Software-Shaped Platforms

Renato Mancuso Shahin Roozkhosh Denis Hoornaert
rmancuso@bu.edu shahin@bu.edu denis.hoornaert@tum.de
Boston University Boston University Technical University of Munich
USA Germany
JuHyoung Mun Tarikul Islam Papon Manos Athanassoulis
jmun@bu.edu papon@bu.edu mathan@bu.edu
Boston University Boston University Boston University
USA USA
ABSTRACT safety alone is not enough. Modern safety-critical systems are ex-

This paper outlines the vision for a new type of software-shaped
platforms, or SOSH platforms for short, that can be implemented
in commercial CPU+FPGA platforms. At the core of the SOSH par-
adigm is the idea of exposing direct control over the flow of data
exchanged between hardware components in embedded System-
on-Chips (SoC). Data flow manipulation primitives are synthesized
in reprogrammable hardware and interposed between central pro-
cessors, memory modules, and I/O devices. A new layer of system
software is then introduced to leverage such primitives and to
achieve fine-grained control and introspection over the interac-
tion of SoC resources. By turning memory and I/O data flows into
manageable entities, a new degree of internal awareness can be
achieved in complex systems. We first review recent works that are
well aligned with the concept of data flow manipulation primitives
that can be deployed in SOSH platforms. Next, we outline future
research avenues concerning the use of the SOSH paradigm for
workload profiling and prediction, to implement advanced memory
models, and to perform security threat identification and mitigation.

KEYWORDS
software-shaped platforms, predictability, architectures

ACM Reference Format:

Renato Mancuso, Shahin Roozkhosh, Denis Hoornaert, Ju Hyoung Mun,
Tarikul Islam Papon, and Manos Athanassoulis. 2023. Software-Shaped Plat-
forms. In Cyber-Physical Systems and Internet of Things Week 2023 (CPS-IoT
Week Workshops °23), May 9-12, 2023, San Antonio, TX, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3576914.3587546

1 INTRODUCTION

Computing systems with strict reliability and confidentiality re-
quirements support the modern world and society. Avionic systems,
nuclear plant supervisory systems, orbit controllers in satellites,
driverless cars, and unmanned aerial vehicles (UAVs) are a few
notable examples, often referred to as safety-critical systems. But

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CPS-IoT Week Workshops 23, May 9-12, 2023, San Antonio, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0049-1/23/05...$15.00
https://doi.org/10.1145/3576914.3587546

pected to build and exploit knowledge of their environment and
make complex decisions based on a multitude of sensory inputs. In
other words, they must meet ever-evolving expectations about their
ability to intelligently interact with their environmental context.
We refer to one such ability as environmental awareness.

At the same time, a safety-critical system must continue to func-
tion despite unexpected overloads or failures. To do so, predicting
and assessing overload conditions, violation of timing requirements,
and presence of security threats is equally important. In many ways,
we demand that our systems become aware of their internals to
tell apart what is expected from what is aberrant. This form of
internal awareness is in stark contrast with the aforementioned
environmental awareness.

Indeed, achieving environmental awareness calls for an increase

in system complexity. The fusion of high-bandwidth sensing de-
vices, the addition of specialized hardware accelerators, and the use
of machine-learning data-intensive analytics are now commonplace.
The result is a highly complex, often under-optimized software stack
on top of equally sophisticated hardware. As system complexity
soars, it is impossible to fully understand and predict the exact in-
terplay between software components, software and hardware, or
even between individual hardware modules. This fundamental lack
of understanding severely limits the degree of internal awareness
that can be achieved in traditional computing systems.
Data Flows as Assets: In complex systems, having static knowl-
edge of all the emerging interactions between hardware and soft-
ware components is hard, if not impossible. Thus, towards achieving
internal awareness, it is necessary to have direct control over all
interactions in the system. Such interactions occur as flows of data
exchanged between components.

The need to enact precise monitoring and control over on-chip
data flows is not a novel idea. Radical system redesigns like Co-
QoS [7] and PARD [9] pioneered this principle more than a decade
ago. What is novel is the intuition (corroborated with a substantial
array of practical use cases) that emerging trends in augmenting ex-
isting SoCs with an on-chip programmable logic (FPGA) empower
seamless and continuous observability and control over on-chip
data flows. This implies that (1) advanced flow analysis and control
primitives can be carried out in existing commercial hardware and
(2) that the original vision of QoS-oriented data flow management
can be significantly broadened.

CPS-loT Week Workshops "23, May 9-12, 2023, San Antonio, TX, USA

FPGA

User-defined
Logic & Memory

lnterconn.

Main Memory Controller (DRAM)

Legend:
Direct Route PLIM Flow Route
CAESAR Read CAESAR Write

Figure 1: CPU+FPGA SoC overview. Direct route to main mem-
ory (yellow) and through-FPGA alternative route possible via
PLIM [17] (blue).

Software-Shaped Platforms: With programmable control over
on-chip data flows, we argue that a new paradigm for software-
shaped platforms, or SOSH for short, is possible. In the SOSH
paradigm, the software instantiates, as needed, hardware modules
to constantly monitor data-flows, define policies and performance
envelopes for data-flow exchanges, and define actions that affect
both hardware and software components in case of policy violation.
SOSH platforms are designed to be implemented using commer-
cially available hardware and thus exhibit competitive performance
from their inception. The enabling technology we leverage is the
co-location of embedded processing elements and dynamically re-
configurable FPGA in modern SoCs. In SOSH platforms, the FPGA
is not primarily used to build accelerators. Instead, FPGA modules
are defined to monitor, profile, predict, and control the flow of data
exchanged between on-chip resources — i.e., between processors,
I/O peripherals, memory modules, and accelerators.

In this paper, we outline (1) a broad vision for SOSH platforms
and review (2) key enabling mechanisms and (3) concrete use cases
for data flow observation and management that constitute the pil-
lars of the SOSH paradigm.

2 BACKGROUND: CPU+FPGA SYSTEMS

CPU+FPGA Platforms. CPU+FPGA SoCs are key enablers of the
SOSH vision. A simplified block diagram is provided in Fig. 1. In
these SoCs, a multi-core (Cy,...,Cp,) computing cluster (CPU) and
programmable logic (FPGA) are co-located. Today, the two major
players in general purpose computing, i.e., Intel® and AMD®, own
the two leading companies in FPGA technology, i.e., Altera® (June
2015) and Xilinx® (February 2022), respectively. CPU+FPGA SoCs
are poised to become a standard computing model in both the
embedded market and enterprise computing segments. Typically,
the CPUs within the cluster share a single LLC. The downstream
memory hierarchy components must resolve LLC misses (cache
refills) following a write-back write-allocate (WBWA) policy. By
WBWA, dirty lines are written back upon eviction, and a write
miss allocates a new line in the LLC. If a cache refill is for a line

R. Mancuso, S. Roozkhosh, D. Hoornaert, J.H. Mun, T.I. Papon, and M. Athanassoulis

present in main memory, the yellow route in Fig. 1 is followed by
memory transactions. Memory transactions pass through one or
more point-to-point bus segments. The initiating end is called a
main port (MP, @ in Fig. 1), the replying end is called secondary
port (SP, 8 in Fig. 1). Memory-mapped FPGA: the FPGA is as-
signed a static aperture within the physical addressing space. LLC
refills (write-backs) whose physical address falls within the FPGA
aperture initiate a read (write) memory transaction towards the
FPGA. This approach to initiate CPU-to-FPGA communication
is termed memory-mapped semantics. CPU-to-FPGA interfaces:
when memory transactions reach the FPGA, they arrive through
an MP (from the CPU cluster’s perspective). The FPGA can initiate
transactions towards main memory (DRAM) via an SP of compa-
rable performance. Additionally, an emerging technology [2, 3] is
that of connecting the CPU cluster with the FPGA directly via a
bi-directional coherence port (CP, @ in Fig. 1).

3 ENABLING MECHANISMS

The ability to dynamically instantiate hardware components to
manage on-chip data flows is enabled by three complementary
techniques, namely: (1) Partial Dynamic Reconfiguration (PDR),
(2) Programmable Logic In-the-Middle (PLIM), and (3) Coherence-
Aided Elective and Seamless Alternative Routing (CAESAR). We
briefly discuss these key mechanisms in the following.

Partial Dynamic Reconfiguration (PDR): Modern FPGAs that
support PDR allow the definition of hardware components at run-
time and thus without a system reset. Modular reconfiguration of
the FPGA is supported, meaning that some of the hardware modules
defined on the FPGA can be reprogrammed while others continue
to operate. If a library of modules is synthesized ahead of time,
the overhead paid for their deployment can be kept at a minimum.
An excellent array of studies on the reconfiguration bandwidth of
modern FPGAs were conducted in [1, 12, 13, 19]. As highlighted
in [13], modern FPGAs can support reconfiguration throughputs
upwards of 0.9 Gbps, meaning that sizable ~1 MB modules can be
swapped in/out with millisecond-scale overheads.
Programmable Logic In-the-Middle (PLIM): The work in [17]
pioneered the idea of interposing programmable logic between
processor-side memory fetches and main memory with the PLIM
technique. Under PLIM, memory transactions originating at the
CPUs and targeting main memory are re-routed through the FPGA,
following an alternative route denoted in blue in Fig. 1. Doing
so incurs acceptable overheads [17] and opens up new avenues
to design and deploy resource management primitives previously
available only through hardware re-design. It also creates new op-
portunities in defining OS-level and hypervisor-level technologies
that leverage PLIM modules to improve performance management,
self-awareness, and online workload characterization.
Coherence-Aided Elective and Seamless Alternative Routing
(CAESARY): A promising technique with cache-coherent on-chip
FPGAs via the CP is coherence backstabbing which was recently
introduced in [15]. Coherence backstabbing refers to the possibility
of leveraging the coherence port exposed to the FPGA for purposes
other than maintaining cache coherence. The term backstabbing
wants to evoke that the FPGA inserts itself on the back of a protocol
where (1) useful information about the behavior of the CPUs is
transferred (observability); (2) the state of the upstream caches,

Software-Shaped Platforms

and the semantics and timing of downstream data accesses can be
impacted by programmable logic (programmability). Coherence
backstabbing enables the CAESAR approach for memory traffic
management, which extends PLIM capabilities in three main ways.
First, CAESAR enables memory traffic to follow a route that is an
alternative to what is followed with traditional memory-mapped
semantics used by the original PLIM approach. Because such a
route bypasses slower SoC interconnects meant for I/O traffic, it
also enables lower through-FPGA re-routing overheads. The results
outlined in [15] suggest that using the coherence port unlocks up to
40% better throughput for read traffic compared to using memory-
mapped semantics. Second, it allows re-routing data and metadata
(e.g. access timestamps and physical addresses) with different trade-
offs between seamlessness and resulting overheads. Third, it enables
dynamic activation of the alternative route (for cache-line refill
traffic) without the need to modify page-table translations.

4 SOFTWARE-SHAPED PLATFORMS

At the core of the SOSH paradigm is the idea of exposing direct con-
trol over the flow of data exchanged between hardware components
in an embedded System-on-Chip (SoC). Data flow manipulation
primitives are synthesized in reprogrammable hardware and in-
terposed between central processors, memory modules, and I/O
devices. The SOSH paradigm leverages PDR capabilities to define
management and monitoring primitives as needed. For instance, a
SOSH platform can instantiate on-the-fly hardware modules to per-
form accurate application profiling; gather online statistics about
the usage of hardware resources; enforce I/O data pre-processing
and filtering rules; re-routing application traffic.

On the other hand, the dynamically-instantiated modules lever-
age PLIM and CAESAR techniques to enact programmable manage-
ment policies for on-chip data flows. The deployed PLIM/CAESAR
components allow exporting on-demand and fine-grained profiling
and control mechanisms back to the software layers. Thus, a new
layer of system software is then introduced to leverage such prim-
itives; and to achieve fine-grained control and introspection over
the interaction of SoC resources. Further run-time PDR policies can
get triggered based on the nourished real-time profile. By turning
memory and I/O data flows into manageable entities, a new degree
of self-awareness can be achieved in complex systems.

As suggested by the name, a SOSH platform can be re-shaped as
needed by the software in light of the current operating conditions.
And while doing so, the software can retain control and observ-
ability over the most performance-critical inner-most hardware-
application interactions.

Data Flow Management Templates: Fig. 2 provides an overview
of the key super-classes of data-flow management primitives—
depicted as black boxes—that SOSH platforms can instantiate. Merg-
ing primitives allow enacting complex/programmable rules to join
data flows originated by different modules. An example is provided
in Section 5.1. Reordering/Filtering primitives will carry stream-
processing operations to (1) reduce the amount of moved data and
(2) optionally perform re-ordering to improve locality. A concrete
exarmmple of one such block is presented in Section 5.2. Next, Profil-
ing/Logging primitives support extracting data flow characteristics
for prediction and state/progress tracking of application workload,
as briefly described in Section 5.3. Lastly, Splitting primitives will

CPS-loT Week Workshops "23, May 9-12, 2023, San Antonio, TX, USA

Component 1
(e.g. CPU)

Component 2

(e.g. GPU)
é I
L]
O

Profiling/
Logging

Reordering/

Filtering Splitting

«H o>

RULE:
Component 3 Fiter: O Component 4
(e.g. RAM) Reorder: (e.g. Scratchpad)
LA

traditional hardware software-shaped data

distinguished by:

L hardware module
type, content, timing, ...

component flow operation
A classes of data transactions directed data flow
O generated by
o

Figure 2: High-level semantics of key data-flow manipulation
primitives (black boxes) in software-shaped platforms.

allow selectively re-routing sub-flows to improve timing and/or
relieve congestion.

5 EXISTING SOSH MODULES

This section briefly reviews concrete designs and implementations
of data flow operation blocks that have been studied in the past.
These represent a bootstrap to the library of modules that a SOSH
platform can instantiate.

5.1 Scheduler in-the-Middle (SchIM)

The Scheduler in-the-Middle, or SchIM for short, was proposed
in [6]. The SchIM is a configurable module that leverages PLIM
to interpose itself between the last-level cache (LLC) of the CPU
cluster and the memory controller in a CPU+FPGA system. By rec-
ognizing the regions of physical memory mapped to the different
software partitions, the SchIM can classify the traffic source on a
per-core and potentially per-application basis. By leveraging this
information, the SchIM performs memory transaction-level sched-
uling following policies that can be customized and configured at
runtime by the software. The original work showcased two proof-
of-concept memory scheduling policies: Time Division Multiple
Access (TDMA) and Fixed Priority (FP), while Traffic Shaping (TS)
has also been incorporated more recently.

The SchIM is a good example of a SOSH block providing data
flow merging (see Fig. 2) operations. So long as the source of the traf-
fic can be identified, the SchIM allows the software layer to define
the logic according to which memory transactions originated by
different upstream components—in this case, different CPUs—are
forwarded to a downstream component—in this case, main memory.

Fig. 3 was obtained with a similar setup as that in [6], and it
demonstrates the fine-grained level of control that the SchIM intro-
duces when deployed and configured to policy the traffic originating

CPS-loT Week Workshops "23, May 9-12, 2023, San Antonio, TX, USA

w
2 A e
'{3‘, 1000 - (a)_F",(ed ,__._.,,_.-—--/
8 Priority e
< coreme® s
o .-—-"""M‘
= O_.»v/. . TS S =
time ——>
2 pesarerett
o gedele?”
% 100 [REL e
a Gagevelc ey
& et
=
time —
n .. .
S (c) Traffic -
b= .
é UG | Shaping L e .o ’ - go—
o ', Jo— geene !
= 0 purde-® [Eiad
time —>
— Qo Q1 — Q2 — Q3

Figure 3: Trace of memory transactions collected on-chip via
areal-hardware instantiation of the SchIM module [6].

from CPUs Cp through Cs. In Fig. 3(a), FP is used, and the prior-
ity of traffic en-queued by Cy (Q0) is configured to be the highest.
Therefore Cy completes substantially more requests per unit of time
compared to the other cores. In Fig. 3(b), equally sized transmission
slots are configured for all the cores, resulting in similar traffic pat-
terns across all the cores, with a recognizable slotted transmission
pattern. Finally, in Fig. 3(c), TS is used to assign to C3 (Q3) twice the
bandwidth allocated to the other cores. This results in the visible
separation between the rate of transmissions from Q3 and that from
the other queues in Fig. 3.

5.2 Relational Memory Engine (RME)

Roozkhosh et al. [16] propose the concept and implementation of
the Relational Memory Engine (RME). The RME represents an ex-
cellent instance of a data flow reordering/filtering operational block
(see Fig. 2). Indeed, the RME is a configurable near-data transforma-
tion engine positioned between main memory and LLC. The engine
captures CPU-originated memory requests and converts on-the-fly
data from a row-major format to arbitrary column groups by lever-
aging the PLIM paradigm [17]. A high-level visual representation
of the engine is provided in Fig. 4.

Relational data are organized in relational tables with tuples
stored as rows containing several columns (also called attributes).
The data is physically laid out either in a row-first format or column-
first format. Maintaining each row together is beneficial for work-
loads that target reading or updating individual rows—i.e, transac-
tional workloads—while storing data in column-first fashion ben-
efits more workloads that calculate aggregates and statistics of
large chunks of data—i.e., analytical workloads. Traditional data
management systems have been aiming to support one of the two
workloads, so applications that have both workloads need multi-
ple systems and pay the cost of gradually converting data from a
transactional-friendly layout to an analytics one [10, 11, 14].

The core idea of RME is to create reorganized aliases of the data
(ephemeral variables) that are not physically stored in main memory,
yet that the CPU can use as if they were. In other words, the RME
can deliver to the CPU relational data with arbitrary data layouts
that are accessible with the ideal spatial locality. Thanks to the RME,

R. Mancuso, S. Roozkhosh, D. Hoornaert, J.H. Mun, T.I. Papon, and M. Athanassoulis

Relational Memory Engine (RME)

Main Memory

Data
Reorganization
Engine

requests from CPUs

Data
Geometry
Specification

serve cachelines,

with compact data ¢ -

1 2 3 4
5 6

FPGA Reorganization Buffer

B - useful data

Figure 4: High-level organization of the RME. When the CPU
makes a request for a cache line of reorganized data, main
memory is accessed. Useful data items are extracted on the
fly based on the provided geometry specification, and cache
lines with only useful data are issued in response [16].

a system is able to store data in a row-major format in memory and
efficiently absorb incoming data. At the same time, it can deliver
arbitrary groups of columns for read-only analytical queries with
no overhead. Because unnecessary data items are excluded from
cache lines, a net reduction in cache footprint is also achieved. But
more broadly, the RME showcases the transformational capabilities
of redefining the semantics of memory accesses in a configurable
way. Indeed, we are able to decouple data addresses from their
placement and organization in main memory.

5.3 Silent Application Profiler

Coherence backstabbing and the CAESAR approach [15] (see Sec-
tion 2) open the door to the design and implementation of non-
intrusive profiling/logging data flow operation blocks. Perhaps
most prominently, the concept of a silent application profiler, called
the Silent Observer, was proposed in [15]. The profiler is capable
of collecting important and fine-grained metadata about the main
memory traffic produced by the CPUs. In particular, by monitoring
the CP (see Fig. 1), the module collects the physical addresses of all
the cache lines that were accessed and resulted in a cache miss in
the LLC. In the same way, the exact timestamp of those transactions
is acquired by the module.

The high-level operation of a CAESAR-aided memory profiler
is depicted in Fig. 5. Upon (1) a cache miss encountered by an ap-
plication core in LLC, the coherence fabric generates a (2) snoop
transaction towards the FPGA. The timestamp at which the snoop
is received corresponds to the timestamp of the cache miss. The
payload of the snoop transaction carries the physical address. The
module can (3) immediately signal the coherence fabric that it does
not hold a copy (nor an updated version) of the requested cache
line. Contemporarily, it (4) logs said transaction metadata for later
analysis in a dedicated and off-the-critical-path memory block—e.g.,
an FPGA-side scratchpad.

Because the profiler module does not actively interact with the
coherence port, profiling is performed off-band and introduced
near-zero overhead, as demonstrated in [15]. Fig. 6 provides a vi-
sualization of the kind of insights that can be gathered via this

Software-Shaped Platforms

Monitor * Log

| - —® Coherence Port (CP)

@
Cache : FPGA
Miss i
(2 Anybody has "
Coherence R (ysnooé) r . CAESAR
Fabric ' H Module
@R d:No* x
>< 3) Respond: No * @ Log
v

Scratchpad

Figure 5: High-level operational principle of a CAESAR-aided
memory profiler. The module passively listens to coherent
interconnect-generated snoop transactions, which carry the
timestamp and physical address of requested cache lines.
These metadata are logged on a dedicated scratchpad [15].

profiling technique. The two insets depict a partial visualization
of the memory traffic generated by two applications. These are
(a) tracking and (b) mser from the San Diego Vision Benchmarks
Suite (SD-VBS) [18]. In particular, the top plot in each inset shows
the cumulative number of memory transactions (y-axis) over time
(x-axis). The bottom plot in each inset focuses on those 100 pages
recorded to have the largest number of accesses throughout the
profiled runs. For each of them (y-axis), each cell in the heatmap
is colored on a blue-green gradient scale to encode the number of
accesses to cache lines within that page over a discretized notion
of time (x-axis). The qualitative difference between insets (a) and
(b) is representative of the different characteristic memory access
patterns of the two applications.

Importantly, instead of being logged for later analysis, the infor-
mation extracted by the profiling module can be stream-processed
to inform the software layers of a SOSH platform about application
progress, unexpected access pattern behaviors, and/or to detect the
usage of and enforce memory bandwidth reservation quotas.

6 ENVISIONED SOSH CAPABILITIES

The concrete instances of data flow operation blocks reviewed in
Section 5.1-5.3 highlight the feasibility of the SOSH paradigm. More
research is required to complement the SOSH vision with key ad-
ditional capabilities. A non-exhaustive list of such capabilities that
we envision to be within reach is reviewed in the following.

6.1 Progress Tracking and Behavior Prediction

Progress Tracking: When an application with a known profile
is launched on a SOSH platform, the corresponding profile can be
used to monitor its progress and anticipate its needs. A progress
tracking module that leverages data-flow monitoring can be de-
signed by recognizing the characteristic fingerprint [4] of different
execution phases in the application under analysis. Tracking ap-
plication progress can provide unprecedented internal awareness
in a SOSH platform. First, clashes over system resources between
two or more co-running applications can be easily predicted and

CPS-loT Week Workshops "23, May 9-12, 2023, San Antonio, TX, USA

1.0 4

] Binned resolution 7
High resolution .~

Access dist.

175
150
125

100

Top 100 page ranking

2 q 6 &
-0p .0g 0, 0g
*0p *0, *0, %0,

Time (clock cycles)

(a) Workload: tracking

1.0 4 5
)] Binned resolution J;f
2 High resolution N
° J
"
"
@
v
<
=B
. . 140
o = N -
c =t = 120
x | -
5 == =37 100
] - B §
g = : 80
Q =
- =
2 = 60
& = 40
- &
—1 20
-
= 0

3

0 2 2
“O0, 90, “O0, 00,
0*00 0*0) eio) eio)

Time (clock cycles)

(b) Workload: mser

Figure 6: Partial visualization of memory traces obtained via
the CAESAR-aided profiling module by observing the mem-
ory traffic generated by two SD-VBS [18] applications, namely
(a) tracking and (b) mser [15].

CPS-loT Week Workshops "23, May 9-12, 2023, San Antonio, TX, USA

averted. Second, it is possible to discover if an application is run-
ning behind or ahead of schedule. Third, application misbehavior
due to software bugs or security breaches can be discovered.

Planning Ahead: Most importantly, the ability to track the progress
of applications enables tighter cooperation between the platform
and the software. Being able to anticipate an application’s flow
through stages enables strategies to plan ahead. Simply put, the
SOSH platform has a way of enacting a number of preparatory
actions to optimize the execution of subsequent phases for tracked
applications. Indeed, when the two tasks are executed in parallel on
different CPUs, they may contend for memory (or I/O) bandwidth
allocation. The degree of contention depends on their profiles and
their partial progress in time. Given that this information can be
tracked in SOSH platforms, the sustainable bandwidth of a targeted
resource can be distributed to contending requestors in a way that
is aware of each application’s temporal constraint (deadline).

6.2 Advanced Memory Models

By adopting the SOSH paradigm it is possible to dynamically re-
define the semantics of memory resources.

Historical Memory: Debugging parallel applications is often prob-
lematic because, when a thread is paused to inspect memory con-
tent, the temporal interaction of the various threads is impacted.
By leveraging data-flow manipulation, a more convenient memory
semantic can be defined, which we refer to as historical memory. In
a nutshell, a debugger can deploy a module to monitor a given (set
of) memory block(s). Accesses to the monitored blocks are served
according to usual read/write semantics. At the same time, a log is
created reporting which thread has manipulated any of the moni-
tored memory locations along with the corresponding timestamp of
each operation. A similar model can also implement low-overhead
application snapshotting and checkpointing.

Self-Destructing Memory: The SOSH paradigm also enables the
creation at runtime of memory objects for which an expiration
policy is defined. Consider the case where an application is provided
with a secret—e.g., an encryption key—to be used only once during
execution. After the key has been used, it should be discarded to
minimize the chances of its content being leaked. In this case, a
SOSH module can be deployed to monitor any access to the in-
memory secret. The module can then allow a single access to the
content of the secret, after which the content of the secret is erased.
Self-destructing memory semantics can be particularly useful to
implement One-Time Programs [5], i.e., programs that can be only
run once. This basic model can be further generalized. It is possible
to create memory content that automatically expires after a given
time. Similarly, it is possible to trigger memory self-destruction as
an application progresses past those execution phases that require
access to the secret.

6.3 Security Threat Mitigation

SOSH platforms can also harden themselves against security vul-
nerabilities that arise from hardware design flaws.

Memory Privilege Bypass: The discovery and public release of
the Meltdown vulnerability [8] have highlighted the complex inter-
play between performance-enhancing speculative execution and
address space isolation. At the core of the Meltdown vulnerability,

R. Mancuso, S. Roozkhosh, D. Hoornaert, J.H. Mun, T.I. Papon, and M. Athanassoulis

there is a violation of a fundamental invariant. That is, while a pro-
cessor is executing an unprivileged application, a data transaction
towards a privileged memory area is initiated. In a SOSH platform,
it is possible to intervene by appropriately policing data flows and
preventing the completion of cache line refills that, if completed,
would leak sensitive information.

Detection of Malware Activity: Signature-based malware detec-
tion has been extensively used to identify threats. It can also be
efficiently implemented and it introduces low runtime overheads.
Unfortunately, most of today’s malware is able to alter its signature
and avoid detection. Behavior-based malware detection can be em-
ployed instead to detect malware capable of altering its signature.
Traditionally, sandboxing is used to perform behavior-based detec-
tion. A capability made possible with the SOSH paradigm is a new,
low-overhead approach for behavior-based detection. By leverag-
ing data flow monitoring, it is possible to analyze the behavior of
untrusted software components by analyzing their interaction with
memory resources and I/O devices.

7 CONCLUSION

Internal awareness—i.e., understanding and control over the in-
ternal interplay of system components—is lost as software and
hardware layers grow in complexity. The rise in complexity fol-
lows the broadened expectations for environmental awareness in
modern safety-critical systems. We propose a novel paradigm of
software-shaped (SOSH) platforms aiming to restore strong inter-
nal awareness without trading off complexity. SOSH platforms are
designed to be implementable in modern FPGA+CPU SoCs and
leverage on-chip programmable logic to instantiate data flow con-
trol and manipulation primitives. We reviewed existing works that
have proposed data flow management modules already well-aligned
with the SOSH vision. Finally, we discuss a number of future capa-
bilities that are attainable to complement the SOSH vision.

ACKNOWLEDGMENTS

The material presented in this paper is based upon work supported
by the National Science Foundation (NSF) under grants number
CCF-2008799 and CNS-2238476. Denis Hoornaert was supported by
the Chair for Cyber-Physical Systems in Production Engineering
at TUM and the Alexander von Humboldt Foundation.

REFERENCES

[1] Alessandro Biondi, Alessio Balsini, Marco Pagani, Enrico Rossi, Mauro Marinoni,
and Giorgio Buttazzo. 2016. A Framework for Supporting Real-Time Applications
on Dynamic Reconfigurable FPGAs. In 2016 IEEE Real-Time Systems Symposium
(RTSS). 1-12. https://doi.org/10.1109/RTSS.2016.010

[2] Young-kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman,
and Peng Wei. 2016. A Quantitative Analysis on Microarchitectures of Modern
CPU-FPGA Platforms. In Proceedings of the 53rd Annual Design Automation
Conference (Austin, Texas) (DAC ’16). Association for Computing Machinery, New
York, NY, USA, Article 109, 6 pages. https://doi.org/10.1145/2897937.2897972

[3] David Cock, Abishek Ramdas, Daniel Schwyn, Michael Giardino, Adam

Turowski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa Licciardello, Kristina

Martsenko, Reto Achermann, Gustavo Alonso, and Timothy Roscoe. 2022. Enzian:

An Open, General, CPU/FPGA Platform for Systems Software Research. In

Proceedings of the 27th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (Lausanne, Switzerland)

(ASPLOS ’22). Association for Computing Machinery, New York, NY, USA, 434-451.

https://doi.org/10.1145/3503222.3507742

Johannes Freitag, Sascha Uhrig, and Theo Ungerer. 2018. Virtual Timing Isolation

for Mixed-Criticality Systems. In 30th Euromicro Conference on Real-Time Systems

(ECRTS 2018) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 106),

=

Software-Shaped Platforms

(5

=

l6

=

(9]

[10

[11]

[12]

Sebastian Altmeyer (Ed.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 13:1-13:23. https://doi.org/10.4230/LIPIcs.ECRTS.2018.13
Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. One-Time
Programs. In Advances in Cryptology — CRYPTO 2008, David Wagner (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 39-56.

Denis Hoornaert, Shahin Roozkhosh, and Renato Mancuso. 2021. A Memory
Scheduling Infrastructure for Multi-Core Systems with Re-Programmable Logic.
In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS), Vol. 196.
2:1-2:22. https://doi.org/10.4230/LIPIcs ECRTS.2021.2

Bin Li, Li Zhao, Ravi Iyer, Li-Shiuan Peh, Michael Leddige, Michael Espig,
Seung Eun Lee, and Donald Newell. 2011. CoQoS: Coordinating QoS-aware shared
resources in NoC-based SoCs. J. Parallel and Distrib. Comput. 71,5 (2011), 700-713.
Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In 27th USENIX Security Symposium (USENIX Security 18). USENIX
Association, Baltimore, MD, 973-990.

Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen Huang, Tianni
Xu, Zhicheng Yao, Yun Chen, Haibin Wang, et al. 2015. Supporting differentiated
services in computers via programmable architecture for resourcing-on-demand
(PARD). In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems. 131-143.

C. Mohan. 2016. Hybrid Transaction and Analytics Processing (HTAP): State of
the Art. In Proceedings of the International Workshop on Business Intelligence for
the Real-Time Enterprise (BIRTE).

Fatma Ozcan, Yuanyuan Tian, and Pinar Téziin. 2017. Hybrid Trans-
actional/Analytical Processing: A Survey. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. 1771-1775.
https://doi.org/10.1145/3035918.3054784

Marco Pagani, Alessio Balsini, Alessandro Biondi, Mauro Marinoni, and
Giorgio Buttazzo. 2017. A Linux-based support for developing real-time
applications on heterogeneous platforms with dynamic FPGA reconfiguration.

[13

[14

[16

(17

(18

[19

CPS-loT Week Workshops "23, May 9-12, 2023, San Antonio, TX, USA

In 2017 30th IEEE International System-on-Chip Conference (SOCC). 96-101.
https://doi.org/10.1109/SOCC.2017.8226015

Kyprianos Papadimitriou, Apostolos Dollas, and Scott Hauck. 2011. Performance
of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model.
ACM Trans. Reconfigurable Technol. Syst. 4, 4, Article 36 (dec 2011), 24 pages.
https://doi.org/10.1145/2068716.2068722

Massimo Pezzini, Donald Feinberg, Nigel Rayner, and Roxane Edjlali. 2014.
Hybrid Transaction/Analytical Processing Will Foster Opportunities for
Dramatic Business Innovation. https://www.gartner.com/doc/2657815/ (2014).
https://www.gartner.com/doc/2657815/

Shahin Roozkhosh, Denis Hoornaert, and Renato Mancuso. 2022. CAE-
SAR: Coherence-Aided Elective and Seamless Alternative Routing via
on-chip FPGA. In 2022 IEEE Real-Time Systems Symposium (RTSS). 356-369.
https://doi.org/10.1109/RTSS55097.2022.00038

Shahin Roozkhosh, Denis Hoornaert, Ju Hyoung Mun, Tarikul Islam Papon,
Ahmed Sanaullah, Ulrich Drepper, Renato Mancuso, and Manos Athanassoulis.
2023. Relational Memory: Native In-Memory Accesses on Rows and Columns.
In Proceedings of the International Conference on Extending Database Technology
(EDBT). 66-79. https://doi.org/10.48786/edbt.2023.06

Shahin Roozkhosh and Renato Mancuso. 2020. The Potential of Programmable
Logic in the Middle: Cache Bleaching. In Proceedings of the Real-Time
and Embedded Technology and Applications Symposium (RTAS). 296-309.
https://doi.org/10.1109/RTAS48715.2020.00006

Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta,
Christopher Louie, Saturnino Garcia, Serge Belongie, and Michael Bedford
Taylor. 2009. SD-VBS: The San Diego Vision Benchmark Suite. In 2009
IEEE International Symposium on Workload Characterization (IISWC). 55-64.
https://doi.org/10.1109/IISWC.2009.5306794

Kizheppatt Vipin and Suhaib A. Fahmy. 2018. FPGA Dynamic and Partial
Reconfiguration: A Survey of Architectures, Methods, and Applications. ACM
Comput. Surv. 51, 4, Article 72 (jul 2018), 39 pages. https://doi.org/10.1145/3193827

