Lazy Load Scheduling for Mixed-Criticality Applications in
Heterogeneous MPSoCs

TOMASZ KLODA, LAAS-CNRS, Université de Toulouse, INSA, France
GIOVANI GRACIOLI, Federal University of Santa Catarina, Brazil
ROHAN TABISH, University of lllinois at Urbana-Champaign, USA
REZA MIROSANLOU, University of Waterloo, Canada

RENATO MANCUSO, Boston University, USA

RODOLFO PELLIZZONI, University of Waterloo, Canada
MARCO CACCAMO, Technical University of Munich, Germany

Newly emerging multiprocessor system-on-a-chip (MPSoC) platforms provide hard processing cores with
programmable logic (PL) for high-performance computing applications. In this paper, we take a deep look into
these commercially available heterogeneous platforms and show how to design mixed-criticality applications
such that different processing components can be isolated to avoid contention on the shared resources such
as last-level cache and main memory.

Our approach involves software/hardware co-design to achieve isolation between the different criticality
domains. At the hardware level, we use a scratchpad memory (SPM) with dedicated interfaces inside the PL
to avoid conflicts in the main memory. Whereas, at the software level, we employ a hypervisor to support
cache-coloring such that conflicts at the shared L2 cache can be avoided. In order to move the tasks in/out of
the SPM memory, we rely on a DMA engine and propose a new CPU-DMA co-scheduling policy, called Lazy
Load, for which we also derive the response time analysis. The results of a case study on image processing
demonstrate that the contention on the shared memory subsystem can be avoided when running with our
proposed architecture. Moreover, comprehensive schedulability evaluations show that the newly proposed
Lazy Load policy outperforms the existing CPU-DMA scheduling approaches and is effective in mitigating
the main memory interference in our proposed architecture.
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1 INTRODUCTION

New emerging technologies like autonomous driving, unmanned aerial vehicles, cube satellites, or
smart manufacturing are significant examples of modern real-time systems. Unlike the past CPU-
intensive tasks, the workloads in today’s mission- and safety-critical systems are characterized by
much higher memory and 1/O performance demands [10].

Hardware manufacturers have anticipated this shift by extending the multiprocessor systems-on-
chip (MPSoC) feature set, including hardware support for virtualization, the presence of multiple,
potentially heterogeneous processing elements, a rich ecosystem of high-bandwidth 1/0 devices and
communication channels, and more recently, the co-location of traditional CPUs and programmable
logic (PL) implemented using Field Programmable Gate Array (FPGA) technology. This new class
of platforms offers the unprecedented ability to define new hardware components that can bring
determinism and tight latency bounds to real-time memory-intensive applications, closing the gap
between performance and real-time guarantees [17].

Our previous work in [17] demonstrated how to leverage the latest generation of partially
re-configurable MPSoCs to design high-performance embedded systems with strict real-time
requirements. We showed that it is possible to instantiate a critical set of PL-defined components
to (i) relieve interference on the shared memory hierarchy and achieve temporal isolation among
criticality domains; (ii) support efficient inter-domain communication; (iii) co-locate a traditional
task execution model with a multi-phase execution model; and (iv) overcome typical limitations of
traditional memory partitioning techniques.

However, no scheduling mechanism was integrated into the system model proposed in [17]. In
this work, we present a new scheduling technique for the proposed mixed-criticality architecture
based on a multi-phase task model to close the gap between the system design and theory. The
PL-based scratchpad that we employ can reduce memory inter-core interference but cannot
guarantee the same level of latency reduction as the standard, located close to the processor,
scratchpad memories, or caches that were used in the previous works implementing the multi-
phase model [42, 48]. Therefore, we propose a new scheduling technique that induces less low-
priority task blocking when compared with state-of-the-art approaches proposed in [45, 49], and
can take full advantage of our architecture. To summarize, the main contributions are:

(1) We extend our previous work [17] by proposing a new scheduling policy, called Lazy Load,
as well as a scheduler design and a schedulability analysis for real-time tasks running on
top of modern MPSoC platforms using a multi-phase execution.

(2) Compared to previous schedulability results in [45, 46, 48], the scheduling techniques
proposed in this work improve the schedulability performance for event-triggered mixed-
criticality applications (even 50% of improvement in terms of schedulability ratio). We
evaluate the proposed scheduling policy and contrast it with existing scheduling policies for
multi-phase task sets using synthetic task sets and hardware overheads that were measured.

(3) Differently from the previous three-phase models [48], which used TDMA arbitration with
fixed slot sizes, we propose a TDMA mechanism with a finer granularity that allows splitting
long memory transactions over multiple TDMA slots.

(4) We present an overview of the implementation, evaluation, and main results from our
previous paper [17], including an overview for the design and implementation of a hardware
block, named address translator, that prevents memory waste when cache partitioning based
on page coloring is used.

The remainder of this paper is organized as follows. Section 2 reviews the related work. Section 3
introduces the adopted system model and assumptions. Section 4 presents the response time
analysis for the new scheduling policy, Lazy Load. Section 5 discusses the design principles and
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overviews the implementation. Section 6 compares previous implementation results and shows
the evaluation of the new schedulability analysis. Finally, Section 7 concludes the paper.

2 RELATED WORK

Shared resource handling. Several recent works have proposed techniques to deal with shared
resources in multicore real-time systems at both OS and hypervisor levels. Cache partitioning
based on page coloring was used by several works to improve the predictability of multicore
real-time systems [16, 21, 52]. Page coloring together with cache locking was proposed in [28].
Similarly, some other works focused on making DRAM accesses more predictable [20, 23, 62, 63].

Regarding the use of hypervisors in multicore real-time systems, Modica et al. [31] proposed
a hypervisor-based architecture targeting critical systems similar to ours [17], including cache
partitioning for spatial isolation and DRAM bandwidth reservation for temporal isolation. The
techniques were implemented in the XVISOR open-source hypervisor and tested in a quad-core
ARM A7 processor [33]. Our hypervisor-based architecture, instead, explores the existence of
PL to handle data transfers between the processing system and programmable logic and data
prefetching. PL together with a processing system was first introduced in [27] to reduce interference
of mixed-criticality applications in uniprocessors without shared caches.

Other approaches used features available on modern multicore processors to handle contention
among the cores. MARACAS [61], for instance, used hardware performance counters (HPCs)
information to regulate the memory bandwidth of threads. Crespo et al. also used HPCs together
with control theory to regulate the memory bandwidth of critical and non-critical cores. Awan et
al. [2] proposed a memory regulation mechanism for mixed-criticality applications. vCAT used the
Intel’s Cache Allocation Technology (CAT) to provide cache partitioning for the hypervisor and
virtual machines [58]. However, this approach depends on a specific hardware feature and uses
non-real-time basic software support (Linux and Xen). vLLC and vColoring were two hypervisor
techniques proposed to enable cache-aware memory allocation for individual tasks running in a
virtual machine [22]. CHIPS-AHOy integrates hardware isolation mechanisms, such as memory
partitioning, with an observe-decide-adapt loop to achieve predictability, energy and thermal
management in a holistic hypervisor [32].

PRedictable Execution Model. Other research works proposed different task execution model
to bound or eliminate the contention for shared resources. The PRedictable Execution Model
(PREM) [3, 7, 34, 36, 53] splits the task execution into two separate phases, one dedicated for
memory transactions and another one for pure computation. During the memory phase, the data
required by a task is fetched from the shared main memory to a fast local memory (either a cache
or a scratchpad memory - SPM). During the computation phase, a task used the prefetched data
without the need to access the main memory. A memory scheduler is responsible for ensuring that
tasks do not overlap their memory phases. Several works [54-56] leverage the fact that the time
of memory fetches carried out together is less than the combined cost of individual cache misses.
The PREM’s loading phase takes the same advantage. However, as explained below, it also goes
one step further by allowing the cost of the load operations to be hidden.

Three-phase model. The original PREM model was later extended by the Acquisition Execution
Restitution (AER) [12] and three-phase [5, 48] models. Both models consist of a load phase, in
which code/data is loaded from main memory to the scratchpad (SPM), before a task starts, an
execution phase, and an unload phase in which code/data of the task is unloaded from the SPM
to main memory. A DMA component is responsible for the loading and unloading. The SPM is
divided in two halves, allowing one task to execute in one half, while DMA is active on the another
one, thus hiding the latency of loading and unloading phases. Due to its ability to avoid contention
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at the memory level and the applicability to platforms that have SPM memories, we use the
three-phase model in this work.

Scheduling approaches in the three-phase model. Several works have implemented differ-
ent scheduling approaches within the AER or the three-phase models, ranging from round-robin [14]
or TDMA [17, 48, 53, 59] arbitration among processors, to static [1, 3, 12, 29, 40, 41] or priority-
based [30, 36, 60] schedule among tasks.

The SPM-centric scheduling policies considered in the previous works load the data for the next
task to be scheduled on a CPU either at the beginning of the current task’s CPU computation
phase [46, 53] or when an SPM partition becomes free [48, 49]. This can result in the blocking
from the low priority tasks. Our scheduling policy reduces the blocking from low priority tasks
by postponing the load decision until the current task enters the final part of its execution long
enough to overlap the loading phase that is going to be scheduled.

Recently, in [9], the authors addressed the problem of reducing the priority inversion introduced
in the multi-phased task scheduling policies. When a latency-sensitive task is released, an ongoing
lower priority task loading phase is aborted, and the processor prefetches the newly released
task data. This is orthogonal to our approach, where the low-priority task blocking is reduced by
postponing the scheduling decisions until the last time instant when the memory transaction can
be hidden with the remaining computation. The schedulability analysis in [9] is formulated as a
mixed-integer linear programming optimization problem.

In [41], the authors proposed an offline scheduling optimization technique to hide the com-
munication delay for parallel periodic real-time tasks in the three-phase model. The scheduling
technique selects the SPM contents offline to hide the cost of SPM loading/unloading. Our work
focuses on run-time scheduling instead. Similarly, [42] proposes a memory-centric scheduler for
PREM-compliant tasks that do not rely on any hardware support. The work used fixed-priority
scheduling and proposed a global memory preemption scheme to improve the system schedulabil-
ity. Although the proposed work has some similarities to ours (such as the use of a hypervisor),
our work targets the three-phase model and leverages a hardware with programmable logic.

An extension to the three-phase model to support streaming tasks that allows overlapping
the memory and computation phases of segments of the same task is presented in [45]. The
approach is implemented at the compiler level (using LLVM) together with an RTOS API to handle
load/unload requests.

3 SYSTEM MODEL AND ASSUMPTIONS
3.1 Criticality Domains

Our goal is to implement multiple criticality domains on a single multicore SoC. We consider a
system with up to C criticality domains, in which C is also the total number of cores in the SoC.
Thus, each core can have its own static criticality domain, isolated from each other, both in time
and space [8].

We consider three types of criticality domains: (i) a low-criticality domain running a general-
purpose operating system (OS) - e.g., Linux — responsible for handling I/O with complex devices,
processing large amounts of data, and using general-purpose libraries and applications. No strong
temporal guarantees can be expressed due to the best-effort nature of the software stack; a high-
criticality domain responsible for running hard real-time tasks with simple 1/0 devices; and (iii)
a mid-criticality domain responsible for running tasks with intermediate criticality. Within this
domain, and unlike the low-criticality domain, temporal guarantees for real-time tasks are still
provided; however, the degree of hardware resource isolation offered to the mid-criticality domain

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.



197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous MPSoCs 1:5

is lower when compared to the high-criticality one. The number of cores allocated to high- and
mid-criticality domains is M (M < C).

3.2 Processor and Programmable Logic

We consider an embedded MPSoC platform with two main subsystems, the processor subsys-
tem (PS) and the programmable logic (PL), and a communication engine, as detailed below.

Processor Subsystem (PS): The PS has a multicore embedded processor with C cores. Each
core has a private Level-1 (L1) cache, and all the cores share a Level-2 (L2) cache, which is also
the last level cache (LLC). We adopt a widespread model in modern multicore embedded systems,
although other memory hierarchy organizations are possible. Because our goal is to define strongly
isolated criticality domains, we assume that hardware support for virtualization exists in the PS.

Programmable Logic (PL): The PL is an on-chip block of Field Programmable Gate Ar-
ray (FPGA) cells that coexists with the embedded PS cores. We consider systems where high-
bandwidth, low-latency memory interfaces connect the PS to the PL and vice-versa. While we
assume that one or more PS-PL interfaces exist, it cannot be assumed that at least C interfaces
are available. The number and capacity, in terms of memory throughput, of the PL-PS interfaces
directly impact the performance and degree of temporal isolation that can be enforced among
criticality domains. The FPGA can also provide different memory blocks, such as scratchpad (SPM)
and PL-side DRAM. Examples of existing MPSoC platforms that fit into our system model are the
Intel Stratix 10 SoC FPGA, Intel Arria 10 SoC FPGA, Intel Cyclone SoC FPGA, Xilinx Ultrascale+
ZCU102, and Xilinx Zyng-7000.

Communication Engine: We assume that a Direct Memory Access (DMA) component is
available in either the PS or the PL, and it can act as the communication engine to transfer memory
from/to PL and PS memories. Differently from the previously implemented three-phase solution
in [48], which used TDMA arbitration with fixed slot sizes, we propose a TDMA mechanism
with finer granularity and per-core slots of different sizes. In this scheme, each real-time core j is
assigned a slot size oj, with 7 = Z}‘; oj being the length of the TDMA round. We do not require
the slots to be sized based on the SPM dimension; instead, if a DMA phase cannot finish within
a slot, we break it down into multiple transfers and perform them over multiple TDMA rounds.
The price we pay is extra overhead: since it takes some time to re-program the DMA controller,
during each slot we can only perform DMA transfers for a maximum of &; time. Hence, (0j — &)
represents the DMA overhead. Assume that two consecutive (un)load phases require kK TDMA
slots. Then it is easy to see that the total transfer time A is upper bounded by:

A=k T +aj; (1)

the core receives one slot every 7~ time, but its initial slot can be wasted if the first memory phase
arrives just after the beginning of the slot.

3.3 Application Model

We make no assumption on the behavior of applications operating in low-criticality domains. They
can perform complex 1/O operations, and they can be arbitrarily memory intensive. Mid-/high-
criticality applications are structured as real-time tasks: a sequence of jobs whose activation is
time- (periodic) or event-triggered (sporadic). Mid-/high-criticality applications are also statically
assigned to cores, and locally scheduled using fixed-priority non-preemptive scheduling. Inter-task
communication is performed via message passing. Only input data —from other tasks or devices—
available by a given job’s activation instant are used by the job itself. Similarly, output data are
produced by a job only at its completion. We formalize the scheduling model in the next subsection.
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We assume that the memory footprint of mid-/high-criticality tasks is limited. On the one hand,
this allows to place code and data of real-time applications onto local memories of constrained size.
On the other hand, it allows to load and unload applications in and out of local memories —following
scheduling decisions— without incurring high overheads. Tasks follow the three-phase model, as
introduced in Section 2.

3.4 Scheduling Model

A system consists of a finite set of sporadic real-time tasks statically allocated to single processors.
Each task gives rise to a potentially infinite sequence of jobs released sporadically after some
minimum inter-arrival time T;, and each job of 7; must complete within a fixed time interval
from its release given by a relative deadline D; < T; (i.e., constrained deadlines). Each task 7;
follows a three-phase model and is hence composed of three consecutive non-overlapping phases:
a load phase (L-phase), a computation phase (C-phase) and an unload phase (U-phase). The DMA
performs the load and the unload phases and the processor performs the computation phases.
The task’s code and data are first loaded into the scratchpad during its L-phase. Then, the task is
executed on the processor during its C-phase. Eventually, after the end of the task’s computation
phase, the task’s final results are unloaded from the scratchpad back to the main memory during
its U-phase. Both DMA and processor can handle only one task at a time. We denote by C; the
worst-case execution time (WCET) of 7; computation phase, by L the longest time needed by
any task to load its code, private and input data into the scratchpad using DMA, and by U the
longest time needed by any task to unload its computation results from the scratchpad to the
main memory using DMA. We assume that load and unload phase execution times already include
the DMA access delays related to the shared memory bus arbitration (e.g., see Equation (1) for
TDMA-arbitrated access). All of the aforementioned parameters are positive integers. We assume
that a scratchpad is large enough to accommodate the code and data of any two tasks at a time.
Since the DMA operations do not involve the processor, a task load or unload phase can overlap
with another task’s computation phase. The task r; worst-case response time R; (WCRT) is the
longest response time from task release to completion of its unload phase for any of its jobs. A
task set is said to be schedulable if all jobs of all tasks always complete unload phases before their
respective deadlines, i.e., R; < D;.

Tasks are individually scheduled on each processor (i.e., partitioned scheduling) by a fixed-
priority non-preemptive scheduler. Task priorities are unique. We introduce notation hp(i) and Ip(i)
for the set of tasks with priorities, respectively, higher than, and lower than the priority of task z;
assigned to the same processor as 7;. Furthermore, we introduce notation hep(i) = hp(i) U {;} for
the set of tasks with priorities higher than or equal to the priority of task 7; that are assigned to
the same processor as 7;.

The scheduler selects the jobs for the execution on CPU and DMA. While the CPU executes a
computation phase of the task with its code and data stored in one scratchpad partition, the DMA
engine can reload another partition (i.e., unload the results of the completed task and load the code
and input data for the next task). The scheduling decisions are made as late as possible: L time
units before the end of the current task computation phase, the DMA is programmed to load the
task with the highest priority (Lazy Load). The unload operations are programmed immediately
after the end of the task computation phase. If there is no active task on the CPU, the scheduler
is invoked at the first task release. If the task execution time is shorter than the time needed to
reload the scratchpad partition, we inflate the task execution time to the end of the scratchpad
reload and consider as still running. Section 5.7 describes our Lazy Load policy in more detail.

Compared to [48, 53], where the scheduling decisions are made earlier (i.e., the next task load
phase starts when the current task computation phase starts, Eager Load), our approach reduces
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the low-priority task blocking and, as shown by our experiments in Section 6.3, improves the
system schedulability. On the downside, our scheduling algorithm requires the knowledge of the
worst-case execution times of the particular tasks and might result in the increase of the average
response times (e.g., if a computation phase executes for L time units less than its worst-case
execution time, the next load phase cannot overlap with the computation phase).

Figure 1 shows two schedules for the same sequence of tasks’ releases: one for our Lazy Load,
shown in the lower part, and one for the standard Eager Load, shown in the upper part. It should be
noted that in this example, we assume that the tasks execute with their worst-case execution times
and can have different load and unload phases lengths. The DMA and CPU activities are shown in
the respective axes, separately for Eager and Lazy Load, and the scheduling events (e.g., task release,
task completion, task load, etc.) are shown in the Sched-axis. Three real-time tasks, high-priority 77,
mid-priority 7,, and low-priority 73, are released, respectively, at time instants, 3, t;, and .

CPU 3 (%) 1
m
o
[43)
[
-
o
i
a
DMA T 3
3 T Ty
A
SCHED T T
th t Hts ty ts ts t; tg
DMA
-
N
~<
=
o
i
a.
CPU 3 7 T

load phase computation phase unload phase

partition 1 partition 1 partition 1
T load phase computation phase ¢ unload phase

partition 2 partition 2 partition 2

Fig. 1. Scheduling algorithm for three-phase task model under Eager and Lazy Load approaches.

Upon the first task release at ty, the system is idle, and both scratchpad partitions are empty,
and the scheduler immediately starts loading 7;’s data into the scratchpad. The loading completes
at f, and the task 73 computation phase starts. In the Eager Load, since the job of task 7, released
at time instant t; is already pending, the DMA starts loading 7,’s data into the second scratchpad
partition. In contrast, under the Lazy Load approach, the DMA scheduling decision is postponed
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until the time : as the high-priority task 7; was released at t;, its data will be loaded into the
scratchpad instead of mid-priority task ;, and the job of 77 will start at ts. Under Eager Load,
the 71’s jobs must wait for the 7, completion and starts at the time t3. A high-priority job of 4
suffers from priority-inversion blocking caused by two jobs (, and 73). The Lazy Load reduces the
priority-inversion blocking to one lower-priority job (r3) and results in a shorter response time of
the high-priority job of z;. In the next section, we characterize the worst-case blocking for Lazy
Load and derive a proper response time analysis.

4 SCHEDULABILITY ANALYSIS

We now introduce the response time analysis for the three-phase task model under the Lazy Load
scheduling policy described in Section 3.4. Since we employ partitioned scheduling for real-time
tasks, we focus only on the core executing task under analysis 7;. We do not consider single-task
sets as the task worst-case response time is straightforward to obtain in this case: Ry = L+ C; + U.

The scheduling problem of the Lazy Load policy is similar to non-preemptive fixed-priority
scheduling on a single processor. The difference is that the scheduling decisions are made L time
units before the end of current task execution, while in the classic non-preemptive fixed-priority
scheduling, these decisions are made at task completion. We first derive the bounds on the three-
phase task processing and blocking times. Using these bounds, we characterize the busy-period in
the context of the three-phase model and derive the upper bounds on task response times.

Processing Time: A computation phase can run in parallel with at most one unload and one
load phase. The maximal time that can elapse between the start of task 7; computation phase and
the start of the next task computation phase is given by:

6} = max(Cj, L + U), (2)

where L + U is the maximal time it takes to reload the scratchpad partition content (for the TDMA
specific delays, please refer to Equation (1) or [49]).

Blocking: The non-preemptive scheduling policy might introduce blocking due to priority
inversion. A job must wait for the last L time units of the current job execution to start its loading
phase. If the job is released right after the start of the lower priority job loading phase, then the
blocking is maximal, and any hep(i) task computation phase start is delayed by no more than:

L+ B;, (3)

where B; = max{g’j|rj € Ip(i)} is the longest scheduling interval with a computation phase of the
task having a priority lower than z;. If 7; has the lowest priority, then we consider B; = L + U as
the processor can be idle for at most one load and one unload. Consider a task that arrives too late
to be loaded (i.e., within the L-window before the current task completion), and the memory time
for loading is totally wasted. The next DMA operation is an unload, and only then can the ready
task start its load phase. During that time, the processor remains idle.

Critical Instant: With the above-obtained bounds on task execution (Equation (2)) and task
blocking (Equation (3)), we can now reduce the schedulability problem of the three-phase model
to the non-preemptive fixed-priority scheduling. A critical instant for a task is a task arrival instant
at which that task has the longest response time [26]. For our transformed model, task z;’s critical
instant is the synchronous release of all hp(i) tasks when the longest low-priority blocking B;
has just started. The reasoning is the same as in [26]. Advancing the hp(i) job release would not
increase its interference on 7;. Releasing the hp(i) job before the task z;’s critical instant could
increase the interference on 7; only if the hp(i) task could be blocked or suspended. However,
the task cannot suspend and all the tasks that might increase 7;’s response time are taken into
account. These tasks are [p(i) tasks—and the blocking that they can introduce—is captured by B;,
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the other hp(i) tasks, and the task z; itself (the analysis, if necessary, covers more than one job of
7; as further explained below).

Busy Window: A level-i busy window is a contiguous time interval within which jobs of
priority 7; or higher are processed [25]. Bril et al. [6] and Davis et al. [11] showed that under
non-preemptive fixed-priority scheduling, all task instances within the task’s busy window should
be verified. The self-pushing might cause a second or later task instance to have a longer response
time than the first task instance. Task z; during its non-preemptive execution might block the
higher priority tasks more than the lower priority tasks at the critical instant. Hence, at the next ;
release, more high-priority task interference can be accumulated (i.e., knock-on effect).

As the scheduling decisions are made earlier than the current task completion, the priority
inversion can occur more than once within the task busy window. Consider, for instance, that L
time units before task r; completion there are only Ip(i) jobs pending. A hp(i) job can arrive later
while 7; is still running on the CPU, but the DMA has already been programmed for an I[p(i) job,
leading to a priority inversion. However, if there are no hp(i) jobs pending L time units before
the 7; completion, then the jobs released later cannot be blocked more than at the 7;’s critical
instant (see Formula (3)). Therefore, we can consider the i-level busy window until no more than L
computation units are pending. The length of the i-level busy window W; can be upper bounded
by the minimum positive integer satisfying the following recurrent relation:

W, =L+ B+ Z ni(W; - 1) - Cj, (4)
jehep(i)
where
t
ni(t) = {ﬂ 5)

is the maximal number that task 7; jobs that can be released in any interval of length t > 0 and
the convergence condition for the iteration for Equation (4) is:

G
—= <1 (6)
j€hep(i) T

If the above condition is satisfied (i.e., the processor is not infinitely busy with the hep(i) jobs),
we can solve Equation (4) using iteration starting with W; = C. To find the task 7; worst-case
response time, we must check its [ W;/ T;] first instances within the longest i-level busy window.
Worst-Case Response Time: We compute the task z; k-th instance worst-case response time
upper bound R; k. Figure 2 illustrates the notation used in the further analysis (task 7; k-th instance

load phase start [; x, computation start s; s, unload start u;x, and finish time f; x).

Let [ix and s; be respectively the task 7; k-th instance loading and computation phase start.
The computation phase starts L time units after the load phase starts:

sik = lix+1L )
All hp(i) tasks released before [; x must be loaded and executed before s; 4:
Sik =L+ B+ Z nj([i,k)‘Ej‘"‘(k_ 1)-6;
jehp(i)

=L+Bi+ Y nsik—0)-G+(k=1)-G 8)
jehp(i)
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Sik Uik

CPU Ti

DMA

lik fik

Fig. 2. Task 7; response-time analysis for three-phase tasks scheduling policy under Lazy Load.

The solution of the above equation can be found through iterations with the initial value of
sik = L+ Bj + (k— 1) - C;. The k-th instance of task ; starts its unload phase at or before:

Uik = sik + Ci ©)
which completes at or before:
fir = i+ U (10)
The worst-case response time of the k-th instance of task z; is upper-bounded by:
Rik = fix = (k=1)- T; (1
Finally, the task z; worst-case response time upper bound is given by:
R = R; 12
l ke?c\%;(m & (12)

5 DESIGN AND IMPLEMENTATION OVERVIEW
5.1 Design Overview

Figure 3 represents the ideal software stack and assignment of resources to domains. The main idea
is to provide spatial and temporal isolation to higher-criticality domains. Thus, a lower-criticality
domain cannot interfere with a higher-criticality one. The opposite, however, although undesirable,
may happen.

A thin static partitioning hypervisor provides isolation to each domain in self-contained address
spaces. The partitioning hypervisor has a number of roles, including (1) providing spatial isolation
for RTOSes that do not support virtual memory; (2) partitioning cores to criticality domains; (3)
enforcing LLC partitioning via page coloring' [15]; (4) performing tasks’ relocation to/from DRAM
into local memories; and (5) providing message-passing channels for inter-domain communication.

To prevent the memory waste caused by cache coloring, we leverage the Programmable Logic
(PL) and propose a bus translator to prevent coloring-induced memory waste and, to avoid the
contention for the shared main memory, we define new hardware components in PL. Programmable
Logic (PL). We use dual-ported memories that are only accessible by a single criticality domain and
dedicated a PL-PS interface to criticality domains. On each PL-PS interface, we instantiate two
memory controllers inside the PL (one handling the accesses from application cores and another
one handling the accesses from the DMA).

Finally, to support task relocation when data and code are loaded/unloaded to/from DRAM/SPM,
we propose to compile tasks against absolute intermediate physical addresses (IPA). Then, after

TIn this work we use the terms cache coloring and page coloring interchangeably.
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Fig. 3. ldeal software and hardware stack organization.

the communication engine has located a new task at a potentially new physical location in local
memory, a hypervisor routine is invoked to map the new physical addresses (PAs) to the set of IPAs
against which tasks have been compiled. In the next subsections, we present the implementation
details of our design decisions.

5.2 Architectural Overview of the Chosen Platform

For our implementation, we have used the Xilinx UltraScale+ ZCU102 MPSoC [57]. On this
platform, the PS comprises two ARM Cortex-R5 cores, each having its own tightly coupled memory
of 128 KB. There are also four application (ARM Cortex-A53) cores, each having its own local
instruction and data cache (32 KB each). The Last Level Cache (LLC) of 1 MB is shared by all
application cores. There is no dedicated SPM provided for the application cores. The PS includes a
DDR4-2666 (main memory) controller with a data bus width of 64-bit connected to a 4GB DDR4
memory module. The PL includes a separate, 16-bit synthesized memory controller wired to a
512 MB DDR4 memory module.

Multiple interfaces between the PL and the PS exist. There are three interfaces going from
the PS ? to the PL. Out of the three, two are high-performance master interfaces (HPM0 and
HPMT1), whereas the third interface is the low-performance domain (LPD) interface. There are
also interfaces from the PL to the PS, specifically the high-performance coherent (HPC) and
high-performance (HP — non-coherent). Finally, there are 3 MB of block RAM (BRAM) inside the
PL. For the rest of the paper, we will use BRAM and SPM interchangeably.

5.3 Implementation Overview

Based on the design space exploration carried out in [17], our final hardware design is depicted in
Figure 4. We assign one of the A53 cores to be a low-criticality core, two of them to be mid-criticality
cores, and one of them to be a high-criticality core. The mid- and high-criticality cores run their
own Real-Time Operating Systems (RTOS). A few noticeable features of our proposed design are:
(i) the low-criticality domain is assigned direct access to PS DRAM, because this domain features
applications with sizable footprints; (ii) each mid- and high-criticality domain is assigned a private

2Here the direction of the interface indicates which side of the system can initiate transactions towards the other side. On
an interface from PS to PL, the PS is the master of the interface, while the PL is the slave.
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SPM,; (iii) each of these SPMs is dual-ported, and a controller is instantiated on each port to prevent
contention between DMA and core at the SPM controller; and (iv) the high-criticality domain also
occupies a dedicated PS-PL interface to access its private SPM. In our platform, the maximum size
of all SPMs is 3 MB. Thus, we set the size of the SPM used by the high-criticality domain to 2 MB,
while the size of the other two SPMs used by mid-criticality domains was set to 512 KB each.

Processing System (PS) Programmable Logic (PL)
L Ul Cortex N s SmartConnect 0 o ME)
RS 1 newne ° Nl X —»| Trans. | ctrio | Ly Partition 1
/O Domain | SPM Partition 2
LLC Linux b Ctrl 1 ——
Cort SmartC t1
ool Rss b T e | Kemel | E martConnect 4 4 . sPv |  SPM (512KE)
Wi || & Code/Data | SIN DC ctrl2 | 1 ,(Partition 1
cortex | | © | Predictable "S3Itime cores —L Cst‘:'l"; Partition 2
s = Trans. ——
as e HPMO SPM SPM (512KB)
Cortex o~ SmartConnect 2 —
A53 5 < > HPM1 Ctrl 4 Partition 1
o < » e
T - X A >< SPM Partition 2
= i b
A53 8 - > Ctrl 5

Fig. 4. Proposed system design and usage of PS-PL interfaces. Note the placement of the hardware translator
blocks (PL-side, in yellow) between the SmartConnects and SPM controllers.

We propose creating separate SPM in the PL for all the mid- and high-criticality cores. Thus, a
dedicated or fast interface such that each core can access its own SPM without seeing a delay from
another core is required. Unfortunately, there are only two high-performance (HPM) interfaces
between PL and PS available in the platform and three A53 cores. Therefore, in our design, we
assign one shared high-performance interface to two A53 cores while the third core has a dedicated
interface to its own SPM memory (see Figure 4). A low-performance domain (LPD) interface is
assigned to the DMA engine to transfer data to/from SPM/DRAM. The HPM and LPD interfaces
are connected to the dual-ported SPMs to allow the execution of a currently running task and the
loading/unloading performed by the DMA. The scheduling of the loading and unloading DMA
operations is handled by the R5 core in the I/0O domain.

In order to avoid the contention between A53 cores in different criticality domains, we partition
the LLC via coloring. The use of coloring generally results in portions of physical memory being
unusable to applications. This is generally acceptable for main memory because its size is not
constrained (few GBs). Conversely, SPMs in the PL are usually limited in size (few KBs or MBs).
For instance, if coloring is used to define four equally sized LLC partitions, this would reduce the
size of each SPM to 1/4. To avoid this side effect of coloring, we introduce an address translator
between the A53 and the SPM. Since the cache is physically indexed, coloring both the PS DRAM
and SPM is required to avoid interference (otherwise, there would be a cache interference at every
SPM access).

In the following subsections, we provide a brief discussion on each of the main components that
form our architecture. For a complete overview, please refer to [17].

5.4 Jailhouse and Page Coloring

We use Jailhouse as a hypervisor because it provides static partitioning of hardware resources and
low-overhead, which is ideal for hard real-time systems [35]. Jailhouse runs as a Linux driver, thus
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requiring at least one core to be assigned to Linux —the root cell. Once the driver is loaded, it takes
control of the entire hardware and reassigns a partitioned view of the hardware resources back to
Linux, based on a configuration file. We assign non-critical tasks to the Linux cell, while critical
tasks run on isolated partitions (cells) on top of an RTOS. The RTOS used for mid-/high-criticality
domains is Erika Enterprise version 3, which is open-source and OSEK/VDX certified [13]. Erika
supports fixed-priority scheduling and has a porting for the Xilinx Ultrascale+ platform.

To enforce strong inter-domain (inter-cell) and hence inter-core performance isolation, we
leverage page coloring [15]. We use the virtualization extensions of the processor to implement
coloring by enforcing appropriate restrictions on the color of pages that Jailhouse maps to in-
termediate physical addresses (IPAs) of virtualized cells. Specifically, we impose that physical
pages with non-overlapping colors are assigned to cells activated on different cores. The advan-
tage of this approach is twofold: (i) it allows us to localize the changes required to implement
coloring-based partitioning in a single software component (Jailhouse); and (ii) it allows deploying
unmodified and possibly closed-source OS inside our criticality domains. A similar technique was
used in [22, 24, 31]. A publicly available version of Jailhouse that implements cache coloring is the
Jailhouse-RT project [43, 44].

5.5 Address Translator to Overcome Limitations of Cache Coloring

To overcome the problem of memory waste imposed by coloring, we designed an address translation
hardware IP. The component performs physical address translation for memory transactions
originating from the PS towards the PL. To better understand how the component operates, let us
consider our specific setup.

To access an SPM with a size of 2 MB, 21 bits of the address are provided for requests originated
from the PS. With cache coloring enabled (and four colors, one for each core), only one in four
memory pages can be used, with addresses aligned at 16 KB boundaries (each page has a size
of 4 KB). The adopted solution is the following. Instead of receiving 21 bits of an address, the
translator IP receives 23 bits (8 MB) from the PS, removes the specific color bits from that, and
passes it to the SPM controller.

Given the geometry of the LLC (1 MB, 16 ways), the color bits that can be used to perform
partitioning are bits 12 to 15 of each physical address. To create four partitions, one could use
bits 12 and 13. Pages with bits [12, 13] = 0b0 would be assigned to partition 1; pages with bits [12,
13] = 0b1 to partition 2; and so on. In this way, four sequential physical pages will be assigned to
four different partitions. This is not ideal, however, because the L1-Data cache in this platform is
Physically Indexed, Physically Tagged (PIPT), and fits two pages per way. If a CPU is only given
access to one every four pages, only half of the L1-D cache will be utilized. To avoid this problem,
we use bits 14 and 15 as the LLC color bits. In this configuration, each partition is given four
consecutive pages.

Let us assume that the address of the translator in Figure 4 responds under the address range
0xA0000000 to OxAQ7FFFFFF (8 MB). Following the discussion above, bits 14 and 15 are used as
LLC coloring bits. Figure 5 shows an example where a request address of 9xA0023456 (offset
0x023456) from a core arrives to the translator IP. Bits 14 and 15 of the offset are dropped by the
translator, and the resulting offset is @x0B456 in a 2 MB non-colored space.

This PL-aided address translation is a special case of the cache bleaching technique presented
n [39]. Apart from address manipulation, memory transaction scheduling [19] and on-the-fly
data reorganization [38] are other possible PL-aided management strategies for scratchpad data.
Moreover, additional performance improvements when accessing in-PL scratchpad data can be
unlocked by leveraging coherence backstabbing and the CAESAR approach described in [37]. The
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use of the aforementioned more advanced techniques, however, is currently out of the scope of
this paper.

i Offset (0x) ;
i| ol2(3]4|5]|6]I
|

0xA0023456! P R .

ﬂ

Translator IP

Fig. 5. Translator IP operation. The two most significant bits from the fourth byte (in red) of the input address
are dropped.

In our design (Figure 4), there are three translators to handle the requests coming from each
core. With this mapping mechanism, the SPM capacity is not affected by the cache coloring (we
do not lose space), and since the translator IP is burst-capable, we do not lose bandwidth nor
increase latency in accessing the SPMs. Besides that, the area overhead of the module in terms of
the numbers of Flip-Flops (FF) and Lookup tables (LUTs) compared with the design without any
translation IP are 0.57% and 0.41%, respectively, while the block RAM cell count remains the same.

5.6 Code/Data Relocation

We use code/data relocation to support the loading and unloading of Erika tasks’ code and data.
Relocation is initiated by the Erika RTOS when its scheduler decides to load or unload a task as
required. Recall, however, that applications in Erika are statically compiled against a set of virtual
addresses (or intermediate physical addresses, since Erika does not support virtual memory). As
such, relocation is performed by modifying the mapping from intermediate physical addresses to
physical addresses (IPA—PA) managed by Jailhouse [24].

Erika first informs Jailhouse that a relocation must be performed. This is done via a hypercall
(i.e., hvc assembly instruction), which was added to Erika. In Jailhouse, two new hypercalls were
added to handle either load or unload operations. The source/destination address, the offset in
pages from the beginning of the SPM where the task needs to be loaded to/unloaded from, and
the size of the task that needs to be loaded/unloaded are passed as parameters to the hypercalls.

Once Jailhouse receives a request to relocate a task’s code/data, it performs the following steps.
First, it determines the absolute source (resp., destination) in DRAM and destination (resp., source)
in SPM for a load (resp., unload) operation. Next, it modifies the IPA—PA mapping so that the
range of intermediate physical addresses starting at the provided source address (resp., destination)
and spanning for the number of pages specified by the size parameter, map to the destination
address. After the remapping is completed, Jailhouse returns control to Erika. The effective copy of
the task into/from SPM is performed by the DMA engine.

5.7 Lazy Load Scheduler Support

The most straightforward implementation of the proposed Lazy Load policy is to rely on a time-
triggered approach: when a task starts its computation phase, the next load phase is programmed L
time units before the task’s worst-case finishing time but not earlier than after U time units (i.e., in
the case that the task worst-case execution time is shorter than L + U). The unloading phase of
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the completed job is programmed at the current job’s computation phase start. If the system is
idle and there are no pending jobs, the new task load phase starts immediately.

The time-triggered approach can result in the processor under-utilization when the tasks execute
faster than their worst-case execution times (i.e., the actual execution time can be less than the
worst-case execution time). To avoid unnecessary processor stall, the next load operation can be
triggered immediately if the current computation phase finishes earlier. Note that if there is a
way to estimate an early completion of the task at run-time, then loading no earlier than L time
before the end of the task is safe. In what follows, we detail the scheduler implementation using
this approach. Figure 6 depicts the scheduler and the various states that a task can lie in during
execution.

The scheduler maintains three queues: load queue, ready queue, and unload queue. The tasks in
the load and unload queues are waiting for the DMA, respectively, to load and unload their code
and data into/from a scratchpad partition, while the tasks in the ready queue are waiting for the
CPU to start the computation. The load queue capacity should be sufficient to hold all tasks while
the ready and unload queues should only hold a single task. A task can be in the waiting state
in each queue, as well as in the load (i.e., DMA is loading task code and data), run (i.e., CPU is
executing task computation phase), and unload state (i.e., DMA is unloading the task data). Since
we assume a single DMA engine and a partitioned system where tasks are assigned to a single
processor, there can only be one task in the run state and one task in either the unload or load
state at any given time. Efficient implementation requires an alarm timer that triggers the load of
the next task L time units before the latest finish time of the running task.

Su
CR "" —>| unload |]——> termination
unload queue

run

SRT

N
.
"" alarm Y
NER

ready queue

N
.
.
.
R
load "" activation

CL SL

load queue

Fig. 6. Task states and transitions in Lazy Load CPU-DMA scheduler for three-phase task model.

Whenever the processor becomes idle, and there is a ready task in the ready queue, the ready
task computation phase is dispatched for the execution (SR). The computation start triggers an
unload of the previously completed task (SU). We denote the task in the run state by 7,,,. When z,,,
starts execution, and the scratchpad is full, the timer alarm is set to tjoeg = max{frun — L, Srun + U}
where s, is the start of the 7,,,’s computation phase and f.;, = S;un + Crun is the 7.,’s worst-case
finish time. If only one scratchpad partition is occupied (i.e., there is no need to unload another
scratchpad partition), the timer is set to tjoqq¢ = max{frun— L, Srun}. A timer expiration signal triggers
a load of a task with the highest priority among all tasks in the load queue, if any (SL). If 7,
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completes after tjo,q4, then the DMA starts the 7,,,’s unload immediately if the DMA is idle or after
the end of the ongoing load operation. If 7., completes before t,,4, the timer is disarmed, and a
load of the highest priority task from the load queue is triggered (SL). Task 7.y, is placed into the
unload queue (CR) and, as soon as the DMA becomes available, its unload starts (SU).

Implementation Overhead. As demonstrated in Figure 6, the implementation overhead is
composed of the activities to manage the queues (load, unload, and ready queues), plus the
overhead of programming a timer and its interrupt service routine (ISR). We have measured
such overheads (obtained worst-case time from 1000 repetitions): the measured worst-case timer
programming overhead is 3.89 us, the worst-case ISR overhead is 989 ns, and the time to dispatch
the queue requests is 717 ns. Thus, the total worst-case implementation overhead is 5.59 ps.

6 EVALUATION

In this section, we present the evaluation of our system design and the proposed schedulability
test. We start showing an evaluation of the DMA performance, including the time to transfer
different data sizes from PS DRAM to the SPM and its programming overhead. We then present
the schedulability analysis evaluation through randomly generate synthetic task sets.

6.1 DMA Evaluation

The DMA engine in our architecture implements a fine granularity TDMA-based scheduling to
move data between the PS DRAM and SPM memory located in the PL. The DMA scheduling runs
on an ARM Cortex-R5 core as a bare-metal firmware (generated using the armr5-none-eabi-gcc
compiler with -DARMR5 -W -Wall -00 -g3 flags). To avoid contention between DMA transfers
and application cores, the DMA uses the dedicated low-power domain (LPD) interface.

We measured the DMA transfer time for different data sizes, extracting the average transfer time,
standard deviation (STD), and the worst-case transfer time among 1000 samples. Table 1 shows
the obtained results. Recall that 1 MB represents half the size of the largest SPM in our design.
The obtained standard deviation varies from 0.057 to 0.1. The bandwidth increases proportionally
to the amount of contiguous memory transferred.

Table 1. DMA transfer time (in us) and bandwidth for different data sizes.

) Transfer Time .
Transfer Size Average (1) ‘ STD ‘ Worst-case (i5) Bandwidth (MB/s)
2 KB 4.92 0.057 5.11 397.0
4 KB 7.15 0.04 7.27 546.3
8 KB 11.63 0.01 12.01 671.8
9.1 KB 1291 0.05 13.11 688.4
16 KB 20.62 0.08 20.96 757.8
22 KB 27.42 0.10 27.72 783.5
32 KB 38.52 0.05 38.81 811.3
1 MB 1149.44 0.05 1149.78 870.0

We denote the time to program and start a DMA transfer as the DMA programming overhead.
Considering all the experiments, the worst-case DMA programming overhead we obtained was
3.89 us. For small data sizes (2 and 4 KB, for instance), the relation between the programming
overhead and the transfer time is significant. In this case, it may be beneficial to avoid small data
transfer whenever possible or use the own task’s core instead of the DMA. We would like to point
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out that the model behaves well as long as task execution times are longer than the time required
to reload an SPM partition. As an example, if we consider a partition of 256 KB (half the size of a
512 KB scratchpad) and a TDMA slot with a transfer size of 32 KB for each core, then based on
Equation (1), we obtain oj = 38.81+3.89 = 42.7 us, 7 = 3-42.7 = 128.1 ps, and k = 2-256/32 = 16
as the number of slots required to unload/load the partition. This results in a memory reload
time A = 2092.3 us, meaning that tasks should execute for at least 2.1 ms to hide the memory time.

6.2 Case Study: Image Processing

To evaluate our system design, we consider a system where video frames captured from a camera are
processed in a high-criticality domain. Video frames are processed using the disparity benchmark
from the SD-VBS suite [51]. Disparity computes depth information for objects represented in
two input images, obtaining relative positions of objects in the scene. This kind of algorithm is
useful in applications such as cruise control, pedestrian tracking, and collision control [51]. The
objective of this evaluation is to demonstrate how the proposed system behaves in a realistic setup
and to show its limits in terms of achievable hard real-time guarantees.

To this end, the disparity benchmark is executed as a periodic task. During each activation, it
computes the disparity of two input images. At every new period, disparity reuses one image
from the previous iteration and uses a new image transferred by the communication engine. We
performed two experiments with two different image resolutions, i.e., 64x48 and 128x96 (SQCIF).
We only used these image resolutions due to limitations in the size of the SPM. Also, disparity
requires input images in the bitmap image file (BMP) format, which is uncompressed. Thus, for a
resolution of 64x48, an image has a size of around 9.1 KB, while for 128x96 an image has a size of
22 KB. We use a set of 20 images of a scene from the KITTI vision benchmark suite dataset [47] (the
2015 stereo multiview dataset). The original images had a resolution of 1241x376. We converted the
frames to the lower resolutions described above. We move the 1/0 data of the tasks from/to DRAM
to/from the SPM at the load/unload phase of the task using the same approach as described in [49].
Table 1 shows the DMA transfer time for both image resolutions (9.1 KB and 22 KB). Erika RTOS
consumes 294 KB of memory (including data and code) and it is fixed on the SPM (we do not
load nor unload code/data of the RTOS). Disparity using image resolution of 64x48 consumes
349 KB, while for 128x96 it consumes 745 KB, also including data and code. Although not required
in this case study, note that when input data is too large to fit into the SPM, it is possible to use
compiler-level techniques to break the load/unload phases into small chunks [46].

We considered four scenarios as described in [17]: Lcy-SoLo, Lcy-STRESS, OUR-SoLo, and OUR-
STRESs. We run disparity alone in the system from the PS DRAM on top of Linux (Lcy-SoLo), next
disparity runs from the PS DRAM with three bandwidth (BW) benchmark instances [18] also
executing and accessing the PS DRAM (Lcy-STRrESss). The disparity benchmark is then executed
from SPM on top of Erika/Jailhouse with coloring and using our hardware design without (Our-
SoLo) or with (OUR-STRESS) interference from the rest of the system. Ideally, when disparity
runs with contention from the SPM (Our-STREsS), it should exhibit comparable performance with
respect to the case when disparity runs without interference from the SPM (Our-SoLo). The case
when disparity runs solo from PS DRAM (Lcy-SoLo) serves as a baseline, while the case when it
runs from PS DRAM under contention (Lcy-STRESS) provides an idea of what we gain in terms of
isolation and performance thanks to the proposed set of software/hardware techniques. Periodic
execution of the disparity task was achieved under Linux by using a CLOCK_REALTIME timer
to invoke a handler at the desired frequency. The handler then releases the disparity thread
using a semaphore. The disparity benchmark, Erika OS, and the BW benchmark instances were
compiled using gcc version 5.4 for the ARM64 architecture with the -02 flag.
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First, we present the execution time of disparity in each of the four cases using an image
resolution of 64x48 in Table 2 and a resolution of 128x96 in Table 3. We measured the execution time
of 1000 individual processing jobs and extracted the average execution time, standard deviation
(STD), BCET, WCET, and variability window. The variability window is calculated as (WCETress —
BCET 1)/ WCETstess- Time measurements were taken using the processor cycle counter and
converted to ms. Note that when working at 64x48 resolution, the two input images (9 KB each) fit
into the L1 cache (32 KB). Thus, the observed worst-case when disparity is running alone is similar
for both memories (PS DRAM and SPM). However, when contention is introduced, the benchmark
suffers visible interference in the Lcy-STRESs setup. Note that there is still some contention when
disparity uses the dedicated HPM interface and cache coloring in the OUR-STRESS setup. This
may be due to contention over Miss Status Holding Registers (MSHRs) in the last level cache [50].

Table 2. Average, standard deviation, BCET, and WCET obtained from 1000 executions for the considered
four cases with input image size of 64x48. All values in ms. Highlighted values in bold are used to
calculate the variability window.

| Ley-SoLo [ Ley-STress | Our-SoLo | OUR-STRESS |

Average 15.89 17.86 15.94 16.49
STD 0.01 0.07 0.01 0.06
BCET 15.88 17.69 15.92 16.34
WCET 16.00 18.18 15.96 16.73
Var. Window 12.6% 4.83%

Table 3. Average, standard deviation, BCET, and WCET obtained from 1000 executions for the considered
four cases with input image size of 128x96. All values in ms. Highlighted values in bold are used to
calculate the variability window.

| Lcv-Sowo [ Lev-Stress | OuR-SoLo | OUR-STRESS |

Average 61.50 75.09 66.04 69.80
STD 0.02 0.34 0.07 0.26
BCET 61.45 74.32 65.79 69.04
WCET 61.80 77.09 66.30 70.59
Var. Window 20.2% 6.8%

Based on the observed WCET in the various experiments, we vary the image processing task
period and study when disparity starts missing deadlines in each case. Table 4 presents the
obtained results for image size of 64x48. We vary the frequency from 55 Hz (18.18 ms period)
to 63 Hz (15.87 ms period). A tick mark in the table indicates that the desired image processing
rate was sustainable. In other words, that no instance of disparity missed its relative deadline
(equal to the period). In contrast, a cross mark indicates that the desired rate was not sustainable.
From the results in Table 4, we can see that by running disparity without any interference, the
maximum sustainable rate is 62 Hz. However, when running under contention and with no isolation
enforcement (Lcy-STRESs case), the sustainable image processing rate drops to 55 Hz. Conversely,
a rate of 59 Hz is sustainable if disparity executes from within a high-criticality domain defined
using the proposed software/hardware techniques. Note that in this setup, each image processing
job has to wait for an image to be transferred in input by the DMA before it can start execution.
Because DMA accesses to DRAM can experience contention, a decrease in sustainable rate is
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visible between the Lcy-SoLo and the Lcy-STRESs cases. Nonetheless, this experiment shows that
our design provides better predictability and enables higher processing rates when the system is
under heavy load.

Table 4. Supported frequencies for image size of 64x48.

| Freq. (Hz) | Period (ms) [ Lcv-SoLo | Ley-Stress | Our-SoLo | OUR-STRESS |

55 18.18 v v v v
56 17.86 v X v v
57 17.54 v X v v
58 17.24 v X v v
59 16.95 v X v v
60 16.67 v X v X
62 16.13 v X v X
63 15.87 X X X X

Table 5 shows results for input images with resolution 128x96 when running the disparity
benchmark. The average execution time for disparity with image resolution of 128x96 when
running solo from PS DRAM is 61.5 ms — see Table 3, Lcy-SoLo case. Thus, we vary the frequency
from 10 Hz until 17 Hz and observe that the image processing task starts missing deadlines when
activated at 17 Hz. With 128x96 input images, the disparity benchmark under contention can
sustain a rate of 14 Hz in spite of heavy system load when isolated in a high-criticality container
(OuRr-STRESSs case). Conversely, the sustainable rate decreases to 12 Hz when no isolation is enforced.
In the Our-SoLo case, disparity can run at a maximum frequency of 15 Hz, which is slightly
lower than what can be achieved in the Lcy-SoLo case (16 Hz). The drop arises from the fact that
the SPM memory in PL is a bit slower than the PS DRAM [57]. We did not see the same behavior
for an image resolution of 64x48 due to the cache. Importantly, however, the sustainable rate
in the OUrR-SoLo case is very close to the OUR-STRESS case. Thus, it can be concluded that our
software/hardware co-design is able to deliver performance to highly critical applications that are
close to the best-case. It is also important to highlight the low performance achieved by disparity
for higher resolution images. We plan to investigate how to achieve better processing rates for
image applications on top of the platform in future work.

Table 5. Supported frequencies for image size of 128x96.

| Freq. (Hz) | Period (ms) | Lcv-Sowo [ Ley-Stress | Our-SoLo | OUR-STRESS |

10 100.00 v v v 4
11 90.91 4 v 4 v
12 83.33 v v v 4
13 76.92 v X v v
14 71.43 v X v v
15 66.67 v X v X
16 62.50 v X X X
17 58.82 X X X X
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6.3 Schedulability Analysis Evaluation

In this subsection, we present an empirical evaluation using synthetic task sets of the Lazy Load
and standard Eager Load three-phase task scheduling policies as well as tasks executing on the
system without SPM that suffer main memory congestion or run with no memory interference.
The task set utilization U is varied from 0.05 to 1.00 in steps of 0.05. For each utilization value
examined, 100000 task sets were generated. The default cardinality of the task set is n = 8. We used
the UUniFast algorithm [4] to generate a set of n task utilization values Uy, Uy, ..., Up, with total
utilization of }7_, U; = U. For each task 7, its period T; was drawn from a log-uniform distribution
in the range of [100, 1000] ms and its worst-case execution time C; was calculated as U; - T;. The
task load phase and unload phase transfer times are assumed to be equal and are drawn from a
uniform distribution in the range of [40, 200] ps (according to Table 1, this is a sufficient time to
transfer 32-160 KB). Tasks have implicit deadlines and priorities assigned by the Rate-Monotonic
policy [26]. The experiments investigate the performance of the following scheduling policies:

(LL) Our proposed scheduling policy Lazy Load described in Section 3.4. We recall that the
Lazy Load policy schedules the next load operation as late as possible.

(EL) The three-phase tasks SPM-oriented scheduling policy from [45, 46] where the DMA is
reprogrammed at the task computation phase start, hereinafter called Eager Load. The
analysis in [45, 46] supports multi-segment tasks, but it can be applied to single-segment
tasks, like those considered in this work, without any loss of precision.

(NP) A standard fixed-priority non-preemptive scheduling policy assuming an ideal system,
where tasks execute from the main memory without suffering any contention. A non-
preemptive policy is used to avoid cache-related preemption delays. The response time
analysis from [11] was applied to verify task set schedulability.

(NPc) As above, a standard fixed-priority non-preemptive scheduling policy but assuming a
realistic multiprocessor system, where tasks suffer contention when accessing main
memory. The contention-related overhead, with respect to the execution from SPM, is
assumed to be 8% of the task worst-case execution time, as demonstrated in our previous
case study in Section 6.2 (see WCET for Lcy-STRess and OUR-STRESS in Tables 2 and 3).

The first two policies (LL and EL) require task data to be transferred from main memory to SPM. We
use a TDMA-based memory bus arbitration: the processor under study is assigned a unique time
slot o within which it is granted exclusive access to the memory. The TDMA round length is then set
to TDMA fixed slot size multiplied by M = 4 (i.e., the number of mid- and high-criticality processors
available in the system). We consider four fixed slot lengths o of 25 ps, 50 ps, 100 ps, 200 ps, and max
where the slot length is set to the longest DMA transaction that the tasks can issue. If a DMA
transaction cannot fit into a single TDMA slot, we split it into multiple smaller transactions. While
doing so, we account for overhead to program the DMA. As shown in Section 6.1, this overhead in
the ZCU102 platform is 3.98 < 4.00 ps per slot (e.g., if a transaction spans over ten slots, we add an
overhead of 40.00 ps). Equation (1) is used to compute the total transfer time of load and unload
phases. Unless stated otherwise, we run the simulation for all slot lengths o and show the results
giving the best schedulability performance.

The results of our schedulability study are shown in Figure 7, which includes four graphs with
different parameters of the above experimental setup. For each scheduling policy, the percentage of
generated task sets that were deemed schedulable is shown on y-axis, while the task sets utilization
is shown on x-axis of the graphs. In what follows, we detail each set of experiments.

Varying task memory time. In the first experiment, we analyze the impact of the task memory
transfer times on schedulability. We assume four ranges from which the task memory times are
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Fig. 7. Schedulability ratios for Lazy Load (LL), standard PREM Eager Load (EL), and fixed-priority non-
preemptive policy with and without contention-related overhead (respectively NPc and NP).

drawn using a uniform distribution: [5, 40] ps, [200, 400] ps, [400, 800] ps, and [800, 1200] ps. The
other parameters have their default values. The results are shown in Figure 7a. The LL performance
for the shortest transfer times, [5, 40] ps, is close to the ideal NP scheduling. The DMA memory
transfers can be easily overlapped with the task CPU computation, and the blocking factor
they constitute is relatively small. However, increasing the transfer times results in a gradual
schedulability decrease. For the transfer times longer than 400 ps, LL cannot bring any benefit
compared to NPc where the tasks suffer main memory contention. The performance of the standard
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three-phase task policy EL is always less than the LL and NPc. The EL policy can suffer blocking
from up to two low-priority tasks [46] and the execution time reduction on the SPM assumed in
this paper is not sufficient to compensate for it.

Varying task periods. In the second experiment shown in Figure 7b, we vary the range of task
periods (i.e.,, the ratio between the maximal and minimal possible task period) and show how it
affects the task set schedulability. We consider three task periods ranges: [10, 100] ms (r = 2),
[10,1000] ms (r = 3), and [10, 10000] ms (r = 4). The other parameters have their default values.
The results of our evaluation are shown in Figure 7b. We observe that increasing the range of task
periods degrades the schedulability test performance. This is explained by the fact that tasks with
short deadlines cannot tolerate being blocked by tasks with large worst-case execution times (e.g.,
due to the task generation technique, tasks with long periods are susceptible to have also long
worst-case execution times). The gap between different policies is accordingly narrowing. The
three-phase task scheduling policies induce worst-case inflation to account for overlapping of
computation and memory phases (see Equation 2). This can degrade the schedulability when the
worst-case execution time is relatively short. In that case, a hybrid approach can be applied: tasks
with the worst-case execution times shorter than scratchpad reload time use main memory while
other tasks with longer worst-case execution times scratchpad.

Varying TDMA slot size. In the third experiment shown in Figure 7c, we assign different TDMA
slot durations and assess their impact on task set schedulability. Four TDMA slot durations o are
evaluated: 25 ps, 100 ps, 400 ps, and max. The transfer times are drawn from a uniform distribution
in the wide range of [5, 1200] ps. As shown in the first experiment, long transfer times can have
a negative impact on the performance of LL and EL scheduling policies. However, such values
allow testing TDMA slot assignment in scenarios where long transactions must be split, and
the DMA must be reprogrammed multiple times. All the other parameters have their default
values. The evaluation results are shown in Figure 7c. The schedulability improves for TDMA
slots o € {25, 100,400} ps compared to the slot length set to the largest DMA transaction max.
The latter approach results in time within a slot that might not be fully used and hence wasted.
Recall that the memory-related delay in Equation (3) for blocking depends on L (the longest
time of any task to load its code and data), which in turn depends on the TDMA slot and cycle
length (see Equation (1), by assigning longer TDMA slots, we also increase the total length of the
TDMA cycle). The performance with TDMA slots of 25 and 400 ps is similar (lines in Figure 7c
are overlapping), and the best performance is achieved with the TDMA slot of 100 ps. However,
a closer examination of the results revealed that among the TDMA slots o € {25, 100,400} ps,
none is strictly dominant. We conjecture that the DMA reprogramming overhead (4 ps) has no
detrimental effect on the TDMA performance, and splitting long transactions into multiple slots
can improve task set schedulability.

Varying number of tasks. In our last experiment, we vary the task set cardinality n within a
set {4, 8, 16}. The results are shown in Figure 7d. We observe that schedulability improves with
increasing task set cardinality. Larger task sets equate to shorter worst-case execution times and,
consequently, smaller blocking factors for non-preemptive scheduling.

In summary, the evaluations demonstrate that the LL policy implemented in the proposed
system design achieves the schedulability performance close to the ideal NP scheduling for the
tasks with transfer times below 40 ps and can mitigate the main memory congestion for the
tasks with transfer times up to 400 ps. In all of the schedulability experiments, LL performs
significantly better than the standard EL policy. Its effectiveness is due to the reduced low-priority
task blocking (two low-priority tasks in EL and only one low-priority task in LL). Finally, breaking
long memory transactions into multiple TDMA slots and thus keeping TDMA cycles short does
not incur substantial overheads and improves task set schedulability.
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7 CONCLUSION

This paper has explored the rich hardware features found in modern heterogeneous MPSoC
architectures to define multiple criticality domains for real-time applications. We have used the PL
to define dedicated PS-PL interfaces, scratchpad memories, and an address translator component
to avoid the contention for the shared main memory by applications running on different cores
and to provide a better utilization of the scratchpad when cache partitioning is applied. From the
software side, we have used an RTOS and a hypervisor to provide isolation and cache partitioning
for the criticality domains. We described our full-stack implementation of the proposed techniques
and evaluated the system using realistic SD-VBS benchmarks.

We used a TDMA-scheduled DMA engine to support external 1/0 and data transfers to/from the
mid-/high-criticality domains. We measured the DMA reprogramming overhead and showed that
splitting long memory transactions into a small batch of separate transactions can significantly
improve the system schedulability. The proposed Lazy Load scheduling policy for multi-phased
tasks aims at reducing the low-priority tasks blocking. As demonstrated by our scheduling experi-
ments, the Lazy Load significantly outperforms state-of-the-art scheduling policies for multi-phase
tasks (even 50% improvement in the terms of system schedulability) and can ensure the temporal
isolation of critical tasks.
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