
CAESAR: Coherence-Aided Elective and Seamless
Alternative Routing via on-chip FPGA

Shahin Roozkhosh∗§, Denis Hoornaert†§ and, Renato Mancuso∗
∗Boston University †Technical University of Munich

∗{shahin, rmancuso}@bu.edu, †denis.hoornaert@tum.de

Abstract—Prompted by the ever-growing demand for high-
performance System-on-Chip (SoC) and the plateauing of CPU
frequencies, the SoC design landscape is shifting. In a quest
to offer programmable specialization, the adoption of tightly-
coupled FPGAs co-located with traditional compute clusters has
been embraced by major vendors. This CPU+FPGA architectural
paradigm opens the door to novel hardware/software co-design
opportunities. The key principle is that CPU-originated memory
traffic can be re-routed through the FPGA for analysis and
management purposes. Albeit promising, the side-effect of this
approach is that time-critical operations—such as cache-line
refills—are fulfilled by moving data over slower interconnects
meant for I/O traffic.

In this article, we introduce a novel principle named Cache
Coherence Backstabbing to precisely tackle these shortcomings.
The technique leverages the ability to include the FGPA in
the same coherence domain as the core processing elements.
Importantly, this enables Coherence-Aided Elective and Seamless
Alternative Routing (CAESAR), i.e., seamless inspection and
routing of memory transactions, especially cache-line refills,
through the FPGA. CAESAR allows the definition of new memory
programming paradigms. We discuss the intrinsic potentials of
the approach and evaluate it with a full-stack prototype imple-
mentation on a commercial platform. Our experiments show an
improvement of up to 29% in read bandwidth, 23% in latency,
and 13% in pragmatic workloads over the state of the art.
Furthermore, we showcase the first in-coherence-domain run-
time profiler design as a use-case of the CAESAR approach.

Index Terms—Coherence Domain, FPGA, Memory Inspection

I. INTRODUCTION

On June 1, 2015 Intel® announced the definitive intention

to acquire Altera® with a transaction valued at about $16.7

billion1. Altera was at the time one of the two leading compa-

nies in the design of Field Programmable Gate Array (FPGA)

chips. The other being Xilinx®. The acquisition of Altera by

one of the largest players in the general purpose computing

world happened only 4 years after Xilinx announced a shift

from FPGA-only chips to ”all things programmable” Systems-

on-Chip (SoC). Meanwhile, the Xilinx UltraScale+ family of

CPU+FPGA SoCs has set a new standard for the collaborative

co-location of hard and re-programmable logic [1]. With an

estimated $50 billion move2, AMD® announced on February

14, 2022 the acquisition of Xilinx. At the time of writing this

article, the two major players in general purpose computing

systems have respectively acquired the largest companies in-

volved in the research and development of FPGA technologies.

§These authors contributed equally.
1See https://newsroom.intel.com/press-kits/intel-acquisition-of-altera/.
2See https://www.amd.com/en/corporate/xilinx-acquisition.

Programmable specialization. If the recent news is of any

indication, CPU+FPGA SoCs are poised to become a standard

computing model not only within the embedded market where

significant penetration is already happening. But also in the

general purpose and high-performance computing segments.

One of the driving factors of this transformation is special-

ization. Following a plateau in CPU speeds, well-established

accelerator paradigms such as GPUs and TPUs have filled

the gap for some data-intensive workloads. FPGAs are just a

generalization of the same concept, i.e., the response to a need

to accelerate custom computational pipelines.

While the addition of onboard FPGA technology is a natural

next-step, we argue that the full extent of its implications in the

way we design, engineer, program, and analyze our systems is

yet to be determined. In other words, strong implications arise

from the co-location of hard and re-programmable logic that

goes well beyond the ability to design custom accelerators [2].

Revisiting memory semantics. One such implication is the

ability to redefine the semantics of memory operations initiated

by any of the processing elements (PE). This capability is of

particular interest for the real-time community since the inabil-

ity to explicitly program and arbitrates the behavior of (main)

memory components leads to performance non-determinism

and pessimistic worst-case execution time (WCET) estima-

tions. Roozkhosh and Mancuso pioneered this idea in [3],

where they demonstrated that FPGA logic can be interposed

between CPUs and main memory, following what they refer to

as the Programmable Logic In-the-Middle (PLIM) approach.

Under PLIM, memory transactions originating at the CPUs

and targeting main memory are re-routed through the FPGA.

Custom transformations can then be applied. The original work

in [3] demonstrates a use-case where page coloring is hidden

from the underlying memory to prevent fragmentation. Since

then, other works have surfaced that leverage PLIM to manage

the timing and ordering of main memory transactions [4], and

perform on-the-fly data re-organization to speed-up access to

relational data stores [5].

Bringing fine-grained control over memory operations into

the hands of system designers is a major milestone. But

existing approaches route memory traffic through the FPGA

via memory-mapping semantics. Not only this incurs a fixed

and non-negligible performance overhead, but it also limits the

management strategies that can be enacted on the FPGA.

Our focus. This paper focuses on hardware platforms in

which the FPGA can be cache-coherent with the CPU cluster



and proposes a basic principle, namely Coherence Back-

stabbing. Coherence backstabbing enables a novel approach

for through-FPGA memory traffic re-routing, which we call

Coherence-Aided Elective and Seamless Alternative Routing,

a.k.a. CAESAR. As the name suggests, CAESAR allows selec-

tive re-routing through the FPGA of memory transactions (or

their metadata) generated by the CPUs. CAESAR relies on the

ability of the FPGA to have a primary role in a cache-coherent

interconnect and to intercept/interject coherence traffic. By

doing so, the FPGA is logically elevated to sit right after

the last-level cache (LLC). Crucially, this unlocks a host

of opportunities that significantly complement and enhance

the vision of the PLIM approach. We showcase how such a

capability can be leveraged to achieve a new degree of FPGA-

aided management for CPU-originated memory traffic.

Contribution. This paper makes the following contributions.

(1) Theorizes and demonstrates for the first time previously

untapped opportunities arising from the ability of FPGA logic

to maintain two-way cache coherence with a CPU cluster.

Two-way coherence enables the FPGA to be seamlessly inter-

posed between CPUs and memory to manage CPU-originated

traffic, which is not possible with one-way coherence [6]

(2) Proposes a fundamental technique called Coherence Back-

stabbing to elevate the FPGA to become a first-class citizen

in the memory hierarchy of CPU+FPGA SoCs;

(3) Proposes proof-of-concept designs that leverage coher-

ence backstabbing to implement the CAESAR approach, i.e.

Coherence-Aided Elective and Seamless Alternative Routing;

(4) Showcases a full-stack system implementation that di-

rectly compares CAESAR to the work in [3] to discuss the

performance and paradigm enhancements unlocked by the

proposed CAESAR approach.

The rest of the article is divided in seven sections. We

outline the big picture in Section II and Section III in-

troduces key background principles. Section IV defines the

concept of coherence backstabbing and outlines the CAESAR

approach. In Section V, we provide in-depth technical details

on our prototype implementation. We evaluate the potential of

CAESAR for real-time system in Section VI. A discussion of

how CAESAR unlocks additional programmability of memory

semantics is discussed in Section VII. Closely related research

is surveyed in Section VIII. The paper concludes in Section IX

II. MOTIVATION AND VISION

The introduction of multiple CPUs, accelerators, and high-

bandwidth I/O devices that can initiate memory transactions

has had a transformational impact on the design and analysis of

real-time systems. In contrast, the performance improvements

offered by off-chip memory technology have not kept the

same pace. This has made the memory subsystem the main

performance bottleneck. In a bid to hide latency, hardware

designs have increased in complexity: multiple layers of on-

chip caching mechanisms, complex interconnect fabrics, and

sophisticated off-chip memory controllers are some of the de-

sign paradigms that have become commonplace in embedded

and general-purpose systems.

Fig. 1: CAESAR vision: leveraging onboard FPGA to shift

the programmability boundary to include hardware resources

in the memory hierarchy.

Unfortunately, the explosion in complexity has had a detri-

mental effect on our ability to understand and manage the

temporal behavior of data movements through the mem-

ory hierarchy. The performance unpredictability that emerges

in modern platforms can be traced back to the ubiquitous

compute-oriented paradigm that has driven the jump from

single-core to multi-core and (more recently) to accelerator-

enabled platforms. As exemplified in Fig. 1, this has defined

a programmability boundary where CPUs, accelerators, and

certain I/O devices (e.g., smart network interface cards) offer

explicitly observable and programmable operational semantics.

Conversely, the memory hierarchy components offer limited

(or non-existent) programmability that often materializes only

as a set of configuration knobs. Observability is also limited

to performance counters designed to be accessed by software

on the CPUs. As such, strategies that attempt to cope with the

unpredictability of modern memory hierarchies—be it WCET

analysis tools or OS-level resource management strategies—

must overcome three main hurdles.

(1) Opacity. Unlike the extensive documentation available to

describe the operational semantics of CPUs and accelerators,

significantly less information is released by vendors regarding

the exact behavior of memory components and their interplay.

Often, the such interplay is not well understood, let alone

documented, and left to be uncovered via reverse engineering.

(2) Lack of Control. Even if the behavior of a given compo-

nent is well understood, affecting it in a meaningful way via

CPU-centric management remains a challenge. For instance,

it is known that predictability benefits can be achieved by

mapping a disjoint set of DRAM banks to CPUs [7], [8].

Nonetheless, it is non-trivial to rework physical memory

allocation to implement DRAM bank partitioning. And, not

unlike page coloring-based cache partitioning [9], the side-

effects of resource partitioning can outweigh its benefit [10].

(3) Lack of Programmability. Even when some degree of

control can be exerted, programmability hardly extends beyond

parameter tuning. Conversely, being able to program exact

management policies directly into main memory components



is currently only possible via custom hardware re-design.

The main research question tackled in this work is: What

are the implications of FPGA-CPU interaction via cache co-

herence on the ability to shift the programmability boundary?

With reference to Fig. 1, we investigate what new program-

ming paradigms are available to observe and/or act upon the

logical and temporal semantics of memory operations.

III. SYSTEM MODEL AND BACKGROUND

This section describes the system model and assumptions.

We review key background concepts necessary to understand

the presented research, implementation, and results.

A. CPU+FPGA System Model

We consider CPU+FPGA platforms where a computing

cluster (CPU) is instantiated in silicon together with a block

of programmable logic (FPGA). While we primarily refer to

the presence of CPUs within the computing cluster, we make

no assumption on the exact composition of the cluster. In

other words, the cluster might contain a single or multiple

CPUs and/or accelerators. Other works refer to the same archi-

tectural paradigm as heterogeneous partially reprogrammable

platforms [3], [11], [12], or PS+PL platforms, where PS and

PL refer to the Processor Subsystem and Programmable Logic.

For simplicity, we assume all the processors within the

computing cluster share a single LLC. The downstream mem-

ory hierarchy components must resolve LLC misses. We

consider a physically-indexed, physically-tagged (PIPT) LLC

that implements a write-back write-allocate (WBWA) policy.

By WBWA, dirty lines are written back upon eviction, and a

write miss allocates a new line in the LLC.

Memory-mapped FPGA. We assume that the FPGA is as-

signed a static aperture within the physical addressing space.

When CPU-originated transactions have a physical address

that falls within the FPGA aperture, a miss in LLC initiates

a read memory transaction (and potentially a write-back)

towards the FPGA. We refer to this approach to initiate CPU-

to-FPGA communication as memory-mapped semantics.

High-performance CPU-to-FPGA communication. When

transactions are initiated towards the FPGA, they are carried

over (a set of) dedicated high-performance CPU-to-FPGA

bus segments. We further assume that the onboard FPGA is

capable of initiating transactions towards the main memory

(DDR). Transactions initiated by the FPGA towards main

memory travel on bus segments of comparable performance.

B. Advanced Extensible Interface (AXI)

On ARM-based CPU+FPGA systems, which are the imme-

diate target of this work, it is reasonable to assume that on-chip

memory streams are carried out using the Advanced Extensible

Interface (AXI) protocol [13] or extensions of thereof. The

protocol exist in three variants: Lite, Stream, and Full. The

latter is the object of this section.

Fig. 2: Overview of AXI and ACE channels.

The AXI protocol relies on two key concepts: (1) the Main-

Secondary3 duality and (2) the handshake mechanism in order

to carry out read and write operations. An AXI bus segment

is a point-to-point connection directed from the main port to

a secondary port. The main port can initiate a request, while

the secondary port serves requests initiated by the main.

The handshake between main and secondary allows (1) the

former to indicate the validity of the current data on the bus

lines; and (2) the latter to indicate whether it can accept the

data. This mechanism is crucial to enable the asynchronous

nature of the protocol and decouple the main design from the

secondary response time.

AXI channels. To carry out read transactions, two channels

are defined, as illustrated in Fig. 2. First, the main initiates an

address phase on channel AR; the secondary responds on the

R channel with the requested data payload. Write transactions,

as depicted in Fig. 2, proceed in three steps. The main initiates

an address phase (AW channel) before initiating an arbitrarily

long data phase on the W channel. It is only once the data

phase is over that the secondary responds via channel B to

acknowledge the completion of the transfer.

C. Programmable Logic In-the-Middle (PLIM)

The work in [3] describes the possibility of logically inter-

posing the FPGA between then CPUs and main memory by (1)

using memory-mapped semantics to assign physical memory

within the address range corresponding to the FPGA aperture;

and (2) by fulfilling CPU-originated memory requests by using

the FPGA to access main memory and forward the data.

During step (2), data, address, and timing manipulations can

be applied before returning the final data items.

Example. Consider 1 GB of main memory and an FPGA

mapped at the aperture [0x0000_0000, 0x3fff_ffff]

and [0xc000_0000, 0xffff_ffff], respectively. The

CPU wants to access address 0x1234_5000. Its page tables

are modified to use the physical address 0xd234_5000 with

an added constant offset 0xc000_0000. The request reaches

the FPGA, which subtracts the offset, retrieves the data from

main memory and returns the result.

3The authors do not endorse the master and slave terminology used in
the official referenced manuals. The keywords main and secondary are used
instead throughout the article.



Fig. 3: Snoop-based coherence via the ACE protocol.

Doing so effectively creates a secondary route to the main

memory. Memory traffic is routed via a cacheable I/O-like

path through the on-chip FGPA. This is different from the

customary use of hardware accelerators that operates following

a load-unload fashion [2]. The concept of PLIM applies to

a ever-broadening class of FPGA+CPU commercial systems

from vendors such as Intel [14], Xilinx [11], and Microsemi

with their PolarFire SoC [15], while large-scale research-grade

prototypes are being studied [16], [17].

D. Cache Coherence Model

In complex systems, multiple components might cache data.

Coherence protocols allow caching to be distributed across the

SoC, while a consistent view of data items is offered to all the

parties participating in the protocol. In this work, we assume a

snoop-based cache coherence protocol facilitated by a central

cache-coherent interconnect (CCI), as depicted in Fig. 3. If

caches in two or more subsystems (e.g., CPU cluster and

FPGA) are kept coherent, they are said to belong to the same

coherence domain. In ARM-based platforms, this is referred

to with the term shareability domain.

We assume that the LLC of the compute cluster is a cache-

coherent main attached to the CCI. Via the CCI, the content of

the LLC can be kept coherent with other caches defined out-

side of the compute cluster. Note that we make no assumption

about the protocol used by CPUs and accelerators within the

compute cluster (Shareability Domain A in Fig. 3). Beyond

assuming a snoop-based coherence protocol used by the mains

attached to the CCI, no specific protocol is assumed. However,

to ensure broader applicability, we assume that the protocol

supports write-back caches and data passing between caches

(e.g., the Illinois [18] protocol, a.k.a. the Modified-Exclusive-

Shared-Invalid or MESI). More specifically, we require that

(1) upon a read/write miss in the LLC, a snoop request is

broadcasted by the CCI; and (2) when responding to a snoop

request, other mains on the CCI can directly pass the most

recent copy of the requested cache line.

Cache-coherent FPGA. Mains within the same domain must

expose appropriate interfaces to follow the same cache coher-

ence protocol. Importantly, we assume that the FPGA defines

one such interface and that it can be included within the same

coherence domain as the LLC of the compute cluster. This is

the case for the “Coherent Main” block in Fig. 3, since the

LLC and said block are both parts of Shareability Domain B.

E. AXI Coherency Extensions (ACE)

In ARM-based platforms, the CCI generally implements

the AXI Coherence Extension (ACE) protocol, as depicted in

Fig. 3. ACE extends the AXI protocol by adding three channels

to support hardware-assisted cache coherence, as illustrated

in Fig. 2. In the ACE protocol, upon a load/store cache-

miss at the LLC 1©4, the CCI broadcasts the event to all the

coherent mains 2©. It uses the snoop address (AC) channel

as a medium to provide the snoop transactions’ address and

associated control information. Every snoop transaction has a

single response associated with it, which (when appropriate)

can be used by a snooped main to provide the data for the

requested cache line. The snoop response (CR) channel is

used to provide one such response 3©. In case the snooped

request can be served by another coherent main, the snoop

data (CD) channel 4© is used to transfer the data payload. If

the LLC cache miss is not resolved via coherence, the CCI

satisfies the cache line fill from DDR 4
∗©.

F. Software Layer

We assume the platform software uses cacheable and

shareable memory. Beyond that, we make no assumptions

regarding the software layers. The hardware mechanisms we

discuss function independently from the software layers. As

such, we assume unmodified user-space applications, OS, and

hypervisor layers.

IV. CAESAR DESIGN AND PARADIGMS

This section discusses the proposed cache coherence back-

stabbing principle and outlines how it can be leveraged to

enable the CAESAR approach.

A. Coherence Backstabbing

We define coherence backstabbing as the principle of lever-

aging the cache-coherent interface(s) exposed to the FPGA for

purposes other than maintaining cache coherence within the

shareability domain. We use the word backstabbing to refer to

the idea that the FPGA inserts itself on the back of a protocol

where (1) useful information about the behavior of the CPUs

is transferred (observability); (2) the state of the upstream

caches, and the semantics and timing of the downstream data

accesses can be impacted following user-defined logic (pro-

grammability). When performing coherence backstabbing, it

is vital that the correctness of the protocol is maintained.

Backstabber designs. A backstabber design (or backstabber

IP) is an FPGA design that performs coherence backstabbing.

I.e., it maintains protocol correctness while implementing

custom functionalities with different degrees of intrusiveness.

4Note that both a load and a store cache-miss will appear as a read
transaction on the R channel of the ACE interface due to the WBWA policy.
In ARM Aarch64, only non-temporal loads/stores (LDNP/STNP), which are
seldomly used instructions, can cause a different behavior.



Backstabbed interface. On the other hand, a memory inter-

face (e.g. a memory-mapped aperture) is said to be back-

stabbed if a backstabber design is actively or passively in-

teracting with the traffic directed to the interface employing

coherence backstabbing.

B. The CAESAR Approach

We propose to use coherence backstabbing as a building

block for what we define as the Coherence-Aided Elective

and Seamless Alternative Routing (CAESAR) approach. The

key features of CAESAR are the following. First, it enables

memory traffic to follow routes that are alternative to those that

would be followed with traditional memory-mapped semantics

(see Section III-A). Because such a route bypasses slower SoC

interconnects meant for I/O traffic, it also enables lower re-

routing overheads. Second, it allows re-routing of data and

metadata with different trade-offs between seamlessness and

resulting overheads. Third, it allows dynamic activation of the

alternative route (for cache-line refill traffic) without the need

to modify a page-table translation. From the properties above,

we hereby describe a set of immediate memory programming

paradigms enabled by the CAESAR approach.

Silent Observer. Once a CPU undergoes an LLC miss, the

CCI broadcasts a snoop to a CAESAR IP implemented on the

FPGA. The most immediate programming paradigm consists

of single-ended listening without active participation. We refer

to this paradigm as the silent observer. This paradigm supports

designs that only need to rely on collecting meta-data of

the traffic produced by the CPUs. In this case, only transfer

metadata are being re-routed, but not actual data. For instance,

the silent observer paradigm can be used to acquire a precise

trace of such traffic, as we investigate in Section V-C. This is

arguably the approach that incurs the minimum overhead.

Read-Only Re-routing. Intuitively, this paradigm follows the

”I do not have the data, but I am going to lie about it”

principle. The CAESAR IP behaves as an active component in

the coherency domain. Upon receiving a snooped LLC miss, it

can take charge of providing the corresponding data. In other

words, the IP responds by simulating a cache-hit on its side.

To maintain correctness w.r.t. the coherence protocol, it is

now the burden of the IP to pass the data. From here, the

IP has two broad choices. First, it can directly interface with

a memory storage device (e.g., main memory) to fetch the

data (not necessarily at the same address!), or it can make up

the data by constructing it on the fly. A combination of both

approaches is also possible.

Consequently, this approach allows re-routing read traffic to

the FPGA without requiring the modification of the underlying

physical addresses. The CAESAR IP discussed in Section V-B

precisely explores the read-only re-routing potential.

Read-Write Re-routing. Under the WBWA semantics, if

the LLC follows a MESI [18] coherence protocol, only two

cases cause snoops to be broadcasted by the CCI. (1) Tran-

sition to Modified state upon write-hits on a cache line in

Shared state; (2) cache refills caused by a read/write LLC

miss (i.e., transitions to Shared, Modified, or Exclusive state

from Invalid state). Conversely, write-backs (resulting in write

memory transactions) are only triggered upon the eviction (or

clean+invalidation) of dirty LLC cache lines. Therefore, write-

backs are not snooped and the CCI forwards the transaction to

the downstream component depending on the physical address

of the cache line to be written back.

As such, re-routing of write traffic requires modifying the

virtual-to-physical translation of the data to be re-routed via

the FPGA. In this case, a CAESAR IP will handle snoop

requests for cache refills like in the previous paradigm. Write

traffic (and only write traffic!) will reach the FPGA following

traditional memory-mapped semantics instead. This paradigm

allows the FPGA to act upon the entirety of memory traffic,

while still handling read requests faster than using memory-

mapped semantics for both read and write traffic. Because

reads are located on the critical path from the point of view

of CPUs’ performance, doing so still achieves noticeable

performance improvements, as we evaluate in Section VI-C.

If, instead of re-routing write-backs, one wanted to expose

to the FPGA which cache-lines are modified by the CPUs,

for instance, to analyze read/write patterns and false-sharing,

another approach can be used. Specifically, in cases where the

LLC controller follows a MOSI [19] or MOESI [20] protocol,

a write-hit on a cache-line in Owned state causes a snoop

request with the most recent data payload to be broadcasted

by the CCI. The FPGA could theoretically force the state of

the cache lines in the LLC for which read/write traffic needs

to be re-routed to the Owned state. Exploring this direction is

currently out of scope.

Correctness and Generalization. The system model de-

scribed in Section III-A is aligned with the architectural

organization of existing CPU+FPGA systems with a single

CPU cluster and a CCI connecting its LLC to the FPGA. In

this case, the occurrence of a miss in the LLC is sufficient

to guarantee that the most updated version of the requested

data item is in main memory. Thus, a CAESAR IP can safely

reroute data fetches by replying to the corresponding snoop

transactions without breaking cache coherence. Nevertheless,

it is foreseeable that future CPU-FPGA architectures might

feature multiple CPU clusters and FPGA modules kept coher-

ent through the same CCI. Performing coherence backstabbing

in such architectures will require a generalization of our

approach, the details of which currently lie outside of the scope

of this paper. The intuition, however, is that in multi-cluster

SoCs, a CAESAR IP (or equivalent) will need to implement

a full coherence protocol. With that, through-FPGA handling

of memory requests can be initiated only when the state of a

cache line is safely determined to be in the ”invalid” state in

all the CPU-side caches.

V. PRACTICAL INSTANTIATION

This section describes a practical full-stack implementation

carried out on a commercially available CPU+FPGA platform

that follows the model and assumptions outlined in Section III.



A. Target Platform

The implementation of a set of CAESAR prototype designs

and their evaluation has been conducted on Xilinx UltraScale+

MPSoC, specifically the ZCU102 development board. The

ZCU102 is a CPU+FPGA platform equipped with a compute

cluster grouping four ARM Cortex-A53 cores running at

1.5GHz and a shared LLC of 1MB. The sizeable onboard

FPGA (600k+ LUTs) exports two high-performance (HPM)

CPU-to-FPGA ports with memory-mapped semantics. The

FPGA can initiate direct transactions to the main memory.

Cache-coherent FPGA. Importantly, the FPGA is also con-

nected to the system’s CCI via an ACE port, which places the

FPGA in the shareability domain of the LLC (see Section III).

The CCI used in this platform is an instance of a standard

ARM CCI-400 component [21]. Usually, the CCI-400 is used

to connect two clusters of heterogeneous cores following the

ARM big.LITTLE [22], [23] architectural paradigm. Instead,

on the ZCU102, the second cluster is replaced by an FPGA.

We selected Xilinx’s ZCU102 as the target platform for

evaluation to be immediately applicable and comparable to

existing works [3], [4], [12]. The overhead for involving the

FPGA in the coherence domain is evaluated in VI-A.

In this platform, the CCI supports not only coherent data

caching but also Distributed Virtual Memory (DVM) [13].

DVM is used to keep translation look-aside (TLB) entries

coherent across the SoC if multiple entities implement memory

management units (MMU) with cached virtual-to-physical

address translations. DVM management causes specific snoop

requests on the ACE port that any CAESAR IP must correctly

handle. There are two classes of DVM transactions that need

to be handled by the IP. (1) DVM operations: these transac-

tions convey particular operations, such as TLB invalidation

requests. (2) DVM sync: a synchronization transaction that

component issues to check that all previous coherence-related

requests have been completed. DVM Sync requests are served

to enforce barrier-like semantics for TLB operations beyond

the boundaries of the CPU cluster.

The CCI is configured at the power-up by the ARM Trusted

Firmware (ATF). We modified the BL31 stage (resident boot-

loader part of the ATF) to activate the FPGA-facing ACE

port. The BL31 bootloader stage executes right after the FPGA

bitstream is loaded and before booting any OS or hypervisor.

This is safe to do as long as a valid backstabber IP is

contained in the programmed bitstream. From the moment

when the coherence domain is extended to include the FPGA,

the CCI expects the FPGA to correctly handle all the snoop

requests, including the DVM snoops. As such, a litmus test

for the correctness of the design is the ability of the system to

complete the boot sequence that includes a full Linux kernel

boot and (potentially) that of a hypervisor. Indeed, a burst

of cache and TLB maintenance operations are issued during

the boot sequence. Hiccups in the way the instantiated IP

participates in the coherence protocol cause a fail-stop failure

of the system.

Fig. 4: Minimalist design of a coherence-enabled CAESAR

IP: the Silent IP. Interaction with the CCI is depicted on the

left; finite state machine (FSM) is reported on the right.

B. Template CAESAR IPs.

CAESAR Silent IP. To the best of our knowledge, the only

publicly available ACE-enabled IP that can be instantiated on

the ZCU102 platform is the Xilinx System Cache [24], which

implements the semantics of an accelerator-facing cache.

However, the sources of the System Cache are not available.

Thus, we implemented from scratch a first template design

for an IP that has the bare-minimum logic to handle the

coherence protocol correctly. The internal organization of this

component, called the Silent IP, is depicted in Fig. 4

Looking at the left-hand side of Fig. 4, the IP must handle

three prominent cases, as reflected in the finite state machine

(FSM) states/transitions on the right-hand side. 1© If a DVM

operation is received, the IP must acknowledge it, but no active

response is necessary. 2© If a DVM synch is received, the IP

must acknowledge it, actively provide a reply message (DVM

complete), and finally exchange a round of acknowledgments

with the CCI. 3© If a regular cache snoop is received, the IP

must simply acknowledge the transaction and reply that it does

not own a more recent version of the requested cache line.

CAESAR Read-Only IP. Next, we implemented a CAESAR

IP capable of performing read traffic re-routing over a con-

figurable range of physical addresses. Whenever the address

of a data snoop request falls within the configured range,

the IP commits to provide the data. A birds-eye view of the

implementation is provided in Fig. 5. The orange data path

refers to the scenario in which the IP accepts a request (lying

scenario, see Section IV).

All snoop transactions are strictly ordered. I.e., responses on

the snoop response channel (CR) must be issued in the same

order they arrived on the snoop address channel (AC). Via

three dedicated signals in the CR channel, the IP notifies the

interconnect about the state of the cache line of data to be sent.

These are PassDirty, IsShared or WasUnique [13]. If

the IP asserts the PassDirty signal, it passes to the LLC

the cache line data, but the line will be written back by the

LLC upon eviction. This is not ideal because the IP could

force more write-backs than necessary. If the IsShared is

asserted, additional snoop traffic will be generated if a store

is issued on the same line. Finally, asserting the WasUnique



Fig. 5: CAESAR Read-Only architecture. AXI to ACE route

(orange) compared to direct AXI route (blue). The read data

can be sent to the SPM (green route)

signal means that no other cache holds a copy of the cache

line and allows the snooping process to complete. Thus, our IP

uses the combination PassDirty = 0, IsShared = 0, and

WasUnique = 1 for any cache line fetch being re-routed. If

the IP commits to providing a cache-line, it then issues an AXI

request to the main memory and forwards the AXI response

data on the ACE data channel (orange route in Fig. 5).

Alternatively, the implemented IP can fetch the data from

any other AXI secondary, such as an on-chip scratchpad

(BRAM) memory (green route in Fig. 5). We performed la-

tency and bandwidth analysis of going through the highlighted

routes compared to the direct classic route (blue route), where

the CCI issues its own AXI request towards the main memory.

We present these experiments in Section VI-B.

When the CCI handles a cache-line refill, by default, it also

performs a speculative prefetch to main memory. This makes

sense as it is likely that a copy of the accessed cache-line is

not present in any other cache. Speculative fetching causes the

CCI to issue a downstream fetch in parallel (via the blue route

in Fig. 5) with the issuance of a coherent snoop transaction.

The speculative reads are discarded if a response on the snoop

channel is received. Hence, we disabled speculative fetches

through the CCI Control Override Register to prevent these

parallel memory accesses and let the backstabber have full

control over the DRAM. The effect of disabling speculative

fetches on the system’s performance and latency depends on

the benchmark access pattern. It reduces latency when the

probability of a snoop-miss is high but introduces extra access

to DDR if the snoop hits the cache. On the other hand,

disabling speculative fetching may relieve the load on the

DRAM if the prefetched data is discarded often. We investigate

the impact of disabling CCI prefetches in Section VI-A.

CAESAR Read-Write IP. Finally, we implemented a CAE-

SAR IP capable of performing both read and write traffic re-

Fig. 6: CAESAR routes (orange, green) for memory traffic

compared to existing routes (blue, purple).

routing over a configurable range of physical addresses. Write-

backs must be re-routed by modifying the page tables used by

the CPUs. In particular, the physical address must fall within

the range of the exposed CPU-to-FPGA port aperture (HPM).

To do so, it suffices to perform a linear translation by adding a

constant offset that is later removed by the IP when it interacts

with the DDR interface. Conversely, cache refills are handled

similarly to the read-only case.

Fig. 6 summarizes all the routes described so far. The blue

arrow represents the normal route to the main memory. The

purple arrow refers to the case where re-routing is performed

only using memory-mapped semantics (like in the PLIM

case [3]). The orange route refers to the route followed by

read traffic in a read-only or read+write CAESAR design. In

this case, it can be noted that the –slow– main interconnect is

bypassed. Lastly, the green route is followed by writes (LLC

write-backs) traffic in a read+write CAESAR design.

C. CAESAR use-case: Silent Profiler

Beyond improving well-known applications of through-

FPGA traffic re-routing, such as those mentioned in Section I,

we hereby showcase a novel memory traffic inspection tech-

nique. Specifically, we use the privileged position of the FPGA

in the SoC to capture and construct a trace of LLC cache

misses with minimal impact on their timing. For this purpose,

we implemented the Silent Profiler IP.

Essentially, the silent profiler is an altered instantiation of

a silent observer as defined in Section IV. The IP pushes

key meta-data extracted from the snooped transactions (i.e.,

timestamp and physical address) in an internal queue. The IP

can be activated on-demand from user space and configured

to redirect the queued meta-data to any write-able memory,

including another FPGA IP, a scratchpad memory, or main

memory. Because this IP follows the silent observer paradigm

(see Section IV), the timestamped trace of memory accesses

is acquired with minimum overhead, as we evaluate in Sec-

tion VI-A. A closer look at the type of introspection enabled

by the silent profiler is discussed in Section VI-D.

VI. EVALUATION

This section evaluates coherency backstabbing via multiple

CAESAR prototypes implementing the designs described in

Section V. The section is divided in four parts. First, in

Section VI-A, we assess the impact of including the FPGA

within the cache coherence domain. Then, in Section VI-B, we
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Fig. 12: Traces obtained with the Silent Spy showing the evolution of memory traffic and physical pages’ popularity at run-time.

used instead, which was not possible with traditional PLIM.

The logic to decide whether transactions should be cached

or not is programmable. (2) For read-write traffic, the FPGA

can handle a cache refill by asserting ownership during the

CCI-generated snoop. If ownership is asserted (backstabbed

access), the route followed by that line refill bypasses the

main interconnect and is only queued with other re-routed read

requests. If ownership is not asserted (access via memory-

mapped semantics), the transaction follows a higher-latency

route also followed by write traffic. The logic according to

which certain (read) requests should be prioritized in this way

over others is programmable.

VIII. RELATED WORK

The CAESAR method presented in this paper fits within

a broad vision to define programmable memory subsystems.

As computing resources become increasingly bottlenecked by

memory resources, the idea of managing the performance and

the semantics of memory operations has been embraced by

many researchers. For instance, the works on Programming

in Memory (PIM) [30] propose the inclusion of key logic

operations close to memory cells. In other cases, the ability of

the software to augment memory semantics to include ad-hoc

operations has been explored in [31]. Rethinking the traditional

semantics of memory hierarchies has sparked much interest in

disparate sub-fields: from graph acceleration and large tree

traversal [32], [33] to garbage collection [34] and file-system

redundancy [35]; from (on-the-fly) data transformation [5],

[17], [36] to page de-duplication [37] and support to optimize

specific access patterns [38], [39].

A large number of works [40] within the last decade have

demonstrated that issues with unmanaged contention over

memory resources constitute a significant roadblock against

predictable consolidation of multi-core, accelerator-enabled

safety-critical systems. Many mitigation strategies have been

proposed. Software strategies have been investigated to throttle

the memory bandwidth used by the CPUs [9], [29], [41]

or partition DRAM banks between cores [7], [8]. Available

hardware support to regulate accelerators has been studied

in [29], [42]. Performing high-level scheduling of computation

and clusters of memory accesses was proposed in [43]–[45].

Revisions to traditional hardware components have also been

proposed to make them either more configurable, more capable

of enforcing QoS, or both [46]–[50]. The work in [6] offers

a performance evaluation of one-way coherence ports that are

useful for accelerators to remain coherent with CPU caches.

The most closely related works proposed re-routing

CPU-originated activity through an FPGA. That is, debug

traces [51], [52], or memory traffic [3]–[5]. Unlike the

aforementioned related works, CAESAR focuses on the new

opportunities offered by two-way coherency between the CPU

cluster and the FPGA. Other works have used cache-coherent

FPGAs for traditional acceleration purposes such as remote

memory accesses [53], arithmetic kernels [54], and machine

learning applications [55]. The proposed idea in [53], named

PBerry focuses on OS-level awareness of memory accesses

page management via FPGA as-a-proxy for networked/remote

memory only evaluated in simulation (PBSim). Conversely,

we explore the implications of a cache-coherent FPGA for

OS-agnostic low-overhead on-chip memory flow programming

with a full-stack implementation and real-hardware evaluation.

IX. CONCLUSION

This paper studies the potential of seamless FPGA inter-

action with cache-coherence protocols. We presented a novel

and previously unexplored set of techniques to manage CPU-

originated memory traffic. These techniques are enabled by

the ability to logically position the FPGA logic as a top-tier

component in the memory hierarchy of modern CPU+FPGA

SoCs. We evaluated our proof-of-concept CAESAR approach

through a full-stack system implementation considering four

designs and corresponding Silent, Read-Only, Read-Write,

and Silent Profiler IPs. Our results suggest that remarkable

paradigm enhancements and performance improvements are

unlocked by the proposed CAESAR method.
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