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ABSTRACT

This paper outlines the vision for a new type of software-shaped
platforms, or SOSH platforms for short, that can be implemented
in commercial CPU+FPGA platforms. At the core of the SOSH par-
adigm is the idea of exposing direct control over the flow of data
exchanged between hardware components in embedded System-
on-Chips (SoC). Data flow manipulation primitives are synthesized
in reprogrammable hardware and interposed between central pro-
cessors, memory modules, and I/O devices. A new layer of system
software is then introduced to leverage such primitives and to
achieve fine-grained control and introspection over the interac-
tion of SoC resources. By turning memory and I/O data flows into
manageable entities, a new degree of internal awareness can be
achieved in complex systems. We first review recent works that are
well aligned with the concept of data flow manipulation primitives
that can be deployed in SOSH platforms. Next, we outline future
research avenues concerning the use of the SOSH paradigm for
workload profiling and prediction, to implement advanced memory
models, and to perform security threat identification and mitigation.
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1 INTRODUCTION

Computing systems with strict reliability and confidentiality re-
quirements support the modern world and society. Avionic systems,
nuclear plant supervisory systems, orbit controllers in satellites,
driverless cars, and unmanned aerial vehicles (UAVs) are a few
notable examples, often referred to as safety-critical systems. But
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safety alone is not enough. Modern safety-critical systems are ex-
pected to build and exploit knowledge of their environment and
make complex decisions based on a multitude of sensory inputs. In
other words, they must meet ever-evolving expectations about their
ability to intelligently interact with their environmental context.
We refer to one such ability as environmental awareness.

At the same time, a safety-critical system must continue to func-
tion despite unexpected overloads or failures. To do so, predicting
and assessing overload conditions, violation of timing requirements,
and presence of security threats is equally important. In many ways,
we demand that our systems become aware of their internals to
tell apart what is expected from what is aberrant. This form of
internal awareness is in stark contrast with the aforementioned
environmental awareness.

Indeed, achieving environmental awareness calls for an increase
in system complexity. The fusion of high-bandwidth sensing de-
vices, the addition of specialized hardware accelerators, and the use
of machine-learning data-intensive analytics are now commonplace.
The result is a highly complex, often under-optimized software stack
on top of equally sophisticated hardware. As system complexity
soars, it is impossible to fully understand and predict the exact in-
terplay between software components, software and hardware, or
even between individual hardware modules. This fundamental lack
of understanding severely limits the degree of internal awareness
that can be achieved in traditional computing systems.
Data Flows as Assets: In complex systems, having static knowl-
edge of all the emerging interactions between hardware and soft-
ware components is hard, if not impossible. Thus, towards achieving
internal awareness, it is necessary to have direct control over all
interactions in the system. Such interactions occur as flows of data
exchanged between components.

The need to enact precise monitoring and control over on-chip
data flows is not a novel idea. Radical system redesigns like Co-
QoS [7] and PARD [9] pioneered this principle more than a decade
ago. What is novel is the intuition (corroborated with a substantial
array of practical use cases) that emerging trends in augmenting ex-
isting SoCs with an on-chip programmable logic (FPGA) empower
seamless and continuous observability and control over on-chip
data flows. This implies that (1) advanced flow analysis and control
primitives can be carried out in existing commercial hardware and
(2) that the original vision of QoS-oriented data flow management
can be significantly broadened.
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averted. Second, it is possible to discover if an application is run-
ning behind or ahead of schedule. Third, application misbehavior
due to software bugs or security breaches can be discovered.
PlanningAhead:Most importantly, the ability to track the progress
of applications enables tighter cooperation between the platform
and the software. Being able to anticipate an application’s flow
through stages enables strategies to plan ahead. Simply put, the
SOSH platform has a way of enacting a number of preparatory
actions to optimize the execution of subsequent phases for tracked
applications. Indeed, when the two tasks are executed in parallel on
different CPUs, they may contend for memory (or I/O) bandwidth
allocation. The degree of contention depends on their profiles and
their partial progress in time. Given that this information can be
tracked in SOSH platforms, the sustainable bandwidth of a targeted
resource can be distributed to contending requestors in a way that
is aware of each application’s temporal constraint (deadline).

6.2 AdvancedMemoryModels

By adopting the SOSH paradigm it is possible to dynamically re-
define the semantics of memory resources.
HistoricalMemory: Debugging parallel applications is often prob-
lematic because, when a thread is paused to inspect memory con-
tent, the temporal interaction of the various threads is impacted.
By leveraging data-flow manipulation, a more convenient memory
semantic can be defined, which we refer to as historical memory. In
a nutshell, a debugger can deploy a module to monitor a given (set
of) memory block(s). Accesses to the monitored blocks are served
according to usual read/write semantics. At the same time, a log is
created reporting which thread has manipulated any of the moni-
tored memory locations along with the corresponding timestamp of
each operation. A similar model can also implement low-overhead
application snapshotting and checkpointing.
Self-DestructingMemory: The SOSH paradigm also enables the
creation at runtime of memory objects for which an expiration
policy is defined. Consider the case where an application is provided
with a secret—e.g., an encryption key—to be used only once during
execution. After the key has been used, it should be discarded to
minimize the chances of its content being leaked. In this case, a
SOSH module can be deployed to monitor any access to the in-
memory secret. The module can then allow a single access to the
content of the secret, after which the content of the secret is erased.
Self-destructing memory semantics can be particularly useful to
implement One-Time Programs [5], i.e., programs that can be only
run once. This basic model can be further generalized. It is possible
to create memory content that automatically expires after a given
time. Similarly, it is possible to trigger memory self-destruction as
an application progresses past those execution phases that require
access to the secret.

6.3 Security Threat Mitigation

SOSH platforms can also harden themselves against security vul-
nerabilities that arise from hardware design flaws.
Memory Privilege Bypass: The discovery and public release of
the Meltdown vulnerability [8] have highlighted the complex inter-
play between performance-enhancing speculative execution and
address space isolation. At the core of the Meltdown vulnerability,

there is a violation of a fundamental invariant. That is, while a pro-
cessor is executing an unprivileged application, a data transaction
towards a privileged memory area is initiated. In a SOSH platform,
it is possible to intervene by appropriately policing data flows and
preventing the completion of cache line refills that, if completed,
would leak sensitive information.
Detection ofMalware Activity: Signature-based malware detec-
tion has been extensively used to identify threats. It can also be
efficiently implemented and it introduces low runtime overheads.
Unfortunately, most of today’s malware is able to alter its signature
and avoid detection. Behavior-based malware detection can be em-
ployed instead to detect malware capable of altering its signature.
Traditionally, sandboxing is used to perform behavior-based detec-
tion. A capability made possible with the SOSH paradigm is a new,
low-overhead approach for behavior-based detection. By leverag-
ing data flow monitoring, it is possible to analyze the behavior of
untrusted software components by analyzing their interaction with
memory resources and I/O devices.

7 CONCLUSION

Internal awareness—i.e., understanding and control over the in-
ternal interplay of system components—is lost as software and
hardware layers grow in complexity. The rise in complexity fol-
lows the broadened expectations for environmental awareness in
modern safety-critical systems. We propose a novel paradigm of
software-shaped (SOSH) platforms aiming to restore strong inter-
nal awareness without trading off complexity. SOSH platforms are
designed to be implementable in modern FPGA+CPU SoCs and
leverage on-chip programmable logic to instantiate data flow con-
trol and manipulation primitives. We reviewed existing works that
have proposed data flowmanagement modules already well-aligned
with the SOSH vision. Finally, we discuss a number of future capa-
bilities that are attainable to complement the SOSH vision.
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