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We are witnessing a race to meet the ever-growing computation requirements of emerging Al applications
to provide perception and control in autonomous vehicles — e.g., self-driving cars and UAVs. To remain
competitive, vendors are packing more processing units (CPUs, programmable logic, GPUs, and hardware
accelerators) into next-generation multiprocessor systems-on-a-chip (MPSoC). As a result, modern embedded
platforms are achieving new heights in peak computational capacity. Unfortunately, however, the collateral
and inevitable increase in complexity represents a major obstacle for the development of correct-by-design
safety-critical real-time applications. Due to the ever-growing gap between fast-paced hardware evolution and
comparatively slower evolution of real-time operating systems (RTOS), there is a need for real-time oriented
full-platform management frameworks to complement traditional RTOS designs.

In this work, we propose one such framework, namely the X-Stream framework, for the definition, synthesis,
and analysis of real-time workloads targeting state-of-the-art accelerator-augmented embedded platforms.
Our X-Stream framework is designed around two cardinal principles. First, computation and data movements
are orchestrated to achieve predictability by design. For this purpose, iterative computation over large data
chunks is divided into subsequent segments. These segments are then streamed leveraging the three-phase
execution model (load, execute and unload). Second, the framework is workflow-centric: system designers can
specify their workflow and the necessary code for workflow orchestration is automatically generated.

In addition to automating the deployment of user-defined hardware-accelerated workloads, X-Stream
supports the deployment of some computation segments on traditional CPUs. Finally, X-Stream allows the
definition of real-time partitions. Each partition groups applications belonging to the same criticality level
and that share the same set of hardware resources, with support for preemptive priority-driven scheduling.
Conversely, freedom from interference for applications deployed in different partitions is guaranteed by
design. We provide a full-system implementation that includes RTOS integration and showcase the proposed
X-Stream framework on a Xilinx Ultrascale+ platform by focusing on a matrix-multiplication and addition
kernel use-case.
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1 INTRODUCTION

An important step in the evolution of embedded computing has been — and still is in many ways —
the transition from single-core processors to multicore systems. In their first generations, these
provided I/O interfaces (e.g., PCI-e, USB) to interact with external hardware accelerators such
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as FPGA and/or GPUs. Following important hardware advancements and as new challenging
applications emerged — especially in response to the increase in popularity of autonomous vehicles
— there has been an spike in the demand for real-time, low-power data-intensive computing. To
address such requirements, hardware vendors are packing multiple processing elements, such as
CPU clusters, GPUs, programmable logic (PL), and Al accelerators, into integrated multiprocessor
systems-on-a-chip (MPSoC).

One of the common attributes of these high-performance MPSoCs is the existence of a shared
memory subsystem. This is well suited for systems where the goal is high average-case performance.
But unfortunately, this is fundamentally ill-suited for safety-critical systems. Indeed, in the latter,
worst-case execution times (WCET) are crucial for safety determination. If no measures are taken to
mitigate performance interference at the level of shared memory components, the WCET of a task
running in one of the processing elements can vary significantly as we activate more processing
elements [20]. The three-phase execution model, where an application task is first (1) loaded into a
local and private memory, (2) locally executed and then (3) written back to main memory! (load,
execute, unload) has been proposed to address multicore contention by design [2, 25].

In light of its design principles, the three-phase model represents a highly attractive workloads
management strategy especially in safety-critical systems. Therefore, it seems natural to investigate
possible adaptations to handle real-time hardware-accelerated workloads. Doing so involves solving
four main challenges. First, data movements between main memory and accelerators, and between
local memories of accelerators need to be carefully orchestrated to prevent contention. Second,
appropriate (double- or triple-) buffering mechanisms must be integrated depending on the user-
defined workflow to properly implement pipelining. Third, workflow orchestration code needs to
be auto-generated and appropriate integration with the underlying real-time operating system
(RTOS) shall be provided to support priority-driven preemption within each partition. Fourth, a
suitable schedulability analysis must be provided to aid system verification and validation.

In this work, we aim to tackle the four challenges mentioned above and propose our X-Stream
framework as a solution. We hereby describe our framework that extends the use of the three-phase
execution model to accelerator-enabled MPSoCs and offers following contributions:

e First, we provide a generic DAG formalization for parallel application tasks.

e Second, we offer a strategy to convert DAG tasks into a series of segments, each containing
all the required data transfers between local (i.e. internal to the accelerator) and global (i.e.
shared at the platform level) memory resources to translate the DAG-imposed precedence
constraints.

e Third, we describe an OS-level runtime environment to deploy the generated application
code onto a RTOS.

e Finally, we derive schedulability results and evaluate our design with a full system imple-
mentation.

2 RELATED WORK AND BACKGROUND

PRedictable Execution Model (PREM): Contention over shared memory resources such as last-
level cache (LLC), main memory, and interconnect is known to be a major source of unpredictability
in multicore systems and hence an important roadblock for the consolidation of safety-critical
applications with strict timing requirements. Researchers over the last decade have proposed various
methodologies to attack this problem from multiple angles. Solutions such as cache partitioning [8,
10, 13] have gained significant traction as a mitigation strategy for contention at the LLC. Similarly,

! After execution, what needs to be preserved is any (partial) output and state accumulated by the application during
execution that is required for successive invocations of the same or other applications.
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methods such as partitioning of DRAM banks and of the sustainable main memory bandwidth
have been proposed and analyzed in [9, 11, 32, 33]. Another class of approaches followed by the
researchers in the community pivots around the PRedictable Execution Model (PREM) originally
proposed in [15] and later extended to multicore systems [17, 31]. The first work to consider SPM
over cache for predictability include PRET [5]. In PREM, tasks execution is divided into memory and
computation phases. Main memory can only be accessed during memory phases. Hence, contention
over main memory is explicitly managed by making memory phases of different cores mutually
exclusive. To ensure fairness, TDMA or round-robin arbitration is used to decide which core is
allowed to perform a memory phase.

Three-phase Model: Given the inherently unpredictable nature of caches, scratchpad-based
multicore platforms represent alternative popular architectural designs for safety-critical systems.
These platforms provide software-managed (i.e., explicitly addressable) per-core fast memories that
are located in close proximity of each CPU. These go under the name of scratchpad memories, or
SPM for short, and are limited in size anywhere from tens to thousands of kilobytes. Because data
need to be explicitly moved in and out of an SPM, the original PREM model was extended [2] into
a three-phase execution model that involves load, execute, and unload phases for a given chunk of
computation — e.g., a job of a periodic task. The three-phase model has close similarities with the
Acquisition Execution Restitution (AER) model considered in [4]. Notably, the Scratchpad-centric
OS proposed in [25] demonstrated the concept of an operating system designed around the concept
of tasks scheduled and executed according to the three-phase model.

A key advantage of the three-phase model is the ability to offload memory load and unload phases
to a data engine such as a direct memory access (DMA). Doing so allows performing execution
phases on the CPU and load/unload phases carried out by the DMA in parallel [4, 12, 18, 24, 25, 27].
However, parallel execution of task on CPU and load/unload using a DMA requires splitting each
local SPM into two memory regions. One region is used to execute the current job, while the other
is used to load (resp., unload) the memory required (resp., produced) by the next (resp., previous)
job. To serve multiple cores, a TDMA arbitration of the DMA is implemented.
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Fig. 1. Three-Phase Execution Model TDMA with M = 2 Cores

To better understand the core principles governing the execution and analysis of applications
according to the three-phase model, consider the example provided in Figure 1. Here, we focus on
one core and a task under analysis (first row) preempted by other tasks (second row). The SPM is
divided into two regions, namely A (green) and B (red). Following [3, 23-25], we assume that the
code of each task can be divided into a sequence of S segments, which we denote as S0, S1, .. ..,SS as
discussed in [24]. A typical technique to analyze task scheduling in this setup is to split the timeline
into a sequence of scheduling intervals. A scheduling interval is delimited by either the completion
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Fig. 2. Example control-flow DAG with highlighted streaming segments (magenta).
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Fig. 3. Streaming execution timeline corresponding to the control-flow path highlighted in Figure 2

of an execution phase of a segment of the current job or the completion of a load operation for
the segment of the next job, whatever occurs later. In Figure 1, the intervals are delimited by
vertical lines and numbered Interval @© through Interval (©. The corresponding payloads to be
loaded/unloaded and executed are indicated based on the segment name - SO through S2 for the
task under analysis, X, Y, and Z for other tasks. During Interval ©, Interval ( and Interval (© the
task under analysis is executed. Whereas, during Interval (2, Interval (D and Interval ® other tasks
are executed. During each interval, (i) a segment of a job is executed from one of the SPM regions
(e.g., X in Region B during Interval @) while (ii) the data produced by the previous segment (e.g.,
S0 in Region A) is unloaded from the other region and (iii) the data of next segment is loaded (e.g.,
S1in Region A) using the DMA.

The time required to complete all the necessary DMA operations (1 load + 1 unload) in each
interval depends on the number of cores and the employed TDMA discipline. Under the coarse-
grained TDMA approach utilized in [25], the TDMA slot size o assigned to a core is sufficient to
perform the load or unload operation in a single slot. With M cores and the same slot size for
all cores, the worst-case memory time is A = ¢ - (2M + 1), as also highlighted in Interval ® in
Figure 1. Note that the first slot in Interval & is wasted because the previous interval has not yet
been completed at the beginning of the slot, hence the unload operation cannot be guaranteed to
complete within it.

Streaming Segments: In the aforementioned works [12, 24-27] the parallelism that can be
achieved has important limitations. Specifically, an execution can overlap with load/unload phases
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only if they belong to different jobs. The first work to relax this limitation was [23]. In this case, a
single job might be executed over a sequence of consecutive intervals by defining the concept of
streaming segments. Streaming segments are produced through a tiling compilation pass where a
loop processing over a large chunk of data is broken down into smaller subsets of iterations (a loop
tile), each of which is encapsulated in a segment. With the exception of the last tile in the loop,
which comprises a terminal segment, while a tile executes it is possible to load the data for the next
segment in parallel. Hence, each such streaming segment can be immediately followed by another
segment of the same task. The application logic that is not part of a loop and cannot be converted
into a sequence of streaming segments is also encapsulated into one or more terminal segments,
with the same parallelism limitations as depicted in Figure 1.

In [23] a task is characterized by a Directed Acyclic Graph (DAG) that represents its control
flow. A simplified example is provided in Figure 2. When the source node (S0) is executed, it is
uniquely determined which branch the current job will follow to reach the sink node (S6). In other
words, the possible paths in the DAG represent conditional alternatives in the execution of the job.
Some of these paths might include one or more sequences of streaming segments, as it is the case
for the S0—S1...55—S6 path highlighted in Figure 2. Source and sink nodes are always terminal
segments. Differently from [23], in this paper we do not consider tasks with alternative paths for
the sake of simplicity. Instead, we focus on jobs that consist of a sequence of processing segments,
like the sub-graph comprising segments S1-S5 in the top branch. Furthermore, we impose that each
segment, with the exception of the first one that is needed for job initialization, performs the same
type of computation on a different chunk of data. Thus one can think of the sequence of streaming
segments as multiple iterations of the same computational function invoked over different inputs.

To better understand how the three-phase model can be leveraged to pipeline computation
and data movement in a sequence of streaming segments, consider Figure 3 where we depict the
execution of segments S1-S5 from Figure 2 under the interference of other tasks on the same CPU
(segments X, Y, Z and W). In the figure, we have 11 scheduling intervals and we color-code in
magenta the data operations and segments where streaming is performed via an alternation of
swap-in/swap-out operations. The latter correspond to the load of new operands for the next
iteration and the unloading of generated partial outputs to/from the SPM region currently used
by the task. Please note that for simplicity, the schedule shown in Figure 3 does not include the
TDMA of other cores. In reality, there are other cores in the system.

Contribution: The key contribution of this paper is the proposal of a practical framework for the
adoption of the three-phase model in safety-critical systems with application workloads deployed
on user-defined hardware accelerators. Custom accelerators are a natural fit for the three-phase
model, since they are typically designed to operate on local memories, i.e. either banked SPMs
or FIFO queues. The challenge is to orchestrate accelerator execution and data movements in a
way to guarantee strict real-time requirements. Additionally, in light of the research attention
that the model has received on scratchpad-based platforms, we extend our framework to support
traditional CPUs. The latter is achieved by defining dedicated per-CPU scratchpad memories to
obtain a unified management strategy for accelerators as well as CPUs. The scratchpad-aided CPU
management strategy borrows from [23] and the existing literature referenced above. However,
what sets this work apart is that the proposed framework allows system designers to reason in terms
of application-level logic and data movements. The framework then provides end-to-end system
consolidation that also includes OS-level resource management and automatic code generation.
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3 APPLICATION AND PLATFORM MODEL
3.1 Application Model

In this work, we target platforms that allow the definition of custom accelerators and that provide
(potentially) multiple application CPUs, as described is Section 3.2. Multiple logically independent
set of applications are allowed to share the same platforms. In this case, they are isolated from one
another via the definition of a spatio-temporal partition, which we simply refer to as a partition.
Each partition is assigned dedicated hardware resources both in time and space. Spatial partitioning
is achieved by statically assigning hardware resources — e.g., accelerators, physical memory ranges,
I/O devices — to the applications sharing that partition; temporal partitioning is achieved by
ensuring that only one partition at a time has full access to shared hardware components. Most
importantly, access to the shared main memory subsystem is strictly managed such that non-
overlapping time slots are assigned to partitions during which they are allowed to access main
memory. In other words, a time division multiple access (TDMA) scheme is employed to schedule
access of partitions to main memory. Partitioning ensures freedom from interference, i.e., each
partition is unaffected by the behaviors of other partitions.

Because partitions behave independently from one another, for the purpose of our analysis, it
is enough to reason on the workload deployed on a single partition. To simplify the discussion,
we further assume that the partition of reference contains one general purpose CPU and an
arbitrary number of special-purpose accelerators. We then consider a set of sporadic real-time
tasks T’ = {1, ..., 75} bound to the partition under analysis. T; denotes the minimum inter-arrival
time or period of task 7; and D; represents its relative deadline: each task releases a potentially
infinite number of jobs, where the activation time of successive jobs is separated by at least T;
time units, and each job must complete at most D; time units after its activation. We assume
constrained deadlines, i.e., D; < T;. We omit the index i when referring to a generic task to prevent
notation cluttering. The generic task 7 is internally structured as a loop/sequence of I iterations
of the same computational function ¥ (X), where X represent the set of data operands required
to compute 7. The data operands accessed during each iteration are a fraction of a larger input
to be batch-processed. A typical example are vision kernels executed over a sequence of video
frames. We assume no data dependencies between successive iterations, so that we can pipeline
the execution over multiple processing elements — e.g., specialized accelerators and CPUs 2 We
use P to denote the set of elements, where CPU € P represents the CPU in the partition under
analysis, while the other elements in P are accelerators.

We use set A = {ay, ay, ... ar} to denote the data elements (structs, arrays, matrices, or cor-
responding tiled subarray/matrixes) used in each iteration. These k data elements include any
intermediate data produced in the current iteration and hence it holds that X C A. The computa-
tion in each iteration is expressed by a DAG ¥ = (V, E), where V is a set of vertices representing
operations on data, and E is a set of edges representing data movements / dependencies. More in
details, each vertex v € V is characterized by a processing element v.PE, where v.PE € P, meaning
that v is bound to execute on a specific accelerator or on the general-purpose CPU.

Because each vertex corresponds to an intermediate computational block to compute 7, we use
v.func(-) to denote the data processing function performed by v. When v.PE = CPU, v.func(-)
corresponds to the semantics of a portion of binary code that is compiled to executed on the CPU.
When v.PE # CPU, the function corresponds to the operation performed by an accelerator. The
function takes a variable number of parameters depending on the operation-specific number of
input and output data elements. Data elements are uniquely identified in terms of their location

2This assumption could be relaxed to only exclude dependencies that would stall the pipeline. In particular, read-after-read
(RAR) dependencies are always acceptable.
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in main memory. For simplicity, we impose the constraint that no two vertexes can use the same
accelerator. Formally: Vo', 0" € V : 0" # v = v’ .PE =0v” .PE=CPU V v’ .PE # v" .PE.

Each edge e € E is characterized by source e.s € EU {1}, destination e.d € EU {1}, and data
element e.a € A. An edge e with e.s € E A e.d € E represents a data dependency and precedence
constraint between the two vertices, where e.s.func(-) (that is, the function performed by the
source vertex) first writes to data element e.a and then e.d. func(-) (the function of the destination
vertex) reads e.a. An edge e with e.s =1 Ae.d € E represents a read dependency for e.d.func(-) on
input data e.a € X in main memory; an edge e with e.s € E A e.d =L represents a write dependency
for e.s.func(-) on output data e.a € X in main memory. We use function use(v) to denote the set
of data items used by v; formally, a € use(v) © Jec E: (es=vVed=0) Ae.a=a.

Given two vertices v/, 0"/, we say that v’ is an immediate precedecessor of v”’ (and equivalently, v’
is an immediate successor of v’) if there is an edge between v’ and v”: Je € E : e.s =0’ Ae.d =0";
we write v’ € pred(v’’) and 0"’ € succ(v’). We say that vertex v is a source if it has no predecessors.
We say that vertex v is a sink if it has no successors. Finally, for computational function ¥ to be
valid in our model, it must be deterministic: this means that the result of the computation must be
independent of the order in which individual processing functions are executed and data elements
are read/written, as long as all precedence constraints encoded by the edges in E are respected. This
requires two conditions. First, a vertex v cannot have two incoming edges e’,e”” : e’.d =e”.d = v
for the same data element: e’.a = e’’".a; otherwise, we would not know whether v. func(-) should
read the value of a from e’ or e”’. Second, for any pair of vertexes v’, 0", if v’ has a write dependency
to main memory for a data element a (i.e., Je’ € E: e’.s =0’ Ae’.d =L Ae’.a = a), and v"’ has either
a read or write dependency to main memory for the same data element (i.e, Je” € E : ((¢”.s =L
ANe’d=0v")V (e s=0v"Nne"d =J_)) A e”".a = a), then there must exist a directed path in the
DAG to which both v and v” belong; this guarantees that the order in which the dependencies to
main memory are handled is specified by the DAG precedence constraints.

Example: To better understand the proposed DAG-based model, let us introduce a concrete
example that will be used throughout the paper. We consider a set of data elements X = A =
{A, B, C}, where A, B, and C are square matrices. The computation consists of a matrix multiplication
and addition: ¥ (A, B,C) = (A X B) + C. We use matrix-multiplication and addition kernel as an
example because these operations are building blocks of current state-of-the-art neural networks
and many signal processing applications such as convolution and others. Moreover, it provides
a basic example of which part of the kernel needs to be accelerated and which part can execute
on the CPU as we will show later in the paper. It should be noted that a user can always take a
neural network and accelerate first few layers which are generally very computation intensive on
the accelerator and last few layers on the CPU. However, exploring this a part of future work and
is out of the scope of this paper. The corresponding DAG representation is depicted in Figure 4
(note that some of the DAG parameters will be computed in next Section 4). The DAG has two
vertices, source v; and sink v,. The first vertex corresponds to the v;.func(A, B,O) = (O := A X B)
sub-operation and is bound to be executed on a matrix multiplication hardware accelerator (i.e.,
v1.PE = ACC). The second vertex represents the v,. func(O,C) = (O := O + C) sub-operation and
is executed on the CPU (v;.PE = CPU). Note that edges e;, e; and e4 do not have a source vertex,
meaning e;.s = ez.5 = e4.s =L1; edge es does not have a destination vertex, meaning es.d =1. To
compute vy, input data A and B needs to be moved from main memory to the SPM of the accelerator
by the GDMA; hence, edges e; and e, represent global load operations. Similarly to compute vy,
the operand C needs to be moved from main memory to the SPM of the CPU by the GDMA (edge
e4). The operand O corresponds to data produced in output by v;.func(A, B, O) and thus it can be
transferred from the accelerator’s SPM directly into the target CPU’s SPM by the LDMA; hence,
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edge e; represents a local data transfer. Finally, the output of v;. func(O, C) needs to be written
back from the CPU SPM to main memory through the GDMA; hence, edge e5 represents a global
unload operation.

LOCAL F(A,B,C)=(AxB)+C DAG Parameters
TRANSFER : A :
B . "
: : Lv,)=1
CLoBAL 4 N\ L(v;) =2

TRANSFER

use(v,) ={A, B, O}
use(v,) = {0, C}

triple(v,, A) = false
tripe(v,, B) = false
tripe(v,, O) = false
triple(v,, C) = false
triple(v,, O) = true

Fig. 4. DAG model for computational function F(A,B,C) = (AxB)+C

3.2 Reference Platform

We consider a multiprocessor system-on-chip (MPSoC) platform, composed of two main super-
blocks: (1) an array of special-purpose user-defined accelerators, and (2) a set of M general-purpose
application CPUs, divided into M partitions. An example is depicted in Figure 5. One key requirement
in the proposed framework is the ability to move data close to the corresponding processing element
before data items are consumed. This is in match with the typical processing model of specialized
accelerators, where data is first moved to either accelerator’s local memory or to an input FIFO,
and then the accelerator accesses the local resource.

Partition 1 Partition M

nf‘
.y
)

CPUM SPMl

“m e

CPU 1 SPM

Main
Memory

Fig. 5. Block Diagram of Reference Platform

Thus, we assume that each accelerator features one or more local SPMs. Each SPM stores a
set of data buffers, which are used to receive data elements the accelerator reads from and store
data elements it writes to. An accelerator can access a data buffer either randomly (through a
memory interface) or sequentially (through a FIFO streaming interface). All the SPMs are byte-
addressable, memory-mapped, and accessible by DMA engines. We also assume that the SPMs
are dual-ported, so that the accelerator can read/write from/to a data buffer while a DMA engine
accesses a different data buffer in the same SPM. While not required, we are particularly interested
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in supporting development workflows where custom accelerators are designed through HLS. This
is not a problem because two major FPGA manufacturers, Xilinx and Altera, provide such tools
through their respective Vivado HLS and Intel HLS tools.

In order to incorporate CPU processing in our model, we also assume that each CPU is associated
a private SPM. While general-purpose CPUs do not always have local SPMs, we consider platforms
in which user-defined hardware blocks can be instantiated, for example on FPGA. Following the
three-phase model, all instructions and data used by a CPU while executing a task segment must
be contained in the CPU’s SPM. Similarly to the accelerators’ SPMs, the CPUs’ SPMs are also
dual-ported and accessible by DMA engines. In addition, each CPU’s SPM is divided into two
regions, so that the CPU can execute a task from one region while a different task is loaded in the
other region. Each region contains multiple data buffers for the data elements accessed by the CPU.

Access to main memory is performed through a Global DMA engine (GDMA). The GDMA is
responsible for moving data (i) from/to main memory (ii) to/from an accelerator’s local SPM or
a CPU’s local SPM. Furthermore, we assume that each partition is associated with a Local DMA
(LDMA) engine that can be used to move data directly between two SPMs within that partition,
either the CPU’s SPM and an accelerator’s SPM or the SPMs of two different accelerators. Only
one GDMA transfer can be carried out at a time. However, since each processing element is
statically assigned to one partition, multiple LDMAs can be operated in parallel with the GDMA as
long as the LDMA transfers target different SPMs than the GDMA. We enforce such constraints
by implementing a TDMA-based schedule of the DMAs, where the partition under analysis is
assigned a slot of length ¢ every X time units. Specifically, a partition uses the GDMA during its
assigned TDMA slot, while it uses its LDMA during the interval of duration ¥ — ¢ corresponding
to slots assigned to other partitions. Finally, an interconnection is needed to connect the various
components. We do not pose restrictions on the architecture of the interconnection, e.g. a crossbar,
multi-bus, NoC, etc, as long as it does not restrict parallelism between GDMA and LDMA transfers.

4 TASK TRANSFORMATION AND AUTOMATIC THREE-PHASES TASK SYNTHESIS

In this section we describe how applications that follow the generic DAG-based model described
in Section 3.1 can be transformed to execute on the platform described in Section 3.2 following
the three-phase model [23, 25]. Recall that a task 7 is expressed as a sequence of [ iterations of
the DAG processing blocks that correspond to the aforementioned #(X) function. The output
of the transformation needs to be a sequence of streaming segments (see Section 2), each where
some processing and the necessary data transfers are performed. The key idea is that we can treat
vertexes and edges in the DAG as stages in a pipeline, so that each segment can execute multiple
stages in parallel on different iterations.

Figure 6provides the result of the transformation into the three-phase model of the DAG in
Figure 4, where the ¥(A,B,C) = (A X B) + C function is repeated for a number of iterations
I = 4. First note that when translating a generic task 7 to execute on the considered platform (see
Section 3.2), a first special segment, namely S0, needs to be introduced. Indeed, when a new job of
7 is released, the very first step must be dedicated to loading the code itself of the task—Interval (.
Only once the code starts executing (Interval (2)), the actual streaming—and hence the remaining
segments—can be initialized and set in motion. Following our example, the first load is for operands
AW and B during Interval ®), where the superscript notation refers to the iteration number,
from 1 to 4. This load allows the accelerator to perform the first matrix multiplication during
segment S1—Interval (4. At the same time, during Interval (4, the operands A® and B® for the
next iteration are loaded. Next, in Interval (3, the operation (0 := A(® x B(?) is performed on
the accelerator. Simultaneously, a local transfer is performed to pass O!) from the SPM of the
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accelerator to the SPM of the CPU. Because there is no guarantee about when the local transfer
will exactly occur during Interval &), CPU processing can only start in the successive Interval (©.
To allow the operation (O(l) =00 4 C(l)) to be carried out on the CPU during Interval (©, the
operand C is also loaded in Interval &. The final output, i.e. the result of T(A(l),B(l), C(l))
is written back to main memory during the unload operation depicted in Interval (7. The same
sequence of operations applies until Interval © is reached where the last (0¥ := 0¥ 4+ )
operation is performed on the CPU and its result is moved to main memory in Interval (19). Note
that we assume that all load operations for a segment can complete within one TDMA slot of size
o; the same applies for the unload operations. Similarly, all local transfers must complete within
one window of length X — 0.
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Fig. 6. Pipelined Streaming Execution Example.

In the following, we provide a general formulation for the transformation described above. We
first determine the number of segments S for the task, and then specify the operations carried
out in each segment. For ease of explanation, in this section we adopt an abstract model, where
each segment is associated with a list of operations, and we use function append(s, op) to denote
adding operation op to the end of the list for segment index s. However, in Section 5 we will then
show how operations are directly translated to actual API calls invoked by the CPU based on our
OS-level support layer. Therefore, our proposed algorithm can be used to automatically generate
the CPU code for each task, including allocating buffer, invoking the execution of each processing
function, and scheduling data movements.

More in details, we consider the following operations: (i) v. func(params) denotes the execution
of processing function v. func(-) of CPU-bound vertex v. Here, params is a set of pointers to buffers
allocated in the CPU SPM that correspond to the function parameters. (ii} execute(v.PE, params),
where 0.PE is an accelerator. In this case, params is a set of IDs of buffers allocated in the accelera-
tor’s SPM(s) to hold the function parameters. (iii) transfer_local(spm_source, spm_dest) denotes
a local transfer between source SPM buffer spm_source and destination SPM buffer spm_dest.
(iv) transfer_load(mem_source, spm_dest) denotes a global load between main memory address
mem_source and SPM buffer spm_dest; and (v) transfer_unload(spm_source, mem_dest) denotes
a global unload operation.

Finally, the placement of the transfer_ operations must be carefully considered. CPU and
accelerator execution are under the control of the task, but the same is not true for GDMA and
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LDMA transfers: both DMAs must respect the TDMA schedule, and furthermore as we will detail
in Section 5, the schedule of DMA transfers must be modified in case of task preemption. Hence, in
our system memory transfers are controlled by the scheduler in the OS. As a consequence, for the
OS to know which transfers must be performed during a scheduling interval, the task must issue
transfer operations during the segment executed in the previous interval. Referring to Figure 6
as an example, the transfers of C(, A®) and B®® performed in Interval & must be programmed
in segment S1 during Interval (4. Note that no segment of the task under analysis is executed
in Interval (®; hence, the transfers performed during both Interval 3 and Interval (4 must be
programmed in SO. For this reason, the special segment SO supports two lists of transfer operations:
we use index s = —1 to refer to the list of transfers performed during Interval 3®), and s = 0 for the
list of transfers performed in Interval (@.

4.1 Pipelining and Number of Segments

We begin by determining the number of segments S required by the task. As shown in the example
in Figure 6, every data dependency between two vertices in the DAG adds two stages to the
processing pipelining: one stage for the local data transfer, and another stage for the execution on
the dependant vertex. More in general, the number of stages depends on the maximum length of
any path in the DAG. Hence, let us use L(v) to denote the level of vertex v, that is, the length of the
longest path in number of vertexes between any source and v included; formally, L(v) = 1ifvisa
source, otherwise L(v) = 1+ maXy cpred(0){L(v’) }. The number of segments is then equal to one
(for Segment S0), plus the number of iterations I, plus 2 additional segments for each vertex level
past the first:

S=1+1+2- (mg;({L(v) —1}). (1)

Following the same logic, the i-th instance of processing function v. func(-) is executed in segment
index s, withs =i+2- (L(v) — 1).

Example: note that in Figure 6, where L(v;) = 1 and L(vz) = 2, v;.func(A, B, O) is executed in
segments S1-S4, while v,.func(O, C) is executed in segments S3-S6. The total number of segments
is1+4+2-(2-1)=7.

4.2 SPM data buffering

At compile time and for each vertex v, buffers are allocated at static addresses in the SPM of v.PE to
hold the data elements used by processing function v. func(-) [24]. Each buffer is associated with a
numeric ID. As discussed in Section 2, previous work used a double-buffering approach, where the
current segment executes using the data in one buffer, while the other buffer is used for transfer
operations.

More in general in our model, the number of buffers required by a data element a € use(v)
depends on the number of transfers for a. If v has only either one incoming edge or one or
more outgoing edges for a, then double buffering is always sufficient. However, if v has both
one incoming and one or more outgoing edges for a, then the order of data transfers must be
carefully considered. First, consider the case where the edges represent global transfers. Then,
double buffering can still be used as long as a is unloaded from v, thus leaving the transfer buffer
free, before it is loaded in the same buffer. The same consideration applies when all edges represent
local transfers, as long as outgoing transfer(s) from o to the successor vertex(es) are performed
before the incoming transfer from the predecessor vertex to v. As we will show in Section 5.3, our
scheduling logic can indeed guarantee that such transfer order is respected, with the exception of
any vertex v bound to an accelerator that receives an incoming local transfer from a CPU-bound
predecessor. In such a case, triple buffering is required to avoid overwriting the current transfer
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buffer. Similarly, note that the relative order of global and local transfers cannot be guaranteed:
this is because they are performed in different TDMA slots which are not synchronized with the
interval start/end times. Hence, if an incoming edge calls for a local transfer while an outgoing
edge calls for global transfer or vice-versa, then triple buffering is also required. Formally, we
use predicate triple(v, a) to determine whether vertex v requires triple buffering for data element
a € use(v) : triple(v,a) & Je',e” € E:e’d=e¢"s=vAe’.a=e"a=aA ((0.PE#CPUAE s €
EAe’sPE=CPU)V (e/s=L Ae”.d€E)V (e/s€ENe”’.d=L1)).
Example: for the example in Figure 4, it holds triple(vs, O) = true, because v2 has both an
incoming local transfer for O, and an outgoing unload. All other data elements and vertexes can use
double-buffering; in particular, note that for the same data element O, it holds triple(v;, O) = false.
We use function mem(a) to denote the address of data element a in main memory; we use
function spm_id(v, a, k) and spm_addr(v, a, k) to denote the ID and the SPM address, respectively,
of the k-th SPM buffer of a for v. Following the discussion above, if triple(v, a) = true, then the
index k ranges from 1 to 3, otherwise k ranges from 1 to 2. For the first iteration, i.e. a  buffer
index k = 1 is used: for the second iteration a'?, buffer index k = 2 is used; while in general
for the i-th iteration a'?, buffer k = index (v, a, i) is used, where index(v,a,i) = (i — 1)%3 + 1 if
triple(v, a) = true, and index(v, a,i) = (i — 1)%2 + 1 otherwise.

4.3 Graph Transformation

Before we list the operations in each segment, a final graph processing step might be required
to avoid increasing buffer space. Specifically, consider Figure 7(i), which depicts the DAG for an
example computational function with three vertices. Here, vertex v; transfers data element as
to v3; however, we have L(v;) = 1 and L(v3) = 3, meaning that v; and v; are not consecutive
processing stages in the pipeline. This creates a problem with the local transfer of as between v,

and v3. Consider for example the first iteration agl) gl)

3 executes on agl) in segment S5. If we perform the local transfer of agl) in parallel with segment
S2, v3 needs two extra buffers for as; if we perform it during S4, instead vy needs two extra buffers;
and if we perform it during S3, both v; and v require one extra buffer.

To avoid such complexity, for each local transfer edge e : e.s, e.d € E such that L(e.d) > L(e.s)+1,
we perform a graph transformation. Specifically, we remove e and substitute it with two edges
e',e” withe's=es,e’.d=1,e"s=1,¢e".d =ed e’ .a=e".a=e.a;basically, we change the local
transfer with a unload and a load to main memory. Figure 7(ii) shows the transformed graph from
Figure 7(i). Note that to remain consistent, the definition of triple(v, a) must be applied to the
transformed graph.

: here, v; executes on a, ’ in segment S1, while

4.4 Three-phase Task Synthesis

We can now present Algorithm 1 that generates the segments for computational function ¥ given
a number of iterations I. The key idea is to process the vertices of ¥ in reverse topological order
(i.e., starting from the sinks); then for each vertex we add operations for executions, outgoing
local transfers, unloads, and then loads in this order to each corresponding segment list. There
is no need to add calls for incoming local transfers because the data transfer will be added as an
outgoing transfer when processing one of the immediate predecessors of the vertex later on. The
reverse topological order ensures that for each vertex, outgoing local transfers are performed before
incoming ones; as discussed in Section 4.2, this is required to support double buffering.

For each vertex v, the algorithm enumerates all I iterations. For the i-th iteration, the segment
index s where v.func(-) executes is computed on Line 4 as discussed in Section 4.1. On Lines
5-14, the execution of v. func(-) is added to the operation list for segment s. Note that the params
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(i) Transformed DAG after removing non-consecutive local transfers

Fig. 7. Example DAG Transformation. (i): Original DAG. (ii): Transformed DAG after removing non-consecutive
local transfers.

set is constructed by listing all data elements in use(v), and employing functions index(v, a, i)
and spm_id (v, a, k,) (resp., spm_addr(v, a, k;)) to determine the buffer ID (resp., buffer address)
where a‘? is located in the accelerator’s or CPU’s SPM. In the same manner, Lines 15-27 add to
the operation list outgoing local transfers, unloads and loads. As discussed at the beginning of
this section, transfers must be programmed in the segment before the interval in which they are
performed. Hence, outgoing transfers and unloads are appended to segment s at Lines 18 and 22,
while loads to segment s — 2 at Line 26. Specifically, note that for L(v) = 1,i = 1, we obtain s = —1
(example: loads of AW and BY in Interval @) in Figure 6), while for L(v) = 1,i = 2, we obtain
s = 0 (loads of A®® and B? in Interval @): these are the loads operations programmed during SO
to start the pipeline.

5 OS SUPPORT AND SCHEDULING

In this section, we discuss how the proposed pipelined, streaming model detailed in Section 4 can be
realized at the OS level by modifying the programming interface and scheduling logic introduced
in [23]. We then show how to test the schedulability of the resulting system on a given core under
analysis.

5.1 Streaming API

Table 1 summarizes the proposed API to handle the segment streaming on both CPU and hardware
accelerators, together with the corresponding operations used in Section 4. Note that there is
no equivalent APT call for the execution of v. func(-) on a CPU, since it simply corresponds to
a user-level function call. The RTOS tracks the buffers used by each task through the use of a
streaming table (ST). An entry in ST is generated when allocate_buffer is called in segment SO
and a buffer ID is returned.

Similar to [23], the RTOS manages DMA transfers of behalf of a task through the use of two
different queues: Streaming Wait Queue (SWQ) and Streaming Dispatch Queue (SDQ). We use two
separate queues so that transfer requests made by the current segment can be enqueued in the
SWQ, while the OS processes requests from the SDQ. The scheduler, as will be shown in Section 5.3,
and the dispatch function move the requests from the SWQ to the SDQ. Specifically, the dispatch
function informs the OS that the transfers issued so far are needed by the next segment; it is
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Algorithm 1 Automatic Segments Code Generation

1: procedure GENERATESEGMENTS(F, I)

2 for v € V in reverse topological order do

3 fori=1;i<L;i—i+1do

4 s—i+2-(L(v)—-1)

5: paramsgee <— 0

6 paramscpy — O

7 for a € use(v) do

8 kq < index(v, a,i)

9 paramsgee «— paramsgee U spm_id(v, a, kq)

10: paramscpy < paramscpy U spm_addr (v, a, kq)

11: end for

12: if v.PE = CPU then > Execution
13: append(s,v.func(paramsgec))

14: else

15: append(s, execute(v.PE, paramscpy))

16: end if

17: forecE:es=vAedeEdo > Local Transfer
18: ks = index(v, e.a, i)

19: kg = index(e.d, e.a, i)

20: append(s, transfer_local(spm_id(v, e.a, k), spm_id(e.d, e.a, ky)))

21: end for

22: forecE:es=vAed=1do > Unload
23: ks = index(v, e.a, i)

24: append(s, transfer_unload(spm_id(v, e.a, ks), mem(e.a)))

25: end for

26: forec E:es=1 Ae.d =vdo > Load
27: kg = index(v, e.a, i)

28: append(s — 2, transfer_load(mem(e.a), spm_id(v,e.a, ky)))

29: end for

30: end for

31: end for

32: end procedure

used to separate the load operations in the first list of SO (s = —1 in Algorithm 1), which are
needed in S1, from the load operations in the second list of SO (s = 0), which are needed in S3. The
end_segment function informs the OS that the current segment has completed execution; if there
is still any pending GDMA or LDMA transfer in the current interval, or any accelerator has not
finished executing, the CPU is suspended until all GDMA and LDMA transfers complete and all
accelerators finish executing. We assume that the GDMA and LDMA generate an interrupt when
they finish performing a transfer; similarly, each accelerator generates an interrupt when it finishes
executing. Then, the OS scheduler is invoked. Finally, the wait function marks the end of the last
segment of the task. In our design, we also support polling to determine the completion status of
the accelerators.

As it will become clear in Section 5.3, an accelerator cannot be used concurrently by multiple
tasks. Therefore, for simplicity we assume that each accelerator is accessed by a single task. Such
assumption could be relaxed to allow multiple tasks within the same partition to share an accelerator
by implementing a locking API, so that a job acquires all required accelerators upon starting and
releases them upon completion. The schedulability analysis would then need to be modified to
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incorporate the blocking time induced by locking. We discuss how the locking protocol could be
implemented and its impact on the analysis in Section 5.4.

Table 1. Proposed streaming API.

API Operation Description
buffer_id = allocate_buffer(uint64_t “address): | - address is a static address in the SPM of either the CPU or an accelerator
execute_acc(int acc_id, int id1, ...) execute acc_id is the unique ID of the accelerator
N - ’ id1, ... is a list of buffer IDs on which to execute the accelerator
load_buffer(int id, uint64_t *src, int size); transfer_load Reads size in bytes from the src address in main memory and writes at ID buffer in the SPM of CPU or accelerator
unload_buffer(int id, uint64_t *dst, int size) ; | transfer_unload | Writes from the ID buffer in the SPM to the dst address in main memory
transfer_local(int src_id, int dst_id, int size); transfer_local Transfer from src_id buffer to dst_id buffer
dispatch(); - Force all buffer DMA requests to move from waiting queue to dispatch queue
end_segment(); B End segment execution
wait(); - End job and wait until the next task activation

5.2 Example: ¥(A,B,C) = (AXB)+C

For added clarity, Listing 3 details the generated code for the example introduced in Section 4.
We show the original code of a software-only, non-streaming implementation of the task in
Listing 2. Here, matrix_multiply implements the O := A X B processing function in v;, while
matrix_sum_inplace implements the O := O+ C processing function in v,. In the code in Listing 3,
constants ACC_A1 to CPU_O3 represent the static address of each buffer in the SPM.

Listing 1. Preamble code for ¥ (A, B,C) = (A X B) + C operation.
#define I 4
#define ROWS 64
#define COLS 64
#define SZ (sizeof(float))

float A [I][ROWS]
float B [I][ROWS]
float C [I][ROWS]
float O [I][ROWS]

COLS]; /+ Input Matrix «/
COLS]; /+ Input Matrix =/
COLS]; /+« Input Matrix =/
COLS; /+ Output Matrix «/

Listing 2. CPU code for task implementing ¥ (A, B,C) = (A X B) + C operation.

/+ Preamble code. See Listing @\ref{lst:preamble}@. +/
int main() {
while (true) {
for (i = 0; i < I; ++i) {
matrix_multiply (&A[i][0][0], &B[i][0][0], & [i][0][0]);
matrix_sum_inplace(&O[i][0][0], &C[i][0][0]);
}
wait ();
}
return EXIT_SUCCESS;

Listing 3. CPU + Accelerator streaming code for task implementing # (A, B,C) = (A x B) + C operation.

/+ Preamble code. See Listing @\ref{lst:preamble}@. +/
int main() {
while (true) {

/« Segment SO Begin «/
acc_A1_id = allocate_buffer (ACC_A1); acc_A2_id = allocate_buffer (ACC_A2);
acc_B1_id = allocate_buffer (ACC_B1); acc_B2_id = allocate_buffer (ACC_B2);
acc_O1_id = allocate (ACC_O1); acc_02_id = allocate (ACC_0O2);
cpu_C1_id = allocate_buffer (C1); cpu_C2_id = allocate_buffer (C2);
cpu_O1_id = allocate_buffer (CPU_O1);
cpu_0O2_id = allocate_buffer (CPU_O2);
cpu_03_id = allocate_buffer (CPU_03);
load_buffer (acc_Al1_id, &((uint64_t)(A[0][0][0])), ROWS«COLS+SZ);
load_buffer (acc_B1_id, &((uint64_t)(B[0][0][0])), ROWS«COLS+«SZ);
dispatch ();
load_buffer (acc_A2_id, &((uint64_t)(A[1][0][0])), ROWS«COLS+SZ);
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load_buffer (acc_B2_id, &((uint64_t)(B[1][0][0])), ROWS«COLS+SZ);
end_segment ();

/+ Segment S1 Begin «/

load_buffer (cpu_C1_id, &((uint64_t)(C[0][0][0])), ROWS«COLS+SZ);
execute_acc(mm_id_accelerator, acc_A1l_id, acc_B1_id, acc_O1_id);
transfer_local (acc_O1_id, cpu_O1_id, ROWS«COLS+SZ);

load_buffer (acc_A1_id, &((uint64_t)(A[2][0][0])), ROWS«COLS+SZ);
load_buffer (acc_B1_id, &((uint64_t)(B[2][0][0])), ROWS«COLS+SZ);
end_segment ();

/= Segment S2 Begin «/

load_buffer (cpu_C2_id, &((uint64_t)(C[1][0][0])), ROWS+COLS+SZ);
execute_acc(mm_id_accelerator, acc_A2_id, acc_B2_id, acc_02_id);
transfer_local (acc_O2_id, cpu_O2_id, ROWS«COLS+SZ);

load_buffer (acc_A2_id, &((uint64_t)(A[3][0][0])), ROWS«COLS+SZ);
load_buffer (acc_B2_id, &((uint64_t)(B[3][0][0])), ROWS«COLS+SZ);
end_segment ();

/« Segment S3 Begin «/

matrix_sum_inplace (CPU_O1, CPU_C1);

unload_buffer (cpu_O1_id, &((uint64_t)(O[0][0][0])), ROWS«COLS«SZ);
load_buffer (cpu_C1_id, &((uint64_t)(C[2][0][0])), ROWS+COLS+SZ);
execute_acc(mm_id_accelerator, acc_Al_id, acc_Bl_id, acc_O1_id);
transfer_local (acc_O1_id, cpu_O3_id, ROWS«COLS+SZ);

end_segment ();

/+ Segment S4 Begin «/

matrix_sum_inplace (CPU_O2, CPU_C2);

unload_buffer (cpu_02_id, &((uint64_t)(O[1][0][0])), ROWS«COLS«SZ);
load_buffer (cpu_C2_id, &((uint64_t)(C[3][0][0])), ROWS«COLS=SZ);
execute_acc(mm_id_accelerator, acc_A2_id, acc_B2_id, acc_02_id);
transfer_local (acc_O2_id, cpu_O1_id, ROWS+COLS+SZ);

end_segment ();

/= Segment S5 Begin «/

matrix_sum_inplace (CPU_O3, CPU_C1);

unload_buffer (cpu_03_id, &((uint64_t)(O[2][0][0])), ROWS+COLS+SZ);
end_segment ();

/= Segment S6 Begin «/
matrix_sum_inplace (CPU_O1, CPU_C2);
unload_buffer (cpu_O1_id, &((uint64_t)(O[3][0][0])), ROWS«COLS«SZ);
wait ();
}
return EXIT_SUCCESS;

A potential downside of the presented code generation process is that it creates one code block
for each segment, as shown in Listing 3. If the number of iterations I, and therefore the number
of segments, is high, this can result in a large code footprint. In this case, it is possible to adopt
an alternative code generation approach, where first the code of S0 is generated, and then each
further segment executes the code of one iteration in a loop over s = 1...S — 1. The same logic
as in Algorithm 1 can be used, except that the expressions must be evaluated at run-time rather
than at compile time. Specifically, at each iteration over s and for each vertex, we can compute the
value of i by inverting the expression at Line 4 to obtain i = s — 2 (L(v) — 1); thenif 1 < i < I,
we compute the buffer indexes and issue the corresponding execution or transfer. We decided to
describe Algorithm 1 and the example based on the loop-unrolled version of the generated code
because we believe it is easier to understand.
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5.3 Scheduling logic

We next discuss how the scheduling logic proposed in [23] must be modified to handle both GDMA
and LDMA transfers for buffered data elements ®. In the three-phase model, scheduling decision
are made at the beginning of each interval. Specifically, the scheduler must decide which task to
execute (if any is active) in the next interval, so that it can load the required data and code (if it is a
different task than the one currently executed) in the current interval.

To understand the behavior of the DMA scheduler, we first present an example where other
tasks co-execute together with a task under analysis. Figure 8 depicts the same schedule as in
Figure 6, except that in this case, the scheduler decides to execute segments X, Y of some other
task(s) during intervals Interval () and Interval (®) (we assume that such task(s) do not require local
transfers). Note that again for simplicity, the figure does not include the TDMA of other cores.
During Interval (©), the GDMA is used to load the code and data of X instead of the data for S4; the
data of S4, namely A®W B@ and €@, is instead loaded in Interval G, just before S4 is executed in
Interval (®). We also do not perform the local transfer for 0@ in Interval ), because such transfer
would move O® to the SPM of the CPU, which is needed by other task(s); similarly to load data,
the transfer is moved to Interval ®). Note this means that the accelerator holds a buffer on behalf
of the task under analysis during Interval () and Interval (&) while the task is preempted; hence,
the accelerator cannot be used by other tasks. Finally, note that no unload operation takes place
in Interval (9, because the data of S3 was already unloaded in Interval (. If the task needed to
perform a local transfer from CPU to accelerator, than the local transfer for S3 would similarly
have to be performed in Interval (D to free the CPU SPM.
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Fig. 8. Example: Task Preemption.

Algorithm 2 shows the resulting steps taken by the scheduler at the beginning of an interval,
where we use S; to denote the segment executed in Interval D, and 7(S) to denote the task to which
segment S belongs. The scheduler starts by determining the segment S;; to be executed in the next

Interval @ at Line 1. If a segment S; is scheduled in Interval @ (Line 2), then it moves all transfer
requests in SWQ (if any) to SDQ of task 7(S;) (Line 3); this ensures that S; can place new transfer

3Note that apart from streaming buffers, the GDMA is also used to load the code and static data of the task, and to unload
modified static data. For ease of presentation, we do not detail such operations since they follow the same logic presented in
Figures 1, 3 for previous work.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:18 Rohan, et al.

requests in SWQ. The scheduler than processes all unload and local transfers from the CPU SPM
for segment S;_;, and all loads and transfers to the CPU SPM and between accelerators for segment
Si+1- Note that for the former case, the transfer requests are found in the SDQ if 7(S;_1) = 7(S;),
since in this case Line 3 moved the transfers in the SWQ of 7(S;_;) to the SDQ; otherwise, the
transfer requests are still in the SWQ.

We assume that the send operation removes the selected transfers from the queue, and that it is
guaranteed to perform the transfers in the same order in which they appear in the queue. Recalling
the discussion in Section 4.2, based on the send order in the algorithm, it guarantees that unloads
are performed before loads, and furthermore because of the inverse topological order, outgoing
local transfers are performed before incoming local transfers, with the exception of accelerators
receiving local transfers from the CPU given that CPU — ACC local transfers are sent first.

A final pair of notes regard the TDMA parameters, and the SPM utilization. Based on the described
logic, the slot size o must be large enough to perform all load transfers for largest task in I', which
include at most one buffer for each data element that must be loaded from main memory for that
task. 0 must also be large enough to perform all unload transfers for any task, again including a
single buffer per data element. However, we also require that the window ¥ — o be large enough to
perform all local transfers (again, on at most one buffer per data element) CPU — ACC for any task,
plus all ACC — ACC and ACC — CPU local transfer for any task, either the same or a different
one. Since most tasks have more code/data to load than data to unload, and £ — o is generally larger
than o with a number of cores M > 3, the DMA schedule is typically constrained by load transfers.

Finally, we consider the SPM utilization. Since each accelerator is only used by one task at a
time, an accelerator SPM only needs space for the buffers of any one task. However, the CPU SPM
must be divided into two regions, one for the task executed in the current interval, and one for the
task(s) executed in the previous/next interval. To ensure that each task can be executed from either
region, relocation support is needed either at the compiler level [25], or in the form of a dedicated
hardware component [27], or simply through virtual memory [7]; we assume the latter. In the
simplest case, each region must be sized so that it contains all the code, static data and CPU-bound
buffers for any one task. As discussed in [23], an improved solution can leverage the observation
that the CPU SPM never contains the code/data for more than two consecutive segments. Hence, a
region could be sized to contain only one buffer for data element, if it uses double buffering, or two
buffers for data element, if it uses triple buffering; the remaining buffer could be allocated in the
other region.

5.4 Schedulability Analysis

A schedulability analysis for the streaming model is presented in [23], under the assumption that
tasks are scheduled according to fixed priorities; without loss of generality, let them be indexed
based on priority, with 7; having the highest priority and 7n the lowest. Since our model does
not change the way terminal and streaming segments are scheduled, the same analysis can be
employed; we summarize it below.

The analysis takes as inputs the length of each segment, which is computed as the maximum of
its execution time and the worst-case memory time A in any interval. For our model, the execution
time of each segment must be computed as the maximum between its CPU execution time and the
execution time of any accelerator used during the segment. The worst-case scenario for A is when
an interval starts right after the beginning of the TDMA slot, resulting in a GDMA time of 0 + 2 - Z;
note that since the LDMA only needs one consecutive time window to perform the local transfers,
its worst-case time is > — ¢ + 2, which is lower than the GDMA. If all cores use the same TDMA
slot, i.e. ¥ = M - o, this results in A = ¢ - (2M + 1), as discussed in Section 2. We also compute
A8l o be the memory time required for only load transfers or only unload transfers; based on
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Algorithm 2 Scheduler logic in Interval i

1: Determine segment S;;1 (if any)

2: if a segment S; is scheduled in Interval (® then
3: 7(S;): Move transfers from SWQ to SDQ.

4: end if

: if a segment S;_; was scheduled in Interval @ then

5
6: if 7(Si—1) = 7(S;) then
7: 7(Si—1): Send unload transfers in SDQ to GDMA.
8: 7(S;i-1): Send CPU — ACC local transfers in SDQ to LDMA.
9: else
10: 7(Si-1): Send unload transfers in SWQ to GDMA.
11: 7(Si—1): Send CPU — ACC local transfers in SWQ to LDMA.
12: end if
13: end if

14: if a segment S;1; is scheduled in Interval @ then

15: 7(Si+1): Send load transfers in SDQ to GDMA.

16: 7(S;-1): Send ACC — ACC and ACC — CPU local transfers in SDQ to LDMA.
17: end if

the same logic, we have Asingle — . (M +1). In the rest of the analysis, we use L; to denote the sum
of the lengths of all segments of task 7;; llf st lf““ for the lengths of its first and last segment; and
lf maX for the maximum of A and the length of any segment of a task with lower priority than ;.
The analysis computes an upper bound R; to the time between the release of any job of task z;
(the job under analysis) and the time when its last segment starts executing. R; is computed using

the following response time iteration:
R; = L; — I!" + Inter;(R;) + B/ ™' 4 [/m2x) )

where: (i) L; — lf““ represents the time required to execute all segments of 7; except the last.
(ii) Inter; (R;) = ;_:ll [R;i/T;]-L; bounds the interference caused by higher priority tasks. (iii) Blf st =
2 - I!m3 bounds the blocking time suffered by the first segment of either 7; or a higher priority task
executed after the arrival time of the job under analysis. In the worst case, the job under analysis
arrives just after the beginning of an interval where the segment of a lower priority task executes;
then, since the segment executed in an interval is decided at the beginning of the previous interval,
another lower priority segment can execute in the following interval, resulting in a blocking time
of 2 lf M3 (iv) The last term lf maX represents the blocking time suffered by segments of the job
under analysis that follow a terminal segment, which in our model is only S1. This is because S1
cannot be executed directly after SO; hence, in the worst case a segment of a lower priority task
could instead be executed in between the two segments of the job under analysis (note that this
can happen in Interval 3 in Figure 8). The value of R; can then be used to check the schedulability
of the task set. Specifically, if the last segment of 7; outputs data, then such data will be unloaded
to main memory no later than I¢"? + AS"8¢ time after the last segment of the job under analysis
starts executing. Therefore, assuming we require such operation to complete by the deadline, the
following is a sufficient schedulability condition: Vi = 1...N, the iteration in Equation 2 converges
to fixed point R; such that R; + " + Asingle < D,

As noted in Section 5.1, to allow an accelerator to be used by multiple tasks, we would need to
implement a suitable locking protocols. For example, we could employ the well-known priority
ceiling protocol [21], which for non-self-suspending tasks guarantees that the maximum blocking
time is equal to the length of a single lower-priority critical section. Specifically, we propose to
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treat each accelerator as a shared resource protected by an individual mutex; to avoid deadlock in
the case a task uses multiple accelerators, we require the task to lock all employed accelerators
at the same time in a fixed order. We discuss two possible ways in which the protocol could be
implemented, depending on when the lock(s) is acquired.

Lock before executing S1; the mutex is then unlocked once the last segment finishes executing.
Since the lock is acquired after S0, the length of the critical section of a lower priority task 7; is

equalto L; — l{ ! The blocking time B%"Ck for the job under analysis is then equal to the maximum
value of L; — l{ st over all lower priority tasks that lock an accelerator with ceiling higher or equal
to the priority of z;. The drawback with this approach is that the job under analysis effectively
self-suspends between the execution of its segments SO and S1; hence, a lower priority job executed
in between those segments could re-acquire a lock and again block the job under analysis. Hence,
7; suffers a maximum locking-induced blocking time equal to 2 - Bf"”k.

Lock before executing S0. This ensures that no lower priority task can execute between segments
S0 and S1 of the job under analysis, hence 7; can only be blocked by one critical section. In addition,
term lf max jn Equation 2 can be replaced by AS&!€, since in the worst case the interval between S0
and S1 is occupied by load transfers (see again Figure 8). However, for the same reason, in the worst
case no segment can execute between segments SO and S1 of all other jobs; hence, the blocking
time Bﬁ""k must now be computed as L; + A58 and similarly in the computation of Inter;(R;),

term L; must be replaced with L; + A*i"8!¢_ The resulting iteration for R; is thus:

i—1

R =L — ll{ast + Z(RI/TJ-] . (Lj + Asingle) + max (Blfirst’ lfmax +B£aCk) + Asingle. 3)
j=1
Note that the initial blocking term is now computed as the maximum of B{ irst (in case no locking-

induced blocking occurs) and lf max 4 Bf‘wk : in the worst case, the job under analysis can again
arrive just after the beginning of an interval where the segment of a lower priority task executes
and segment SO of the job causing lock-induced blocking is loaded.

6 IMPLEMENTATION

We implemented an instance of the reference platform discussed in Section 3.2 based on a Xilinx
Zynq UltraScale+ MPSoC, specifically using the ZCU102 development board. The board is based on
a XCZU9EG SoC featuring a processing system (PS) that includes all the hard logic and a block of
tightly-coupled Programmable Logic (PL) implemented with FPGA technology. Figure 9 shows a
block diagram of the platform, configured to execute the example ¥ (A, B,C) = (A X B) +C task on
each core.

The PS includes a four-core ARM Cortex A53, a dual-core ARM R5, as well as a Global direct
memory access (GDMA) engine and main memory (PS DRAM). We assume that one Cortex A53
application core is dedicated to non-real-time operations. Therefore, in our instantiation we consider
M = 3 cores using the remaining A53. GDMA and local direct memory access (LDMA) engines
scheduling responsible for global/local load/unload operations is implemented in one of the R5
processors. The PL is used to implement the LDMAs, the accelerators, and all SPMs; specifically, it
includes about 3 MB of block ram (BRAM) cells that can be used to synthesize SPMs. All SPMs are
double-ported, where each port is accessed through a dedicated SRAM controller. The A53 cores
share a Last-Level Cache (LLC), but otherwise execute using code and data in their private SPMs.
The R5 core has its own local Tightly-Coupled Memory (TCM).

Multiple interfaces exist between the processing system (PS) and the PL. In our implementation,
we use two High-Performance Master (HPM) interfaces in the Full-Power Domain (FPD), namely
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HPMO0 and HPM1, and a single HPM port in the Low-Power Domain (LPD), referred to as LPD
for simplicity. The LPD interface is used by the GDMA to transfer data from/to main memory
to/from any SPM implemented in the PL. Conversely, the LPD port is used for configuration
commands towards any memory-mapped PL IP, i.e., LDMAs and accelerators. It is also possible to
program the LDMA and configure the IP using the HPM port. On the PL, we employ an Advanced
eXtensible Interface (AXI) interconnection [29] to which all DMAs and SPMs are connected. Such
interconnection does not limit parallelism between GDMA and LDMA transfers since it employs a
crossbar architecture.

CPU 2 SPM
CTRL Bleacher CTRL
e =]

. CPU 1 8PM

LPD
ARM Cortex R5

Processing System Programmable Logic

Fig. 9. Block Diagram of the proposed hardware design.

Following the considered use-case, we have implemented a Matrix-Multiplication (MM_IP)
accelerator through High-Level Synthesis (HLS) and have generated an IP that provides AXI buses
to read input data from SPM and write output results. As shown in Figure 9, each MM_IP is provided
with three dual-ported SPMs, one for each data elements A, B, and O. This allows simultaneous
access to all data elements. Since double-buffering is sufficient for all data elements, each SPM
includes two buffers. Each IP has a control interface that is used for configuring and starting the IP.

In the software stack, we use the Jailhouse hypervisor to partition the shared resources [16].
Jailhouse provides cache partitioning through page coloring to the guest RTOSes running on top of
it, performs code/data relocation for the load and unload phases of the three-phase model. Coloring
results in non-contiguous physical addresses being assigned to the guest RTOSes and would
normally force accessing SPM memories with a stride. To prevent wasting already limited SPM
space, static cache bleaching [7, 19] is performed on accessed performed by the CPUs towards SPM
addresses. The API described in Section 5.1 and related scheduling techniques were implemented in
the Erika Enterprise RTOS version 3. The Erika RTOS is open-source and OSEK/VDX certified [6].
Section 7.1 shows the evaluation of the API implementation in terms of time and memory footprint.
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Table 2. API OS Overhead.
API WCET (ns) | Code (Bytes) | AVG API WCET (ns) Code (Bytes) AVG
allocate_buffer 949 76 46.24 execute_acc 210 100 200.05
load_buffer 798 400 178.58 unload_buffer 798 400 179.03
transfer_local 798 400 178.58 dispatch 767 112 197.32
end_segment 1565 284 79.11 Streaming Wait Queue (SWQ) - 16 -
Streaming Table (ST) - 248 - Streaming Dispatch Queue (SDQ) - 16

7 EVALUATION
7.1 OS API Overhead

We have compiled and measured the worst-case execution times of the proposed API functions in
Erika Enterprise RTOS [6] version 3 release 55 on top of the Jailhouse hypervisor running on the
Xilinx UltraScale+ ZCU102 MPSoC platform [28]. The segmented code of the application tasks that
includes the API calls is produced following Algorithm 1. It is then compiled and linked together
with the rest of Erika RTOS using the Gee compiler version 7.2.1 for ARM64 architecture with the
-0s flag.

Table 2 shows the obtained worst-case execution times of the proposed API functions and tables
and the respective memory footprint. Erika does not support dynamic memory allocation, so we
must statically define the number of DMA requests and consequently the queue elements that can
be added into the queues. This number was defined to be 5 per task. We also consider that each
task has a maximum of 5 streaming buffers (one streaming table entry per each buffer). At compile
time, from the segmentation, we can retrieve the exact number of DMA requests and table entries,
so this can be defined statically without compromising the system. In total, the memory footprint
of the proposed API functions and tables is around 4096 bytes.

We ran each function 1000 times on the target platform, and collected the worst-case execu-
tion time (in nanoseconds) from these repetitions. Time was measured using a timer from Erika
(osEE_aarch64_gtimer_get_ticks function). We used the obtained WCET to inflate the CPU
execution time of each benchmark in the schedulability evaluation of Section 7.3. The API overhead
has minimal impact on the schedulability ratio of the system; with respect to the results in Figure 10,
removing the overhead improves the percentage of schedulable task sets by at most 0.4%.

7.2 Benchmarking (AX B) +C

For our benchmarks we chose the same (A X B) + C kernel considered throughout the paper with
matrix sizes of 64x64, 80x80, 96x96,112x112, and 128x128. To construct a comparison baseline,
we first measure the execution time of the kernel executing from the SPM on the CPU without
acceleration. Next, we compare to the case where matrix multiplications MM (i.e., sub-operation
O := A X B) are performed on hardware accelerator implemented in the PL via HLS. Conversely,
matrix addition MADD (i.e., sub-operation O := O + C) is always performed on the CPU. For
our CPU-only implementation of MM (baseline), we use a tiling implementation for better cache
locality since the considered matrix sizes are larger than the cache size in our platform [14]. For
our hardware accelerators, we employ the matrix multiplication IPs generated by Vivado HLS [22].
For MM, Table 3 reports the observed runtimes for transfers and computational block for both
CPU-only (Column 6) and accelerator (Column 7) implementations. We also report the total size of
input (Column 2) and output (Column 4) operands in bytes. Whereas, Column 3 (resp., Column 5)
shows the time required to move the matrices from main memory to the SPM using the GDMA
(resp., from SPM to SPM using a LDMA). To run each of these kernels, (i) in the CPU-only case all
the three matrices are loaded from main memory to the CPU’s SPM; (ii) in the CPU + accelerator
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case two matrices (A, B) are loaded from main memory to the accelerator’s SPM while a third matrix
(C) is loaded from main memory to the CPU’s SPM. As such, regardless of the implementation, each
time the kernel is invoked, three matrices need to be loaded from main memory. As highlighted in
green in Table 3, the time to load a single matrix with the largest size is 146.02/2 = 73.01ps. Thus
we consider a slot size 0 = 3 - 73.01 = 219.03ps to be large enough to fully load all the necessary
operands using the GDMA. The whole design on the PL was synthesized to run at 300 MHz.

Table 3. Run/Transfer Time of AxB + C with different Matrix Sizes

Benchmark Input Size | Input Transfer | Output Size | Output Transfer CPU Accelerator Ratio
Bytes Time (ps) (Bytes) Time (ps) Time (us) | Time (us)
Two (sixstymatrices | ' | Gowacss | 9% | Ghua-aom | M5 | mss | 7w
Two (64MX211;1:natrices 52768 IEBII))AI/\[/I1?\=:2:8958 lo384 (;gl\ltldﬁ == 21(?518 36.91
Two (80)1(\;3/)1 matrices 51200 Ié%\f/a::‘;%lli 25600 (I;I];m z i?)?)i 1133.12 128.98 8.79
Two (BOA;Q)I;II)natrices 51200 é]]ghl\//[lﬁ z ﬁ)llz 25600 égm z i?)?)z 5145
Two (96x1\942)/lmatrices 73728 éghl\//[lﬁ z 68?2 36864 é]]gm z illgi 1963.27 185.28 1060
Two (9611[:61))21atrices 73728 é]]ghl\//[lﬁ z 68?22 36864 égm z illgi 74.92
Two (112x112) matrices | %2 | GMA= 11553 | 76 | cowa-sesy | S1S¥ | wsley | 17
Two (1 121\:?11;;)matrices 100352 GII‘J]?\AN/I\A:l??ZS 50176 é]]gl\l\//[[?\ z éZiZ 9946
Two (2128 matrces | 12 | GomA= a0z | S5 | Gowia-gass | et | stsan |us
Two (lzsﬁgg?matrices 131072 é]]gl\l\j[f\zz 112;}(3); 65536 é]];l\l\//[l?\z 5;3‘;1 142.98

7.3 Schedulability

Finally, we evaluate the improvements in terms of schedulability by executing the discussed AxB
+ C kernel on either the CPU only (cpu in Figures 10-12, using the same approach as in [23]), or
on the CPU + Accelerator (acc). In both cases, schedulability is assessed using the test in [23],
as discussed in Section 5.4, considering the task set allocated on one application core. As in the
example in Section 4, we assume that the kernel is repeated 4 times.

For a given system utilization U (x-axis), we randomly generate 10,000 synthetic task sets as
follows: first, we pick the number of tasks in the task set in the range [5, 15]. Each task is randomly
assigned to one of the matrix sizes (from 64x64 to 128x128) in Table 3. Then, we uniformly generate
the utilization u; of each task in the task set [1], such that the sum of the tasks’ utilizations is equal
to U. Finally, each task is assigned a period T; = e;/u;, where ¢; is the sum of the execution times
of all segments of the task when running on the CPU only. We define the utilization based on
the execution time of segments, and not their length as used in the analysis, because the segment
length depends on the memory time A, while the execution time is independent of such parameter
and thus allows us to better compare schedulability when varying the transfer times based on the
DMA speed.

Figure 10 shows the results for the ratio of schedulable task sets for both c¢pu and acc runs as we
increase the system utilization, using the transfer times in Table 3. To evaluate multiple mixes of
applications, we configure task generation to consider all the possible sizes measured in Table 3
(case "64-128") or only a subset of them, e.g. only matrices with sizes 96x96 through 128x128 for
the curve labeled as "96-128". Following our implementation in Section 6, we consider a system
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with M = 3 application cores, and for simplicity we assume that the same slot size o = 219.03ps is
used for all cores. This results in a value A = - (2M — 1) = 1.533ms. We observe that schedulability
for cpu improves when we consider only the larger matrix sizes. This is because for sizes 64x64 and
80x80, the CPU-only execution time is smaller than the value of A, meaning that such benchmarks
are memory-bound rather than compute-bound. The improvement is even more significant in the
case of acc, since here, all 5 benchmarks are memory-bound. Note that for certain utilization ranges
and when all benchmarks are considered, acc actually performs worse than cpu. This is expected,
as the number of segments is greater for the CPU + accelerator case compared to the CPU-only
case (7 vs. 5); hence, when the benchmark is memory-bound, the sum of segment lengths under acc
is larger than that under cpu.

In summary, the results in Figure 10 indicate that the considered ZCU102 platform does not
provide sufficient memory throughput to support the bandwidth-hungry accelerators. Indeed, note
that the GDMA transfer time for the largest size matrix in Table 3 equates to a throughput of only
897 MB/s, which is much lower than the theoretical DRAM bandwidth of 19.2 GB/s. We conducted
a brief investigation into the issue. Our understanding is that the platform enacts throttling of
memory transactions that cross the HPM ports between the PS and the PL. At the time of writing,
we are not aware of an existing workaround for this problem.

The unexpectedly low PS-PL bandwidth appears to be a quirk of the considered platform.
To have a more general idea of the potential of the proposed framework, we investigate the
expected schedulability ratio in future platforms, such as the Xilinx Versal [30], where a better
DMA throughput can be achieved. In this architecture, two to four memory controllers are directly
connected to the PL fabric though a hardened Network-on-Chip (NoC); each NoC port supports
16 GB/s throughput, and the PL has access to multiple ports.
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Fig. 10. Schedulable task sets for CPU only and CPU + Accelerator varying the matrix size

Figures 11 and 12 show the ratio of schedulable task sets as we vary the DMA throughput for
cpu and acc, respectively. We consider all 5 matrix sizes in Table 3. Transfer times, and thus the
value of A, are computed by dividing the data size by the specified throughput. We also show the
theoretical infinite case where memory operations take zero time. Under this setting, acc supports
50% schedulability ratio for utilizations as high as 7.2, versus 0.8 for cpu, a 9x increase.

Finally, in Figure 13, the no locking case corresponds to the same scenario as in Figure 12 for a
DMA throughput of 16 GB/s, equivalent to one NoC port in Versal. Lock before S1 and lock before SO
correspond to the case where a single matrix multiplication IP is shared among all tasks, and one
of the two locking schemes discussed in Section 5.4 is employed. As intuitively expected, locking
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Fig. 13. Schedulable task sets for CPU + Accelerator as a function of utilization, 16 GB/s DMA throughput

before segment S0 leads to better results for the generated task sets, because it ensures that each
job under analysis can suffer lock-induced blocking only once. Here, lock before S1 supports 50%
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schedulability ratio for utilizations up to 5.25, versus 6.35 for no locking, a 17% decrease, in exchange
for saving FPGA area by sharing a single accelerator.

8 CONCLUSION AND FUTURE WORK

The framework proposed in this paper allows streaming of segments of tasks on CPU only or CPU
+ accelerators, depending on the nature of the task. This approach maximizes the use of hardware
resources while maintaining predictability. The paper demonstrates that by breaking tasks into
multiple CPUs and accelerators segments, both predictability and performance can be improved.
Furthermore, the framework provides developers with a way to analyze the performance gain
achieved by using accelerators. Overall, the proposed co-design framework provides developers
with a way to optimize the performance and predictability of their systems by using a combination
of CPUs and accelerators.
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