
Investigating and Mitigating Contention on Low-End Multi-Core
Microcontrollers

Daniel Oliveira
daniel.oliveira@dei.uminho.pt

Centro ALGORITMI, University of Minho

Guimarães, Portugal

Weifan Chen
wfchen@bu.edu

Dep. of Computer Science, Boston University

Boston, MA, USA

Sandro Pinto
sandro.pinto@dei.uminho.pt

Centro ALGORITMI, University of Minho

Guimarães, Portugal

Renato Mancuso
rmancuso@bu.edu

Dep. of Computer Science, Boston University

Boston, MA, USA

ABSTRACT

In this paper, we investigate the problem of contention and loss of

predictability in modern microcontrollers (MCU). To address this

issue, we first present a framework to empirically analyze and ob-

serve the impact of interference on low-end MCUs. With carefully

crafted evaluation scenarios, we conduct experiments on an Arm’s

Musca-A1 platform and provide sufficient evidence that even with

common application setups, interference can slowdown applica-

tions by several orders of magnitude. Furthermore, we propose an

architecture for a novel mitigation system that enables applications

to monitor their timing progress slackness and mitigate temporal

interference over shared resources. This is achieved by suspend-

ing less critical cores and reconfiguring their priority on the bus

when intolerable contention delays are present. Our findings em-

phasize the critical importance of considering the impact of shared

resources, such as interconnects and memory access patterns, on

low-end multi-core MCUs. It is, therefore, crucial to design mecha-

nisms that can allow MCU-based applications to regain control of

their timeliness.

CCS CONCEPTS

• Computer systems organization → Real-time system specifica-

tion.

KEYWORDS

microcontrollers, multi-core, predictability, contention

ACM Reference Format:

Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso. 2023.

Investigating and Mitigating Contention on Low-End Multi-Core Microcon-

trollers. In Cyber-Physical Systems and Internet of Things Week 2023 (CPS-IoT

Week Workshops ’23), May 9–12, 2023, San Antonio, TX, USA. ACM, New

York, NY, USA, 6 pages. https://doi.org/10.1145/3576914.3587513

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CPS-IoT Week Workshops ’23, May 9–12, 2023, San Antonio, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0049-1/23/05. . . $15.00
https://doi.org/10.1145/3576914.3587513

1 INTRODUCTION

The increasing demand for higher computing power in embedded

systems, such as automotive, avionics, and industrial automation,

has led to the adoption of multi-core systems, even in low-cost

devices [6, 23, 28]. These devices are typically powered by small

microcontrollers (MCUs) with simple architectures that allow for

predictable and deterministic operations. Thus, they are specifically

useful in real-time control systems, e.g., airbag collision detection

[24, 34, 35]. Leading industry players have introduced various MCU

platforms with dual-core architectures, such as STMicroelectronics’

STM32H7 line and NXP’s i.MX RT1170 and i.MX RT1180, featuring

different dual-core setups [22, 32]. Unfortunately, as MCUs broadly

adopt multi-core architectures with more complex memory hierar-

chies, their predictability and suitability for scenarios with strict

real-time constraints are jeopardized [8, 26, 33].

The performance interference caused by shared hardware re-

sources can introduce timing variations that significantly hinder the

predictability of applications [4, 15]. In high-endmulti-core systems,

common sources of contention include caches, bus interconnects,

and the DRAM memory banks and controller [3, 7–9, 29, 36, 38]. In

contrast, contention points have been seldom in MCUs due to their

use of different on-chip memory technologies and less complex

bus topologies. However, emerging applications require greater

memory space and performance. This has led to the integration of

CPUs with higher clock speeds, L1 instruction caches, DMA com-

ponents, multiple I/O peripherals, and on- and off-chip memories

(e.g., QSPI-/Hyper-Flash, data/code SRAMs) [10, 26].

The real-time systems community has extensively studied issues

with performance degradation due to hardware resource contention,

and several techniques have been proposed to restore predictability

(e.g., cache coloring [16, 18, 19], memory throttling [7, 36, 38]). How-

ever, these solutions tend to be geared towards high-end platforms

and require specialized hardware features that are not present in

MCUs (e.g., performance counters1, two-stage MMUs, cache lock-

ing). As a result, the problem of observing and addressing interfer-

ence in MCU systems has been largely overlooked in the literature.

In this paper, we present a framework to empirically analyze

the reciprocal interference of shared resources on modern MCUs.

Our goal is to provide evidence on the extent of the problem and

highlight the need for systematically addressing it. To examine

1The recent Armv8.1-M-based Cortex-M55 provides a Performance Monitoring Exten-
sion, but boards are still unavailable.

CPS-IoT Week Workshops ’23, May 9–12, 2023, San Antonio, TX, USA Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso

the effect of contention, we conducted several experiments on the

Armv8-M-based Musca-A1 platform [2]. These experiments aim to

provide empirical evidence about the contention for different con-

current access paths to memory and micro-architectural resources.

In light of this problem, we propose a novel mitigation system that

automatically instruments an application with meaningful progress

milestones to be monitored in run-time. The run-time mechanism

is capable of taking corrective measures to restore the application’s

temporal behavior when negative time slack is detected.

In summary, our main contributions are:

• A flexible framework that enables the definition of different

evaluation scenarios specifically designed to maximize inter-

ference over shared memory resources in low-end MCUs. The

framework allows to (i) use different bus masters to create con-

tention (e.g., cores, DMAs), (ii) enable platform-dependent fea-

tures (e.g., caches, performance enhancers), (iii) interfere over

multiple shared resources, and (iv) configure several bench-

marks and synthetic interference applications.

• An extensive empirical evaluation on the Musca-A1 platform,

leveraging our framework. Our results provide evidence that

interference can slow applications up to starvation values (15×)

even with common memory layouts. We also unveil peculiar

behaviors of micro-architectural interconnects that lead to se-

vere slowdowns for specific memory layouts. We open-sourced

all artifacts to enable independent validation of the results.

• The proposal of a novel interference mitigation framework

composed of (i) a design-time tool that automatically instru-

ments applications with progress milestones. The milestones

serve as observation points for (ii) a run-time mechanism. The

latter leverages widely-available hardware features to tem-

porarily suspend interfering workloads, allowing the system

to restore the timely behavior of the application.

2 RELATED WORK

Interference Assessment Frameworks. Assessing and detecting

interference patterns in multi-core systems typically requires a deep

understanding of the platform’s underlying micro-architecture in

order to fine-tune the resource-stressing synthetic benchmarks. In

[27], the authors proposed a framework that utilizes a set of well-

defined benchmarks to stress specific shared resources and quantify

application slowdowns. Nowotsch et al. [21] evaluated multi-core

systems for safety-critical applications, finding that interference can

cause significant slowdowns in worst-case execution time (WCET)

estimations. Iorgar et al. [11] proposed an approach for measuring

multi-core interference through an auto-tuning framework that

maximizes interference on sharedmemory resources. RT-bench [20]

is an open-source framework that adds real-time features to exist-

ing benchmarks. It offers a set of automated analysis use-cases that

provide key real-timemetrics such as as observedWCET and the im-

pact of contention on shared resources. While these approaches can

effectively evaluate temporal interference, they solely target high-

end systems. In contrast, our solution focus on low-end devices and

offers the flexibility to create hostile environments that maximize

interference according to MCU-specific architectural characteristics

(e.g., memory access paths, micro-architectural peculiarities).

Interference Mitigation Techniques. The real-time systems com-

munity has proposed several mitigation techniques. These tech-

niques typically target high-end platforms and rely on hardware-

specific features such as performance counters [5, 29, 37], resource

partitioning and virtual memory capabilities [16–19, 36], or special-

ized interconnects (e.g., QoS modules that are available on specific

platforms [30, 31]). MemGuard leverages performance counters on

x86 architectures to provide temporal isolation through memory

bandwidth regulation [37]. Crespo et al. [5] proposed a feedback

control scheme that uses the Performance Monitoring Unit (PMU)

in a PowerPC platform to manage the execution of critical parti-

tions. In [29], Arm’s PMU and a platform-specific memory profiling

unit have been utilized to implement a mechanism that dynamically

regulates memory accesses of cores. Resource partitioning tech-

niques are applied to shared resources, such as cache and DRAM.

In [16], the authors proposed the Colored Lockdown concept that

combined page-coloring and cache lockdown to keep frequently

accessed pages in the cache. The PALLOC mechanism optimizes

the use of DRAM by allocating memory pages for each application

to specific banks [36]. Additionally, in [19], authors proposed a

cache coloring-based technique and in [18], authors implemented

support for cache coloring on Bao hypervisor. Regarding hardware

support for QoS, Arm offers hardware mechanisms that aim to pre-

vent congestion in the interconnect [31], which are evaluated on a

Xilinx UltraScale+ in [30]. In another line of works, Kritikakou et.

al [13] presented a formal description of a mechanism that, under

interference, suspends low criticality tasks until the termination of

the critical task; an implementation is presented in [14]. While this

variety of mechanisms have been proposed to address interference

in high-end systems, they are not directly applicable to low-end

devices. To the best of our knowledge, a single work [26] addresses

interference in low-end systems (Cortex-M33). The proposed static

memory allocation scheme distributes code/data segments across

different memory elements; however, this requires high engineering

effort and a complex analysis of the platform’s memory subsystem.

3 INTERFERENCE IN LOW-END MCUS

In this section, we present an experimental investigation to provide

conclusive evidence that MCUs are susceptible to interference when

different hardware elements (e.g., cores) attempt to access shared

resources (e.g., buses, flash, SRAM memories) concurrently. The

results reveal that the issue of contention can lead to significant

performance degradation and unpredictable execution times.

3.1 Highlighting the Problem

Our experimentswere conducted on theArmMusca-A1 platform [2].

The Musca-A1 lacks features such as multi-level shared caches or

memory virtualization mechanisms, which are known to be sources

of contention on high-end systems [8, 12]. However, increased de-

mand for AI on edge devices and the proliferation of connected

devices that integrate heavy-size communication protocols are lead-

ing to the need for MCUs to support various on- and off-chip mem-

ories to handle the large amount of data required for these appli-

cations [10]. To accommodate this, memory subsystems on MCUs

are becoming highly heterogeneous. Different types of memory

are accessed through different bus paths and controllers, clocked

Investigating and Mitigating Contention on Low-End Multi-Core Microcontrollers CPS-IoT Week Workshops ’23, May 9–12, 2023, San Antonio, TX, USA

at different frequencies, and shared between multiple masters in

the interconnect (e.g. cores, DMAs). In the case of the Musca-A1

platform, as depicted in Figure 1, two differently-clocked CPUs

have access to four distinct memory elements: (i) private-core 2KiB

instruction caches; (ii) on-chip 4x32KiB data iSRAM banks, which

serve as tightly-coupled memories for each corresponding core and

are organized with dedicated bus connections; (iii) an external 2MiB

code eSRAM, which is clocked at the same frequency as core 0; (iv)

and an off-chip 8MiB Flash memory, which is accessed through the

QPSI controller and therefore clocked at a much lower frequency

than the CPUs. The heterogeneity of theMusca’s memory hierarchy

offers the potential to create interference scenarios with varying

levels of contention. This provides an opportunity to evaluate per-

formance in both common and uncommon configurations.

3.2 Framework Methodology

In contrast to high-end systems, performance interference in multi-

core MCUs is still a largely overlooked problem in the literature.

Yet, they are widely adopted for real-time applications with the

assumption of high predictability [24, 26, 34]. To address this gap

and raise awareness in the community, we developed an open-

source testing framework aimed at providing sufficient evidence of

the significant impact that interference can have on these systems.

Our framework is the first to support a comprehensive investigation

into this issue and to enable thorough analyses of how different

system configurations introduce contention on MCUs. Its primary

goals are:

• Portability: the framework can be adapted across different Arm-

based MCU platforms with the use of a BSP abstraction layer and

by providing a common boot-code per architecture. The boot

routine initializes platform-specific hardware (e.g., serial ports,

caches, performance enhancers, bus arbitration priorities), and

relocates each application to the targeted contended memory.

• Configurability: the framework can be easily modified to test

different interference scenarios. Therefore, the framework allows

for each test to: (i) place code and data regions on any memory

element; (ii) enable/disable platform components that impact

results; (iii) select the most effective benchmark and synthetic

interfering application; (iv) and choose optimization options.

• Reproducibility: the framework enables consistent and accurate

results to be obtained across multiple runs.

Inspired by the framework methodology proposed by Iorga et

al. [11], we present our testing framework that creates a hostile

environment to stress a specific shared resource and evaluate its

impact on system contention. This consists of selecting the most

suitable (i) benchmark program that will experience slowdowns

due to multi-core contention caused by (ii) an optimized, synthetic

interfering program that stresses key shared resources.

A user must primarily decide which shared resource they want

to target. Let ' denote the set of possible hardware resources over

which contention can be created. For example, in case of the Musca-

A1 (<01), we define '<01 = {flash,esram,isram,ahb5mux}. The

framework offers two benchmarks to be run on the observed core,

namely, statemate and edn. Let � denote the available benchmarks

for the observed core, i.e., � = {statemate,edn}. Let � denote

the set of interfering programs that the user has available to run

Figure 1: Musca-A1 memory hierarchy (adapted from [2]).

on the interfering core, i.e., � = {ifi,dai}. Depending on the A

∈ ' to interfere, a 1 ∈ � must be selected to run on core 0 (1A)

and a 8 ∈ � must be selected to run on core 1 (8A). For example,

if A<01 = {flash, esram}, i.e., code memories, a more branch-

intensive pair of applications should be selected; therefore, 1A =

statemate ∧ 8A = ifi. On the other hand, if A<01 = {isram},

i.e., data memory, a more memory-intensive pair of applications

should be selected; therefore, 1A = edn ∧ 8A = dai. Later, we detail

each of these applications. We can now define an environment as

a setup of a 1A and a 8A , each assigned to its respective core. The

performance of a 1A in environment 4 is represented by perf(1A , 4),

which represents the execution of 1A on core 0 while 4 is running

on the other core. Let interf(1A , 8A) denote the interference value

associated with executing program 1A in isolation on core 0 and

executing it in parallel with an instance of 8A on core 1. Therefore,

we have the following equation (nop denotes the absence of an

interfering program):

interf(1A , 8A) =
perf(1A , 8A)

perf(1A , nop)
(1)

3.3 Evidence Results

Experimental Setup. We conducted several experiments on the

Musca-A1 platform using our framework to showcase the exis-

tence of multi-core contention issues on MCUs. We configure the

Data Watchpoint and Trace (DWT) cycle counter to obtain 1000

measurement samples in each test, providing the wall-clock exe-

cution time. The most suitable 1A and 8A were selected based on

the specific characteristics of the target A . The synthetic ifi and

dai interfering applications are designed to have a varying degree

of impact depending on the target A . The ifi application forces

the interfering core to bypass the cache, using a sequence of nop

instructions and branching between multiple blocks that fill up a

cache line. On the other hand, the dai application is optimized to

create interference through data-intensive operations by reading

and writing constantly to a buffer array. Moreover, we carefully

integrated a set of branch- and memory-intensive benchmarks from

