-learner,
with high probability with respect to the distribution of the training
dataset D} ~ p(D}). The “Bayesian' flavor of the bound comes through
the definition of a prior distribution ¢(¢) defined on the space of model
parameters ® in a manner similar to (4.10).

Under Assumption 4.1, the PAC-Bayesian bound can be stated as
follows [83]. Detailed derivation can be found in Section 4.7.2.

Theorem 4.2. For any prior distribution ¢(¢) defined on the space ®
of model parameters and 5 > 0, the following inequality holds with
probability at least 1 — 4, for § € (0,1), with respect to the random
draws of training dataset D} ~ p(D}F):

Bo?

Eyoypin) |L73. (9)] < Epopir) L (9)] + Blog S+ @)

where LDtr(qS) is the regularized training loss in (4.9). The bound holds
simultaneously for all distributions p(¢|D}").

4.1.4 Information Risk Minimization Revisited

The PAC-Bayesian bound (4.12) has two important distinguishing
features as compared to the information-theoretic bound (4.7): (a) it is
data-distribution independent, while only depending on the available
training data; and (b) it holds uniformly over all learning algorithms.
This formally motivates the use of regularized training loss (4.9) as a
training criterion, providing a more principled derivation of IRM as a
learning approach [87].

4.2 Generalization Error in Meta-Learning

We now turn to the analysis of generalization for meta-learning. As
discussed in Section 1, meta-learning aims to automatically optimize



4.2. Generalization Error in Meta-Learning 55

aspects of the inductive bias, encompassing the specifications of the
model class and base-learner (or learning algorithm), that are shared
across the learning tasks. In this section, we fix the model class and
consider the inductive bias to be the vector of hyperparameters 6 of the
stochastic base-learner. Accordingly, the base-learner is described by
the conditional distribution p(¢|D}', ) that maps the training data D}
and the hyperparameter vector 6 to a vector of model parameters ¢.

The goal of meta-learning is to automatically optimize the hyperpa-
rameter vector # by observing data from a number of related tasks. A
key question in the learning-theoretic formulation of meta-learning is
how to model the relatedness between the tasks. Following the standard
formulation in [90], the tasks are modelled here as belonging to a task
environment, which describes a probability distribution p(7") over the
space T of tasks as well as per-task data distributions {p(Z|T")} for all
tasks T € T.

During meta-training, a meta-learner observes data from a finite
number K of meta-training tasks (11, ..., Tk ), which are sampled i.i.d.
according to the task distribution p(7T). For each task Ty ~ p(T),
the meta-learner observes the corresponding training data set D} of
N samples, which are sampled i.i.d. according to the per-task data
distribution p(Z|Ty). The resulting collection {DF}E | of data sets
from K tasks constitute the meta-training data set. The meta-learner
uses the meta-training data set {Dg}ﬁ;l to optimize the hyperparameter
vector 6.

During meta-testing, the meta-learner encounters a new, previously
unobserved, meta-test task T ~ p(T), sampled from the same task
environment, and observes the corresponding training dataset DI. The
base-learner p(¢|DY, 0) uses the meta-learned hyperparameter vector
6 and the meta-test task training data DY to optimize a task-specific
model parameter ¢.

The ideal goal of the meta-learner is to ensure that the population
loss, L1(¢), of the meta-test task accrued for the trained model param-
eter ¢, is minimized. As in (4.4), the loss is averaged over the model
parameter vectors ¢ output by the base-learner p(¢| D%, #). Furthermore,
an expectation is also evaluated across the meta-test task and training
data set. The resulting problem amounts to finding a hyperparameter



56 Statistical Learning Theory for Meta-Learning

vector 6 that minimizes the meta-population loss,

L(0) = Epryppe)Epgiptr o) [L1(0)] = Epery [L7(0)], (4.13)
where
Lr(0) = Eppe)Epgipi ) L1 ()], (4.14)

and the meta-test task population loss L7(¢) is as defined in (4.1).

The meta-population loss (4.13) cannot be evaluated since the task
distribution p(7T") as well as the per-task distribution p(Z|T) are un-
known. The meta-learner instead uses the meta-training loss (see also
(3.2) from previous section),

1 K
Lipmyr (0) = ;;1 Lo (6), (4.15)
where

LD}; (0) = Ep(qsm};,e) [LDg (9)] (4.16)

is the average per-task training loss, defined in (4.2), over all model
parameter vectors output by the base-learner.

In a manner similar to the discussion on conventional learning in the
previous subsection, the difference between the meta-population loss
and meta-training loss is introduced as the meta-generalization error

AL(0) = £(0) — Lipgyx (6). (4.17)

A large meta-generalization error is an indication that the meta-learner’s
choice of the hyperparameter vector 6 overfits to the meta-training
data, failing to adapt to new previously, unobserved meta-test tasks.
The following example illustrates the concept of meta-generalization
error and meta-overfitting. As an example, consider the 3D-object pose
prediction problem described in [38], in which the input X consists of
a grey-scale image of a rotated object in a 3D space, and the output
Y reports the angle of rotation with respect to a canonical pose. A
task corresponds to a specific object with a given canonical pose. When
meta-training on a limited number of similar objects, the meta-learner
may be able to find a single model that assigns the correct rotation



4.3. Information-Theoretic Bounds on Meta-Generalization Error 57

angle to all inputs for all meta-training tasks. Such model can be
also found via joint learning, whereby the model parameters ¢y for
all meta-training tasks coincide with the hyperparameter vector 6 (see
Section 1). In such cases, when meta-testing on a new, sufficiently
different, object, the training algorithm fails to adapt, and the inductive
bias optimized via meta-learning impairs training for new tasks. As a
result, the meta-generalization error is large, and we say that we have
meta-overfitting.

In the next subsections, we seek to address the following two main
questions: What factors contribute to the meta-generalization error?
How do we quantify them? Recall that in conventional learning, the
generalization error is the result of the availability of an insufficient
number of training samples to train the base-learner. Since meta-learning
is a bilevel optimization problem, as detailed in Section 3, intuitively,
the following factors contribute to the meta-generalization error:

e the within-task generalization error due to a finite number of
observed per-task data samples, as in conventional learning;

e the environment-level generalization error due to the availability
of a finite number of meta-training tasks;

e and the similarity, or relatedness, between the tasks encompassed
by the task environment.

In the next subsection, we discuss information-theoretic bounds on
meta-generalization error that address and quantify these three separate
contributions to the meta-generalization error.

4.3 Information-Theoretic Bounds on Meta-Generalization Error

In this subsection, we provide an introduction to information-theoretic
upper bounds on the meta-generalization error. We first extend the
analysis in Section 4.1.1 by accounting for the first two contributions
to the meta-generalization error mentioned above. Then, we discuss a
novel bound that explicitly quantifies the third contribution.



58 Statistical Learning Theory for Meta-Learning

The first step to obtain information-theoretic bounds on the meta-
generalization error is to define a stochastic meta-learner, in a man-
ner analogous to the randomized base-learner studied in Section 4.1.
A stochastic meta-learner is described by a conditional distribution
p(0|{D}E£ ) that maps the meta-training data {D¥}E | to the hy-
perparameter vector . Using the mapping p(f|{D¥}E ), the meta-
learner samples a hyperparameter vector 6 from the conditional distribu-
tion p(A|{DF}E ), which is then used by the randomized base-learner
p(¢| D%, 0) during meta-testing.

4.3.1 Information-Theoretic Bounds

The performance metric of interest in this section is a natural extension
from conventional learning to meta-learning (4.4). Accordingly, we define
the absolute average meta-generalization error as the absolute
value of the meta-generalization error (4.17) averaged over the outputs
of the randomized meta-learner as well as the meta-training set, i.e.,

—~—~avg
In (4.18), the expectation is with respect to the joint distribution

p({Dy } i1, 0) = (DR H )P (0D Hzy), (4.19)

where p({DF}E ) = Hszl Ppy is the distribution of the meta-training
set, with p(D') being the marginal of the joint distribution p(T, DY) =
p(T)p(DE).

To obtain an upper bound on (4.18), the key step is to decompose the
meta-generalization error (4.17) into terms that account for the within-
task generalization error and for the environment-level generalization
error. This can be done by defining an auxiliary loss function

£(6) = Eyrpuny Loy (6)] = Eyny L7 (6)], (4.20)
where
L1(8) = Eypu Ly (0)]: (4.21)

The function (4.20) is the average of the training loss LDtTr(H) in (4.16)
over randomly sampled meta-test data sets from the task environment.



4.3. Information-Theoretic Bounds on Meta-Generalization Error 59

Using this function, the meta-generalization error AL(#) in (4.18) can
be decomposed as the sum

ALO)=  LO-LO)  +  LO) - Lipmye (0)

~—_——
within-task gen. error

environment-level gen. error

(4.22)

The first difference in (4.22) captures the generalization error of a
meta-test task randomly sampled from the task environment. A non-zero
difference, £(0) — L(#), is due to the availability of a finite number N
of training data samples for the meta-test task. In contrast, the second
difference in (4.22) accounts for the environment-level generalization
error, which is a consequence of the finite number K of meta-training
tasks. Together with the triangle inequality, the decomposition (4.22)
can be used to upper bound the absolute average meta-generalization

error as

v _
AL < By pryr  g)[L£(0) — L(6]]
+ [Eyqpirys  9)[£(0) = Lipuyr (0)]]- (4.23)
Each of the terms in (4.23) can be bounded separately to obtain an
upper bound on the absolute average meta-generalization error. To this
end, we make the following assumptions on the loss function.

Assumption 4.2. The following assumptions hold:

(a) The loss function £(Z|¢) is 04-sub-Gaussian with respect to the
distribution p(Z|T') of task T € T for all ¢ € ;

(b) The average training loss Lpu(6), defined in (4.16), is §2-sub-
Gaussian with respect to the distribution p(D') (which is the
marginal of the joint distribution p(7, D¥)) for all 6 € ©.

Theorem 4.3. Under Assumption 4.2 the following upper bound on the
absolute average meta-generalization error holds

202

A ,~aV, 252
AL g,g\/K[(a; {pzr}§:1)+Ep(T) ]VT[(@D%“)} (4.24)




60 Statistical Learning Theory for Meta-Learning

Proof. To obtain the required upper bound, use Assumption 4.2 to
bound each of the two terms in (4.23) in a manner similar to the
proof of Theorem 4.1 in Section 4.7.1. We refer the readers to [91] for
details. O

Theorem 4.3 provides an information-theoretic bound on the abso-
lute average meta-generalization error that captures: (a) the within-task
generalization error via the ratio of the MI I(¢; DY) to the number
of per-task data samples; and (b) the environment-level generalization
error via the ratio of the MI I(0; {D¥}X_|) between the hyperparame-
ter vector and meta-training tasks to the number K of meta-training
tasks. As discussed in Section 4.1, the MI I(¢; DY) measures the sensi-
tivity of the base-learner to the input training dataset, while the MI
I(0; {D¥}E ) captures the sensitivity of the hyperparameter vector to
the meta-training dataset. Theorem 4.3 indicates that, in order to ensure
a low meta-generalization error, the two mutual information terms in
(4.24) must be kept small as compared to K and N, respectively.

While the bound in (4.24) captures the within-task and environment-
level generalization errors, it does not provide insights into how the
similarity between the tasks affects the meta-generalization error. In
fact, the similarity between tasks is determined by the statistical prop-
erties of the task-environment (p(T"), {p(Z|T)}) comprising of the task
distribution p(7") and the per-task distributions {p(Z|T")}. Therefore,
the marginal p(D%) of the joint distribution p(7, D*) inherently cap-
ture the statistical properties of the task environment. The MI term
I(0; {D{"}K ) evaluated over meta-training dataset sampled i.i.d. ac-
cording to the marginal distribution p(D') hence implicitly accounts
for the relatedness between tasks.

In the next section, we discuss an information-theoretic bound that
explicitly captures the impact of task relatedness.

4.3.2 Impact of Task Similarity on Meta-Generalization Error

As discussed, the similarity between the tasks is determined by the
statistical properties of the task environment. In this subsection, we
seek answers to two questions: How to quantify the similarity between
the tasks? How does task similarity impact meta-generalization error?



4.3. Information-Theoretic Bounds on Meta-Generalization Error 61

To address the first question, following [92], we consider the following
definition of relatedness between tasks in a task environment.

Definition 4.1. A task environment (p(T),{p(Z|T)}) is said to be e-
related with respect to a divergence measure D(-||-) if, on average over
the independent selection of two tasks T and T ~ p(T'), the divergence
D(p(D%)||p(D%)) is smaller than e, i.e., the following inequality is
satisfied

Brirr-pim) | D (oD I(DF)) | < e (4.25)

Of particular interest are the KL divergence and Jensen-Shannon
(JS) divergence. In the former case, we say that the task environment
is e-KL related, whereas in the latter case, the task environment is e-JS
related. For two distributions P and @), the JS divergence between the
distributions is defined as

Dys(P)|Q) = 05Dk (P[0.5(P + Q) + 05Dk (Q[0.5(P + Q).
(4.26)

To get an intuitive understanding of the e-relatedness measure
introduced in (4.25), consider the following example.

Example 4.1. Assume that the data distribution for task 7 is normally

distributed as p(Z|T = 7) = N(r,v?) with mean 7 and variance v2.

The task distribution p(T) = N (jz; %) defines a distribution over the
mean parameter 7 with mean ji and variance 2. We then have

r r ND2
Er 1ep(T) D(P(D’EF)HP(D%F')) =2 (4.27)

and hence the task environment is e-KL related if the inequality N?/v? <
€ holds. Note that, as the per-task data variance v? decreases for a given
task variance 2, the task dissimilarity parameter e grows large.

The example also illustrates a potential drawback of using the KL
divergence-based measure of task relatedness. Since the KL divergence
in (4.25) is taken with respect to the i.i.d. distributions p(D¥) =
Hé-vzl p(Z;|T), the tensorization property [93] of the KL divergence



62 Statistical Learning Theory for Meta-Learning

results in a KL divergence that scales with NV, leading to an increasing
measure of task dissimilarity with N. In contrast, the JS divergence
is always bounded, i.e., Djs(P||Q) < log(2), yielding without loss of
generality a bounded task relatedness parameter € < log(2).

Having defined the measures of task-relatedness, the next question
is how to explicitly characterize its impact on meta-generalization error.
Towards understanding this aspect, note that in the absolute average
meta-generalization error (4.18), the generalization error corresponding
to each selection of meta-training and meta-test tasks from the task envi-
ronment are “mixed” in the sense that their contributions are averaged.
This can be easily seen from the following equivalent characterization
of the absolute average meta-generalization error (4.18):

, (4.28)

——=avg
ALY = [y pigriopic Enoiryic, ) [£7(0) = Lipry (0]

where L7(0) in (4.14) is the per-task meta-population loss. The re-
latedness between the tasks becomes explicit when one analyze the
generalization error incurred when a meta-learner trained on a given
set of meta-training tasks is tested on a given meta-test task. Since
the generalization error incurred on each selection of meta-training
tasks and meta-test task is not separately considered in (4.18), the
performance criterion |T£avg\ fails to explicitly capture the impact of
task relatedness on the meta-generalization error.

To mitigate the above drawback of the performance criterion in
(4.18), following [92], this section adopts as the performance criterion
the average absolute meta-generalization error, which is defined as

[ALI™® = Epor) p((miyi ) [’Epmzr},?_l,e) [£7(0) = Lipgryxc (0)] H :
(4.29)

The average absolute meta-generalization error in (4.29) evaluates the
absolute value of the generalization error corresponding to each selection
of meta-test task and meta-training tasks; and the resulting absolute
values are averaged over the tasks.

The following result gives upper bound on the average absolute
meta-generalization error in (4.29). An outline of the proof is given in
Section 4.7.3.



4.4. PAC-Bayes Analysis of Meta-Generalization Error 63

Theorem 4.4. Let Assumption 4.2 holds with Assumption 4.2(b) satis-
fied for the distribution p(DY) for every choice of task T' € T. If the
task environment is e-KL related, then the following upper bound on
the average absolute meta-generalization error holds:

A/ |av 1 T
e < o (0 DI + )

I ;'Dtr/ T, K_
+ET,N,,(T)\/2U%, @Dy ]’é 1= (4.30)

The bound (4.30) captures explicitly the impact of task-relatedness
via the parameter e, while also accounting for the meta-learner and

base-learner sensitivities via the conditional mutual information terms
as in the bound (4.24). Due to this term, unlike (4.24), in the asymptotic
regime of N, K — oo, the bound in (4.30) is non-vanishing.

4.4 PAC-Bayes Analysis of Meta-Generalization Error

In Section 4.3, we considered the average meta-generalization error as the
performance criterion of interest, where the average was taken over the
meta-learner outputs as well as over the meta-training set. In contrast,
PAC-Bayesian bounds on meta-generalization error are high-probability
bounds on the meta-generalization error, E, g (DU} ) [AL(0)], averaged
over meta-learner outputs, over the random draws of the meta-training
tasks {T}}2 |, and over the corresponding training sets {D¥}E .

To proceed, in a manner similar to the PAC-Bayes analysis of con-
ventional learning in Section 4.1.3, we define a hyper-prior distribution
q(0) on the space O of hyperparameter vectors. The hyperparameter
vector 6 is assumed to control the prior distribution g(¢|f) on the
space of model parameters ®. The rationale for this choice is that the
hyperparameter vector 6 defines a common prior distribution on the
model parameter that is meant to serve as useful shared knowledge
across all tasks.

Under suitable assumptions on the loss function (see [94]), the
PAC-Bayesian bound can be stated as follows.

Theorem 4.5. Under the assumptions stated in [94, Sec IV], for any
hyperprior distribution ¢(#) and prior ¢(¢|6), and for any g > 0, the



64 Statistical Learning Theory for Meta-Learning

following inequality holds uniformly over all stochastic meta-learning
algorithms p(0|{D¥} ), with probability at least 1 — 4, for § € (0,1),
with respect to the random draws of the meta-training tasks {7; k}kK:1
and meta-training data {DF}E .

E ooy ) [£(0)]

1 & .
< Eporpyyc ) | Loy, (0) + 5 kz_:l Dxw(p(8 Dy, 0)ll9(¢16))

LIMRM (g)

1 r
+ BDKL(p(eHDIE: Heen)lla(9)) + ¥ (N, K, 6), (4.31)
where U(N, K, §) is a non-negative function of N, K and 9.

The PAC-Bayesian bound on the meta-generalization error in (4.31)
accounts for the sensitivity of meta-learner to meta-training set through
the KL divergence between the randomized meta-learner and the hyper-
prior distribution. The base-learner sensitivity is also similarly accounted
for by the KL divergence between the randomized base-learner and the
prior distribution.

The bound (4.31) holds uniformly overall meta-learners, and hence
it provides a valid meta-training criterion. This observation motivates
the information meta-risk minimization (IMRM) approach in-
troduced in [94], which extends to meta-training the IRM approach
described in Section 4.1.2. For any fixed base-learner p(¢|D}r, ), IMRM
minimizes the regularized meta-training loss, given by

i 1
min  LYMN(G) 4 Dy (pOHDEHL ) g8),  (4.32)

p(O{DYYE ) p
where the optimization is over the set of all probability distributions
p(0|{DI}E ) on the space © of hyperparameter vectors. In a manner
similar to the discussion in Section 4.1.2, for any fixed base-learner
p(¢|D}r, ), the optimal solution to problem (4.32) is given by the Gibbs

meta-learner

pOHDENL) o a(f) exp(-BEMTO). (433)



4.5. Minimum Excess Meta-Risk for Bayesian Meta-Learning 65

The Gibbs meta-learner (4.33) “tilts” the hyperprior ¢(¢) by an amount
that depends on the meta-loss L™MEM(9) through the exponential func-
tion exp(—BEIMRM(Q)). The meta-loss £™MEM(9) in (4.31) is the aver-
age of the regularized per-task training loss over all the observed K
tasks, given by

1 K

£I0N0) = 3 (Log®) + GDOIDEOla(@10) ). (431

As seen in Section 4.1.3, the meta-loss L™MEM () can be minimized by the
choice of Gibbs base-learner (4.11) i.e., p(¢|DiF, 0) = pSiPbs (4| DI, 6).

4.5 Minimum Excess Meta-Risk for Bayesian Meta-Learning

In this subsection, we turn to Bayesian meta-learning. Bayesian meta-
learning amounts to the application of the IMRM principle (4.32) via
the meta-posterior distribution (4.33) with § = 1 and with log-loss,
ie., U(Z|p) = —logp(Z|p), at the level of hyperparameter 6; and of the
IRM principle (4.10) with 5 = 1 via the posterior distribution (4.11) at
the level of model parameter. As we will see, under the assumption of
well-specified model class, it is possible to provide an exact analysis of
the optimality error of Bayesian meta-learning.

A model class M = {p(Z|p)|¢ € @}, comprising of conditional
distributions p(Z|¢) parameterized by model parameter ¢ € @, is said
to be well-specified if the true data distribution p(Z|T) belongs to
the model class. Specifically, there exists a model parameter vector
¢ € ® such that the true distribution equals p(Z|T") = p(Z|¢r). In the
Bayesian setting, the model parameter ¢ is treated as a latent random
variable and is endowed with a prior distribution p(¢). Consequently,
the joint distribution of the model parameter ¢, training data set D',
and test data Z = (X,Y) is assumed to equal

p(¢, D", Z) = p(¢)p(D"|¢)p(Z|9), (4.35)

where p(D"|¢) = [T;21 p(Z;]¢)-
Building on (4.35), Bayesian meta-learning describes a hierarchical
Bayesian model: The hyperparameter vector 8 and model parameter



66 Statistical Learning Theory for Meta-Learning

vector ¢ are assumed to be latent random variables with the joint
distribution p(60, ¢) = p(0)p(¢|0); the meta-training tasks, described by
model parameter vectors {qbk}kK:l, and the meta-test task, described
by the model parameter vector ¢, share a common hyperparameter
vector 6 in the sense that {¢;}X_, and ¢7 are generated i.i.d. according
to the distribution p(¢|6). Consequently, the joint distribution of hyper-
parameter 6, the model parameters {d)k},le, ¢T, the meta-training set
{D,t:}kK:l, the meta-test training data DY and test input Z equals

p(97 {¢k}l[c{:17 or, {Dltcr}k‘K:h D%n: Z)

K
— p(6) (H p<¢k9>p<z>zfr¢k>) p(6710)p(DE|or)p(Zlor) . (4.36)
k=1

meta-testing

meta-training

The Bayesian meta-learner uses the meta-training data set {Dg}ﬁil,
the meta-test task training data DY, and the test input feature X, to
predict the output label Y. The error in predicting the output label Y
from observation of the above data is measured via the loss function
((Y|X,D) with D = ({DF}E | DE). For simplicity, throughout this
subsection, we consider the log-loss as (Y| X, D) = —logp(Y|X, D). In
particular, we have

K(Y|X7 D) = _log Ep(9,¢|'D,X)[p(Y|X¢ d))]a (437)

where p(0, ¢|D, X) is the meta-posterior distribution from (4.36).

The Bayesian predictive meta-risk is the average predictive loss
incurred over the observed meta-training dataset {D¥}E | the test
task training data DY and the test feature X, given by

Riog(Y]X, D) = Epx,y;p) [~ log p(Y|X, D)]
— H(Y|X,D), (4.38)

where the expectation is with respect to the joint distribution (4.36).
Equation (4.38) shows that under log-loss, the Bayesian meta-predictive
risk is quantified exactly by the conditional entropy

H(Y|X,D) =E,x,yp)—logp(Y|X,D)], (4.39)



4.5. Minimum Excess Meta-Risk for Bayesian Meta-Learning 67

which captures the total predictive uncertainty of the Bayesian
meta-learner.

We note that by taking the expectation over joint posterior inside
the log in the loss function (4.37), the Bayesian predictive risk of (4.38)
is different from the average meta-population loss (4.13) under the log-
loss. The latter considers expectation outside the log and thus constitute
the inferential risk in determining the true model parameters. We refer
the readers to [95] for more details on this point.

If the Bayesian meta-learner, aided by a genie, had access to the true
hyperparameter vector as well as the model parameters, it would incur
the predictive loss /(Y| X,0,¢) = —logp(Y|X,0,¢) = —logp(Y|X, ¢).
The resulting genie-aided predictive meta-risk then evaluates as

Riog(Y[X, ¢) = Ep(x,v,4)[— log p(Y| X, §)] (4.40)
= H(Y|X, ¢). (4.41)

The genie-aided predictive meta-risk, quantified by the conditional en-
tropy H(Y'|X, ¢), captures the aleatoric uncertainty, which accounts
for the uncertainty inherent in the data generation process. Note that
aleatoric uncertainty is inherent in the model and it cannot be alleviated
by gaining access to larger number of data samples.

The difference between the Bayesian predictive meta-risk and the
genie-aided predictive meta-risk is the minimum excess meta-risk
(MEMR), given by

MEMRiog = Riog (Y| X, D) — Riog (Y| X, ¢). (4.42)

The MEMR (4.42) can be exactly evaluated as the conditional MI
I(Y; ¢|X, D), given by

MEMRi,, = H(Y|X,D) - H(Y|X, ¢)

=I1(Y;¢|X,D). (4.43)

The conditional MI, and thus the MEMR, capture the epistemic

uncertainty of the Bayesian meta-learner resulting from using finite

number K of meta-training tasks and number N of per-task data

samples for inference. The relation in (4.43) thus decomposes the total
predictive uncertainty H(Y'|X,D) as

H(Y|X,D) = MEMRyo, + H(Y|X, ¢,6), (4.44)



68 Statistical Learning Theory for Meta-Learning

i.e., as the sum of epistemic uncertainty and aleatoric uncertainty.

Importantly, in contrast to the aleatoric uncertainty, the epistemic

uncertainty depends on the observed data, and is non-increasing with
increasing number of observed tasks K and per-task samples N [96].

Leveraging standard information-theoretic tools, the MEMR of

(4.43) can be further refined to distil two contributions to the epistemic

uncertainty. Specifically, the MI I(Y’; ¢|X, D) can be upper bounded as

. 10 {Di ey | 1(¢:DFO)

I(Y;9|X,D) < N + N . (4.45)

The first term captures the sensitivity of the hyperparameter 6 on

the meta-training set {D¥}X . The second term corresponds to the

average sensitivity of the model parameter ¢ on the meta-test task
training data DY assuming that the hyperparameter 6 is known. Thus,
the epistemic uncertainty which applies to the domain of the target
variable Y, is upper bounded by the sum of two contributions that
pertain the uncertainty levels in the spaces of hyperparameter and
model parameter, respectively. We refer the readers to [96] for the proof,
and for a treatment of general loss functions.

4.6 Sharper Meta-Risk Analysis in Meta Linear Regression

The meta-risk analysis in the previous subsections mostly focuses on
the upper bound or the worst case of generalization performance under
general learning problems and models. In a separate line of research, the
precise generalization performance of meta-learning has been studied in
the context of mixed linear regression; see e.g., [97]-[102]. In [97], the
focus is on finding scenarios when abundant tasks with small data can
compensate for lack of tasks with big data. In [100], [101], the focus
is on studying the generalization performance of the representation
based meta-learning. The meta-risk of MAML and joint learning has
been analytically compared in [98], [99], and the regime where MAML
has provable performance gain over joint learning has been identified.
Recently, the impact of splitting training and validation datasets on
the performance of iMAML has been studied in [102].
Complementary to [96], a unified meta-risk analysis has been re-
cently established in [22] under the meta linear regression setting, which



4.7. Some Proofs 69

provides a solid ground to compare the exact meta-risks of joint learn-
ing, MAML, iMAML and Bayesian MAML. Under some regularity
assumptions, Bayesian MAML indeed has provably lower meta-risk
than iMAML, MAML and joint learning [22].

4.7 Some Proofs

This subsection outlines the proofs of some of the results presented in
the section.

4.7.1 Proof of Theorem 4.1

The proof of (4.7) starts by noting the equivalent representation of
average generalization error in (4.4) given by

Eppir ) [ALE()] = Eppir)p(g) [ Lpr (9)] — Eypir ) [Lper (9)]. - (4.46)

The equality in (4.46) holds since the first term in the right-hand
side of (4.46) equals the average population loss E,4)[L7, (¢)]. In fact,
the population loss L7, (¢) can be written as the expectation of the
training loss LD;:Cr((b) over the training data distribution p(D}'), i.e., as
Ly (¢) = Ep(pir) [LDZr<¢)], for any fixed model parameter ¢.

Let us define as Dkr(p(7)/lq(z)) = Epw [log %} the Kullback-
Leibler (KL) divergence between the distributions p(z) and ¢(x). The
key ingredient required to upper bound (4.46) is the Donsker-Varadhan
(DV) change-of-measure lemma, which gives the following inequality

(see, e.g., [103])
Dir (p(X)[l(X)) = Epx)[f (X)] = log Eq(x)[exp(f(X))],  (4.47)

which holds for any bounded, measurable function f(X).
In (4.47), set X = Dy, f(X) = ALpu(8), where A € R, p(X) =
p(D}F|$), and ¢(X) = p(D}F) to get the inequality

Dic (PP I IPL) 2 By g (6)] 1o By [exp (s ()
A2
> Bppir|g) [ALpis (0)] — Eppiy [ALpt: (¢)] — N
(4.48)




70 Statistical Learning Theory for Meta-Learning

The inequality in (4.48) follows from Assumption 4.1 and from the fact
that the training set D}’ consists of i.i.d. data samples. Taking the
average over ¢ ~ p(¢) on both sides of (4.48) yields the inequality

\2o?
2N’
where we have used the identity I(¢; D}f) = Ep () [DkL(p(Di |9)| (D))
Inequality (4.49) is a non-negative parabola in A, whose discriminant

I(¢; DY) = —AE,pir ) [ALk(¢)] — (4.49)

must be non-positive, which implies the required upper bound (4.7).

4.7.2 Proof of Theorem 4.2

The PAC-Bayesian bound in (4.12) can be derived by using Markov’s
inequality, followed by the application of change of measure as out-
lined next. Let U(D}') = Eqg)[exp(BALk(¢))] denote the average (-
exponentiated generalization error of the kth task. From Markov’s
inequality, we get that with probability at least 1 — § over the random
training dataset D', the following inequalities hold

By Ea(s) [XP(BALK(A))] _ exp(820?/2N)
0 - 4] ’
where the last inequality follows from Assumption 4.1. The left-hand

U(Dy) <

(4.50)

side of (4.50) can be equivalently rewritten, via a change-of-measure
step, as
p(¢|Dy)
UDy) = Ep(gptr) [exp (BALk(qS) —log =k 2 |
q()
By (4.50), this implies that with probability at least 1 — 4, we have the
inequality

p(¢|Dﬁr)>} < eXp(BZO'Z/ZN) (4.51)

q(¢) s ’
for all p(¢|D}"). Applying Jensen’s inequality on the left hand side

Ep(oipir) [eXp <5ALk(¢) — log

of (4.51) to take the expectation inside the exponential function, and
subsequently taking logarithm on both sides, yield the PAC-Bayesian
bound in (4.12).



4.8. Conclusions 71

4.7.3 Proof of Theorem 4.4

To obtain the required upper bound in (4.30), we follow similar steps
as in the proof of Theorem 4.3 by decomposing the meta-generalization
error into within-task and environment-level generalization errors as in
(4.22). The key difference comes in the evaluation of the environment-
level generalization error, which we outline here. Conditioned on the
meta-test task and meta-training tasks, the environment-level general-
ization error evaluates as

Ep(GV{DZr}i(:l)[ZT(e) - ﬁ{lDir}szl (0)], (452)

where L£7(6) is defined as in (4.20). Note that the loss £7(6) has an
inner expectation over training dataset DY of the meta-test task; while
the meta-training loss computes the average loss over the meta-training
set {D}HE | This difference can be captured using a change of measure
argument, together with the sub-Gaussianity assumption on LD&E (9)
under the distribution p(DY¥) as in the proof of Theorem 4.1. This
results in an additional KL divergence term Dxp,(p(Di)||p(DY)) for
k=1,...,K as compared to (4.24). Under the assumption of e-KL
relatedness, the above divergence measure can be upper bounded by e.
We refer the readers to [92] for more details.

4.8 Conclusions

This section presented a learning-theoretic study of the meta-learning
problem by adopting an information-theoretic framework. In the fre-
quentist meta-learning setting, the information-theoretic approach is
used to quantify the meta-generalization error as a function of the cross-
task and within-task generalization errors, as well as the relatedness
between tasks. The information-theoretic framework is also connected
to PAC-Bayesian bounds through the principle of information risk mini-
mization. Finally, we discussed how the information-theoretic framework
captures the excess predictive risk in Bayesian meta-learning.



5

Applications of Meta-Learning to
Communications

5.1 Overview

For decades, communication systems have been engineered through
carefully designed model-based algorithms that build on an analytical
model of the underlying system. More recently, the increased complexity
of communication scenarios, encompassing heterogeneous services and
flexible software-defined multi-technology radio access networks (RANs),
is raising renewed interest in data-driven methods. These techniques
are based on machine learning, and are viewed as a complementary,
and often synergistic, design approach [104]. As an example, in the
O-RAN architecture, a leading proposal for 6G “open-RAN” systems,
many network functionalities, at different temporal and spatial scales,
are envisaged to be implemented via Al tools [105].

The main drawback of machine learning methods is given by the
often prohibitive requirements in terms of dedicated training data and
of computational effort. This issue is especially pronounced for physical-
layer and medium-access (MAC) layer functions, which are subject to
temporal variations in connectivity conditions. For instance, a coherent
receiver at the physical layer, if trained for particular channel setting,
generally suffers from degraded performance when the channel condi-

72



5.2. Demodulation 73

base station

DY DY DY D!
pilo
s o0 1 2 a0 1 2
Dy k2 Df
& *
£ ¥ - ¥ »
v % LA e
* 5 .
meta-training devices meta-test device

Figure 5.1: Meta-learning for demodulation: By utilizing received pilots from
multiple previous transmissions by different devices, a meta-learned demodulator
can significantly reduce the number of pilots required for demodulation of data sent
by a new device.

tions change [106], [107]. Meta-learning provides an ideal framework to
design data-driven methods that can transfer knowledge across differ-
ent communication settings, enabling adaptation to new connectivity
conditions.

This section provides a review of some applications of meta-learning
to communication systems by focusing on demodulation; encoding and
decoding; channel prediction at the physical layer; and power control at
the MAC layer.

5.2 Demodulation

Demodulation is a fundamental physical-layer function consisting of the
task of estimating the transmitted symbols from the received baseband
signals. Demodulators must compensate for the fading effect on the
received signal of the transmission channel. This is done by leveraging
the transmission of known symbols, referred to as pilots.



74 Applications of Meta-Learning to Communications

Model-based methods typically assume a linear fading channel
model with additive white Gaussian noise (AWGN). Under this model,
the standard approach first estimates the channel response using the
pilots via a minimum mean squared error (MMSE) estimator. Then, the
estimated channel is used to obtain a maximum likelihood estimate of
the transmitted symbols, which minimizes the symbol error rate (SER)
under the assumption that the channel is well estimated.

In some communication scenarios, especially Internet-of-Things (IoT)
systems involving low-complexity devices, linear models may fail to
fully describe the relationship between the transmitted symbols and
the received signal. In particular, they do not account for non-linear
effects such as transmitter’s imperfections [108]. By addressing this
“model deficit” [104], data-driven demodulation can outperform the
outlined conventional model-based strategy. This is the subject of this
subsection, which follows reference [109].

5.2.1 Problem Definition

Consider an IoT scenario in which devices transmit short packets sporad-
ically to a base station (BS). As mentioned, IoT devices may be affected
by non-linear hardware distortions. An example of distorted constel-
lation points for 16-ary quadrature amplitude modulation (16-QAM)
under I/Q imbalance is shown in Fig. 5.1. As a result, the conventional
model-based demodulator described above is generally suboptimal, as it
ignores hardware nonlinearities. Conventional machine learning methods
may address this model deficit, but the only available training data is
given by the pilots within each short packet. Meta-learning can mitigate
this problem. We note that a complementary approach is to integrate
data-driven and model-based approaches [110], [111], which will be
briefly discussed in Section 7.

For an IoT device indexed by an integer k, given an input symbol
sk € S that lies in the set of all constellation points S. The transmitted
signal x;, is a function of the information symbol s € S that accounts
for the hardware distortion caused by imperfections at device k. This



5.2. Demodulation 75

function is described by a stochastic mapping

zy ~ pr(-sk) (5.1)

for some conditional distribution pg(-|si). We assume that the received
signal ¥, can be expressed as the output of a flat fading channel as in

Yk = hgxp + 2, (5.2)

where hy is the complex channel gain between the device k£ and the BS;
and zp ~ CN (0, Ny) is additive complex Gaussian noise. The channel is
assumed to be constant within a coherence time that is longer than the
short packet time duration of the IoT devices. Neither the channel hj
nor the mapping pi(+|si) are known to device k or to the BS.

We assume the transmission of N pilots in each transmitted frame.
Accordingly, the training data set for device k, referred to as Dy, is
given as

Dy = {(s),y) i =1,.., N}, (5.3)
where s,(;) € § is the i-th pilot symbol sent by device k, and y,(:) is the
resulting signal (5.2)—(5.1) received by the BS.

5.2.2 Conventional Learning

Let us fix a model class p(s|y, ¢) that defines the probability function of
the symbol s given the received signal y based on the model parameter
vector ¢. The model class p(s|y, ¢) is typically chosen as a neural
network with weight vector ¢. Given training data set Dy, a conventional
machine learning solution trains the demodulator within the given class
by minimizing the cross-entropy loss

In9)=—% Y logp(sulu o) (54)

(Sk>Yr)EDy

over the parameter vector ¢, hence addressing the problem

m(;n Lp, (¢). (5.5)



76 Applications of Meta-Learning to Communications

5.2.3 Meta-Learning

We consider pilot data from K devices as meta-training data. Meta-
learning can transfer knowledge from pilots of other devices, each
with their own hardware distortions and channel realizations, via an
optimized inductive bias.

Frequentist meta-learning. Splitting the data set Dy, with N samples
for device k into a training part D} with N* samples and a validation
part Df* with NY* samples as explained in Section 1. the meta-learning
objective for frequentist meta-learning is given by the problem

K
min {ﬁvmtrw) = % > LD;a(QStr(DZrW))} ; (5.6)
k=1

where the per-device model parameter vector ¢y, = ¢ (D}|6) for device
k is adapted using the pilots D' for a fixed hyperparameter vector 6 as
in (1.8), which we denote as, ¢ (D}’|6) < ming LDZr(gzb).

The performance of the data-driven demodulator ¢ is measured by
symbol error rate

SER = Es,ywp(s,y)l(s # 5(ylo)), (5.7)

where §(y|¢) = argmax,cg p(s|y, ¢) is the output of the demodulator
given received signal y in (5.2)—(5.1); while p(s,y) = p(s)p(yls) is
the joint distribution of the symbol s € S and of the received signal
y, with p(yls) given by (5.2)—(5.1). The symbol distribution p(s) is
typically chosen to be uniform over the constellation set S. We next
provide numerical results obtained under model (5.2)—(5.1) with p(z|s)
modelling I/Q imbalance at the transmitter. We refer to [109] for details.

Fig. 5.2 shows the SER of the new, meta-test task, as a function
of number of pilots N available during meta-testing using MAML,
REPTILE, and CAVIA, which were introduced in Section 2. The number
of pilots available for the meta-training tasks is set to N% = 4 and
N2 = 3196. Note that we deviate here from the assumption that the
same number of pilots is used during both meta-training and meta-
testing. This allows us to consider the practical case in which the number
of pilots for new device may not be known a priori, i.e., during the
meta-learning phase.



5.2. Demodulation 77

02

018}

014/
REPTILE

o
N

%, conventional learning

symbol error rate

o

/
MAML

0.08 -

optimal demodulator

123456 1216 32 64 160 320 1600

number of pilots for meta-test (N')

Figure 5.2: Meta-learning for demodulation: SER as a function of number of pilots
(N*") used during meta-testing with 16-QAM, Rayleigh fading, and I/Q imbalance
under a 20 dB signal-to-noise ratio (SNR). K = 1000 meta-training devices with
N" =4 and N* = 3196 are assumed during meta-training (adapted from [109]).

As seen in Fig. 5.2, meta-learning-aided demodulators outperform
the conventional model-based communication scheme based on maxi-
mum likelihood (ML) demodulation with MMSE channel estimation;
as well as the conventional machine learning scheme that trains from
scratch a demodulator for each device. This benefit stems from the
capacity of meta-learning to successfully transfer knowledge from pilots
of previously active devices.

Next, Fig. 5.4 demonstrates the SER with respect to number of
meta-training devices K. As discussed in Section 4.2, using data from
few meta-training devices may yield meta-overfitting, which leads to
a high SER for new devices owing to the poor adaptation capability
of the training algorithm. In contrast, when K is large enough, the
demodulator based on meta-learning can successfully achieve a low SER,
while joint learning, which optimizes a single demodulator across all
meta-training devices, fails to transfer useful knowledge to new devices.

Bayesian meta-learning. While frequentist meta-learning effectively
reduces the pilot overhead required for demodulation, the resulting
trained demodulator may not be well calibrated, providing overcon-
fident decisions. This is a well-known problem of frequentist learning



78 Applications of Meta-Learning to Communications

0.6 conventional learning

0.4¢ frequentist meta-learning

MMSE channel estimator

Bayesian meta-learning

symbol error rate

optimal demodulator

8 16 24 32 64 128 256
number of meta-training device (K)

Figure 5.3: Meta-learning for demodulation: SER as a function of number K of
meta-training device with 16-QAM, Rayleigh fading, and I/Q imbalance under a
18 dB SNR. N' = 8 pilots are used for meta-testing (adapted from [112]).

[113]. Bayesian meta-learning can address this problem by properly
accounting for epistemic uncertainty caused by limited training data
(see Section 2.4) [112].

To elaborate on this point, we first describe how to quantify the
calibration of a discriminative probabilistic model. Given a demodulator
p(s|y, ¢) that yields a point decision §(y|¢) = argmaxcs p(s|y, ¢), the
corresponding confidence for the input y is defined as

conf(yle) = p(3(y[9)|y, ¢)- (5.8)

Ideally, the confidence level (5.8) should be a reliable measure of the
true accuracy of the decision §(y|¢). To quantify this aspect, we define
the average accuracy for all inputs having a confidence level p as [113]

acc(p) = P[3(y|¢) = s|conf(y|p) = p], (5.9)

where the probability is taken over the underlying ground-truth distribu-
tion p(y, s) for the input y and target s. A well calibrated demodulator
is a predictor that satisfies the following equality

acc(p) = p, (5.10)

so that accuracy and confidence level are equal for all p € [0, 1]. Relia-
bility diagrams plot the accuracy acc(p) versus the confidence level



5.2. Demodulation 79

10° }
joint training

L

RN

MAML conventional learning

MMSE channel estimator + ML demodulator

symbol error rate

10 CAVIA
optimal demodulator

1 2 5 10 20 50 100 200 500 1000
number of meta-training devices (K)

Figure 5.4: Meta-learning for demodulation: SER as a function of number K of
meta-training device with 16-QAM, Rayleigh fading, and I/Q imbalance under a
20 dB SNR. N* = 8 pilots are used for meta-testing (adapted from [109]).

p to gauge the extent to which the confidence level estimated by the
model matches the ground-truth accuracy [113]. By replacing the single
demodulator p(s|y, ¢) with the ensemble demodulator Ey.p, 4 p)p(s]y, ¢)
that accounts for the “opinions” of multiple models weighted by the
(approximate) posterior distribution p(¢|D), Bayesian learning can yield
better calibrated decisions as compared to frequentist learning. This
was investigated in [112], [114].

Fig. 5.3 shows the SER as a function of number of meta-training de-
vices K. Similar to Fig. 5.4, both frequentist and Bayesian meta-learning
outperform conventional schemes, validating again the conclusion that
meta-learning can transfer useful knowledge from multiple devices.
Apart from some improvement in accuracy, the key benefit of Bayesian
meta-learning is in terms of calibration, as illustrated by the reliability
diagram in Fig. 5.5. By capturing epistemic uncertainty caused by the
availability of few pilots, here N* = 8, Bayesian meta-learning produces
well-calibrated decisions. In fact, the diagram shows that the confidence
of the demodulator matches well the actual accuracy. More details can
be found in [112].

Online meta-learning. In the communication setting under study in
this subsection, it may be practically useful to accumulate meta-training



frequentist meta-learning Bayesian meta-learning

[confidence p- [confidence P
g [Jaccuracy [accuracy
£ o8f{= = ideal ~ iH= = ideal =
>

£ L] .
= 06 i
= s z
Zoal  J7] |
< o2 .
Z 0 |
Z 0.4 06 0.8 1 04 06 08 1
204 —
%02
e =

0.4 06 08 104 06 08 1

confidence confidence

Figure 5.5: Meta-learning for demodulation: Reliability diagrams for both frequentist
and Bayesian meta-learning. Well calibrated demodulators should follow the dashed
line in the figure, i.e., the confidence of the demodulator should match the actual
accuracy (adapted from [112]).

data set in an online fashion as transmissions from more devices are
received by the BS. This setting has been also studied in [109], and will
be briefly outlined in Section 7.

5.3 Encoding and Decoding

While the previous subsection addressed the model deficit problem
caused by hardware imperfections, this subsection deals with an instance
of algorithm deficit, in which the optimal algorithm for the problem
of interest is unknown. We specifically focus on the problem of jointly
designing encoder and decoder for a communication link over a channel
that is only accessible via a simulator as in [115]-[117].

In this setting, the issue is not that of reducing the amount of data,
which can be generated at will using the simulator, but rather that
of ensuring that a new encoder-decoder pair can be optimized quickly,
using limited computational resources, for each new channel coefficients.
We show in this subsection that meta-learning can reduce the iteration
complexity of training encoder-decoder pairs for new communication
conditions. The presentation follows reference [118].



53

for () pr(y1x) PorC 1Y)

0.5 -1.2
[ —21 .
—0.7
0.4

1.2
—0.29.

3
)
neural network
channel layer
neural network
softmax

normalization layer

transmitter channel receiver

Figure 5.6: Meta-learning for encoding and decoding with a known channel model
pr(ylx): A message m is mapped into a codeword x via a trainable encoder fo..(-),
while the received signal y, determined by the channel py,(y|x), is mapped into an
estimated message M through a trainable decoder pgg (-]y). This setting can be
interpreted as modelling a single link as an autoencoder [115]-[117].

5.3.1 Problem Definition

Consider a communication link with a known channel model. As illus-
trated in Fig. 5.6, the encoder and decoder are implemented via neural
networks. Using the approach introduced in [115], training can be done
in an unsupervised manner by interpreting the architecture in Fig. 5.6
as an autoencoder whose goal is to reproduce the input message m of
k bits at the output of the decoder as the estimate m. This approach
generally requires many iterations to optimize encoder and decoder for
each new channel realization of interest, and meta-learning can alleviate
this problem.

The transmitter encodes the message m into the transmitted signal
x using a mapping « = fy,(sm) where s, is the 2% x 1 one-hot vector
corresponding to message m. Signal x is transmitted through a channel
described by a known conditional distribution pp(y|x). Accordingly, the
received signal is given as y ~ pp(y|x), from which the receiver decodes
via the stochastic mapping 7 ~ pgy, (m]y). The encoding function fe..(+)
and the decoding operation pgy (-|y) depend on model parameter vector
¢r1 and ¢R, respectively.

For concreteness, the channel mapping py(y|z) is modelled here as

y=hx*x+w, (5.11)

where w ~ CN (0, Np) represents complex Gaussian i.i.d. noise and “*”



82 Applications of Meta-Learning to Communications

indicates a linear operation on input x parametrized by a channel vector
h. The model (5.11) captures frequency selective channels, in which case
the operation “*” is a convolution; as well as multi-antenna channels,

Wk

in which case the operation is a matrix multiplication.

5.3.2 Conventional Learning

The loss function for particular channel realization h is written as the
cross-entropy loss

Lh(gb) = *]Emwp(m),ywph(y|f¢T (sm)) [log Por (m|y)]a (512)

which is averaged over message probability distribution p(m); channel
distribution pp(y|x); and stochastic decoding pgy, (m|y). Here, we have
defined the overall model parameter vector ¢ = (¢, ¢r). Note that the
loss Ly (¢) in (5.12) is the population loss, in which the data distribution
is determined by the channel h. The loss (5.12) is approximated by the
empirical loss

N
Loy () =~ S 1owpon (milh s for(m) + ), (5.13)
j=1
where the training data set Dj, under channel realization h is generated
by drawing i.i.d. random messages mj,...,my from the distribution
p(m), along with i.i.d. noise realizations wq, ..., wy.
Conventional learning addresses the following minimization for each
new channel realization h:

m(;n Lp, (¢). (5.14)

Note that access to a differentiable simulator of the channel model is
required for computing the gradient of the loss Lp, (¢) with respect to
the encoder parameter vector ¢. This is trivially true for the simple
model (5.11).

5.3.3 Meta-Learning

A large number of training iterations, consisting of tens of thousands
of steps, are generally required for training data-driven encoding and



5.3. Encoding and Decoding 83

decoding from scratch by solving problem (5.12) for each channel real-
ization h of interest [115], [118]. Meta-learning can reduce the training
time. Using K different channel realizations hq, ..., hx, the frequentist
meta-learning problem can be formulated as the minimization

K
m@in {ED“‘“ (0) = % kZ::I Lth (¢ma(th ’9))} ) (5.15)

where the trained model ¢™?(Dj|0) for each channel realization h, given
the hyperparameter vector #, is taken here to be the MAML one-step-
gradient update (2.1b), i.e.,

" (D, |0) = 6 — aVyLp, (). (5.16)

The empirical losses Lp, () in (5.15)-(5.16) are defined as in (5.13),
with N% and N2 used in lieu of N, respectively.

We next provide some numerical results for a frequency selective
Rayleigh block fading channel model. More details can be found in [118].
We assume transmission of k = 4 bits through n = 4 complex channel
uses. The channel h has three taps, each independently generated as a
CN(0,1/3) variable. The performance of the trained encoder-decoder
pair is measured in terms of block error rate (BLER), i.e.,e

BLER = E[ri = m], (5.17)

where the average is taken with respect to channel distribution p(h),
message probability distribution p(m), channel distribution py,(y|z), and
stochastic decoder pyy, (m|y).

Fig. 5.7 shows the BLER as a function of number of iterations used
to train the encoder-decoder pair. Encoder and decoder are multi-layer
neural networks [119]. The figure also shows the performance obtained
by adopting a more advanced decoder architecture that utilizes a radio
transformer networks (RTN) [115]. The RTN applies a filter w to the
received signal y to obtain the input y = y*w to the decoder as pg, (-|¥)-
Aiming at explicitly designing a channel equalizer w through additional
neural network, RTN has been reported to generally accelerate the
optimization procedure [115].

Similar to Section 5.2, meta-learning is compared with (i) conven-
tional learning, which adopts a random initialization; and (i) joint



84 Applications of Meta-Learning to Communications

conventional
learning

block error rate

—»—vanilla autoencoder
10 £ |~O—autoencoder with RTN
0 1 2 5 10 100 200 1000 10000
training iteration number

Figure 5.7: Meta-learning for encoding and decoding with a (differentiable) channel
model: BLER over iteration number for training on the new channel (4 bits, 4
complex channel uses, Rayleigh block fading channel model with 3 taps, and 16
messages per iteration, under a 15 dB SNR, adapted from [118]).

learning, which optimizes a single encoder-decoder pair from all the
meta-training channels. After a sufficient number of adaptation steps
for new channel realizations (around 10,000), all the schemes achieve
a BLER lower than 1073, validating the power of data-driven encod-
ing and decoding. However, among all the considered schemes, only
meta-learning can reach a BLER near 10~2 with even a single iteration.
This demonstrates that a successful transfer of knowledge from multiple
channels via meta-learning can indeed reduce the iteration complexity
of designing data-driven encoder-decoder pair.

5.4 Channel Prediction

Channel prediction has many applications in modern communication
systems, including proactive resource allocation [120], [121]. Deep learn-
ing based nonlinear channel predictors have been proposed through
training of recurrent neural networks [122], convolutional neural net-
works [123], and multi-layer perceptrons [124]. However, several studies,
including [124]-[126], have reported that deep learning based predictors
tend to require large training data sets, while failing to outperform
well-designed linear filters in the low-data regime. Following [127], this



hd (hannel Predirtinn RR

spatial geometry spatial geometry
AN v AN
v v A
Np{ ot D) Ne  Np{ ot D) Na
v A v A
N ” Doppler
[ Il Il

Ll

frequency frequency
hiy hoy o g L Tugsa hig hes ... Mz .. P .
N 55 e e e
frame f =1 frame f =2
N 7 N 7
Y -~ hits.f hyy -~ hiys.f
d-lag prediction §-lag prediction

Figure 5.8: Meta-learning for channel prediction: At any frame, characterized by
generally different channel statistics, the problem of interest is to predict channel
using previous consecutive channels.

subsection introduces linear data-driven channel predictors that
effectively use the available training data via meta-learning. The key
idea is to use the linear version of iMAML introduced in Section 2.2.3,
along with suitable dimensionality reduction methods via long-short
term channel decomposition as proposed in [128]-[130].

5.4.1 Problem Definition

As shown in Fig. 5.8, we consider a wireless communication system in
which both the spatial geometry and Doppler spectrum of the wireless
channel may change at each frame. Each frame consists of multiple slots.
Assuming Np transmit antennas, N receive antennas, and W taps,
describing the delay spread of the channel, the complex channel vector
at slot ¢ in frame k£ can be written as h; ) € C® with S = NpNyW.
During any frame, the channel statistics are assumed to be static, while
the channels vary across different slots within the same frame with the
given frame statistics.

Within each frame k, the channel predictor takes as input the L
previous channels

HEy = [hige, oo himps15] € € (5.18)



86 Applications of Meta-Learning to Communications

to predict the channel h;; s at a time lag of 0 time steps via the linear
predictor as

hivok(or) = Ghvec(HL,), (5.19)

where ¢), € C9%9 is the model parameter vector. In (5.19), vec(:) is
the vectorization operator that stacks the columns of the input matrix
into a column vector.

5.4.2 Conventional Learning

Defining training data set Dy for the k-th frame with N + L 4+ § —
1 consecutive channel vectors, i.e., Dy = {h1k, ..., ANtL+5-14k}, the
corresponding loss function given the linear regressor ¢ is defined as
the mean squared error (MSE)

2
Lo H

k z+6 k z+6 k (5.20)

The linear channel predictor qbk for the frame k is optimized by address-
ing the minimization of the training loss (5.20).

5.4.3 Meta-Learning

To enable meta-learning, we introduce a bias vector 6 that modifies
the training objective in (5.20) by adding an [ regularization term as
discussed in Section 2.2.3, i.e.,

. A
win { £,(6) + 5 6 — 0] | (521

Furthermore, we assume the availability of a meta-training data set
obtained from K previous frames. For each frame k, we have chan-
nels from N% + NV + L + § — 1 slots, forming the training data
set Dif = {hi g, ..., Anvyps-1x) and the validation data set DJ* =
{hnti1 gy ooy ANtrgNvay 14515 - The bias vector is meta-learned using
iMAML as described in Section 2.2.3. This leads to

min {LDmt,( Z Lpy( qblm(thw))} (5.22)

k 1



5.4. Channel Prediction 87

where the linear channel predictor ¢™ (D{*|6) for frame k is the solution
of problem (5.21) using training set DY, i.e.,

. A
#"(D16) = argmin {Low(6) + 5 062} (529
¢

Both the linear channel predictor ¢'™ (D}’|#) and the solution of problem
(5.22) can be obtained in a closed form as described in Section 2.2.3 (by
taking VeC(Hik)T in lieu of a:gn and h;rwra,k instead of y ).

When the dimension of the channel vector S is large, the meta-
learned bias vector § obtained from (5.22) is prone to meta-overfitting.
Instead of using the channel vector directly, reference [127] proposes
to decompose the channel vector into long-term space-time features
Bj, € C%*E and short-term fading amplitude vector dij € Chx1 128]-
[130]. This yields the decomposition

R
hig = Brdi =Y bpdi ., (5.24)

r=1

in which R stands for the effective number of resolvable paths for the
channel vector; d}:k € C for the r-th element of the vector d;; and
by, € C9%1 is the r-th column of the matrix By,. The integer R can be
estimated by utilizing the previous channel vectors by using a standard
method such as Akaike’s information theoretic criterion (AIC) [131], or
by examining the meta-validation loss [127]. The long-term matrix By
is assumed to have negligible variations within a frame, while only the
fading amplitudes change from slot to slot. The channel predictor ¢y is
similarly decomposed in order to reduce the number of parameters to
be trained [127].

We now provide numerical results using the 3GPP spatial channel
model (SCM) [132] with Ngr = 2, Ny =4, and W = 2. Fig. 5.9 shows
the normalized test MSE (NMSE) as a function of number of training
samples N**. The NMSE is defined as the normalization with respect to
the target channel vector ||y sx(¢) — hirsl|?/||Pissr|?- The perfor-
mance of the meta-learned channel predictor using the decomposition
(5.24) is compared with: (i) meta-learning via (5.22); and (7)) a joint



88 Applications of Meta-Learning to Communications

conventional learning }

(LSTD)  w}

1.6
1.5

naive approaches
[P/ EEE—— R

1.3

NMSE
S

¥
meta-learning (LSTD)

1 2 5
number of training samples (N')

Figure 5.9: Meta-learning for channel prediction: Multi-antenna frequency-selective
channel prediction performance as a function of the number of training samples,
under 19-clustered, two-tap, and multi-antenna (Np = 4 transmit, Ng = 2 receive
antennas) 3GPP SCM channel model (adapted from [127]).

learning solution that finds a bias vector 6 by solving

I
min kz::l Lp, (0), (5.25)

with or without decomposition (5.22). In (5.25), the data set Dy, is union
of the training data part Dj* and the validation part D}*. We refer in the
figure to the schemes based on decomposition (5.24) as long-short-term
decomposition (LSTD); while schemes without the decomposition are
labelled as naive schemes.

In Fig. 5.9, meta-learning based on the considered decomposition
(5.24) outperforms all the other schemes by transferring useful knowledge
for both long-term and short-term features based on channels obtained
from multiple frames with different channel statistics.

5.5 Power Control

Finally, in this subsection, we consider a fundamental radio-resource
management problem in wireless networks — power control. Power
control refers to the optimization of the transmission power levels at
distributed links that share the same spectral resources. Ideally, the
communication engineer would derive an optimal power control solution



55 Power Contrnl 89

[
Ky =20 nodes K> =28 nodes K3 =24 nodes

Gi(1) Gi(2) Gi(3) Gi(Th) Ga(1) G2(2) G2(3) Go(Tn) Gy(1) Gs(2) Gs(3) G3(Ts)

11 -1 [ T2]5 =] [ [2]5[=]7]

slots slots slots

Figure 5.10: Meta-learning for power control: In dynamic networks running over
three periods 7 =1, 7 = 2, and 7 = 3, the goal is to adapt the power control policy
to each new topology using a few data-samples.

that minimizes the level of interference in the network in the presence
of time-varying channel conditions. Due to the complexity of modern
wireless networks, that provide connectivity to devices ranging from
sensors and cell phones to vehicles and robots, deriving an explicit
optimal power control policy is infeasible. For such settings, data-driven
power control method is promising candidates, which is the subject of
this subsection.

5.5.1 Problem Definition

As shown in Fig. 5.10, we consider power control in complex networks
with time-varying network topologies. In such dynamic networks, data-
driven techniques based on fully connected deep-learning models entail
training a different model whenever the number of devices changes,
as such models commit to input and output layers of fixed sizes. In
contrast, learning with inputs and outputs of variable size can be done
using geometric models, such as graph neural networks (GNNs).
GNNS5s have been introduced to address the problem of power control
in [133]. A GNN can encode information about the topology of a network
through its underlying graph. Furthermore, the edge weights of the
GNN [133], are tied to the current channel realizations. As a result, the
solution — which is referred to as random edge GNN (REGNN) —
automatically adapts to time-varying channel conditions through the
edge weights. The design problem consists of training the weights ¢ of



90 Applications of Meta-Learning to Communications

the graph filters.

We assume that the network is run over periods £ =1, ..., K, with
topology possibly changing at each period k. During period k, the
network is comprised of V;, communication links. Transmissions on
the V;, links are assumed to occur at the same time using the same
spectrum. The resulting interference graph Gy = (Vg, &) includes an
edge (i,7) € & for any pair of links i, € Vi, = {1,..., Vi } with i # j
whose transmissions interfere with one another. We denote by N, ,2 C VYV
the subset of links that interfere with link ¢ at period k. Both the
number of links Vi, = |Vi| and the topology defined by the edge set &
generally vary across periods k.

Each period contains IV time slots, indexed by ¢t =1, ..., N. In time
slot ¢ of period k, the channel between the transmitter of link ¢ and its
intended receiver is denoted by h?f(t), while hiz(t) denotes the channel
between transmitter of link j and receiver of link 7 with j € A{. Channels
account for both slow and fast fading effects, and, by definition of the
interference graph Gy, we have h{cl(t) =0 for j ¢ N}. The channels for
slot ¢ in period k are arranged in the channel matrix Gy (t) € RV**Vk,
with the (j,4) entry given by [Gk(t)];;, = giz(t) = ]h‘z,l(t)\Q Channel
states vary across time slots, and the designer is assumed to have access
to channel realizations Dy, = {G(1), ..., Gx(N)} over N time slots in
period k comprising the per-task data set.

With this setup, given transmitted powers p}; (t) in each j-th link,
the achievable sum-rate in slot ¢ of frame k is given by

) = logs [ 1 QIAQ)
ce(pe(t)) =D logy | 1+ e ) (5.26)

where o2 denotes the per-symbol noise power. By (5.26), interference is
treated as worst-case additive Gaussian noise. As per [133], the power
allocation vector in (5.26) is parametrized with a REGNN. Given a
vector of filters ¢y, this yields

pi(t) = f(Gr(t) | Pr), (5.27)

where we can find the form of the REGNN function (G| ¢) in [133].



5.5. Power Control 091

5.5.2 Conventional Learning

Given a set of channel realizations, training of the REGNN parameters
is done by tackling the unsupervised learning problem [133]

. 1
min {me) =~ 2G| ¢>>} , (5.28)

via SGD. Note that, the method in [133] adopts a joint learning strategy,
whereby a single filter tap is optimized for all network configurations,
i.e., the optimization in (5.28) is carried out by summing the rates over
all network topologies of interest.

5.5.3 Black-Box Meta-Learning

To apply conventional meta-learning, we first split the data set Dj, into
training part D}’ and validation part D}* as in the previous subsections.
Using FOMAML and Reptile, as discussed in Section 2.2, we aim to
maximize the achievable rate in (5.26), averaged across all tasks as

K
min {cm(e) =23 LD;a<¢ma<sz|e>>} . (5:29)
k=1

where the task-specific parameters ¢™*(D}’|) are found by taking a
single gradient step using the shared parameter 6 as initialization:

¢ (DF10) =0 — aVp Loy (0). (5.30)

The second-order derivatives required to solve (5.29) are ignored, and
the initialization is computed as in (2.16) and (2.23) for FOMAML
and Reptile, respectively. We refer to such meta-learning schemes as
“black-box”, as they do not leverage the modular structure of GNN
models.

5.5.4 Modular Meta-Learning

Power control has also been tackled in [120] using the modular meta-
learning method described in Section 2.5. To do so, we define a set
M of modules, each representing an instantiation of a REGNN filter.



92 Applications of Meta-Learning to Communications

Representing the modules with indices M = {1, ..., M'}, and considering
REGNNs with L layers, each layer [ = 1,..., L is assigned one of the M
modules. Accordingly, we introduce the discrete vector Sy, € {1, ..., M }*
to denote the module assignment which is a mapping between the layers
[=1,...,L of the REGNN and the modules from the set M.

The goal of modular meta-learning is to optimize the shared module
set M so as to allow the system to find a combination of effective
modules for any new topology during deployment. This is done by
addressing problem

: mo ]' K mo I
n};n{cpm%xM):K;LDyw d(Dzw))}, (5.31)

where the task-specific parameter ¢™°d(D¥|M) is defined by the mod-
ule set M and by the corresponding task-specific module assignment
vector Sx(M), i.e., g™ (DF|M) = p(5(M) (cf. (2.38a)). The module
assignment vector is adapted per task as
Sp(M) = argmin Lpu (¢S, (5.32)
Sef{1,..M}L ~*

To tackle the mixed continuous-discrete problem over the module
set and the assignment variables in (5.31), [120] introduces a stochas-
tic module assignment function given by a conditional distribution
Pr(Sk|M, DiF), and reformulate the bi-level optimization problem as

1 K

mir g 2

k=1

s Bpsmp) (Lo (0] 63
In (5.33), the inner optimization is over the distributions {Py (- | M, D) }E_, .
We refer to [120] for implementation details.

We now provide some numerical results under independent Rayleigh
fading channels. Detailed settings can be found in [120]. We compare
the meta-learning methods to joint learning as proposed in [133], which
finds a single parameter vector by solving (5.28) for the K meta-training
periods. We also consider both the black-box, i.e., standard, and modular
meta-learning in Fig. 5.11 by plotting the sum-rate for a network of
dynamic size as a function of number of meta-training periods K.



5.6. Conclusions 93

Black-box ML (FOMAML)

-

2951

29 Modular ML (M = 4)

28.5

Achievable rate [bit/s/Hz]

Modular ML (M = 6)

R
28T \
>

-
.- . .
‘‘‘‘‘‘‘ Joint learning
-
.-

27.5

10 15 20 25
Number of meta-training periods

Figure 5.11: Meta-learning for power control: Achievable rate in dynamic networks
as a function of number of meta-training periods. The performance of the black-box
and modular meta-learning is compared against joint learning (adapted from [120]).

The results in Fig. 5.11 demonstrate that modular meta-learning
is advantageous over black-box methods when the number of meta-
training tasks is smaller. However, as the number of meta-training tasks
increases, due to the rigidity of modular methods, this gain is overcome
by limitations due to bias, and black-box methods are able to achieve
larger rates.

5.6 Conclusions

This section introduced several applications of meta-learning to wireless
communication systems, ranging from demodulation to power control.
For more references, we refer to [134] for channel decoding; [135], [136]
for MIMO systems; and [137], [138] for unmanned aerial vehicle (UAV)
networks. We finally mention model-based meta-learning which may
further reduce the resource overhead in communication systems [110],
[139]. Section 7 contains some discussion on online and model-based
meta-learning.



6

Integration with Emerging Computing
Technologies

This section covers the integration of meta-learning with two emerging
information processing methods: neuromorphic computing and quan-
tum computing. Both computing technologies promise to improve the
efficiency of specific, distinct, classes of processing tasks, while relying
on dedicated hardware implementations that move beyond the current
von Neumann digital computing architecture. Machine learning can
potentially enable applications of both computing technologies to prob-
lems of practical interest. Data scarcity is, however, often an issue when
training machine learning models implemented using neuromorphic or
quantum computing platforms. In fact, both technologies are highly
synergistic with specialized input data types that may be in short supply.
It is hence of interest to investigate settings in which meta-learning can
enhance sample efficiency, while accounting for the unique properties
and constraints of the two computing methods. This section provides a
very brief introduction to this, with the main goals of highlighting main
conceptual aspects and of providing suitable pointers to the literature.

94



6.1. Neuromorphic Computing 95

6.1 Neuromorphic Computing

Neuromorphic computing is a brain-inspired signal processing paradigm.
It excels at tasks involving streaming, sparse, time series, and/or target-
ing low-energy, always-on, operation with low-latency responses [140],
[141]. Neuromorphic processors implement spiking neural networks
(SNNs), which replace the static neurons of classical machine learning
with dynamic, spiking, neuronal models that process information in the
timing of spikes. The focus on spike-based processing is well aligned
with scientific consensus in neuroscience on the key role played by spikes
to ensure low-energy, low-latency, and high-accuracy signalling [142].
With a design that ensures a very low idle energy consumption, the
spiking neurons of an SNN can ensure an energy usage level that is
proportional to the number of spikes processed.

SNNs are particularly well suited to analyze data produced by
neuromorphic sensors, such as event-driven cameras and touch sensors
[143]-[145]. Such data consist of time series in which information is
encoded in the timing of events recorded by the sensors. For example,
event-driven cameras produce a spike at a pixel when the brightness
recorded by the pixel crosses a given threshold.

6.1.1 Neuromorphic Computing and Machine Learning

Neuromorphic computing platforms implement SNNs, whose operation
is determined by synaptic weights describing the links between spiking
neurons as in a standard artificial neural networks. In some applications,
the synaptic weights are fixed as a function of the computing task.
This is the case, most notably, when the SNN is used to solve convex
optimization problems [141], [146]. In most other applications, however,
the synaptic weights are optimized using machine learning tools based
on the availability of training data.

Denote as s;; € {0,1} the output of a neuron at discrete time ¢,
with s;; = 1 representing the transmission of a spike to all neurons
connected to neuron i by synapses stemming out of neuron ¢. Various
models can be used to implement the spiking mechanism, with the
most commonly adopted for SNNs being the spike response model



96 Integration with Emerging Computing Technologies

Figure 6.1: Illustration of a spiking neuron.

(SRM). Under the SRM, in order to decide whether to spike or not,
neuron i at time t applies a threshold function to an internal variable
known as its membrane potential, i.e.,

Sit = @(’UJZ”t — 19) € {0, 1}, (6.1)

where O(-) is the Heaviside step function; u;; is the membrane potential
of neuron i at time ¢; and 9 is a fixed threshold. According to (6.1),
a spike s;; = 1 is emitted when the membrane potential u;; crosses
a fixed threshold . The membrane potential evolves over time as a
function of the responses of the synapses ending at neuron 7 to incoming
spikes, as well as of the response of the neuron itself to its own spikes.
The latter mechanism can implement refractoriness, whereby a neuron
tends not to produce spikes too close in time.

Let us denote as P; the set of neurons that have synapses ending at
neuron . The SRM stipulates that each such synapse will respond with
a waveform oy — the impulse response of the synapse — to each incoming
spike. Mathematically, as illustrated in Fig. 6.1, the SRM prescribes
the following update to the membrane potential of neuron ¢ at time t¢:

Ujp = Z Wij (at * Sj’t) + (575 * Si,t) , (6.2)
———

JEPi post-synaptic

pre-synaptic
where * denotes the convolution operator. In this update, the contribu-
tion of pre-synaptic neurons depends on the synaptic filter a; through



6.1. Neuromorphic Computing 97

a learnable synaptic weights w;;. Furthermore, the post-synaptic con-
tribution of the spikes emitted by neuron i is mediated through the
feedback filter B;. The duration of the synaptic filter o determines the
memory of the synaptic response, while the duration of the feedback
filter B; dictates the effective length of refractory periods.

Focusing on supervised learning, we assume that the data set
encompasses a target signal x;; € {0,1} for a subset X of neurons. In
practice, the supervisory signals may be provided sequentially over time
t, and hence training may take place online as time index t increases.
Accordingly, the training loss can be expressed as a sum of local losses
l(x;y, sit) evaluated on each neuron ¢ € X over time t =1,...,T, for
some interval of time T, as

T

L(0) = Z Z U241, 50t), (6.3)

t=1iecX

where each loss term ¢(x;;, s;;) depends on the target output z;; of
neuron ¢ at time ¢ and on the actual outputs s; ;. Since an SNN following
the SRM neuronal model can be viewed as an recurrent neural network,
the training loss (6.3) can be, in principle, minimized via gradient
descent, with the gradient being computed via backpropagation over
time.

Denoting as ©’(-) the first derivative of function O(-), the general
form of the partial derivative of the loss function (6.3) with respect to
a synaptic weight w;; is given by

a T
LO)=Y" eir O (ug—0) (or*sjy), (6.4)
8’[1)23 — —_——— ~——
error signal post; ; pre;

where:

* pre;, = oy * S5 is the pre-synaptic trace, which is large if the
previous behavior of pre-synaptic neuron originating the synapse
is consistent with synaptic receptive field of the synapses described
by filter ay. For instance, if a; decreases over time, the trace tends
to large if the pre-synaptic neuron has spiked recently.



98 Integration with Emerging Computing Technologies

+ post;, = ©(u; — V) is the post-synaptic term, which measures
the “sensitivity” to changes in the membrane potential of post-
synaptic neuron 7.

» ¢;; is per-neuron error signal, which is ideally evaluated via
backpropagation through time as a function of the loss functions
{l(x ¢, Skt) }kex computed by the neurons k € X.

Using the partial derivative (6.4), an online gradient descent rule
can be implemented over discrete time t as

wij < wig —n ey O (uig —0) (x5 ), (6.5)
~— —_————  ——
error signal post; , pre; ¢

where 17 > 0 is a learning rate. The synaptic update (6.5) is an example
of a three-factor update rule, whereby each synaptic weight is
modified based on local information, in the form of the pre-synaptic and
post-synaptic factors, as well as based on a per-neuron feedback signal.
Accordingly, the update (6.5) can be implemented at each synapse
using locally available information, in addition to the error signal, which
requires feedback from the network, as discussed next.

Calculation of the gradient in (6.4), and hence application of the
three-factor rule (6.5), face two practical challenges:

e Credit assignment: The impact of every synaptic weight prop-
agates through neurons and time, and hence the calculation of
the error signal e;;, generally requires backpropagating errors
{l(zkt, Sk.t) }kex across the entire network and over all previous
time instants ¢ < t. This problem is typically solved by approxi-
mating backpropagation through truncated backprop through
time, possibly limited to a single time step, and through random
feedback alignment. Random feedback alignment computes the
errors e; ; as a random function of the loss values {(zx, Sk ¢) brex-

» Non-differentiability: The activation function O(-) is such that
the derivative ©'(-) is zero almost everywhere. To address this
problem, the typical solution applies surrogate gradient meth-
ods, whereby the derivative ©'(-) is replaced with the derivative
of a differentiable surrogate function, such as sigmoid function.



6.2. Quantum Computing 99

We refer to [147], [148] for additional discussion on gradient descent-
based training of SNNs.

6.1.2 Neuromorphic Computing and Meta-Learning

Research in neuroscience has revealed learning mechanisms that operate
at different time scales, with slower learning procedures targeting the
acquisition of new skills and tasks [149]. Through such outer, slower,
learning loops, biological brains can acquire general concepts and meth-
ods, allowing a more efficient adaptation to specific activities or tasks
[150], [151]. In this process, a variety of update techniques are at work
to establish short-to-intermediate-term and long-term memory for the
acquisition of new information over time, such as long-term potentiation,
metaplasticity, and heterosynaptic plasticity. We refer to [152] for an
overview. Meta-learning and continual learning for SNNs implement so-
lutions that inspired by such mechanisms [152], [153]. In particular, the
three-factor rule (6.5) can be directly built on to implement first-order
meta-learning schemes such as FOMAML (see Section 2). We refer to
[154] for details and results.

6.2 Quantum Computing

Conceived in 1982 by physicist Paul Benioff, and named after the
subatomic physics it aims to harness, quantum computing is based
on the concept of a qubit. A qubit is a quantum-mechanical system
that can represent the classical states, 0 and 1 of a classical bit, as
well as any superposition of both states [155]. The complex amplitudes
defining a quantum state in superposition can mutually interfere, and
they can define forms of correlation across multiple qubits, referred to as
entanglement, with no classical counterpart. A quantum computer can
be understood as a physical implementation of a number of interacting
qubits with a precise control on the temporal evolution of the joint state
of the qubits. Any quantum state evolution can be approximated by a
sequence of a handful of elementary “controls”, called quantum gates,
which only act on one or two qubits at a time. As a result, a universal
quantum computer only has to perform a small set of operations on



100 Integration with Emerging Computing Technologies

qubits, much like classical computers are built on a limited number of
logic gates.

Examples of physical implementations of quantum computers involve
the polarizations of photons, the discrete energy levels of an ion, the
nuclear spins states of an atom, and the spin states of an electron.
Recent demonstrations of the potential of quantum computing based on
such technologies have catalysed a booming activity in the field [156]. At
the time of writing, quantum computers have reached beyond the realm
of a purely academic interest, and they appear to be at the critical point
of becoming widely available for the commercial and scientific uses.

6.2.1 Quantum Computing and Machine Learning

A number of elementary quantum gates can be controlled via the
selection of a vector ¢ of parameters. A quantum gate implements a
linear, unitary, transformation of a quantum state. For a parameterized
quantum gate, such unitary transformation is typically a function of
rotation angles that make up vector ¢. A sequence of parameterized and
fixed quantum gates gives rise to the workhorse of quantum machine
learning — the parametrized quantum circuit (PQC). A PQC is
often implemented using a so-called hardware-efficient ansatz (i.e., model
architecture), in which a layer of one-qubit unitary gates, parametrized
by vector ¢, is followed by a layer of fixed, entangling, two-qubit gates.

A PQC can be used to process and output classical or quantum
data. Quantum data refers to quantum-mechanical systems encoding
information in their quantum states. Quantum data may be produced
by quantum sensors, which are emerging as important tools in various
scientific fields [157]. To extract classical information from a PQC,
the state of the qubit register is measured, producing classical bits.

In quantum machine learning, for both cases of classical and quantum
data, the parameters ¢ of a PQC are optimized in a data-dependent
manner via a classical optimizer that keeps the PQC in the loop as
shown in Fig. 6.2. The classical optimizer receives measurement outputs
from the PQC, and aims at updating the PQC parameters ¢ with the
aim of optimizing a data-dependent cost function. Such optimization is
typically done using standard methods like gradient descent.



6.2. Quantum Computing 101

U (Qb) /7( classical
optimizer

average

Figure 6.2: Illustration of the quantum machine learning design methodology: A
PQC with a pre-specified architecture is optimized via its vector of parameters, ¢, by
a classical optimizer based on data and measurements of its outputs. The operation
of a parametrized quantum circuit is defined by a unitary matrix U(¢) dependent
on vector ¢. The block marked with a gauge sign represents quantum measurements,
which convert quantum information produced by the quantum circuit into classical
information. This conversion is inherently random, and measurement outputs are
typically averaged before being fed to the classical optimizer.

The quantum machine learning architecture of Fig. 6.2 has a number
of potential advantages over the traditional approach of handcrafting
quantum algorithms assuming fault-tolerant quantum computers:

e By keeping the quantum computer in the loop, the classical opti-
mizer can directly account for the non-idealities and limitations
of quantum operations via measurements of the output of the
quantum computer.

o If the PQC is sufficiently flexible and the classical optimizer
sufficiently effective, the approach may automatically design well-
performing quantum algorithms that would have been hard to
optimize by hand via traditional formal methods.

6.2.2 Quantum Machine Learning and Meta-Learning

The integration between quantum machine learning and meta-learning
can take two distinct forms, with the former supporting the latter or
vice versa.



102 Integration with Emerging Computing Technologies

Classical Meta-Learning for Quantum Machine Learning

Classical meta-learning algorithms as presented in this monograph
can be leveraged to make the optimization of the PQC parameters
¢ more sample- or iteration-efficient. With this class of methods, the
classical optimizer in Fig. 6.2 operates at two time scales, with the
slower time scale processing data from multiple, related, meta-learning
tasks. Classical neural network architectures, such as recurrent neural
networks, can be meta-trained to produce the PQC parameters ¢ in a
more efficient manner than in the conventional case in which classical
optimization applies separately to each learning task. We refer to [158],
[159] for details and results.

Quantum Machine Learning for Classical Meta-Learning

Conversely, quantum machine learning models can be leveraged to en-
hance the performance of meta-learning for classical machine learning
models. PQCs are particularly efficient as generative models that pro-
duce binary strings with complex joint distributions as the results of
measurements at their outputs. This suggests the use of PQCs to model
variational distributions g(¢) in Bayesian meta-learning (see Section
2.4).

To illustrate the idea of using quantum machine learning to aid
classical meta-learning, consider the problem of training binary neu-
ral networks parameters’ ¢, via Bayesian learning. The variational
distribution ¢(¢y) of the neural network’s parameters ¢ is modelled
implicitly via the output of the measurements of a PQC. Specifically,
such measurements produce random binary strings ¢x € {0,1}", where
n = |¢k| denotes the total number of model parameters. Importantly,
such quantum models only provide samples, while the actual distribu-
tion of the measurements’ outputs can only be estimated by averaging
multiple measurements of the PQC’s outputs. Therefore, PQCs model
implicit distributions, and only define a stochastic procedure that
directly generates samples for the model parameters ¢y.

Training from scratch for each task is thereby inefficient in terms
of sample and iteration complexity and meta-learning alleviates these
issues of optimizing the PQC. We refer to [160] for details and results.



6.3. Conclusions 103

6.3 Conclusions

This section has drown some connections between meta-learning and
emerging computing technologies, which may play an important role in
future machine learning systems. This is an active area of research, and
more open problems will be reviewed in the next section.



7

Outlook

This monograph has provided an introduction to meta-learning by
surveying methods, theory, and application. The topic of meta-learning is
currently the subject of intense research in different disciplines, including
information theory, machine learning, hardware design, and neuroscience.
In this final section, we provide an outlook of directions for research
that have not been covered in the text and appear to be particularly
promising and challenging at the time of writing. We specifically focus
on aspects of interest for researchers in signal precessing.

7.1 Methods

In this subsection, we highlight research topics concerning the develop-
ment of meta-learning methods.

7.1.1 Continual (Online) Meta-Learning

The conventional formulation of meta-learning studied in this mono-
graph assumes the availability of meta-training data set collected offline
from K learning tasks, which is denoted as D™ = {(DI¥, Di)K_ 1. As
we have seen in Section 4.2, the number of tasks K plays an impor-

104



7.1. Methods 105

block error rate
e

conventional
b (BPSK + maximum likelihood)

'

online meta-learning
T

i)

0 1 2 3 4 5 6
number of frames x10*

Figure 7.1: Meta-learning for encoding and decoding without channel simulator:
BLER as a function of the number of frames used during online meta-training phase
(8 bits, 8 complex channel uses; Rayleigh block fading channel with 3 taps, 256
messages per frame with 8 pilot messages under a 10 dB SNR, adapted from [163]).

tant role in ensuring successful generalization to new tasks, avoiding
meta-overfitting. The meta-training data set may be, for instance, col-
lected by acquiring data sets for similar tasks from existing repositories;
or by storing data gathered during previous interactions with similar
learning environments. In the latter case, it is natural to consider set-
tings in which the meta-training dataset is built in an online fashion
by accumulating data observed over time, and updating accordingly
the hyperparameter 6. This formulation is known as continual, or
online meta-learning [161] (see also [1]). Online meta-learning plays
an important role also in models for computational intelligence [162].

As an application of continual meta-learning, consider the problem
of adapting a demodulator to changing channel conditions. While the
setting studied in Section 5.2 assumed the offline availability of a meta-
training data set collected from a number of devices, a continual meta-
learning formulation would operate in a streaming fashion. Accordingly,
as data from more devices are collected, the hyperparameter # is updated
to better prepare the learning algorithm to adapt to new channel
conditions. This particular application is studied in [109].

When both encoder and decoder are updated in an online manner,
revisiting the previous channel conditions is not feasible, and reference



106 Outlook

=}

=

o

a2 oqf conventional

g (BPSK + maximum likelihood)
S~

online meta-learning

0 01 02 03 04 05 06 07 08 09 099
correlation coefficient (p)

Figure 7.2: Meta-learning for encoding and decoding without channel simulator:
BLER as a function of the correlation coefficient p of the time-varying channel model
(8 bits, 8 complex channel uses; Rayleigh block fading channel with 3 taps, 256
messages per frame with 8 pilot messages under a 10 dB SNR, adapted from [163]).

[163] proposed to continually update the meta-learned model at the re-
ceiver by applying the meta-gradient obtained from the current channel
condition to the current hyperparameter vectors. Referring to [163] for
details, Fig. 7.1 and 7.2 illustrate the performance of the approach over
channel conditions defined by an autoregressive Rayleigh fading process
with temporal correlation factor p [163]. Fig. 7.1 gauges how many
frames are needed for online meta-learning to successfully find a useful
hyperparameter vector from the previous (meta-training) frames. In a
manner similar to the discussions for offline meta-learning in Fig. 5.4
and Fig. 5.3, Fig. 7.1 shows that a sufficiently large number of frames
are needed for a successful transfer of knowledge via meta-learning that
ensures a performance gain with respect to a conventional per-frame
solution. The impact of the channel correlation p is analyzed in Fig. 7.2,
which shows that meta-learning benefits from a smaller p. In fact, a
large p may cause meta-overfitting (see Section 4.2) due to the similarity
of the channels observed during meta-training.

7.1.2 Meta-Learning for Reinforcement Learning

This monograph has focused on supervised and unsupervised learning
problems. In such settings, the data sets are fixed. In contrast, in



7.1. Methods 107

reinforcement learning (RL) data is collected through the interaction
of the agent with the learning environment defining the given task. Meta-
learning can be applied to RL problems with the goal of minimizing the
duration of the interactions with new tasks that are required to obtain
desirable performance levels [6], [164]-[167].

Continual meta-learning, as introduced in the previous subsection,
can also be applied to RL. A key difference with respect to continual
meta-learning for supervised or unsupervised learning is that it may be
impossible to interact with previous tasks. This makes it impossible to
evaluate the performance of new policies on previous tasks. For such
practical scenarios, various techniques have been proposed, including
model-based RL [165], [168], [169], off-policy RL [166], [169], [170], and
behavior cloning [167], [171].

As an example, unlike Section 5.3, which assumed knowledge of the
channel model pp,(y|x), RL-based solutions can optimize a transceiver
through the direct interactions with the channel, assuming the presence
of a feedback link from receiver to transmitter [172].

As another application, consider the unmanned aerial base sta-
tion (UABS) that provides radio coverage in vehicular networks [173].
Depending on a particular traffic pattern of the vehicles, an optimal
trajectory of UABS can be found via RL [174]. However, such solutions
may need retraining when the traffic pattern changes. In order to enable
UABS to quickly adapt to new traffic patterns, the work [138] developed
a meta-learning solution for RL that does not require revisiting the
previous environments.

7.1.3 Active Meta-Learning

In the meta-learning formulations discussed so far, the meta-learning
tasks are selected by “nature”. This prevents the meta-learner from
actively selecting tasks that are more informative about possible new
tasks given what the meta-learner already knows. The active, sequential,
selection of tasks is referred to as active meta-learning, and is currently
an understudied area of research [175], [176].

As an example, consider again the demodulation with few pilots
studied in Section 5.2. Active meta-learning may help the designer



108 Outlook

reduce the number of required meta-training devices as in [112].

7.1.4 Optimization for Overparameterized Meta-Learning

When applied to deep learning models, meta-learning typically operates
in the overparameterized regime, in which the number of the model
parameters exceeds the amount of training data available. For example,
ResNets-based MAML models have around 6 million parameters, but
are trained on around 2 million meta-training samples [177].

When the meta-learning problem is overparameterized, the lower-
level bilevel problem (3.1b) studied in Section 3 may not be strongly
convex, and thus the lower-level problem has multiple solutions {¢*(6)}
given the hyperparameter vector 6. This is problematic because the
Hessian of the lower-level problem V; ¢g(9, ¢) may be not invertible, and
thus the Hessian inverse used in the hyper-gradient (3.6) may not exist.
Therefore, the alternating stochastic gradient-based ALSET method
presented in Section 3 may not be theoretically justifiable in this case.

To handle cases in which the lower-level problem has many solutions,
two possible methods may be used. One is the optimistic solution that
chooses a solution ¢*(#) by minimizing the upper-level objective (e.g.,
[178]), that is

min — L(0) :=E¢ [f (0, ¢7(0); €)] (upper)  (7.1a)
R4 ¢* (0) R
st ¢*(0) € argmin Eg[g(0, ¢;€)] (lower);  (7.1b)
pER

and the other is the pessimistic solution that chooses a solution ¢*(6)
by maximizing the upper-level objective (e.g., [179]), that is

min max L) :=Ee [f (0,47(); )] (upper) (7.2a)

[SIN ¢*(0)€Rd

st. ¢"(6) € argmin Eglg(6, ¢;€)] (lower).  (7.2b)
pER

The aforementioned bilevel optimization problems are much more chal-
lenging than those discussed in Section 3, and their non-asymptotic
analyses are relatively less explored [180]-[185].



7.2. Theory 109

7.2 Theory

We now turn to some open theoretical aspects of meta-learning.

7.2.1 Benign Overfitting for Overparameterized Meta-Learning

Statistical learning theory results derived using the standard techniques
summarized in Section 4 suggest that overparameterized models tend to
overfit [186]. Translating this insight into the meta-learning setting, one
expects that, given the meta-training datasets {D,t{f},lf:l, if the model
size grows large, the meta-generalization error AL(6) defined in (4.17)
also grows. However, empirical evidence reveals that overparameterized
meta-learning methods still work well [177] — a phenomenon often called
“benign overfitting.”

While generalization bounds for overparameterized models have been
recently studied in the conventional learning setting [187]-[190], their
counterparts for meta-learning are under-explored. The generalization
performance under an overparameterized linear regression model has
been studied in [191], [192], and it would be interesting to extend the
analysis in [191], [192] to nonlinear models by means of random features
and neural tangent kernels. It is also interesting to investigate the
implicit regularization effect [193], [194] of meta-learning algorithms in
overparameterized settings.

7.2.2 Epistemic Uncertainty of Bayesian Meta-Learning Under
Model Misspecification

The information-theoretic analysis of epistemic uncertainty for Bayesian
meta-learning presented in Section 4 relies on two crucial assumptions:
(a) the model is well-specified, and (b) the exact meta-posterior distri-
bution can be computed. However, neither of these assumptions seldom
hold in practice. The true data distribution underlying the standard
available data sets is not known in general, and Bayesian algorithms can
only obtain approximate posterior distributions. Note that, in contrast,
the PAC-Bayes bounds, presented in Section 4.4, account for these
practical considerations.



110 Outlook

Characterizing the epistemic uncertainty when either of the above
two assumptions is violated is an interesting open problem [195]. For
conventional learning, the recent work [196] explores this direction by
combining the frequentist PAC-Bayesian generalization analysis with
the Bayesian minimum excess risk analysis. Extensions to meta-learning
offer an interesting line of future research.

7.3 Applications

We finally highlight an interesting research direction pertaining the
application of meta-learning to communication systems. Also note that
there are also many open problems at the intersection of meta-learning
and emerging computing technologies as discussed in Section 6.

As discussed in Section 5, communication systems have been tra-
ditionally designed based on carefully designed models. Such models,
even when inaccurate, may help define strong inductive biases that
can be incorporated within data-driven approaches. For instance, the
Viterbi algorithm [197] is known to achieve the minimum BLER on
known frequency-selective channels. When the channel is not known,
the computation of branch metrics in the Viterbi algorithm can be
designed in a data-driven fashion to mitigate the model deficit [198].

Model-based learning solutions have been reported to outperform
both the conventional model-based algorithms and conventional black-
box learning approaches [198], [199]. Model-based meta-learning can fur-
ther speed up model-based learning [110]. As an example, hypernetwork-
based solutions (see Section 2) have been introduced for Kalman filter
design [139], MIMO detection [135], and massive MIMO feedback [200]
to aid model-based algorithms.



Acknowledgements

The work of Sharu Jose, Ivana Nikoloska, Sangwoo Park, and Osvaldo
Simeone was supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 Research and Innovation Program
(Grant Agreement No. 725731). The work of Lisha Chen and Tianyi
Chen was partially supported by National Science Foundation (NSF)
CAREER Award 2047177, NSF MoDL-SCALE Grant 2134168 and the
Rensselaer-IBM Al Research Collaboration (http://airc.rpi.edu), part
of the IBM AI Horizons Network.

111


http://airc.rpi.edu

References

O. Simeone, Machine Learning for Engineers. Cambridge Uni-
versity Press, 2022.

T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey,
“Meta-learning in neural networks: A survey,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020.

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., “Match-
ing networks for one shot learning,” in Proc. Advances in Neu-
ral Information Processing Systems, vol. 29, pp. 3630-3638,
Barcelona, Spain, 2016.

J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for
few-shot learning,” in Proc. Advances in Neural Information
Processing Systems, pp. 4080-4090, Long Beach, CA, 2017.

F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M.
Hospedales, “Learning to compare: Relation network for few-shot
learning,” in Proc. Conference on Computer Vision and Pattern
Recognition, pp. 1199-1208, Salt Lake City, UT, 2018.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proc. Intl. Conf. on
Machine Learning, Sydney, Australia, 2017.

A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine, “Meta-
learning with implicit gradients,” in Proc. Advances in Neural
Information Processing Systems, Vancouver, Canada, 2019.

112



References 113

8]

[10]

[11]

[12]

[13]

[14]

D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-based
hyperparameter optimization through reversible learning,” in
Proc. Intl. Conf. on Machine Learning, F. Bach and D. Blei,
Eds., vol. 37, pp. 2113-2122, Lille, France, Jul. 2015.

J. Schmidhuber, “A neural network that embeds its own meta-
levels,” in Proc. IEEFE Intl. Conf. on Neural Networks, 407-412
vol.1, 1993.

S. Hochreiter, A. S. Younger, and P. R. Conwell, “Learning to
learn using gradient descent,” in Proc. Intl. Conf. on Artificial
Neural Networks, pp. 87-94, Vienna, Austria, 2001.

N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple
neural attentive meta-learner,” in Proc. Intl. Conf. on Learning
Representations, Vancouver, Canada, 2018.

S. Qiao, C. Liu, W. Shen, and A. L. Yuille, “Few-shot image recog-
nition by predicting parameters from activations,” in Proc. Con-
ference on Computer Vision and Pattern Recognition, pp. 7229—
7238, Salt Lake City, UT, 2018.

S. Gidaris and N. Komodakis, “Dynamic few-shot visual learning
without forgetting,” in Proc. Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, 2018.

E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths, “Recast-
ing gradient-based meta-learning as hierarchical bayes,” in Proc.
Intl. Conf. on Learning Representations, Vancouver, Canada,
2018.

J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn,
“Bayesian model-agnostic meta-learning,” in Proc. Advances in
Neural Information Processing Systems, Montreal, Canada, 2018.
C. Nguyen, T.-T. Do, and G. Carneiro, “Uncertainty in model-
agnostic meta-learning using variational inference,” in Proc. Win-
ter Conference on Applications of Computer Vision, pp. 3090—
3100, Snowmass Village, CO, 2020.

A. Fallah, A. Mokhtari, and A. Ozdaglar, “On the conver-
gence theory of gradient-based model-agnostic meta-learning
algorithms,” in Proc. Intl. Conf. on Artificial Intelligence and
Statistics, pp. 1082-1092, virtual, 2020.



114

[18]

[19]

[22]

References

T. Chen, Y. Sun, and W. Yin, “Solving stochastic compositional
optimization is nearly as easy as solving stochastic optimization,”
IEEE Transactions on Signal Processing, vol. 69, Jun. 2021,
pp. 4937-4948.

P. Zhou, X. Yuan, H. Xu, S. Yan, and J. Feng, “Efficient meta

)

learning via minibatch proximal update,” in Proc. Advances
in Neural Information Processing Systems, Vancouver, Canada,
2019.

G. Denevi, C. Ciliberto, D. Stamos, and M. Pontil, “Learning
to learn around a common mean,” in Proc. Advances in Neural
Information Processing Systems, vol. 31, Montreal, Canada, 2018.
Y. Bai, M. Chen, P. Zhou, T. Zhao, J. Lee, S. Kakade, H.
Wang, and C. Xiong, “How important is the train-validation
split in meta-learning?” In Proc. Intl. Conf. on Machine Learning,
pp. 543-553, virtual, 2021.

L. Chen and T. Chen, “Is Bayesian model-agnostic meta learning
better than model-agnostic meta learning, provably?” In Proc.
Intl. Conf. on Artificial Intelligence and Statistics, pp. 1733-1774,
virtual, 2022.

M. Abbas, Q. Xiao, L. Chen, P.-Y. Chen, and T. Chen, “Sharp-
MAML: Sharpness-aware model-agnostic meta learning,” in Proc.
Intl. Conf. on Machine Learning, Maryland, MD, 2022.

P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-
aware minimization for efficiently improving generalization,” in
Proc. Intl. Conf. on Learning Representations, virtual, 2020.
A. Nichol and J. Schulman, “Reptile: A scalable meta learning
algorithm,” arXiv preprint arXiv: 1803.02999, 2018.

X. Song, W. Gao, Y. Yang, K. Choromanski, A. Pacchiano, and
Y. Tang, “Es-maml: Simple hessian-free meta learning,” in Proc.
Intl. Conf. on Learning Representations, New Orleans, LA, 2019.
H. Beyer and H. Schwefel, “Evolution strategies - a comprehensive
introduction,” Natural Computing, vol. 1, no. 1, Mar. 2002, pp. 3—
52.



References 115

[28]

[29]

[30]

[37]

[38]

[39]

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y
Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. Intl. Conf. on Artificial Intelligence
and Statistics, pp. 12731282, Fort Lauderdale, FL, 2017.

M. Zecchin, S. Park, O. Simeone, M. Kountouris, and D. Gesbert,
“Robust bayesian learning for reliable wireless ai: Framework
and applications,” arXiv preprint arXiv: 2207.00300, 2022.

Z. Wang, Y. Zhao, P. Yu, R. Zhang, and C. Chen, “Bayesian
meta sampling for fast uncertainty adaptation,” in Proc. Intl.
Conf. on Learning Representations, virtual, 2020.

C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An
introduction to MCMC for machine learning,” Machine learning,
vol. 50, no. 1, 2003, pp. 5-43.

C. M. Bishop and N. M. Nasrabadi, Pattern recognition and
machine learning, vol. 4, 4. Springer, 2006.

C. Finn, K. Xu, and S. Levine, “Probabilistic model-agnostic
meta-learning,” in Proc. Advances in Neural Information Pro-
cessing Systems, Montreal, Canada, 2018.

S. Ravi and A. Beatson, “Amortized bayesian meta-learning,”
in Proc. Intl. Conf. on Learning Representations, New Orleans,
LA, 2019.

Q. Liu and D. Wang, “Stein variational gradient descent: A
general purpose bayesian inference algorithm,” in Proc. Advances
in Neural Information Processing Systems, Barcelona, Spain,
2016.

L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson,
“Fast context adaptation via meta-learning,” in Proc. Intl. Conf.
on Machine Learning, pp. 7693-7702, Long Beach, CA, 2019.
A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-
learning algorithms,” arXiv preprint arXiv: 1803.02999, 2018.
M. Yin, G. Tucker, M. Zhou, S. Levine, and C. Finn, “Meta-
learning without memorization,” in Proc. Intl. Conf. on Learning
Representations, virtual, 2020.

F. Alet, T. Lozano-Pérez, and L. P. Kaelbling, “Modular meta-
learning,” in Proc. Conference on Robot Learning, pp. 856-868,
Zurich, Switzerland, 2018.



116

[40]

References

F. Alet, E. Weng, T. Lozano-Pérez, and L. P. Kaelbling, “Neural
relational inference with fast modular meta-learning,” in Proc.
Advances in Neural Information Processing Systems, vol. 32,
Vancouver, Canada, 2019.

I. Nikoloska and O. Simeone, “Modular meta-learning for power
control via random edge graph neural networks,” IEEE Trans-
actions on Wireless Communications, 2022.

H. Robbins and S. Monro, “A stochastic approximation method,”
Annals of Mathematical Statistics, vol. 22, no. 3, Sep. 1951,
pp. 400-407.

H. V. Stackelberg, The Theory of Market Economy. Oxford
University Press, 1952.

Wikipedia, Heinrich freiherr von stackelberg, 2013. [Online].
Available: https://en.wikipedia.org/wiki/Heinrich_ Freiherr__
von__Stackelberg.

J. Bracken and J. T. McGill, “Mathematical programs with
optimization problems in the constraints,” Operations Research,
vol. 21, no. 1, 1973, pp. 37—44.

J. F. Bard, Practical bilevel optimization: algorithms and appli-
cations, vol. 30. Springer Science & Business Media, 2013.

S. Dempe, V. Kalashnikov, G. A. Perez-Valdes, and N. Kalash-
nykova, Bilevel Programming Problems: Theory, Algorithms and
Applications to Energy Networks, vol. 10. Berlin, Germany:
Springer, 2015.

J. Ye and D. Zhu, “Optimality conditions for bilevel programming
problems,” Optimization, vol. 33, no. 1, 1995, pp. 9-27.

B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel
optimization,” Annals of operations research, vol. 153, no. 1,
2007, pp- 235-256.

A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on
Stochastic Programming: Modeling and Theory. Philadelphia,
PA: SIAM, 2009.

L. N. Vicente and P. H. Calamai, “Bilevel and multilevel program-
ming: A bibliography review,” Journal of Global optimization,
vol. 5, no. 3, 1994, pp. 291-306.


https://en.wikipedia.org/wiki/Heinrich_Freiherr_von_Stackelberg
https://en.wikipedia.org/wiki/Heinrich_Freiherr_von_Stackelberg

References 117

[52]

[53]

V. Konda and V. Borkar, “Actor-critic-type learning algorithms
for markov decision processes,” SIAM Journal on Control and
Optimization, vol. 38, no. 1, 1999, pp. 94-123.

Z. Borsos, M. Mutny, and A. Krause, “Coresets via bilevel
optimization for continual learning and streaming,” in Proc.
Advances in Neural Information Processing Systems, virtual,
Dec. 2020.

K. Kunisch and T. Pock, “A bilevel optimization approach for
parameter learning in variational models,” SIAM Journal on
Imaging Sciences, vol. 6, no. 2, 2013, pp. 938-983.

G. Kunapuli, K. P. Bennett, J. Hu, and J.-S. Pang, “Classification
model selection via bilevel programming,” Optimization Methods
& Software, vol. 23, no. 4, 2008, pp. 475-489.

7Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical Programs
with Equilibrium Constraints. Cambridge University Press, 1996.
F. Pedregosa, “Hyperparameter optimization with approximate
gradient,” in Proc. Intl. Conf. on Machine Learning, pp. 737-746,
New York, NY, Jun. 2016.

P. Khanduri, S. Zeng, M. Hong, H.-T. Wai, Z. Wang, and Z. Yang,
“A momentum-assisted single-timescale stochastic approximation
algorithm for bilevel optimization,” in Proc. Advances in Neural
Information Processing Systems, virtual, Dec. 2021.

Z. Guo and T. Yang, “Randomized stochastic variance-reduced
methods for stochastic bilevel optimization,” arXiv preprint:
2105.02266, May 2021.

J. Yang, K. Ji, and Y. Liang, “Provably faster algorithms for
bilevel optimization,” Advances in Neural Information Processing
Systems, vol. 34, 2021, pp. 13670-13 682.

S. Sabach and S. Shtern, “A first order method for solving convex
bilevel optimization problems,” SIAM Journal on Optimization,
vol. 27, no. 2, 2017, pp. 640-660.

L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil,
“Bilevel programming for hyperparameter optimization and meta-
learning,” in Proc. Intl. Conf. on Machine Learning, pp. 1568—
1577, Vienna, Austria, Jun. 2018.



118

[63]

[64]

References

A. Shaban, C.-A. Cheng, N. Hatch, and B. Boots, “Truncated
back-propagation for bilevel optimization,” in Proc. Intl. Conf.
on Artificial Intelligence and Statistics, pp. 1723-1732, Naha,
Okinawa, Japan, Apr. 2019.

R. Grazzi, L. Franceschi, M. Pontil, and S. Salzo, “On the
iteration complexity of hypergradient computation,” in Proc.
Intl. Conf. on Machine Learning, pp. 3748-3758, virtual, Jul.
2020.

S. Ghadimi and M. Wang, “Approximation methods for bilevel
programming,” arXiv preprint arXiv: 1802.02246, 2018.

M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, “A two-timescale
framework for bilevel optimization: Complexity analysis and
application to actor-critic,” arXiv preprint:2007.05170, 2020.
K. Ji, J. Yang, and Y. Liang, “Provably faster algorithms for
bilevel optimization and applications to meta-learning,” in Proc.
Intl. Conf. on Machine Learning, virtual, Jul. 2021.

T. Chen, Y. Sun, Q. Xiao, and W. Yin, “A single-timescale
method for stochastic bilevel optimization,” in Proc. Intl. Conf.
on Artificial Intelligence and Statistics, vol. 151, pp. 2466—2488,
Mar. 2022.

S. Dempe and A. Zemkoho, Bilevel Optimization. Springer, 2020.
R. Liu, J. Gao, J. Zhang, D. Meng, and Z. Lin, “Investigating
bi-level optimization for learning and vision from a unified per-
spective: A survey and beyond,” IEEFE Transactions on Pattern
Analysis and Machine Intelligence, Dec. 2021.

K. Ji, J. Yang, and Y. Liang, “Multi-step model-agnostic meta-
learning: Convergence and improved algorithms,” arXiv preprint
arXiv: 2002.07836, Feb. 2020.

Y. Hu, S. Zhang, X. Chen, and N. He, “Biased stochastic first-
order methods for conditional stochastic optimization and appli-
cations in meta learning,” in Proc. Advances in Neural Informa-
tion Processing Systems, pp. 2759-2770, virtual, Dec. 2020.

K. Ji, J. Yang, and Y. Liang, “Theoretical convergence of multi-
step model-agnostic meta-learning.,” Journal of Machine Learn-
ing Research, vol. 23, 2022, pp. 29-1.



References 119

[74]

[75]

[76]

[79]

F. Huang and H. Huang, “Biadam: Fast adaptive bilevel opti-
mization methods,” arXiv preprint:2106.11596, Jun. 2021.

L. Franceschi, M. Donini, P. Frasconi, and M. Pontil, “Forward
and reverse gradient-based hyperparameter optimization,” in
Proc. Intl. Conf. on Machine Learning, pp. 11651173, Sydney,
Australia, 2017.

T. Chen, Y. Sun, and W. Yin, “Closing the gap: Tighter analysis
of alternating stochastic gradient methods for bilevel problems,”
in Proc. Advances in Neural Information Processing Systems,
vol. 34, virtual, 2021.

S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order meth-
ods for nonconvex stochastic programming,” SIAM Journal on
Optimization, vol. 23, no. 4, 2013, pp. 2341-2368.

H. Shen and T. Chen, “A single-timescale analysis for stochastic
approximation with multiple coupled sequences,” in Proc. Ad-
vances in Neural Information Processing Systems, New Orleans,
LA, Dec. 2022.

J. Li, B. Gu, and H. Huang, “A fully single loop algorithm for
bilevel optimization without hessian inverse,” in Proc. Associa-
tion for the Advancement of Artificial Intelligence, pp. 74267434,
virtual, 2022.

D. A. Tarzanagh and L. Balzano, “Online bilevel optimization:
Regret analysis of online alternating gradient methods,”
preprint:2207.02829, Jul. 2022.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth,
“Learnability and the vapnik-chervonenkis dimension,” Journal
of the ACM, vol. 36, no. 4, 1989, pp. 929-965.

O. Bousquet, “New approaches to statistical learning theory,”
Annals of the Institute of Statistical Mathematics, vol. 55, no. 2,
2003, pp. 371-389.

P. Alquier, “User-friendly introduction to PAC-Bayes bounds,”
arXiv preprint arXiv: 2110.11216, 2021.

O. Simeone, S. Park, and J. Kang, “From learning to meta-

arXiv

learning: Reduced training overhead and complexity for commu-
nication systems,” in 6G Wireless Summit, pp. 1-5, 2020.



120

[85]

[86]

[95]

References

M. Rabinovich, E. Angelino, and M. 1. Jordan, “Variational
consensus monte carlo,” in Proc. Advances in Neural Information
Processing Systems, vol. 28, Montreal, Canada, 2015.

A. Xu and M. Raginsky, “Information-theoretic analysis of gener-
alization capability of learning algorithms,” in Proc. Advances in
Neural Information Processing Systems, Long Beach, CA, 2017.
T. Zhang, “Information-theoretic upper and lower bounds for sta-
tistical estimation,” IEFE Transactions on Information Theory,
vol. 52, no. 4, 2006, pp. 1307-1321.

B. Poole, S. Ozair, A. Van Den Oord, A. Alemi, and G. Tucker,
“On variational bounds of mutual information,” in Proc. Intl.
Conf. on Machine Learning, pp. 5171-5180, Long Beach, CA,
2019.

J. Knoblauch, J. Jewson, and T. Damoulas, “Generalized varia-
tional inference: Three arguments for deriving new posteriors,”
arXiv preprint arXiv: 1904.02063, 2019.

J. Baxter, “Theoretical models of learning to learn,” in Learning
to learn, Springer, 1998, pp. 71-94.

S. T. Jose and O. Simeone, “Information-theoretic generalization
bounds for meta-learning and applications,” Entropy, 2021.

S. T. Jose and O. Simeone, “An information-theoretic analysis of
the impact of task similarity on meta-learning,” in Proc. IEEE
International Symposium on Information Theory, pp. 1534-1539,
2021.

T. M. Cover, Elements of information theory. John Wiley &
Sons, 1999.

S. T. Jose, O. Simeone, and G. Durisi, “Transfer meta-learning:
Information-theoretic bounds and information meta-risk mini-
mization,” IEEE Transactions on Information Theory, vol. 68,
no. 1, 2021, pp. 474-501.

A. Masegosa, “Learning under model misspecification: Applica-
tions to variational and ensemble methods,” in Proc. Advances in
Neural Information Processing Systems, vol. 33, pp. 5479-5491,
virtual, 2020.



References 121

[96]

[97]

(98]

[101]

[102]

[103]

[104]

[105]

S. T. Jose, S. Park, and O. Simeone, “Information-theoretic anal-
ysis of epistemic uncertainty in bayesian meta-learning,” in Proc.
Intl. Conf. on Artificial Intelligence and Statistics, pp. 9758-9775,
virtual, 2022.

W. Kong, R. Somani, Z. Song, S. Kakade, and S. Oh, “Meta-
learning for mixed linear regression,” in Proc. Intl. Conf. on
Machine Learning, pp. 5394-5404, virtual, 2020.

K. Gao and O. Sener, “Modeling and optimization trade-off
in meta-learning,” in Proc. Advances in Neural Information
Processing Systems, vol. 33, virtual, 2020.

L. Collins, A. Mokhtari, and S. Shakkottai, “Why does MAML

)

outperform ERM? An optimization perspective,” arXiv preprint:
2010.14672, Oct. 2020.

K. Chua, Q. Lei, and J. D. Lee, “How fine-tuning allows for
effective meta-learning,” in Proc. Advances in Neural Information
Processing Systems, vol. 34, 2021.

S.S. Du, W. Hu, S. M. Kakade, J. D. Lee, and Q. Lei, “Few-shot
learning via learning the representation, provably,” in Intl. Conf.
on Learning Representations, 2020.

Y. Bai, M. Chen, P. Zhou, T. Zhao, J. Lee, S. Kakade, H.
Wang, and C. Xiong, “How important is the train-validation
split in meta-learning?” In Proc. Intl. Conf. on Machine Learning,
pp- 543-553, virtual, 2021.

S. T. Jose and O. Simeone, “Free energy minimization: A unified
framework for modeling, inference, learning, and optimization,”
IEEE Signal Processing Magazine, vol. 38, no. 2, 2021, pp. 120-
125.

O. Simeone, “A very brief introduction to machine learning with
applications to communication systems,” IEEE Transactions on
Cognitive Communications and Networking, vol. 4, no. 4, 2018,
pp. 648-664.

L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia,
“Intelligence and learning in o-ran for data-driven nextg cellular
networks,” IEEE Communications Magazine, vol. 59, no. 10,
2021, pp. 21-27.



122

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

References

J. Xia, D. Deng, and D. Fan, “A note on implementation method-
ologies of deep learning-based signal detection for conventional
mimo transmitters,” IEEE Transactions on Broadcasting, vol. 66,
no. 3, 2020, pp. 744-745.

E. Bourtsoulatze, D. B. Kurka, and D. Gindiiz, “Deep joint
source-channel coding for wireless image transmission,” IFEE
Transactions on Cognitive Communications and Networking,
vol. 5, no. 3, 2019, pp. 567-579.

D. Tandur and M. Moonen, “Joint adaptive compensation of
transmitter and receiver iq imbalance under carrier frequency
offset in ofdm-based systems,” IEEE Transactions on Signal
Processing, vol. 55, no. 11, 2007, pp. 5246-5252.

S. Park, H. Jang, O. Simeone, and J. Kang, “Learning to demod-
ulate from few pilots via offline and online meta-learning,” IEEFE
Transactions on Signal Processing, vol. 69, 2020, pp. 226—239.
T. Raviv, S. Park, O. Simeone, Y. C. Eldar, and N. Shlezinger,
“Online meta-learning for hybrid model-based deep receivers,”
arXiv preprint arXiv: 2203.14359, 2022.

N. Shlezinger, Y. C. Eldar, and S. P. Boyd, “Model-based deep
learning: On the intersection of deep learning and optimization,”
Proceedings of the National Academy of Sciences of the United
States of America, 2022.

K. M. Cohen, S. Park, O. Simeone, and S. Shamai, “Towards
reliable and efficient ai for 6g: Bayesian active meta-learning for
few pilot demodulation and equalization,” arXiv preprint arXiv:
2108.00785, 2021.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in Proc. Intl. Conf. on Machine
Learning, Sydney, Australia, 2017.

K. M. Cohen, S. Park, O. Simeone, and S. Shamai, “Learning to
learn to demodulate with uncertainty quantification via bayesian
meta-learning,” in International ITG Workshop on Smart An-
tennas, pp. 1-6, French Riviera, France, 2021.

T. O’shea and J. Hoydis, “An introduction to deep learning for
the physical layer,” IEEE Transactions on Cognitive Communi-
cations and Networking, vol. 3, no. 4, 2017, pp. 563-575.



References 123

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

S. Cammerer, F. A. Aoudia, S. Dérner, M. Stark, J. Hoydis,
and S. Ten Brink, “Trainable communication systems: Concepts
and prototype,” IEEE Transactions on Communications, vol. 68,
no. 9, 2020, pp. 5489-5503.

F. A. Aoudia and J. Hoydis, “End-to-end learning for ofdm: From
neural receivers to pilotless communication,” IFEE Transactions
on Wireless Communications, vol. 21, no. 2, 2021.

S. Park, O. Simeone, and J. Kang, “Meta-learning to communi-
cate: Fast end-to-end training for fading channels,” in Proc. Intl.
Conf. on Acoustics, Speech and Signal Processing, pp. 5075-5079,
Barcelona, Spain, 2020.

O. Simeone, Machine Learning for Engineers. Cambridge Uni-
versity Press, 2022.

I. Nikoloska and O. Simeone, “Modular meta-learning for power
control via random edge graph neural networks,” IEEE Trans-
actions on Wireless Communications, 2022.

A. Agrawal, J. G. Andrews, J. M. Cioffi, and T. Meng, “Iterative
power control for imperfect successive interference cancellation,”
IEEFE Transactions on wireless communications, vol. 4, no. 3,
2005, pp. 878-884.

W. Liu, L.-L. Yang, and L. Hanzo, “Recurrent neural network
based narrowband channel prediction,” in Proc. IEEE 63rd Ve-
hicular Technology Conference, vol. 5, pp. 2173-2177, Melbourne,
Australia, 2006.

J. Yuan, H. Q. Ngo, and M. Matthaiou, “Machine learning-based
channel prediction in massive mimo with channel aging,” IEEE
Transactions on Wireless Communications, vol. 19, no. 5, 2020,
pp- 2960-2973.

H. Kim, S. Kim, H. Lee, C. Jang, Y. Choi, and J. Choi, “Massive
mimo channel prediction: Kalman filtering vs. machine learning,”
IEEE Transactions on Communications, vol. 69, no. 1, 2020,
pp. 518-528.

W. Jiang and H. D. Schotten, “A comparison of wireless channel
predictors: Artificial intelligence versus kalman filter,” in Proc.
Intl. Conf. on Communications, pp. 1-6, Chongqing, China,
2019.



124

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

135

References

W. Jiang, M. Strufe, and H. D. Schotten, “Long-range mimo

b

channel prediction using recurrent neural networks,” in Proc.
IEEE Annual Consumer Communications & Networking Con-
ference, pp. 1-6, Las Vegas, NV, 2020.

S. Park and O. Simeone, “Predicting flat-fading channels via
meta-learned closed-form linear filters and equilibrium propa-

)

gation,” in Proc. Intl. Conf. on Acoustics, Speech and Signal
Processing, pp. 8817-8821, Singapore, 2022.

O. Simeone and U. Spagnolini, “Lower bound on training-based
channel estimation error for frequency-selective block-fading
rayleigh mimo channels,” IEEE Transactions on Signal Process-
ing, vol. 52, no. 11, 2004, pp. 3265-3277.

M. Cicerone, O. Simeone, and U. Spagnolini, “Channel estima-
tion for mimo-ofdm systems by modal analysis/filtering,” IEEE
Transactions on Communications, vol. 54, no. 11, 2006, pp. 2062—
2074.

A. Abdi and M. Kaveh, “A space-time correlation model for
multielement antenna systems in mobile fading channels,” IEEFE
Journal on Selected Areas in communications, vol. 20, no. 3, 2002,
pp. 550-560.

M. Wax and T. Kailath, “Detection of signals by information
theoretic criteria,” IEEE Transactions on acoustics, speech, and
stgnal processing, vol. 33, no. 2, 1985, pp. 387-392.

3GPP, “Study on channel model for frequencies from 0.5 to 100
ghz (3gpp tr 38.901 version 16.1.0 release 16),” TR 38.901, 2020.
M. Eisen and A. Ribeiro, “Optimal wireless resource allocation
with random edge graph neural networks,” IEEE Transactions
on Signal Processing, vol. 68, Apr. 2020, pp. 2977-2991.

Y. Jiang, H. Kim, H. Asnani, and S. Kannan, “Mind: Model
independent neural decoder,” in Proc. International Workshop
on Signal Processing Advances in Wireless Communications,
pp- 1-5, Cannes, France, 2019.

M. Goutay, F. A. Aoudia, and J. Hoydis, “Deep hypernetwork-
based mimo detection,” in Proc. International Workshop on
Signal Processing Advances in Wireless Communications, At-

lanta, GA, May 2020.



References 125

[136]

[137]

138

[139]

[140]

[141]

[142]

[143]

[144]

[145]

J. Zhang, Y. Yuan, G. Zheng, I. Krikidis, and K.-K. Wong,
“Embedding model based fast meta learning for downlink beam-
forming adaptation,” IEEE Transactions on Wireless Communi-
cations, 2021.

Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui, “Distributed
multi-agent meta learning for trajectory design in wireless drone
networks,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 10, 2021, pp. 3177-3192.

R. Marini, S. Park, O. Simeone, and C. Buratti, “Continual
meta-reinforcement learning for uav-aided vehicular wireless
networks,” arXiv preprint arXiv: 2207.06151, 2022.

K. Pratik, R. A. Amjad, A. Behboodi, J. B. Soriaga, and M.
Welling, “Neural augmentation of kalman filter with hypernet-
work for channel tracking,” in Proc. IEEE Global Communica-
tions Conference, pp. 1-6, Madrid, Spain, 2021.

A. Mehonic and A. J. Kenyon, “Brain-inspired computing needs
a master plan,” Nature, vol. 604, no. 7905, 2022, pp. 255-260.
M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F.
Guerra, P. Joshi, P. Plank, and S. R. Risbud, “Advancing neuro-
morphic computing with loihi: A survey of results and outlook,”
Proceedings of the IEEFE, vol. 109, no. 5, 2021, pp. 911-934.

M. Humphries, The Spike: An Epic Journey Through the Brain
in 2.1 Seconds. Princeton University Press, 2021.

Y. Hu, H. Liu, M. Pfeiffer, and T. Delbruck, “Dvs benchmark
datasets for object tracking, action recognition, and object recog-
nition,” Frontiers in neuroscience, vol. 10, 2016, p. 405.

P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128 120db
30mw asynchronous vision sensor that responds to relative inten-
sity change,” in Proc. IEEE International Solid State Circuits
Conference-Digest of Technical Papers, pp. 2060-2069, San Fran-
cisco, CA, 2006.

W. W. Lee, Y. J. Tan, H. Yao, S. Li, H. H. See, M. Hon, K. A. Ng,
B. Xiong, J. S. Ho, and B. C. Tee, “A neuro-inspired artificial
peripheral nervous system for scalable electronic skins,” Science
Robotics, vol. 4, no. 32, 2019, eaax2198.



126

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

References

A. Mancoo, S. Keemink, and C. K. Machens, “Understanding
spiking networks through convex optimization,” in Proc. Ad-
vances in Neural Information Processing Systems, 2020.

E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learn-
ing in spiking neural networks: Bringing the power of gradient-
based optimization to spiking neural networks,” IEEE Signal
Processing Magazine, vol. 36, no. 6, 2019, pp. 51-63.

H. Jang, O. Simeone, B. Gardner, and A. Gruning, “An intro-
duction to probabilistic spiking neural networks: Probabilistic
models, learning rules, and applications,” IEEFE Signal Processing
Magazine, vol. 36, no. 6, 2019, pp. 64-77.

G. Lindsay, Models of the Mind: How Physics, Engineering
and Mathematics Have Shaped Our Understanding of the Brain.
Bloomsbury Publishing, 2021.

A. Karni, G. Meyer, C. Rey-Hipolito, P. Jezzard, M. M. Adams,
R. Turner, and L. G. Ungerleider, “The acquisition of skilled
motor performance: Fast and slow experience-driven changes in
primary motor cortex,” Proceedings of the National Academy of
Sciences, vol. 95, no. 3, 1998, pp. 861-868.

S. J. Martin, P. D. Grimwood, and R. G. Morris, “Synaptic
plasticity and memory: An evaluation of the hypothesis,” Annual
review of neuroscience, vol. 23, no. 1, 2000, pp. 649-711.

N. Soures, P. Helfer, A. Daram, T. Pandit, and D. Kudithipudi,
“Tacos: Task agnostic continual learning in spiking neural net-
works,” in Proc. Intl. Conf. on Machine Learning, virtual, 2021.
D. Kudithipudi, M. Aguilar-Simon, J. Babb, M. Bazhenov, D.
Blackiston, J. Bongard, A. P. Brna, S. Chakravarthi Raja, N.
Cheney, J. Clune, et al., “Biological underpinnings for lifelong
learning machines,” Nature Machine Intelligence, vol. 4, 2022.
B. Rosenfeld, B. Rajendran, and O. Simeone, “Fast on-device
adaptation for spiking neural networks via online-within-online
meta-learning,” in Proc. IEEE Data Science and Learning Work-
shop, pp. 1-6, Toronto, Canada, 2021.

P. Benioff, “Quantum mechanical hamiltonian models of turing
machines,” Journal of Statistical Physics, vol. 29, no. 3, 1982,
pp- 515-546.



References 127

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163)]

[164]

[165]

F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et al.,
“Quantum supremacy using a programmable superconducting
processor,” Nature, vol. 574, no. 7779, 2019, pp. 505-510.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,”
Reviews of modern physics, vol. 89, no. 3, 2017, p. 035002.

M. Wilson, R. Stromswold, F. Wudarski, S. Hadfield, N. M.
Tubman, and E. G. Rieffel, “Optimizing quantum heuristics with
meta-learning,” Quantum Machine Intelligence, vol. 3, no. 1,
2021, pp. 1-14.

G. Verdon, M. Broughton, J. R. McClean, K. J. Sung, R. Bab-
bush, Z. Jiang, H. Neven, and M. Mohseni, “Learning to learn
with quantum neural networks via classical neural networks,”
arXiv preprint arXiv: 1907.05415, 2019.

I. Nikoloska and O. Simeone, “Quantum-aided meta-learning

)

for bayesian binary neural networks via Born machines,” arXiv
preprint arXiv: 2205.17089, 2022.

C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-
learning,” in Proc. Intl. Conf. on Machine Learning, pp. 1920—
1930, Long Beach, CA, Jun. 2019.

R. S. Sutton, M. H. Bowling, and P. M. Pilarski, “The Alberta
plan for AT research,” arXiv preprint arXiv: 2208.11173, 2022.

S. Park, O. Simeone, and J. Kang, “End-to-end fast training of
communication links without a channel model via online meta-
learning,” in Proc. International Workshop on Signal Processing
Advances in Wireless Communications, Atlanta, GA, 2020.

Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and
P. Abbeel, “RI?: Fast reinforcement learning via slow reinforce-
ment learning,” arXiv preprint arXiv: 1611.02779, 2016.

A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel,
S. Levine, and C. Finn, “Learning to adapt in dynamic, real-
world environments through meta-reinforcement learning,” arXiv
preprint arXiv: 1805.11347, 2018.



128

[166]

167]

[168]

[169)]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

References

K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient
off-policy meta-reinforcement learning via probabilistic context
variables,” in Proc. Intl. Conf. on Machine Learning, pp. 5331—
5340, Long Beach, CA, 2019.

G. Berseth, Z. Zhang, G. Zhang, C. Finn, and S. Levine, “Comps:
Continual meta policy search,” in Proc. Intl. Conf. on Learning
Representations, virtual, 2021.

L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell,
K. Czechowski, D. Erhan, C. Finn, P. Kozakowski, S. Levine, et
al., “Model based reinforcement learning for atari,” in Proc. Intl.
Conf. on Learning Representations, New Orleans, LA, 2019.

T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn,
and T. Ma, “Mopo: Model-based offline policy optimization,”
in Proc. Advances in Neural Information Processing Systems,
vol. 33, pp. 1412914 142, virtual, 2020.

T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,”
in Proc. Intl. Conf. on Machine Learning, pp. 179-186, Edin-
burgh, Scotland, 2012.

R. Mendonca, A. Gupta, R. Kralev, P. Abbeel, S. Levine, and C.
Finn, “Guided meta-policy search,” in Proc. Advances in Neural
Information Processing Systems, Vancouver, Canada, Dec. 2019.
F. A. Aoudia and J. Hoydis, “Model-free training of end-to-end
communication systems,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 11, 2019, pp. 2503-2516.

3GPP, “Enhancement for Unmanned Aerial Vehicles,” TS 22.289
V17.1.0, Sep. 2019.

L. Deng, G. Wu, J. Fu, Y. Zhang, and Y. Yang, “Joint resource
allocation and trajectory control for uav-enabled vehicular com-
munications,” IEEE Access, vol. 7, 2019, pp. 132806-132 815.
J. Kaddour, S. Seemundsson, et al., “Probabilistic active meta-
learning,” in Proc. Advances in Neural Information Processing
Systems, vol. 33, pp. 20813-20 822, virtual, 2020.

I. Nikoloska and O. Simeone, “Bayesian active meta-learning for
black-box optimization,” in Proc. IEEE International Workshop
on Signal Processing Advances in Wireless Communications,

Oulu, Finland, 2022.



References 129

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang,
“A closer look at few-shot classification,” in Proc. Intl. Conf. on
Learning Representations, Vancouver, Canada, 2018.

S. Dempe, J. Dutta, and B. S. Mordukhovich, “New necessary
optimality conditions in optimistic bilevel programming,” Opti-
mization, vol. 56, no. 5-6, 2007, pp. 577-604.

S. Dempe, B. S. Mordukhovich, and A. B. Zemkoho, “Neces-
sary optimality conditions in pessimistic bilevel programming,”
Optimization, vol. 63, no. 4, 2014, pp. 505-533.

P. Vicol, J. P. Lorraine, F. Pedregosa, D. Duvenaud, and R. B.
Grosse, “On implicit bias in overparameterized bilevel optimiza-
tion,” in Proc. Intl. Conf. on Machine Learning, pp. 22 234—
22259, Baltimore, MD, 2022.

A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization:
From classical to evolutionary approaches and applications,”
IEEE Transactions on Evolutionary Computation, vol. 22, no. 2,
2017, pp. 276-295.

J. Liu, Y. Fan, Z. Chen, and Y. Zheng, “Pessimistic bilevel
optimization: A survey,” International Journal of Computational
Intelligence Systems, vol. 11, no. 1, 2018, pp. 725-736.

J. Liu, Y. Fan, Z. Chen, and Y. Zheng, “Methods for pessimistic
bilevel optimization,”
pp. 403-420.

R. Liu, P. Mu, X. Yuan, S. Zeng, and J. Zhang, “A generic first-

order algorithmic framework for bi-level programming beyond

in Bilevel Optimization, Springer, 2020,

lower-level singleton,” in Proc. Intl. Conf. on Machine Learning,
pp. 6305-6315, virtual, Jul. 2020.

D. Sow, K. Ji, Z. Guan, and Y. Liang, “A constrained opti-
mization approach to bilevel optimization with multiple inner
minima,” arXiv preprint arXiv: 2203.01123, 2022.

T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman,
The elements of statistical learning: data mining, inference, and
prediction, vol. 2. Springer, 2009.

P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler, “Benign
overfitting in linear regression,” Proceedings of the National

Academy of Sciences, vol. 117, no. 48, 2020, pp. 30 063-30070.



130

[188]

[189)]

[190]

[191]

[192]

193]

[194]

[195]

[196]

197]

References

A. Tsigler and P. L. Bartlett, “Benign overfitting in ridge regres-
sion,” arXiv preprint arXiv: 2009.14286, 2020.

K. Wang, V. Muthukumar, and C. Thrampoulidis, “Benign over-
fitting in multiclass classification: All roads lead to interpolation,”
in Proc. Advances in Neural Information Processing Systems,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds.,
virtual, 2021.

S. Frei, N. S. Chatterji, and P. L. Bartlett, “Benign overfitting
without linearity: Neural network classifiers trained by gradient
descent for noisy linear data,” arXiv preprint arXiv: 2202.05928,
Feb. 2022.

Y. Huang, Y. Liang, and L. Huang, “Provable generalization of
overparameterized meta-learning trained with sgd,” in Proc. Ad-
vances in Neural Information Processing Systems, New Orleans,
LA, 2022.

L. Chen, S. Lu, and T. Chen, “Understanding benign overfitting
in gradient-based meta learning,” in Proc. Advances in Neural
Information Processing Systems, New Orleans, LA, 2022.

B. Neyshabur, R. Tomioka, and N. Srebro, “In search of the
real inductive bias: On the role of implicit regularization in deep
learning,” arXiv preprint arXiv: 1412.6614, 2014.

S. Arora, N. Cohen, W. Hu, and Y. Luo, “Implicit regulariza-
tion in deep matrix factorization,” in Proc. Advances in Neural
Information Processing Systems, Vancouver, Canada, 2019.

E. Hiillermeier, “Quantifying aleatoric and epistemic uncertainty
in machine learning: Are conditional entropy and mutual in-
formation appropriate measures?” arXiv preprint:2209.03302,
2022.

F. Futami, T. Iwata, N. Ueda, I. Sato, and M. Sugiyama, “Ex-
cess risk analysis for epistemic uncertainty with application to
variational inference,” arXiv preprint arXiv: 2206.01606, 2022.
A. Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm,” IEEFE transactions on
Information Theory, vol. 13, no. 2, 1967, pp. 260-269.



References 131

[198] N. Shlezinger, N. Farsad, Y. C. Eldar, and A. J. Goldsmith,
“Viterbinet: A deep learning based viterbi algorithm for symbol
detection,” IEEE Transactions on Wireless Communications,
vol. 19, no. 5, 2020, pp. 3319-3331.

[199] N. Shlezinger, R. Fu, and Y. C. Eldar, “Deepsic: Deep soft
interference cancellation for multiuser mimo detection,” IEEE
Transactions on Wireless Communications, vol. 20, no. 2, 2020,
pp. 1349-1362.

[200] Y. Liu and O. Simeone, “Learning how to transfer from uplink
to downlink via hyper-recurrent neural network for fdd massive
mimo,” IEEE Transactions on Wireless Communications, 2022.



	Introduction and Background
	Introduction
	Meta-Learning
	Organization of the Monograph

	Meta-Learning Algorithms
	Overview of Meta-Learning Algorithms
	Second-Order Optimization-Based Meta-Learning
	First-Order Optimization-Based Meta-Learning
	Bayesian Meta-Learning
	Modular Meta-Learning
	Model-Based Meta-Learning
	Conclusions

	Bilevel Optimization for Meta-Learning
	A Brief Introduction to Bilevel Optimization
	A Unified Bilevel Optimization Framework
	Convergence Analysis for Bilevel Optimization
	Conclusions

	Statistical Learning Theory for Meta-Learning
	Generalization Error for Conventional Learning
	Generalization Error in Meta-Learning
	Information-Theoretic Bounds on Meta-Generalization Error
	PAC-Bayes Analysis of Meta-Generalization Error
	Minimum Excess Meta-Risk for Bayesian Meta-Learning
	Sharper Meta-Risk Analysis in Meta Linear Regression
	Some Proofs
	Conclusions

	Applications of Meta-Learning to Communications
	Overview
	Demodulation
	Encoding and Decoding
	Channel Prediction
	Power Control
	Conclusions

	Integration with Emerging Computing Technologies
	Neuromorphic Computing
	Quantum Computing
	Conclusions

	Outlook
	Methods
	Theory
	Applications

	Acknowledgements
	References

