

In other words, “what if the optimal data layout is always

physically available?”. This will eliminate the need to keep

multiple layouts and we can perform efficient analytics over

the fresh data without converting between different layouts. If

the underlying specialized hardware accesses only the relevant

data (without accessing unnecessary data and without paying a

tuple reconstruction cost) while maintaining a single layout, it

will blend the benefits of row-stores and column-stores. It will

offer effortless locality, alleviating the need for separate row-

store and column-store query engines, decoupling the physical

data layout from the processing data layout.

Our Vision: Relational Fabric

A lightweight specialized hardware fabric that allows

accessing arbitrary data layouts from memory or storage.

We propose Relational Fabric, a new lightweight specialized

hardware fabric that accommodates queries to access arbitrary

column groups from memory-resident base data without re-

quiring any data duplication. The base data is stored in a

row-oriented physical layout (Figure 1), to allow efficient data

ingestion and updates, read-only queries can quickly access

only the relevant column groups (or the entire row, if needed)

using the underlying machinery. To do this, Relational Fabric

exposes a carefully designed API, termed ephemeral columns

that enables accessing arbitrary data geometries (i.e., any

subset of data from relational tables) using simple abstractions.

This API creates non-materialized aliases of column-groups

which, from the cache perspective, pushes arbitrary subsets of

columns in dense memory addresses to the memory hierarchy.

This, in turn, supports both efficient column- and row-oriented

accesses while minimizing CPU cache pollution with unnec-

essary attributes. Relational Fabric has three major benefits:

X Low Data Complexity: It allows efficient HTAP process-

ing while maintaining only one layout of the data. No need

to propagate changes to multiple data copies or to convert

data among different layouts.

X Low Software Complexity: It reduces data system soft-

ware complexity. No need to maintain different execution

engines. Rather, the execution engine can always assume

that only the relevant data will be accessed.

X Efficient Hardware Utilization: It provides effortless

locality via shipping only relevant data through the mem-

ory hierarchy, alleviating unnecessary data movement, and

providing better cache and processor utilization.

As a first instance of Relational Fabric, we have developed

Relational Memory [63] that utilizes recent advancements

in programmable logic [64], and pushes projection to the

hardware (§II). The API of Relational Memory is a simple,

lightweight programming abstraction, termed ephemeral vari-

ables, enabling the CPU to access arbitrary data geometries.

Relational Memory exploits the inherent parallelism of mem-

ory cells to efficiently access data in scattered locations, and

uses programmable logic to reorganize and compact it on the

fly before pushing it to the CPUs, thus improving locality.

Simplifying the Data Systems Software Stack. With Rela-

tional Fabric in place, the data system software stack can be

significantly simplified. A data system that makes good use

of the Relational Fabric would have to drastically simplify

its physical design and query optimization components, while

the query evaluation engine would now be able to make

the most of code generation. Other components would also

be significantly affected, especially the transactions manager

that would have to implement a multi-version concurrency

control (MVCC) approach, and the compression algorithms

that should be compatible with scattered data accesses.

In this paper, we present our vision of building Relational

Fabric, along with the challenges and opportunities of in-

novation in data systems and some open research questions

to fully realize this vision. We begin by discussing how

to access arbitrary data geometries and present our initial

work on Relational Memory and ephemeral variables (§II).

The Relational Fabric vision has several opportunities for

simplicity and innovation across the data systems stack (§III):

• Simplify Physical Design: Relational Fabric will grossly

simplify the physical design process. There is no need

for creating (physical) vertical partitions anymore. Further,

indexes will mostly be useful for workloads with point

queries and updates, since range queries can be very

efficiently evaluated with column-group accesses. Overall,

through the Relational Fabric any layout can be achieved

via on-the-fly data reorganization.

• Simplify Query Optimization: One of the key challenges

with query optimization is that it is a combinatorial process

that has to search a vast space. Relational Fabric increases

the search space by allowing access to any data layout,

however, this essentially removes any search constraints

in that space. Hence, instead of solving a combinatorial

problem, we can now construct the fastest solution.

• Efficient MVCC: The natural way to implement concur-

rency control using Relational Fabric is MVCC, where

there is one source of truth (the base data in row-oriented

format), and the ephemeral columns access the correct data

using timestamp information associated with MVCC. A big

win for Relational Fabric is that it implements timestamp

comparisons in hardware, leading to a simple and good-

performance implementation of MVCC.

Building the Relational Fabric hardware requires bringing

together software and hardware expertise and benefit from the

tight integration of programming systems and programmable

logic which is increasingly gaining momentum (§IV). Our

preliminary Relational Memory design is implemented in such

a tightly integrated platform. We further outline our vision for

integrating data transformation with the memory controller and

extending the processor’s ISA. The ultimate goal is to be able

to use Relational Fabric without needing deep expertise in

hardware/software co-design.

Outline. The remainder of the paper is organized as follows.

Section II presents the concept of accessing arbitrary data

geometries in detail. Section III discusses the implications on

titioning decisions would still need to be evaluated at physical

design time. While Relational Fabric does not affect horizontal

partitioning, it can be efficiently combined with it, along with

sharding which horizontally partitions data based on a sharding

key. Another functionality that Relational Fabric can integrate

is to handle the communication with storage devices while

exposing its simple ephemeral columns API to the query. That

way, the data system can request the desired column group on

a sharding key range, and the Relational Fabric will directly

return the corresponding data to the query.

Indexing. Indexes help accelerate access times, ensure unique-

ness, and allow sorting and clustering. In general, row-store

systems employ indexes that are useful for selection queries

and data updates. Column-store systems (and some recent row-

store systems) [44], [46] use column projections as a special

type of index. The strength of Relational Fabric is that it makes

such projections possible without having to materialize them.

This has deep implications on the data systems architecture

because the query engine may access the data at query time

using either the base row-oriented data, an index (if it exists),

or the desired columns projected from Relational Fabric. While

indexes will be mostly beneficial for workloads with point

queries and updates, Relational Fabric allows for efficient

range queries due to the arbitrary column-group accesses.

B. Query Optimization and Query Evaluation

When a query is submitted to the system, it is first processed

by the query parser via lexical, syntactic, and semantic anal-

ysis. Then the initial query plan is processed by the query

optimizer to find the best query plan to execute, which is, in

turn, submitted for execution to the query evaluation engine.

Relational Fabric will not affect the query parser, however,

the optimizer and the evaluation engine components will have

a significant impact. Row-oriented query execution models

execute query plans one-row-at-a-time, which offers good

performance for OLTP queries. In contrast, most column-

store systems use vectorized execution that progresses through

the query plan via processing batches of column data [41],

[43]. While Relational Fabric maintains the base data in row

format, it makes columns available to the processor on the fly,

and, thus, it can naturally support efficient vectorized query

execution. A key challenge with query optimization is the

combinatorial process of searching a vast space – the DMBS

has to select the most efficient evaluation plan based on the

cost of each plan. While Relational Fabric seems to increase

the search space by enabling access to arbitrary data layouts,

it also allows every query to always use the best layout, and

overall simplify the problem, by replacing the combinatorial

search with the construction of the query plan that accesses

the optimal data fragments. This opens a whole new avenue of

research with the potential to speed up query processing: (i)

generate the fastest query plan, (ii) revise existing cost models

considering Relational Fabric, and (iii) re-evaluate classical

single-column, multi-column partitioning cost models.

Code Generation. Adaptive systems like Hyper, H2O, Actian

Vector, Hekaton, MemSQL and others [6], [20], [40], [51],

[70] examine the query and decide how data will be accessed

by evaluating alternative access plans. The appropriate code is

generated by considering the buffered available data layouts.

One disadvantage of this approach is the requirement to

compile code on the fly which is alleviated by buffering

compiled code fragments. The development of Relational

Fabric aids code generation in two ways. First, Relational

Fabric does not require to buffer different layouts since any

arbitrary layout can be accessed on the fly. Second, since data

layouts are not buffered, Relational Fabric can buffer more

code fragments and reuse previously compiled code fragments

more aggressively. The query optimizer can now also consider

various factors like which code fragments are buffered and

which indexes are available. One key opportunity of innovation

through Relational Fabric design is the development of a novel

full-fledged hybrid query engine that can alternate between

row-at-a-time and column-at-a-time while working on the

same base data.

C. Concurrency Control

The transaction manager is responsible for concurrency con-

trol. Relational Fabric can naturally support multi-version

concurrency control (MVCC). While the base data is in row

format, Relational Fabric offers native access to arbitrary data

geometries through ephemeral columns. For example, in our

in-memory implementation of Relational Memory, we use

ephemeral variables to access column groups. We consider

all ephemeral variables (or the respective API) as read-only

columns or column-groups that accelerate analytical queries.

The row-wise base data is marked as read/write and updates

are handled by appending new rows to this base data. For

updates and deletion, Relational Fabric uses two timestamp

fields for every row to support multiple versions. The first

timestamp is set when a row is inserted to mark the beginning

of its validity, while the second timestamp is set upon row

deletion or replacement by a newer version, marking the end

of its validity. Every time the API is accessed, it generates

the column groups that contain the valid rows at the time of

the query. A key advantage of this approach is that the times-

tamp comparison can be implemented in hardware, making

this implementation simple and performant. By offering the

optimal layout and using the timestamps to ship only valid

data, Relational Fabric supports MVCC transactions through

snapshot isolation.

D. Compression

The proposed design stores the base data in a row-oriented

format hence it can benefit only from specific types of com-

pression. General compression algorithms of the LZ family

[85] are frequently used by row-oriented systems, however,

they are not a natural fit for Relational Fabric since they

require fully decompressing your data before you can access

separate columns. Delta, dictionary, and huffman encoding for

compression which are popular among state-of-the-art column

stores [2], [3], [86] are easily supported by Relational Fabric.

Note that these schemes can be used in row-oriented data,

and hence, they can benefit any groups of columns requested

by ephemeral columns. However, the compression schemes

under the run-length encoding family cannot be used out of

the box. In contrast to dictionary and delta encoding, RLE

has an expensive decoding step and relies on data, but it is

still quite popular among column stores. More research is

required to find compression techniques that can benefit both

row-oriented and columnar data and allow for direct operation

on compressed data.

IV. BUILDING RELATIONAL FABRIC

The key feature of Relational Fabric is that a specialized

hardware component transforms data on-the-fly. This section

presents the implementation details of our first in-memory

Relational Fabric instance, termed Relational Memory (RM).

We also discuss extending hardware support to more operators,

pushing the logic further into the memory controller, and

Relational Fabric for storage devices.

A. Implementing Relational Memory

RM is an FPGA-based data transformation engine that sits

between the processor and the memory and converts data

layouts on-the-fly as shown in Figure 2. Data transformation

in RM is performed in line with the instruction stream via

fine-grained information on the exact byte-wise location of

data items useful for the computation at hand. The developed

hardware performs following four key operations: (1) RM

receives the intended access stride of the query (that maps

the physical addresses of the columns to be accessed) and

then issues parallel main memory requests for the target data,

(2) RM communicates with memory via an AXI bus [11] and

assembles multiple entries into a single packed cache line to

be sent to the processor, in the meantime, (3) RM captures

the CPU requests and (4) transfers the reorganized data upon

availability. This abstraction creates non-materialized aliases

of column-groups which pushes arbitrary subsets of columns

to the memory hierarchy. Hence, RM supports both efficient

column- and row-oriented accesses while minimizing CPU

cache pollution with unnecessary attributes.

B. Pushing Other Relational Operators

Relational Memory is the first instance of a new class of data

systems architectures. Implementing projection in hardware

lays the groundwork for pushing other relational operators to

the hardware as well. The Relational Fabric philosophy is that

new hardware designs will be adopted if they are simple and

general. In other words, a very application-specific design is

hard to make its way to mass production. With that in mind,

we propose to further reduce unnecessary data movement

by transparent on-the-fly data transformation using minimal

hardware complexity, by pushing selection and aggregation

in the hardware. Both operations are general enough in the

sense that they are part of other applications (like operating on

matrices and tensors) and have the potential to offer even larger

data movement reduction benefits. Implementing selection in

Relational Fabric will further alleviate the need for indexes al-

together, while aggregation will help both relational and matrix

operations. In this design, the ephemeral variables will contain

only the required data or the aggregation result, which will be

passed through the memory hierarchy ensuring minimal data

movement while maintaining the hardware complexity low.

C. Pushing RM Further: Relational Memory Controller

Following the aforementioned philosophy, we are developing

another instance of Relational Fabric, termed Relational Mem-

ory Controller (RMC) where we place RM further closer to

memory. Integrating RM into a memory controller has the

potential to become a game-changer as it will allow for easy

adoption of the RM design with a minimal development effort.

Further, pushing RM into the memory controller maximizes

its benefits, since it has low-level access to the actual memory

DIMMs. State-of-the-art memory controllers handle complex

interfacing with DDR memories while guaranteeing reliable

performance. However, memory controllers cannot fully ex-

ploit the capabilities of DDR memory chips since they have

no information about the target workloads or environments.

By integrating RM with a memory controller, just enough

semantic information about the access patterns will make

it to the hardware, making it possible to fully exploit the

capabilities of DDR memory chips, thus offering superior

performance and further reducing unnecessary data movement.

Extending the ISA as an RMC Interface. An Instruction Set

Architecture (ISA) is the abstraction between hardware and

software. The ISA guarantees that the resulting binary code

correctly executes regardless of the toolchain; thus, it helps

developers to write and debug software more efficiently [67].

Therefore, integrating RM with ISA, such as RISC-V [13],

[78], provides a more valuable interface. The benefits of using

RM via ISA are two folds: (1) it will provide a simple interface

with no need to understand the details of the underlying

hardware and (2) it will simplify the code generation process

during the compile time. Thus, RMC along with an ISA

extension provides a simple API that can further be beneficial

for SQL queries (or other applications benefiting from data

transformation) [66], [80].

D. Implementing Relational Storage

Following our discussion about building Relational Memory,

we propose to develop Relational Fabric in storage devices.

Near-storage computation is more challenging than near-

memory computation because traditionally storage devices

are incapable of performing logic. However, recent modern

storage devices like SmartSSD [59] and OpenSSD [15] have

processing power that can be exploited to achieve this. We

call this approach of pushing computation to storage Rela-

tional Storage (RS). RS can be directly implemented in a

specialized storage device (i.e., in OpenSSD or SmartSSD) or

a programmable logic (i.e., FPGAs), similar to our Relational

Memory approach. In contrast to RM, it is possible to push

other operators like selection and aggregation by utilizing

the processing capabilities of in-storage custom logic. Even

1 2 3 4 5 6 7 8 9 10 11
Projectivity (Number of target columns)

0.0

0.5

1.0
No

rm
. e

xe
c.

 ti
m

e ROW COL RM

Fig. 5: RM outperforms row-wise memory accesses irrespec-

tively of projectivity, while RM shows better performance than

columnar accesses for projecting more than 4 columns.

decompression can be done on-the-fly along with data trans-

formation [17]. In a similar manner, exploiting the internal

parallelism of the storage device [58] can enhance perfor-

mance. Furthermore, the software stack will be redesigned to

take advantage of near-storage computation for better query

processing and optimization in contemporary storage devices.

V. EARLY RESULTS ON RELATIONAL MEMORY

We now present selected experimental results of RM show-

ing that it outperforms direct row-wise and direct columnar

accesses by offering the optimal layout to any query [63].

Target Platform. The full-stack prototype of RM is imple-

mented on a Xilinx Zynq UltraScale+ MPSoC platform [82]

which consists of heterogeneous Systems-on-Chip (SoC)

where a traditional processing system (PS) is tightly associated

with a programmable logic (PL), i.e., an FPGA. The PS

equips with 4 Cortex-A53 1.5 GHz cores, each with a private

32+32 KB L1 I+D cache and sharing a unified 1 MB L2

cache. PL side, RM prototype, is constrained to 100 MHz.

In order to compare the performance of RM to the row-store

(ROW) and the column-store (COL), we custom implement

an in-memory row-store following the volcano-style process-

ing model (tuple-at-a-time) and an in-memory column-store

following the column-at-at-time processing model.

RM Shines for Queries with High Projectivity. In the first

experiment, we vary the projectivity from 1 to 11 columns

for 4-byte wide columns and 64-byte wide rows, as shown in

Figure 5. For any projectivity, RM outperforms direct row-wise

accesses since RM provides the optimal layout that minimizes

cache pollution. When the projectivity is low (≤ 4), columnar

accesses are faster since the tuple materialization cost is still

small and the prefetcher can efficiently support up to four

parallel sequential accesses. As projectivity becomes larger

than four columns, however, RM starts to outperform direct

columnar accesses due to the tuple reconstruction cost.

RM Offers Optimal Projection-Selection Queries. The ex-

periment shown in Figures 6a and 6b compares the perfor-

mance of RM with direct row-wise and columnar accesses

while varying the number of columns in a projection and

selection query. The number of projected columns (x-axis)

and the number of columns used for selection (y-axis) range

from 1 to 10 columns. Figure 6a shows the speedup of RM

compared to the direct row-wise accesses. Similarly to the

previous experiment, RM consistently outperforms the direct

1 2 3 4 5 6 7 8 9 10
of Projected Columns

1
2
3
4
5
6
7
8
9

10

of

 S
el

ec
tio

n
Co

lu
m

ns

1.49 1.48 1.47 1.47 1.45 1.45 1.44 1.43 1.43 1.41
1.48 1.46 1.46 1.44 1.44 1.43 1.42 1.41 1.4 1.41
1.46 1.45 1.44 1.42 1.42 1.41 1.4 1.38 1.4 1.42
1.45 1.43 1.42 1.41 1.39 1.38 1.37 1.38 1.39 1.4
1.4 1.38 1.37 1.37 1.35 1.35 1.36 1.37 1.38 1.39
1.38 1.37 1.36 1.34 1.34 1.34 1.35 1.36 1.36 1.38
1.35 1.34 1.34 1.32 1.33 1.33 1.34 1.35 1.37 1.37
1.33 1.32 1.31 1.32 1.32 1.33 1.34 1.34 1.35 1.36
1.3 1.29 1.3 1.31 1.32 1.32 1.32 1.33 1.33 1.35
1.28 1.29 1.29 1.3 1.31 1.31 1.32 1.32 1.34 1.34

1.30

1.35

1.40

1.45

(a) Speedup - RM vs Row

1 2 3 4 5 6 7 8 9 10
of Projected Columns

1
2
3
4
5
6
7
8
9

10

of

 S
el

ec
tio

n
Co

lu
m

ns

0.49 0.57 0.68 1.32 1.49 1.62 1.79 1.94 2.08 2.23
0.53 0.65 1.23 1.39 1.56 1.73 1.91 2.05 2.21 2.18
0.61 0.73 1.32 1.47 1.65 1.84 2.02 2.16 2.15 2.12
1.26 1.31 1.4 1.53 1.74 1.93 2.1 2.08 2.09 2.06
1.3 1.38 1.47 1.61 1.82 2.01 2.03 2.04 2.02 1.98
1.35 1.44 1.55 1.71 1.89 1.92 1.94 1.93 1.89 1.87
1.39 1.51 1.64 1.79 1.82 1.84 1.81 1.78 1.76 1.74
1.44 1.57 1.71 1.74 1.76 1.72 1.69 1.68 1.66 1.65
1.49 1.62 1.66 1.71 1.68 1.66 1.64 1.62 1.61 1.59
1.54 1.57 1.59 1.63 1.64 1.63 1.62 1.61 1.6 1.58

0.5

1.0

1.5

2.0

(b) Speedup - RM vs Columnar

Fig. 6: (a) RM always outperforms in-memory row access. (b)

RM dominates when the total number of columns grows larger

(> 4), while columnar accesses achieve better performance

when the total number of columns is small (≤ 4).

9
(2)

18
(4)

35
(8)

69
(16)

137
(32)

273
(64)

545
(128)

Data size (Taget column size (MB))

101

102

Ex
ec

ut
io

n
tim

e
(m

s) ROW COL RM

(a) Q1

11
(2)

22
(4)

44
(8)

87
(16)

173
(32)

346
(64)

692
(128)

Data size (Taget column size (MB))

100

101

Ex
ec

ut
io

n
tim

e
(m

s) ROW COL RM

(b) Q6

Fig. 7: RM shows better performance than direct row-wise or

columnar accesses in practical queries such as TPC-H Q1 and

Q6 regardless of the data size.

row-wise access by 1.3-1.5×. In contrast, direct columnar

access achieves better performance than RM when the number

of columns used for projection and selection is less than four

as shown in the lower left corner of Figure 6b. As the number

of columns in a query increases, RM outperforms the columnar

accesses. Overall, RM achieves better performance than direct

row-wise accesses for any number of target columns, while

RM outperforms a columnar layout only when the number of

target columns is large enough (> 4).

RM Shows Stable Performance for Practical Queries. In

order to evaluate RM in a practical environment, we execute

Q1 and Q6 from TPC-H [76] while varying the data size. RM

supports arbitrary data sizes even with a small data memory of

2 MB on the FPGA by refilling it whenever it is full. Figure 7

shows the running time of Q1 and Q6 on tables from 11 MB

to 692 MB. Since we choose the data size based on the size of

target columns (shown in the parentheses of x-axis), the range

of data sizes varies for Q1 and Q6. For Q1, the execution

time is similar for all layouts, as shown in Figure 7a. This is

because executing CPU-intensive operations in Q1 dominates

the data movement cost. On the other hand, for queries such

as Q6 where data movement is the bottleneck, RM accelerates

the execution time by offering the optimal layout (Figure 7b).

Overall, our proof-of-concept prototype Relational Memory

shows better or comparable performance compared to in-

memory row- or column-store for various queries by offering

data transformation on-the-fly (more experimental results are

available in our conference paper [63]). These experimental

results of RM further fuel our vision for Relational Fabric.

VI. RELATED WORK

Hybrid Layouts. Many HTAP systems like SAP HANA [27],

Oracle TimesTen [45], MemSQL [70], BatchDB [49], and

L-store [65] follow the one size does not fit all rule [73],

hence, they use the row-format to ingest data and then convert

it to columnar-format for analytical processing [57]. The

optimal layout is more often neither a column-store or a row-

store [6]. On the other hand, systems like H2O [6], Hyper [40],

Peloton [12], and OctopusDB [21] use adaptive layouts de-

pending on the query patterns. All these systems need to

store multiple layouts of the data and convert between formats

which increases the complexity, materialization overhead, and

maintenance cost.

Hardware Specialization. There have been many efforts

to utilize specialized hardware for data management sys-

tems [26], [36]. We categorize the developed specialized hard-

ware by its objectives. The first line of specialized hardware is

to accelerate particular DBMS operators such as selection [74],

aggregation [19], compression [60], decompression [25], data

partitioning [38], sort [84], group by [4], and join [32], [83].

Secondly, we classify attempts to offload the SQL query itself

or the subset of queries [55], [56], [71], [79], [80], [81].

Due to the inflexible nature of hardware, these approaches’

main limitation lies in supporting ad-hoc queries. A third class

is query accelerators accessing non-local memory aiming to

reduce data movement [5], [8], [28], [42], [62], [72].

Contrary to the aforementioned related work or the

Processing-In-Memory (PIM) approach [48], [69], the Rela-

tional Fabric paradigm does not aim to implement complex

logic near memory/storage, nor to change the physical mem-

ory/storage hardware (e.g., memory or flash cells). Rather,

Relational Fabric sits between the query execution engine and

the data, and offers a light-weight layer that performs on-

the-fly transparent data transformation into the optimal layout

for the query in question without materializing it. Our first

Relational Fabric instance, RM, sits between the CPU and

memory and transparently transforms data into the optimal

layout that does not exist in main memory. Therefore, any

ad hoc queries can be accelerated with no data duplication.

Furthermore, RM does not require any modification of the

memory hierarchy unlike PIM and is fully implemented on

commercially available platforms [7], [24], [35], [52], [82].

To develop Relational Fabric for storage devices, we

capitalize on recent advancements in computational SSDs

(OpenSSD [15], SmartSSD [59]). These SSDs have processing

power in the flash controller that allows programmability

which can be utilized to enable highly efficient SSD execu-

tion [23]. There have been several works on performing near-

data processing in SSDs [22], [31], [37], [68], [77] leveraging

their computational capability which can also aid the develop-

ment of Relational Fabric in modern storage devices.

VII. OPEN QUESTIONS

In addition to the opportunities for simplicity and innovation

discussed in this paper, the Relational Fabric vision has several

open research challenges that require further investigation.

Q1. Is data transformation (projection) enough? Relational

Fabric is a layer that offers transparent and efficient projection

that leads to the benefits we discussed above. Further, data

transformation has great potential for other data-intensive

applications over multi-dimensional data (matrix/tensor slicing

and vectorized operations on matrix/tensor slices). In addition,

there have been several recent efforts to implement more

complex logic near or within memory. We purposefully avoid

this path because it increases the hardware complexity and

specialization, making it less general and, thus, to our un-

derstanding, less appealing for real-life use and deployment.

However, it remains an open question whether more logic

can be implemented between the memory and the processor.

Overall, our thesis is that any added logic should benefit many

different applications to be ultimately viable.

Q2. How does Relational Fabric interact with compression?

While delta and dictionary compression schemes can be used

as a starting point, we also believe it is worth investigating new

compression schemes that can be applied to row-oriented data

and allow for on-the-fly vertical partitioning and potentially

allow for operating on compressed data.

Q3. Can you have Relational Fabric both on storage and in

memory? The vision we outline assumes that the Relational

Fabric is implemented either in memory on storage, depending

on the use-case. However, a scheme that uses Relational Fabric

in both storage and memory may also be interesting. Consider

that the two fabrics may play different roles. For example, the

storage one can convert from compressed columns to rows

in memory, and the in-memory one can allow the processor

to access arbitrary column groups. We believe that more

investigation in this direction is warranted.

VIII. CONCLUSION

In this paper, we present our vision of Relational Fabric, a new

lightweight specialized hardware fabric that offers effortless

locality by accessing arbitrary data layouts from row-oriented

base data without any data duplication. Relational Fabric will

simplify data and software complexity, and it will enable

efficient hardware utilization and true HTAP processing. We

outline the principles, goals, and impact of Relational Fab-

ric, and as a proof-of-concept, we present its first instance,

Relational Memory that uses reprogrammable hardware to

implement logic between the memory and the processor.

Relational Memory on-the-fly convert rows to arbitrary groups

of columns, alleviating the need to vertically partition data. We

further outline the necessary steps toward building Relational

Fabric in memory, discuss its opportunities for innovation in

data systems architecture in physical design, query processing,

and concurrency control, and some open questions that require

further research. In addition, we discuss building Relational

Fabric in computational SSDs by developing Relational Stor-

age. Developing Relational Fabric in memory and storage

has the potential to be a paradigm shift where different

specialized hardware components (in memory and storage) can

synergistically turn data processing more efficient, scalable,

and resource-efficient for data-intensive applications.

REFERENCES

[1] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented
Database Systems,” Proceedings of the VLDB Endowment, vol. 2, no. 2,
pp. 1664–1665, 2009.

[2] D. J. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and S. Madden,
“The Design and Implementation of Modern Column-Oriented Database
Systems,” Foundations and Trends in Databases, vol. 5, no. 3, pp. 197–
280, 2013.

[3] D. J. Abadi, S. Madden, and M. Ferreira, “Integrating Compression and
Execution in Column-oriented Database Systems,” in Proceedings of the

ACM SIGMOD International Conference on Management of Data, 2006,
pp. 671–682.

[4] I. Absalyamov, P. Budhkar, S. Windh, R. J. Halstead, W. A. Najjar, and
V. J. Tsotras, “FPGA-accelerated group-by aggregation using synchro-
nizing caches,” in Proceedings of the International Workshop on Data

Management on New Hardware (DAMON), 2016, pp. 11:1—-11:9.
[5] M. K. Aguilera, K. Keeton, S. Novakovic, and S. Singhal, “Designing

Far Memory Data Structures: Think Outside the Box,” in Proceedings

of the Workshop on Hot Topics in Operating Systems (HotOS), 2019,
pp. 120–126.

[6] I. Alagiannis, S. Idreos, and A. Ailamaki, “H2O: A Hands-free Adaptive
Store,” in Proceedings of the ACM SIGMOD International Conference

on Management of Data, 2014, pp. 1103–1114.
[7] G. Alonso, T. Roscoe, D. Cock, M. Ewaida, K. Kara, D. Korolija,

D. Sidler, and Z. Wang, “Tackling Hardware/Software co-design from
a database perspective,” in Proceedings of the Biennial Conference on

Innovative Data Systems Research (CIDR), 2020.
[8] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,

A. Panda, S. Ratnasamy, and S. Shenker, “Can far memory improve job
throughput?” in Proceedings of the EuroSys Conference (EuroSys), 2020,
pp. 14:1—-14:16.

[9] R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki,
“The Case For Heterogeneous HTAP,” in Proceedings of the Biennial

Conference on Innovative Data Systems Research (CIDR), 2017.
[10] ARM, “Arm Cortex-A53 MPCore Processor Technical Reference

Manual,” Tech. Rep., 2018. [Online]. Available: https://developer.arm.
com/documentation/ddi0500/j

[11] ——, “AMBA AXI and ACE Protocol Specification,” Tech. Rep., 2019.
[Online]. Available: https://developer.arm.com/documentation/ihi0022/h

[12] J. Arulraj, A. Pavlo, and P. Menon, “Bridging the Archipelago between
Row-Stores and Column-Stores for Hybrid Workloads,” in Proceedings

of the ACM SIGMOD International Conference on Management of Data,
2016, pp. 583–598.

[13] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” EECS Department, University of California, Berkeley,

Tech. Rep. UCB/EECS-2014-146, 2014.
[14] R. Barber, G. M. Lohman, V. Raman, R. Sidle, S. Lightstone, and

B. Schiefer, “In-Memory BLU Acceleration in IBM’s DB2 and dashDB:
Optimized for Modern Workloads and Hardware Architectures,” in
Proceedings of the IEEE International Conference on Data Engineering

(ICDE), 2015.
[15] M. Bjørling, J. González, and P. Bonnet, “LightNVM: The Linux open-

channel SSD subsystem,” in Proceedings of the USENIX Conference on

File and Storage Technologies (FAST), 2019, pp. 359–373.
[16] F. Chen, B. Hou, and R. Lee, “Internal Parallelism of Flash Memory-

Based Solid-State Drives,” ACM Transactions on Storage (TOS), vol. 12,
no. 3, pp. 13:1–13:39, 2016.

[17] X. Chen, N. Zheng, S. Xu, Y. Qiao, Y. Liu, J. Li, and T. Zhang,
“Kallaxdb: A table-less hash-based key-value store on storage
hardware with built-in transparent compression,” in Proceedings of

the 17th International Workshop on Data Management on New

Hardware (DaMoN 2021), ser. DAMON’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3465998.3466004

[18] Cisco, “Cisco Global Cloud Index: Forecast and Methodology,
2016–2021,” White Paper, 2018.

[19] C. Dennl, D. Ziener, and J. Teich, “Acceleration of SQL Restrictions and
Aggregations through FPGA-Based Dynamic Partial Reconfiguration,”
in Proceedings of the IEEE Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2013, pp. 25–28.
[20] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-

pher, N. Verma, and M. Zwilling, “Hekaton: SQL server’s memory-
optimized OLTP engine,” in Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, 2013, pp. 1243–1254.

[21] J. Dittrich and A. Jindal, “Towards a One Size Fits All Database
Architecture,” in Proceedings of the Biennial Conference on Innovative

Data Systems Research (CIDR), 2011, pp. 195–198.
[22] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query

processing on smart SSDs: opportunities and challenges,” in Proceedings

of the ACM SIGMOD International Conference on Management of Data,
2013, pp. 1221–1230.

[23] J. Do, S. Sengupta, and S. Swanson, “Programmable solid-state storage
in future cloud datacenters,” Communications of the ACM, vol. 62, no. 6,
pp. 54–62, 2019.

[24] ETHZ, “Enzian Systems,” http://enzian.systems/, 2021.
[25] J. Fang, J. Chen, J. Lee, Z. Al-Ars, and H. P. Hofstee, “A Fine-Grained

Parallel Snappy Decompressor for FPGAs Using a Relaxed Execution
Model,” in Proceedings of the IEEE Annual International Symposium

on Field-Programmable Custom Computing Machines (FCCM), 2019,
p. 335.

[26] J. Fang, Y. T. B. Mulder, J. Hidders, J. Lee, and H. P. Hofstee, “In-
memory database acceleration on FPGAs: a survey,” The VLDB Journal,
vol. 29, no. 1, pp. 33–59, 2020.

[27] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and J. Dees,
“The SAP HANA Database – An Architecture Overview,” IEEE Data

Engineering Bulletin, vol. 35, no. 1, pp. 28–33, 2012.
[28] P. Francisco, “The Netezza Data Appliance Architecture: A Platform for

High Performance Data Warehousing and Analytics,” IBM Redbooks,
2011.

[29] Gartner, “Gartner Says 8.4 Billion Connected “Things” Will Be in Use
in 2017, Up 31 Percent From 2016,” https://tinyurl.com/Gartner2020,
2017.

[30] Google, “Cloud TPU,” https://cloud.google.com/tpu/, 2017.
[31] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang,

M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang, “Biscuit: A
Framework for Near-Data Processing of Big Data Workloads,” in
Proceedings of the ACM/IEEE Annual International Symposium on

Computer Architecture (ISCA), 2016, pp. 153–165.
[32] R. J. Halstead, I. Absalyamov, W. A. Najjar, and V. J. Tsotras, “FPGA-

based Multithreading for In-Memory Hash Joins,” in Proceedings of

the Biennial Conference on Innovative Data Systems Research (CIDR),
2015.

[33] M. Hassan, “Reduced latency DRAM for multi-core safety-critical real-
time systems,” Real-Time Systems, vol. 56, no. 2, pp. 171–206, 2020.

[34] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Communications of the ACM, vol. 62, no. 2, pp. 48–60,
2019.

[35] Intel, Corp., “Intel’s Stratix 10 FPGA: Supporting the smart and
connected revolution,” October 2016, accessed on 09.01.2020. [Online].
Available: https://tinyurl.com/IntelStratix2016

[36] Z. István, “The Glass Half Full: Using Programmable Hardware Accel-
erators in Analytics,” IEEE Data Engineering Bulletin, vol. 42, no. 1,
pp. 49–60, 2019.

[37] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, “KAML:
A Flexible, High-Performance Key-Value SSD,” in 2017 IEEE Interna-

tional Symposium on High Performance Computer Architecture, HPCA

2017, Austin, TX, USA, February 4-8, 2017, 2017, pp. 373–384.
[38] K. Kara, J. Giceva, and G. Alonso, “FPGA-based Data Partitioning,”

in Proceedings of the ACM SIGMOD International Conference on

Management of Data, 2017, pp. 433–445.
[39] M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki, “Adaptive

Query Processing on RAW Data,” Proceedings of the VLDB Endowment,
vol. 7, no. 12, pp. 1119–1130, 2014.

[40] A. Kemper and T. Neumann, “HyPer: A Hybrid OLTP & OLAP Main
Memory Database System Based on Virtual Memory Snapshots,” in
Proceedings of the IEEE International Conference on Data Engineering

(ICDE), 2011, pp. 195–206.
[41] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P. A.

Boncz, “Everything You Always Wanted to Know About Compiled and
Vectorized Queries But Were Afraid to Ask,” Proceedings of the VLDB

Endowment, vol. 11, no. 13, pp. 2209–2222, 2018.
[42] D. Korolija, D. Koutsoukos, K. Keeton, K. Taranov, D. S. Milojicic, and

G. Alonso, “Farview: Disaggregated Memory with Operator Off-loading
for Database Engines,” in Proceedings of the Conference on Innovative

Data Systems Research (CIDR), 2022.
[43] C. Labs, “Vectorized Query Execution,”

https://www.cockroachlabs.com/docs/stable/vectorized-execution.html,
2019.

[44] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson,
S. Hase, A. Holloway, J. Kamp, T.-H. Lee, J. Loaiza, N. Macnaughton,
V. Marwah, N. Mukherjee, A. Mullick, S. Muthulingam, V. Raja,
M. Roth, E. Soylemez, and M. Zait, “Oracle Database In-Memory:
A Dual Format In-Memory Database,” in Proceedings of the IEEE

International Conference on Data Engineering (ICDE), 2015.
[45] T. Lahiri, M.-A. Neimat, and S. Folkman, “Oracle TimesTen: An In-

Memory Database for Enterprise Applications,” IEEE Data Engineering

Bulletin, vol. 36, no. 2, pp. 6–13, 2013.
[46] A. Lamb, M. Fuller, and R. Varadarajan, “The Vertica Analytic Database:

C-Store 7 Years Later,” Proceedings of the VLDB Endowment, vol. 5,
no. 12, pp. 1790–1801, 2012.

[47] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving
memory bank-level parallelism in the presence of prefetching,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO 42. New York, NY, USA:
Association for Computing Machinery, 2009, p. 327–336. [Online].
Available: https://doi.org/10.1145/1669112.1669155

[48] G. Loh, N. Jayasena, M. Oskin, M. Nutter, D. Roberts, M. Meswani,
D. P. Zhang, and M. Ignatowski, “A Processing in Memory Taxonomy
and a Case for Studying Fixed-function PIM,” in Proceedings of the

Workshop on Near-Data Processing (WoNDP), 2013.
[49] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso, “BatchDB:

Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads for
Interactive Applications,” in Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, 2017, pp. 37–50.
[50] N. May, A. Böhm, and W. Lehner, “SAP HANA - The Evolution of

an In-Memory DBMS from Pure OLAP Processing Towards Mixed
Workloads,” in Proceedings of the Datenbanksysteme fur Business,

Technologie und Web (BTW), 2017, pp. 545–563.
[51] P. Menon, A. Pavlo, and T. C. Mowry, “Relaxed Operator Fusion for In-

Memory Databases: Making Compilation, Vectorization, and Prefetching
Work Together At Last,” Proceedings of the VLDB Endowment, vol. 11,
no. 1, pp. 1–13, 2017.

[52] Microsemi — Microchip Technology Inc., “PolarFire SoC - Lowest
Power, Multi-Core RISC-V SoC FPGA,” July 2020, accessed
on 09.01.2020. [Online]. Available: https://www.microsemi.com/
product-directory/soc-fpgas/5498-polarfire-soc-fpga

[53] Microsoft, “Project Catapult,” https://www.microsoft.com/en-

us/research/project/project-catapult/, 2017.
[54] C. Mohan, “Hybrid Transaction and Analytics Processing (HTAP): State

of the Art,” in Proceedings of the International Workshop on Business

Intelligence for the Real-Time Enterprise (BIRTE), 2016.
[55] M. Najafi, M. Sadoghi, and H.-A. Jacobsen, “Flexible Query Processor

on FPGAs,” Proceedings of the VLDB Endowment, vol. 6, no. 12, pp.
1310–1313, 2013.

[56] Oracle, “DAX,” https://blogs.oracle.com/linux/post/oracle-data-

analytics-accelerator-dax-for-sparc, 2021.
[57] F. Özcan, Y. Tian, and P. Tözün, “Hybrid Transactional/Analytical Pro-

cessing: A Survey,” in Proceedings of the ACM SIGMOD International

Conference on Management of Data, 2017, pp. 1771–1775.
[58] T. I. Papon and M. Athanassoulis, “A Parametric I/O Model for Modern

Storage Devices,” in Proceedings of the International Workshop on Data

Management on New Hardware (DAMON), 2021.
[59] K. Park, Y.-S. Kee, J. M. Patel, J. Do, C. Park, and D. J. DeWitt, “Query

Processing on Smart SSDs,” IEEE Data Engineering Bulletin, vol. 37,
no. 2, pp. 19–26, 2014.

[60] W. Qiao, J. Du, Z. Fang, M. Lo, M.-C. F. Chang, and J. Cong, “High-
Throughput Lossless Compression on Tightly Coupled CPU-FPGA
Platforms,” in Proceedings of the IEEE Annual International Symposium

on Field-Programmable Custom Computing Machines (FCCM), 2018,
pp. 37–44.

[61] R. Ramamurthy, D. J. DeWitt, and Q. Su, “A Case for Fractured
Mirrors,” The VLDB Journal, vol. 12, no. 2, pp. 89–101, 2003.

[62] A. Redshift, “Aqua (advanced query accelerator) for amazon redshift,”
2021. [Online]. Available: https://aws.amazon.com/redshift/features/
aqua/

[63] S. Roozkhosh, D. Hoornaert, J. H. Mun, T. I. Papon, A. Sanaullah,
U. Drepper, R. Mancuso, and M. Athanassoulis, “Relational Memory:
Native In-Memory Accesses on Rows and Columns,” in Proceedings

of the International Conference on Extending Database Technology

(EDBT), 2023, pp. 66–79.
[64] S. Roozkhosh and R. Mancuso, “The Potential of Programmable Logic

in the Middle: Cache Bleaching,” in Proceedings of the Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2020, pp.
296–309.

[65] M. Sadoghi, S. Bhattacherjee, B. Bhattacharjee, and M. Canim, “L-
Store: A Real-time OLTP and OLAP System,” in Proceedings of the

International Conference on Extending Database Technology (EDBT),
2018, pp. 540–551.

[66] B. Salami, G. A. Malazgirt, O. Arcas-Abella, A. Yurdakul, and
N. Sönmez, “AxleDB: A novel programmable query processing platform
on FPGA,” Microprocessors and Microsystems, vol. 51, pp. 142–164,
2017.

[67] A. Sanaullah, “Risc-v for fpgas: benefits and opportunities,” Red Hat

Research Quarterly, no. May, 2022.
[68] S. Seshadri, M. Gahagan, M. S. Bhaskaran, T. Bunker, A. De, Y. Jin,

Y. Liu, and S. Swanson, “Willow: A User-Programmable SSD,” in
Proceedings of the USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2014, pp. 67–80.
[69] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A.

Kozuch, and T. C. Mowry, “Gather-scatter DRAM: in-DRAM address
translation to improve the spatial locality of non-unit strided accesses,”
in Proceedings of the Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2015, pp. 267–280.
[70] N. Shamgunov, “The MemSQL In-Memory Database System,” in Pro-

ceedings of the International Workshop on In-Memory Data Manage-

ment and Analytics (IMDM), 2014.
[71] D. Sidler, M. Owaida, Z. István, K. Kara, and G. Alonso, “doppioDB:

A hardware accelerated database,” in Proceedings of the International

Conference on Field Programmable Logic and Applications (FPL),
2017.

[72] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso, “StRoM:
smart remote memory,” in Proceedings of the EuroSys Conference

(EuroSys), 2020, pp. 29:1—-29:16.
[73] M. Stonebraker and U. Cetintemel, “”One Size Fits All”: An Idea Whose

Time Has Come and Gone,” in Proceedings of the IEEE International

Conference on Data Engineering (ICDE), 2005, pp. 2–11.
[74] X. Sun, C. J. Xue, J. Yu, T.-W. Kuo, and X. Liu, “Accelerating data

filtering for database using FPGA,” Journal of Systems Architecture, vol.
114, p. 101908, 2021.

[75] N. C. Thompson and S. Spanuth, “The decline of computers as a general
purpose technology,” Communications of the ACM, vol. 64, no. 3, pp.
64–72, 2021.

[76] TPC, “TPC-H benchmark,” http://www.tpc.org/tpch/, 2021.
[77] J. Wang, D. Park, Y. Papakonstantinou, and S. Swanson, “SSD In-

Storage Computing for Search Engines,” IEEE Transactions on Com-

puters, p. 1, 2016.
[78] A. S. Waterman, Design of the RISC-V instruction set architecture.

University of California, Berkeley, 2016.
[79] L. Woods, Z. István, and G. Alonso, “Ibex - An Intelligent Storage

Engine with Support for Advanced SQL Off-loading,” Proceedings of

the VLDB Endowment, vol. 7, no. 11, pp. 963–974, 2014.
[80] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: the

architecture and design of a database processing unit,” in Proceedings of

the International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2014, pp. 255–268.
[81] ——, “The Q100 Database Processing Unit,” IEEE Micro, vol. 35, no. 3,

pp. 34–46, 2015.
[82] Xilinx, Inc., “Zynq UltraScale+ MPSoC - All Programmable

Heterogeneous MPSoC,” August 2016, accessed on 09.01.2020.
[Online]. Available: https://www.xilinx.com/products/silicon-devices/
soc/zynq-ultrascale-mpsoc.html

[83] M. Xue, Q. Xing, C. Feng, F. Yu, and Z.-G. Ma, “FPGA-Accelerated
Hash Join Operation for Relational Databases,” IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 67-II, no. 10, pp. 1919–
1923, 2020.

[84] C. Zhang, R. Chen, and V. K. Prasanna, “High Throughput Large Scale
Sorting on a CPU-FPGA Heterogeneous Platform,” in Proceedings of

the IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPS Workshops), 2016, pp. 148–155.
[85] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data

Compression,” IEEE Transactions on Information Theory (TIT), vol. 23,
no. 3, pp. 337–343, 1977.

[86] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz, “Super-Scalar RAM-
CPU Cache Compression,” in Proceedings of the IEEE International

Conference on Data Engineering (ICDE), 2006, p. 59.

