Investigating and Mitigating Contention on Low-End Multi-Core
Microcontrollers

Daniel Oliveira
daniel.oliveira@dei.uminho.pt
Centro ALGORITMI, University of Minho
Guimaraes, Portugal

Sandro Pinto
sandro.pinto@dei.uminho.pt
Centro ALGORITMLI, University of Minho
Guimaraes, Portugal

ABSTRACT

In this paper, we investigate the problem of contention and loss of
predictability in modern microcontrollers (MCU). To address this
issue, we first present a framework to empirically analyze and ob-
serve the impact of interference on low-end MCUs. With carefully
crafted evaluation scenarios, we conduct experiments on an Arm’s
Musca-A1 platform and provide sufficient evidence that even with
common application setups, interference can slowdown applica-
tions by several orders of magnitude. Furthermore, we propose an
architecture for a novel mitigation system that enables applications
to monitor their timing progress slackness and mitigate temporal
interference over shared resources. This is achieved by suspend-
ing less critical cores and reconfiguring their priority on the bus
when intolerable contention delays are present. Our findings em-
phasize the critical importance of considering the impact of shared
resources, such as interconnects and memory access patterns, on
low-end multi-core MCUs. It is, therefore, crucial to design mecha-
nisms that can allow MCU-based applications to regain control of
their timeliness.

CCS CONCEPTS

« Computer systems organization — Real-time system specifica-
tion.

KEYWORDS

microcontrollers, multi-core, predictability, contention

ACM Reference Format:

Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso. 2023.
Investigating and Mitigating Contention on Low-End Multi-Core Microcon-
trollers. In Cyber-Physical Systems and Internet of Things Week 2023 (CPS-IoT
Week Workshops °23), May 9-12, 2023, San Antonio, TX, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3576914.3587513

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CPS-IoT Week Workshops °23, May 9-12, 2023, San Antonio, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0049-1/23/05...$15.00
https://doi.org/10.1145/3576914.3587513

Weifan Chen
wfchen@bu.edu

Dep. of Computer Science, Boston University
Boston, MA, USA

Renato Mancuso
rmancuso@bu.edu
Dep. of Computer Science, Boston University
Boston, MA, USA

1 INTRODUCTION

The increasing demand for higher computing power in embedded
systems, such as automotive, avionics, and industrial automation,
has led to the adoption of multi-core systems, even in low-cost
devices [6, 23, 28]. These devices are typically powered by small
microcontrollers (MCUs) with simple architectures that allow for
predictable and deterministic operations. Thus, they are specifically
useful in real-time control systems, e.g., airbag collision detection
[24, 34, 35]. Leading industry players have introduced various MCU
platforms with dual-core architectures, such as STMicroelectronics’
STM32H7 line and NXP’s i MX RT1170 and i. MX RT1180, featuring
different dual-core setups [22, 32]. Unfortunately, as MCUs broadly
adopt multi-core architectures with more complex memory hierar-
chies, their predictability and suitability for scenarios with strict
real-time constraints are jeopardized [8, 26, 33].

The performance interference caused by shared hardware re-
sources can introduce timing variations that significantly hinder the
predictability of applications [4, 15]. In high-end multi-core systems,
common sources of contention include caches, bus interconnects,
and the DRAM memory banks and controller [3, 7-9, 29, 36, 38]. In
contrast, contention points have been seldom in MCUs due to their
use of different on-chip memory technologies and less complex
bus topologies. However, emerging applications require greater
memory space and performance. This has led to the integration of
CPUs with higher clock speeds, L1 instruction caches, DMA com-
ponents, multiple I/O peripherals, and on- and off-chip memories
(e.g., QSPI-/Hyper-Flash, data/code SRAMs) [10, 26].

The real-time systems community has extensively studied issues
with performance degradation due to hardware resource contention,
and several techniques have been proposed to restore predictability
(e.g., cache coloring [16, 18, 19], memory throttling [7, 36, 38]). How-
ever, these solutions tend to be geared towards high-end platforms
and require specialized hardware features that are not present in
MCUs (e.g., performance counters!, two-stage MMUs, cache lock-
ing). As a result, the problem of observing and addressing interfer-
ence in MCU systems has been largely overlooked in the literature.

In this paper, we present a framework to empirically analyze
the reciprocal interference of shared resources on modern MCUs.
Our goal is to provide evidence on the extent of the problem and
highlight the need for systematically addressing it. To examine

!The recent Armv8.1-M-based Cortex-M55 provides a Performance Monitoring Exten-
sion, but boards are still unavailable.

CPS-loT Week Workshops 23, May 9-12, 2023, San Antonio, TX, USA

the effect of contention, we conducted several experiments on the
Armv8-M-based Musca-A1 platform [2]. These experiments aim to
provide empirical evidence about the contention for different con-
current access paths to memory and micro-architectural resources.
In light of this problem, we propose a novel mitigation system that
automatically instruments an application with meaningful progress
milestones to be monitored in run-time. The run-time mechanism
is capable of taking corrective measures to restore the application’s
temporal behavior when negative time slack is detected.

In summary, our main contributions are:

o A flexible framework that enables the definition of different
evaluation scenarios specifically designed to maximize inter-
ference over shared memory resources in low-end MCUs. The
framework allows to (i) use different bus masters to create con-
tention (e.g., cores, DMAs), (ii) enable platform-dependent fea-
tures (e.g., caches, performance enhancers), (iii) interfere over
multiple shared resources, and (iv) configure several bench-
marks and synthetic interference applications.

o An extensive empirical evaluation on the Musca-A1 platform,
leveraging our framework. Our results provide evidence that
interference can slow applications up to starvation values (15x)
even with common memory layouts. We also unveil peculiar
behaviors of micro-architectural interconnects that lead to se-
vere slowdowns for specific memory layouts. We open-sourced
all artifacts to enable independent validation of the results.

o The proposal of a novel interference mitigation framework
composed of (i) a design-time tool that automatically instru-
ments applications with progress milestones. The milestones
serve as observation points for (ii) a run-time mechanism. The
latter leverages widely-available hardware features to tem-
porarily suspend interfering workloads, allowing the system
to restore the timely behavior of the application.

2 RELATED WORK

Interference Assessment Frameworks. Assessing and detecting
interference patterns in multi-core systems typically requires a deep
understanding of the platform’s underlying micro-architecture in
order to fine-tune the resource-stressing synthetic benchmarks. In
[27], the authors proposed a framework that utilizes a set of well-
defined benchmarks to stress specific shared resources and quantify
application slowdowns. Nowotsch et al. [21] evaluated multi-core
systems for safety-critical applications, finding that interference can
cause significant slowdowns in worst-case execution time (WCET)
estimations. Torgar et al. [11] proposed an approach for measuring
multi-core interference through an auto-tuning framework that
maximizes interference on shared memory resources. RT-bench [20]
is an open-source framework that adds real-time features to exist-
ing benchmarks. It offers a set of automated analysis use-cases that
provide key real-time metrics such as as observed WCET and the im-
pact of contention on shared resources. While these approaches can
effectively evaluate temporal interference, they solely target high-
end systems. In contrast, our solution focus on low-end devices and
offers the flexibility to create hostile environments that maximize
interference according to MCU-specific architectural characteristics
(e.g., memory access paths, micro-architectural peculiarities).

Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso

Interference Mitigation Techniques. The real-time systems com-
munity has proposed several mitigation techniques. These tech-
niques typically target high-end platforms and rely on hardware-
specific features such as performance counters [5, 29, 37], resource
partitioning and virtual memory capabilities [16-19, 36], or special-
ized interconnects (e.g., QoS modules that are available on specific
platforms [30, 31]). MemGuard leverages performance counters on
x86 architectures to provide temporal isolation through memory
bandwidth regulation [37]. Crespo et al. [5] proposed a feedback
control scheme that uses the Performance Monitoring Unit (PMU)
in a PowerPC platform to manage the execution of critical parti-
tions. In [29], Arm’s PMU and a platform-specific memory profiling
unit have been utilized to implement a mechanism that dynamically
regulates memory accesses of cores. Resource partitioning tech-
niques are applied to shared resources, such as cache and DRAM.
In [16], the authors proposed the Colored Lockdown concept that
combined page-coloring and cache lockdown to keep frequently
accessed pages in the cache. The PALLOC mechanism optimizes
the use of DRAM by allocating memory pages for each application
to specific banks [36]. Additionally, in [19], authors proposed a
cache coloring-based technique and in [18], authors implemented
support for cache coloring on Bao hypervisor. Regarding hardware
support for QoS, Arm offers hardware mechanisms that aim to pre-
vent congestion in the interconnect [31], which are evaluated on a
Xilinx UltraScale+ in [30]. In another line of works, Kritikakou et.
al [13] presented a formal description of a mechanism that, under
interference, suspends low criticality tasks until the termination of
the critical task; an implementation is presented in [14]. While this
variety of mechanisms have been proposed to address interference
in high-end systems, they are not directly applicable to low-end
devices. To the best of our knowledge, a single work [26] addresses
interference in low-end systems (Cortex-M33). The proposed static
memory allocation scheme distributes code/data segments across
different memory elements; however, this requires high engineering
effort and a complex analysis of the platform’s memory subsystem.

3 INTERFERENCE IN LOW-END MCUS

In this section, we present an experimental investigation to provide
conclusive evidence that MCUs are susceptible to interference when
different hardware elements (e.g., cores) attempt to access shared
resources (e.g., buses, flash, SRAM memories) concurrently. The
results reveal that the issue of contention can lead to significant
performance degradation and unpredictable execution times.

3.1 Highlighting the Problem

Our experiments were conducted on the Arm Musca-A1 platform [2].
The Musca-A1 lacks features such as multi-level shared caches or
memory virtualization mechanisms, which are known to be sources
of contention on high-end systems [8, 12]. However, increased de-
mand for Al on edge devices and the proliferation of connected
devices that integrate heavy-size communication protocols are lead-
ing to the need for MCUs to support various on- and off-chip mem-
ories to handle the large amount of data required for these appli-
cations [10]. To accommodate this, memory subsystems on MCUs
are becoming highly heterogeneous. Different types of memory
are accessed through different bus paths and controllers, clocked

Investigating and Mitigating Contention on Low-End Multi-Core Microcontrollers

at different frequencies, and shared between multiple masters in
the interconnect (e.g. cores, DMAs). In the case of the Musca-Al
platform, as depicted in Figure 1, two differently-clocked CPUs
have access to four distinct memory elements: (i) private-core 2KiB
instruction caches; (ii) on-chip 4x32KiB data iSRAM banks, which
serve as tightly-coupled memories for each corresponding core and
are organized with dedicated bus connections; (iii) an external 2MiB
code eSRAM, which is clocked at the same frequency as core 0; (iv)
and an off-chip 8MiB Flash memory, which is accessed through the
QPSI controller and therefore clocked at a much lower frequency
than the CPUs. The heterogeneity of the Musca’s memory hierarchy
offers the potential to create interference scenarios with varying
levels of contention. This provides an opportunity to evaluate per-
formance in both common and uncommon configurations.

3.2 Framework Methodology

In contrast to high-end systems, performance interference in multi-

core MCUs s is still a largely overlooked problem in the literature.

Yet, they are widely adopted for real-time applications with the

assumption of high predictability [24, 26, 34]. To address this gap

and raise awareness in the community, we developed an open-
source testing framework aimed at providing sufficient evidence of
the significant impact that interference can have on these systems.

Our framework is the first to support a comprehensive investigation

into this issue and to enable thorough analyses of how different

system configurations introduce contention on MCUs. Its primary
goals are:

o Portability: the framework can be adapted across different Arm-
based MCU platforms with the use of a BSP abstraction layer and
by providing a common boot-code per architecture. The boot
routine initializes platform-specific hardware (e.g., serial ports,
caches, performance enhancers, bus arbitration priorities), and
relocates each application to the targeted contended memory.

o Configurability: the framework can be easily modified to test
different interference scenarios. Therefore, the framework allows
for each test to: (i) place code and data regions on any memory
element; (ii) enable/disable platform components that impact
results; (iii) select the most effective benchmark and synthetic
interfering application; (iv) and choose optimization options.

o Reproducibility: the framework enables consistent and accurate
results to be obtained across multiple runs.

Inspired by the framework methodology proposed by Iorga et
al. [11], we present our testing framework that creates a hostile
environment to stress a specific shared resource and evaluate its
impact on system contention. This consists of selecting the most
suitable (i) benchmark program that will experience slowdowns
due to multi-core contention caused by (ii) an optimized, synthetic
interfering program that stresses key shared resources.

A user must primarily decide which shared resource they want
to target. Let R denote the set of possible hardware resources over
which contention can be created. For example, in case of the Musca-
A1 (mal), we define R;,q1 = {flash,esram, isram, ahb5mux}. The
framework offers two benchmarks to be run on the observed core,
namely, statemate and edn. Let B denote the available benchmarks
for the observed core, i.e., B = {statemate,edn}. Let I denote
the set of interfering programs that the user has available to run

CPS-loT Week Workshops 23, May 9-12, 2023, San Antonio, TX, USA

SSE-200 Observed Core Interf. Core
Subsystem -
statemate ifi
I'CMs CPUO - [bench a interf a
iSRAMO PP PP
(32KiB) .
CPUO CPUI
SRAM (Cortex M33] (Cortex M33]
. X X
(B2KE) 3 TCM CPUI
iSRAM2 || Icache Icache iSRAM3
(32KiB) || (2KiB) J | ckiB) J| 32xkiB)
AHBS5 Matrix
AHBS5 Mux

Controller (2MiB) Musca-Al

Flash
(8MiB)

Figure 1: Musca-A1 memory hierarchy (adapted from [2]).

on the interfering core, i.e., I = {ifi,dai}. Depending on the r
€ R to interfere, a b € B must be selected to run on core 0 (b,)
and a i € I must be selected to run on core 1 (i,). For example,
if rmg1 = {flash, esram}, ie., code memories, a more branch-
intensive pair of applications should be selected; therefore, b, =
statemate A i, = ifi. On the other hand, if r;q1 = {isram},
i.e., data memory, a more memory-intensive pair of applications
should be selected; therefore, b, = edn A i, = dai. Later, we detail
each of these applications. We can now define an environment as
a setup of a b, and a i, each assigned to its respective core. The
performance of a b, in environment e is represented by perf(b,, e),
which represents the execution of b, on core 0 while e is running
on the other core. Let interf (b, i;) denote the interference value
associated with executing program b, in isolation on core 0 and
executing it in parallel with an instance of i, on core 1. Therefore,
we have the following equation (nop denotes the absence of an
interfering program):

perf(br, ir)

interf(by,i;) = —————
interf(br,ir) perf(by, nop)

1)

3.3 Evidence Results

Experimental Setup. We conducted several experiments on the
Musca-A1 platform using our framework to showcase the exis-
tence of multi-core contention issues on MCUs. We configure the
Data Watchpoint and Trace (DWT) cycle counter to obtain 1000
measurement samples in each test, providing the wall-clock exe-
cution time. The most suitable b, and i, were selected based on
the specific characteristics of the target r. The synthetic ifi and
dai interfering applications are designed to have a varying degree
of impact depending on the target r. The ifi application forces
the interfering core to bypass the cache, using a sequence of nop
instructions and branching between multiple blocks that fill up a
cache line. On the other hand, the dai application is optimized to
create interference through data-intensive operations by reading
and writing constantly to a buffer array. Moreover, we carefully
integrated a set of branch- and memory-intensive benchmarks from

CPS-loT Week Workshops 23, May 9-12, 2023, San Antonio, TX, USA

ycles

c

Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso

Execution Time Performance Overhead
4000 20+
167
3106 149
30004 2770 257 1.5 . 138
2303 T -
] 2127 ey o
=)] 1862 = =R
& 2000 2 1.0
1000 054
0= T T T T T 00 T T T T
S DI S SISO
RS & & & $
P &S @(" & S L @5" &
R D D RN
(a) Contended eSRAM.
Execution Time Performance Overhead
1600000 40—
1385336 3237
30
1200000 204
2 8000004 g0l
2 T S 5T
&) -4
60000 51927 51982 4
42122 42798 45018 34
40000 5
20000-] 1 105 121 121
0= T T T T T 0 T T T
N S S S X
o o = o Ry - N\ Q- N N
RESAOASRORS &S RN
FHHLL S & LR
RN & N & N

(c) Contended iSRAM.

Execution Time Performance Overhead
300000 20
256371 256538
1553 1554
154
200000
1 127200 EIO_
100000
51994 54 315
30650 F 186 :
16512 =
0- | E— — 0 T T T T
N 3 IR S N QR
ST SRS
WFTAFT S RO PSS NS
P %{\ > > N &S z.*Q, 25\3 zf\‘
< %.&\ &x &x _&@ & & &
(b) Contended Flash.
Execution Time Performance Overhead
200000—_ 40 339
150000 100 30
100000 201
k4 1 o £
o] - b=
2 50000 Z 0
1 2
2000 g 117
1000 I
0- T T T (T T
N > Q D Qv
Y?x \5\& Nl \@@;&\ \@\\\\ \@\ N
E N AMEIS TF TS
G N < ¥
N MRS S Q\\ S
N S S W
< & < &
@ 6\ \é‘) A\

(d) Contended Bus (AHB5 Matrix and Mux).

Figure 2: Execution time and performance overhead of the benchmark for different interfering setups. The baseline selected
for the performance overhead ratio is always the solo experiment that achieves the lowest execution time. The ic[,] denotes if
the instruction cache (IC) is enabled on the experiment by core, i.e. if ic/1,0] the IC is enabled on core 0 and disabled on core 1.

the Embench suite [25]. The selected benchmarks are statemate
for stressing code memories and edn for stressing data memories.

Our investigation comprises four evaluation scenarios that were
designed to determine the impact of interference on the following
shared resources: the data and code memories (i.e., iSRAM, eSRAM,
and Flash) and a dedicated interconnect bus connecting both code
memories to the AHB5 Matrix, i.e., the AHB5 Mux (Figure 1). The
evaluation scenarios are organized as follows:

(a) Contended eSRAM: core 0 and core 1 fetch instructions from
the faster code memory, i.e., the on-chip eSRAM. Data is placed
in separate iSRAM banks.

(b) Contended Flash: core 0 and core 1 fetch instructions from the
slower code memory, i.e., the off-chip QSPI Flash. Data is placed
in separate iSRAM banks.

(c) Contended iSRAM: core 0 and core 1 issues data read/writes
from a single iSRAM bank (iSRAM1). Code is split between
eSRAM (core 0) and Flash (core 1) memories.

(d) Contended Bus (AHB5 Mux): core 0 fetches instructions from
eSRAM and core 1 from Flash, and vice-versa. The expected con-
tention arises from the AHB5 Mux interconnect rather than the
memory controllers. Data is placed in separate iSRAM banks.

Contended eSRAM. The results of the experiments on the impact
of eSRAM contention are presented in Figure 2a. The evaluation

is based on the execution time and performance overhead. To be-
gin, the execution time of the statemate benchmark without con-
tention was measured (i.e., both solo tests). The experiments were
conducted in two scenarios, one with the core 0 instruction cache
(IC) enabled and the other with it disabled. The results show that,
despite the low 6% miss ratio of the statemate benchmark, the
IC has an unexpected negative impact on the performance, ie., a
14.2% slowdown. We hypothesize that the extra cycles required to
perform a cache lookup followed by a memory fetch for the 6%
of the instructions that resulted in cache misses might induce a
higher overhead than directly accessing the SRAM memory. To
validate this hypothesis, we conducted an experiment in which we
measured the execution time of cache-friendly code, i.e., a segment
of code with 0% cache misses. The results demonstrated that the
eSRAM performs similarly to cache memory, with no discernible
difference in execution time regardless of cache enablement. We
then iteratively enable/disable the IC across the four experiments
to measure the slowdown due to contention. The results show that
disabling the ICs on both CPUs leads to a 67% increase in per-
formance (interf1). It is noteworthy that while the IC can have a
negative impact on single-core execution, it has a positive effect
on a contended eSRAM by reducing the contention cost by up to
35% (interf3). Furthermore, our experiments show that enabling the

