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Data-centric methods designed
to increase end-to-end reliability of
data-driven decision systems.
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at Multiple
Stagesina

Data Analysis
Pipeline

THE UBIQUITY OF data in recent years has led to wide
use of automated, data-driven decision-making tools.
These tools are gradually supplanting humans in a
vast range of application domains, including decisions
about who should get a loan,? hiring new employees,”
studentgrading,”’ and even assessing the risk of paroling
convicted criminals. Our growing dependence on
these tools, in particular in domains where data-
driven algorithmic decision making may affect
human life, raises concerns regarding their reliability.
Indeed, with the increasing use of data-driven tools,
we also witness a large number of cases where these

a https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-that-beatsyour-bank-
manager/?sh=4fbafadc1ae9
b https://www.nytimes.com/2015/06/26/upshot/can-an-algorithm-hire-better-thana-human.html
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tools are biased. Forinstance, COMPAS,
arisk assessment tool that predicts the
likelihood of a defendant re-offending,
was widely used in courtrooms across
the U.S. ProPublica, an independent,
nonprofit newsroom that produces in-
vestigative journalism in the public in-
terest, conducted a study on COMPAS,
which showed the software discrimi-
nated based on race. Black people were
scored as a greater risk to re-offend
than the actual, while White people
were scored as a lower risk than the ac-
tual.* Further analysis® revealed issues
with other groups as well. For example,
the error rate for Hispanic women is
very high because there are not many
Hispanic women in the dataset. It is
not only that there are fewer Hispanics
than Black and White people, and few-
er women than men, but also fewer
Hispanic women than one would ex-
pect if these attribute values were inde-
pendently distributed.

Another example, recently pub-
lished in The New York Times,” show-
cases a different bias scenario. The
International Baccalaureate (IB) is
a global standard of educational
testing that allows U.S. high-school
students to gain college credit. The
final exams, a major factor in stu-
dent scores, were canceled due to the
COVID-19 pandemic. Instead, stu-
dents were assigned grades based on

key insights

m Data-driven methods are increasingly
being used in a wide range of application
domains, such as hiring, grading, and
risk assessment, where data-driven
algorithmic decision making may affect
human life. With the increasing use of
such tools, we also withess many cases
where they are biased and cause harm.

B The development of data-driven decision
systems is typically complex and consists
of numerous phases. Bias may be
introduced at different points in the
development pipeline.

® The growing impact of data and data-
driven systems on society brings out the
need for reliable data management and
analysis methods. With the complexity of
those systems, multiple tools must be used
together to construct data-based decision
systems with end-to-end reliability.
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Figure 1. Data-driven decision systems’ development pipeline: generating decision-making tools from raw data. The pipeline begins with data
acquisition and consists of data preprocessing and ML model training. Our proposed methods for increasing end-to-end reliability include data

labeling, which allows users to determine the fitness of data representation for the application; aggregation results quality assessment; and
detection of unfairly treated groups.
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a predictive model. As a result, high-
achieving students from poor school
districts were severely hurt, because
the model placed great weight on
school quality. For example, students
from low-income families were pre-
dicted to fail the Spanish exam, even
when they were native Spanish speak-
ers. Many of them had studied for
the IB hoping to save thousands of
dollars on tuition by earning college
credit with their scores.

Erroneous decisions may also be
caused by generalizing from detailed
data to statements in a broader con-
text. Aggregation queries (that is, que-
ries that group multiple data items
and form a single summary value,
such as average) can be used to gen-
erate such statements. Statements
based on aggregation query results
over datasets are commonly used by
data scientists when analyzing large
datasets. These statements, which
we refer to as generalizations, allow
analysts to achieve and to convey a
high-level understanding of the data.
Poorly constructed generalizations
might convey misleading information
even if the statements are technically
supported by the data. Misleading
statements could be made intention-
ally—for example, by using some
highly influential data points, namely
data points with high variance val-
ues (such as outliers). This affects an
entire aggregated group result when
performing aggregation. Examples
can be found in many statements
made by politicians, but they can even
occur in “objective” arenas, such as
science and medicine. For instance,
doctors have over-diagnosed ADHD

Data should include infor-
mation about students from
different geographic areas

Low representation.
of students from
‘ rural addresses

“On average, the grades of students with a rural address are
higher than the grades of students with an urban address”

the situation captured in the data

Result does not reliably represent

Students from the Gabriel Pereira
school with an urban address
have low accuracy compared to
the overall model accuracy

SELECT Address, avg(Grade) as AVG_Grade @}
ﬁ FROM Grades ﬁ g ——e
GROUP BY Address EEE-
/™

for years after making generalizations
to age, sex, and the maturity of the
children.*

The need to address such concerns
has been felt by many. There is a sig-
nificant body of literature on fairness
in AL* on estimating the reliability of
statements representing a document
or dataset," and so on. However, out
of necessity, most such works have
addressed a particular narrow con-
cern. The challenge for a data-science
pipeline is that it has to establish end-
to-end reliability. Reliability is a wide
concept that encompasses numer-
ous aspects. In particular, there are
many facets in which the reliability
of data-driven decision systems can
be improved along its development
process. The following example dem-
onstrates potential challenges and pit-
falls in the development process.

Example 1. Consider an initiative
to improve the educational level in
Portugal by identifying students likely
to fail core classes. Providing these stu-
dents with academic assistance at an
early phase could potentially increase
their success rate. Figure 1 depicts the
development process of a data-driven
decision system for identifying students
who need support.

The process starts with data col-
lection. Multiple datasets with infor-
mation on student performance are
available. For instance, “The Student
Performance Data Set”® features data
collected from two schools in Portugal’s
Alentejo region: Gabriel Pereira (GP)
and Mousinho da Silveira (MS). The
data was collected during the 2005-
2006 school year and contains the per-
formance of 1,044 students in the Math
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and the Portuguese language exams,
along with demographic, social/emo-
tional, and school-related information.
A similar dataset is also available from
the capital Lisbon.

The data scientist then needs to
decide which data should be used for
the development of the system. Since the
system is developed as part of a national
effort, the data should represent stu-
dents from different geographic areas.
Exhausting and time-consuming pro-
filing of the two datasets reveals insuf-
ficient representation of students from
rural addresses in the data collected
from schools in Lisbon. Keeping in mind
that low representation of students from
rural addresses may lead to poor per-
formance of the resulting system with
respect to this group, the data scientist
selects the Alentejo region data.

In analyzing the data, the scientist
executes queries over the dataset to
gain a better understanding of the data.
One of the queries computes the aver-
age grades of students based on their
address. According to the query result,
the data scientist concludes that the
grades of students with a rural address
are higher than the grades of students
with an urban address. While this state-
ment is true, it is in fact misleading.
Closer examination of the data reveals a
big disparityin trends based on sex: The
grades of female students from urban
addresses are higher, but the grades of
male students from rural addresses are
higher. Pooling these two together gives
rural students a small lead in the aggre-
gate, but that misses the key trends.

Finally, the data scientist uses the
data to train a machine-learning (ML)
model. In the analysis of the resulting



model, the user observes a satisfactory
overall accuracy. To further verify the
model’s fairness, the scientist com-
putes the accuracy of different groups
in the data: male and female, students
from urban and rural addresses, and
any combination thereof. As the accu-
racy of all groups is comparable, the
model is deployed in the system. When
using the system, users in some of
the schools encountered high error
rates among students with an urban
address. As a result, students who
needed assistance were not identified
by the system, while others, who were
able to succeed without help, were
given extra support. A reexamination
of the ML model reveals that, indeed,
due to the use of historical results of
the schools, students from the Gabriel
Pereira school who live in an urban
address suffer from a significantly low
accuracy compared with the model’s
overall accuracy.

We next outline our proposed solu-
tions to assist users in the development
process and eliminate potential bias.

Fitness of data representation to the
application. When a decision is made
by a machine-learned model, the qual-
ity of the decision depends centrally
on the data used in the model train-
ing phase. For instance, as shown
in Asudeh et al.,’ insufficient group
representation may lead to poor per-
formance with respect to the group.
Thus, our first approach focuses on
the selection of training data and, par-
ticularly, on the representation of dif-
ferent groups in the data to help users
determine the fitness of the data for
the intended application. For instance,
in Example 1, the representation of
students from different geographic
areas is crucial to the task. Different
tasks may imply other representa-
tion requirements. For example, the
Lisbon dataset may be a better fit for
a program by the Lisbon Municipality
aimed at advancing women in STEM.
In this case, the number of females is
also an important feature in selecting
the dataset.

Detection of unfairness. The second
method considers the fairness mea-
sures of the model. Data-driven tools
that seemingly work well in general
may treat minority groups in an unfair
manner. The common approach in
fairness analysis assumes a given set

of sensitive attributes, which defines
groups that may be treated unfairly.
Following this assumption, an ana-
lyst may miss out on groups that are
defined using attributes that are not
naturally considered as “sensitive,”
as demonstrated in the IB example,
where the school ID is used to define
the unfairly treated group. Without a
deep understanding of the domain,
we would not know to choose a combi-
nation of school ID and home address
as a sensitive attribute. To this end,
we present a technique for detecting
groups that are treated unfairly by a
given ML model. In other words, we
want to let the data speak to (poten-
tial) unfairness without requiring a
human modeler to identify protected
attributes ahead of time.

Aggregation-result quality assessment.
Aggregation queries are commonly
used by analysts throughout the analy-
sis of large datasets, the development
of data-driven decision tools, and in the
decision-making pipeline. Analysts use
aggregation queries to gain an under-
standing and a high-level description of
the data. Evaluating the “representabil-
ity” quality of an aggregate query result is
crucial to detecting misleading conclu-
sions. We thus propose a model to quan-
tify the quality of generalizations derived
by aggregate queries.

We will demonstrate the ideas
presented in the paper using the “The
Student Performance Data Set.”® Figure
2 depicts a sample from the data with
the attributes: gender, school, address
(urban or rural), and failures (the
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number of past class failures). The
grade attribute depicts the student
grades on a scale from 0-20, and the
prediction attribute describes the pre-
diction, “pass” (grade > 10) or “fail”
(grade < 10) of a predictive model.

Reliable Datasets
The data on which data-driven decision
systems depend, as is often the case in
data science, is typically “found data.”
That is, the data was not collected as
part of the development of the analyt-
ics pipeline but was acquired indepen-
dently, possibly assembled by others
for different purposes. When using
“found data,” analysts typically perform
data profiling, a process of extracting
metadata or other informative sum-
maries of the data.> While informative
and useful, data profiling is hard to
do well, is usually not automated, and
requires significant effort. Instead,
inspired by the notion of a “nutrition
label,”?° where the basic idea is to cap-
ture dataset properties of interest in a
succinct label, we propose!*** labeling
datasets with information regarding
the count of different groups (defined
using value combinations) in the data.
Needless to say, there are a number of
such combinations possible. So, stor-
ing individual counts for each is likely
to be impossible. To this end, we focus
on techniques to estimate these counts
based on storing only a limited amount
of information.

Given a dataset, if we do not know
anything about its value distributions,
a common assumption to make is

Figure 2. Student grades and ML prediction model for sample data from the “Student

Performance Data Set.” ® The ML prediction is wrong for the highlighted rows (false positive
in green, and false negative in red).

# | Gender | School | Address | Failures || Grade Prediction
1 F MS R 1 11 Pass
2 M MS R 1 14 Pass
3 M GP u 1 9 Pass
4 M GP u 2 7 Fail
5 M MS R 0 19 Pass
6 F MS u 1 7 Fail
7 F GP R 1 9 Fail
8 M GP R 1 8 Fail
9 F MS R 0 12 Pass
10 F MS R 2 9 Fail
11 M MS R 2 12 Pass
12 F GP u 0 19 Pass
13 F GP U 2 12 Fail
14 M MS U 1 12 Pass
15 F GP u 1 8 Fail
16 M GP U 0 9 Fail
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that of independence between attri-
butes. Then, we can keep counts for
only individual attribute values, and
estimate counts for attribute value
combinations, assuming indepen-
dence. However, this defeats the cen-
tral purpose of profiling—we only get
information about individual attri-
butes (the “marginal distributions”)
but nothing about any correlations. In
the study of discrimination, there is a
considerable examination of intersec-
tionality, the whole point of which is
to understand how the social conse-
quence of being a member of a pro-
tected class on multiple axes is not
simply the “sum” of each alone. For
example, to understand the discrimi-
nation faced by Black women, it is not
enough to understand independently
the impacts of race and gender alone.
In other words, we have to ensure
that our estimates for the count of
any group in the database are at least
approximately correct.

Histograms have long been used
for similar purposes in relational data-
bases;” however, they do not do very
well in high dimensions. Other preva-
lent techniques for selectivity estima-
tion include sampling'® and machine
learning-based methods.?? The former
suffers from insufficient performance
in the presence of skews and high-selec-
tivity queries, and the latter requires
training and results in very complex
models. Following the concept of nutri-
tion labels for datasets, a key require-
ment in our problem context is that the
metadata annotation can be immedi-
ately comprehensible to a potential user
of the dataset.

We enhance user understanding of
the appropriateness of datasets, and
hence their willingness to trust them,
through the effective use of dataset
labels. We start by presenting our
model of label construction, based on
counts. We assume the data is repre-
sented using a single relational data-
base, and that the relation’s attribute
values are categorical. Where attribute
values are drawn from a continuous
domain, we render them categorical
by bucketing them into ranges—very
commonly done in practice to present
aggregate results. In fact, we may even
group categorical attributes into fewer
buckets where the number of individ-
ual categories is very large.
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Patterns count. Given a database
D with attributes A={A4,...,4,},
A we use Dom(A) to denote the active
domain of 4, for i € [1..n]. A pattern
p is a set {4 =a,..,4 =a} where
{4,,..,4, = A and a;eDom(4,) for
each 4 in p. We use Attr(p) to denote
the set of attributes in p. We say that
a tuple ¢ € D satisfies the pattern p if
t.A = a, for each A, € Attr (p). The count
c,(p) of a pattern p is then the number
of tuples in D that satisfy p.

Example 2. Consider the dataset
in Figure 2. p = {Gender = M, School
= MS, Address = R} is an example of a
pattern. The tuples 2, 5, and 11 satisfy
itand thus ¢, (p) = 3.

While useful, storing count informa-
tion of the patterns appearing in the
data is likely to be impossible as their
number is exponential in the number of
attributes. We next present our method
for estimating these counts using only a
limited amount of information.

Pattern count-based labels. Our
problem, intuitively, is to choose a
small number of patterns (limited

by a given space budget), among the
exponential number, that can be used
to estimate the count for any pattern
with minimal error. We envisage this
information being made available

as metadata with each dataset. In
deference to the idea of a nutrition
label, we call our stored information
a “label.” An important feature of our
model that is missing in previously
proposed models for data labeling is
the ability to generate labels in a fully
automated way. We define our notion
of data labels with respect to a subset
of attributes S, as the count informa-
tion of all possible value combinations
of attributes in S in the data. The size
of the label is then determined by the
space required for the count informa-
tion. More formally, a label Ly(D) of D
defined with respect to a subset S of
the database attributes contains the
following: (1) the pattern count (PC) for
each possible pattern over S (that is,

p with Attr(p) = S), and (2) value count
(VC) of each value appearing in D.

Example 3. Consider the dataset in
Figure 2. The label resulting from use
ofthe attributes set S ={School, Address }



consists of the following:*

PC ={({School =GP, Address=U}, 6),
({School =GP, Address =R}, 2),

({School =MS,Address =U}, 2),
({School =MS, Address =R}, 6),

VC ={({Gender =M}, 8), ({Gender =F}, 8),
({School =GP}, 8), ({School =MS}, 8),
({Address=U}, 8), ({Address=R}, 8),
({Failures =0}, 4), ({Failures=1}, 8),
({Failures=2}, 4), ({Grade =Pass}, 8),
({Grade=Fail}, 8)}

The label resulting from use of the

attributes set ' = {Gender, School}

consists of the same VC set and the fol-
lowing PC set:

PC ={({Gender =M, School =GP}, 4),
({Gender =M, School =MS}, 4),
({Gender =F, School =GP}, 4),
({Gender =F, School =MS}, 4)}

Count estimation. Given a database D
with attributes A and a subset of attri-
butes Sc A ,we use P todenote the set
of all possible patterns over S such that
c,(p) > 0. Let S, and S, be two subsets
of attributes such that S, cS,cA.
Given a pattern pe P, we use p|S, to
denote the pattern that results when
p is restricted to include only the attri-
butesin$ . Givenalabel /= Ly (D) of D
using S, we may estimate the count of
each patternin p, as follows.

Est(p, D=c,(p|s,):
c,({4,=p.A})
H {4,=p.A}

ASSS, ZajeDom(Al ) c,({A = a; b

Example 4. Consider again the data-
set Figure 2, and the label [ = L (D)
generated using S ={School, Address}
shown in Example 3. The estimate of
the pattern p ={Gender = M, School =
MS, Address =R} using /is

Est(p, I)=c,(School=MS, Address=R)-
c,({Gender =M})
za‘, cpom(Gender) Cp({Gender =a })
8
T

3

Using the label I/ = Ly(D) generated

¢ The grade attribute is bucketized into two
bins: Pass (>10) and Fail (<10).

from §’ = {Gender, School}, with a sim-
ilar computation we obtain

Est(p, I')=c,(Gender =M, School =MS)-
c,({Address=R})
zal eDom(Address) CD({Address = aj })

8 _
16

2

Given the estimation procedure, each
label entails an error with respect to
the real count of patterns in the data.
We define the error of a label [ = L (D)
with respect to a pattern p as

Err(l, p)=|c,(p)-Est(p, )|

Example 5. Reconsider the estimates
Est(p, 1) and Est(p, I') of the pattern
p ={Gender = M, School = MS, Address
=R} shown in Example 4. The count of
the pattern p in the database is 3; thus,
the error of [ with respect to p is 0 and
the error of / is 1.

Abusing notation, we use Err(l, P),
for a set of patterns P, to denote the
maximum error in the estimate for
any individual pattern in P. The
problem of finding an optimal label
within a given bound on the label size
is NP-hard (see our previous work"
for details). This problem resembles
the problem of query optimization
with materialized views,® where the
goal is to find a set of views that could
be used to optimize query evaluation
time, when the number of the views is
limited and their maintenance under
data updates is taken into account. In
contrast, in our problem, we search
for a label that would result in the
most accurate estimations.

Optimal label computation. We next
present our solution for optimal label
computation. A naive algorithm for

the problem would traverse over all
possible attribute subsets in increas-
ing size order, compute the size of the
corresponding label for each set, and
choose the one that entails minimal
error within the budgeted space.

The naive algorithm is unacceptably
expensive; therefore, we developed a
much faster heuristic solution' for the
optimal label problem. Our algorithm
builds upon two observations. First,
due to the nature and purpose of the la-
bels (that is, conciseness that allows for
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user-friendly visualization), the typical
bound over the label size is small. Sec-
ond, we argue that in practice, labels
generated with a set of attributes S are
preferable over labels generated using
any subset of S. Intuitively, for two at-
tribute sets S, and S, if S, = S, the label
generated using S, has more details
than the one generated using S,

Our solutionisinspired by the Apriori
algorithm® and the Set-Enumeration
Tree for enumerating sets in a best-first
fashion."” We use a lattice over the set of
all possible subsets of attributes, each
corresponding to a possible label, such
that labels located higher in the lattice
are smaller. Following the first observa-
tion (the typical bound is small), we tra-
verse the lattice in a top-down fashion.
Traversing the lattice does not require
explicit representation of it, as children
nodes can be generated on demand
from their respective parents. Moreover,
each node is generated at most once
in the scan. For each node generated
by the algorithm, we compute the cor-
responding label size and prune the
search based on the given label bound.
Finally, the algorithm computes the
error of potential labels observed dur-
ing the search. The error computation
of a label is time-consuming; thus, to
optimize the performance of the algo-
rithm, based on the second observation,
the algorithm computes the error only
for maximal sets. The label with mini-
mal error is then returned. Our experi-
ments demonstrate the high accuracy
of the labels generated, even with a very
limited space budget, and indicate the
usefulness of our proposed optimized
heuristic compared with the naive
algorithm (see our previous work" for
details).

Example 6. Figure 3 shows a label
of “The Student Performance Data
Set”® (including only data in Math)
with the label size (the PC set) limited
to 4. The label was generated using
the “School” and “Address” attributes
and includes information on the esti-
mations error with respect to the pat-
terns in the data (average error,
maximal error, and standard devia-
tion). Some immediate observations
that can be made based on this infor-
mation are that there is a high repre-
sentation of students with urban
addresses compared with students
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from rural areas. Additionally, due to
the low number of students who get
extra paid classes, their number is
likely to be insufficient for the develop-
ment of a non-biased algorithm using
this data. Note that even with a size
limit as low as 4 the label significantly
improves count estimations. For
instance, assume that we are inter-
ested in the number of students from
the GP school with a rural address
and who do not pay for extra classes.
Their true number in the dataset is 72.
Using the attribute independence
assumption, the count estimation is
649.42.17.59-120, whereas using
the label we get a much more accurate
estimation of 78-—5=73.

Reliable Fairness Measures
Fairness is a crucial aspect of decision-
making tool reliability. Once the ML
model is trained, data analysts may
wish to validate its fairness toward dif-
ferent groups in the data. Various fair-
ness measures have been proposed,
where different measures are typically

designed to capture case-appropriate
properties: Different definitions may be
used in different use cases. Forinstance,
one natural fairness definition con-
siders the accuracy among different
groups. According to this definition, a
classifier is fair if different groups in the
data (that is, Hispanic students from
low-income families) have the same
overall accuracy in prediction as other
groups. Another plausible definition
takes into account the false-positive
error rates. This definition is appropri-
ate when we wish to minimize the error
of falsely classifying subjects in the
negative class as positive—for example,
granting loans to people who would not
be able to pay back. Whether a classifier
is fair depends on the notion of fairness.
Different definitions can lead to differ-
ent outcomes as we next show.

Example 7. Consider the data-
set in Figure 2 and the -classifier
whose results are depicted in the
“Prediction” column. The classifier’s
overall accuracy (based on the given

Figure 3. A label computed for The Student Performance Data Set® (using only data in Math)
with the size limited to 4. Note: the PC set is only the last four rows of the table; the top

20 rows are the marginal distributions of individual attributes, which are basic statistics
about this dataset.

Total size: 649
Attribute Value Count
Gabriel Pereira 423 65%
School Mousinho da Silveira 2% 35%
Gender Male 266 41%
Female 383 59%
Urban 452 70%
Address Rural 197 30%
0 549 85%
Failur 1 70 11%
arures 2 16 2%
3 or more 14 2%
Yes 68 10%
School support No 581 20%
Family support ves 398 61%
¥ Supp No 251 39%
. Yes 39 6%
Extra paid classes No 610 94%
0 244 37%
1 12 2%
Absences 9 110 17%
3 or more 283 44%
School Address Count
. . Urban 345 53%
Gabriel Pereira Rural 78 12%
. - Urban 107 17%
Mousinho da Silveira Rural 119 18%
Average Error 1.08 0.17%
Maximal Error 9 1.39%
Standard deviation 18
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data) is 0.875; however, for students
from the GP school with an urban
address, the accuracy is only 0.67, sig-
nificantly lower than any other group
in the data (that may be defined by
values of the different attributes).
Another fairness measure, known
as equal opportunity, focuses on the
false-positive error rate (FPR=-2=).
Intuitively, by this measure the clas-
sifier should produce similar results
for all students who fail the exam. In
this case, a high FPR indicates fairness
issues. In our example, male students
with a single previous failure have a
high FPR (0.5) compared with the over-
all FPR (0.11).

There is extensive work on fairness,
but the typical formulation works with
explicitly pre-identified “protected”
groups identified by particular values
in specified attributes. For example,
women can be a protected group based
onagender attribute. While itis impor-
tant to work with protected groups due
to historical discrimination based on
race, gender, and ethnicity, these are
not the only groups that can suffer
from unfairness. Furthermore, as indi-
viduals, each of us is identified with
many different groups.

Several recently developed tools (see,
for example, the AI Fairness 360 project!)
allow users to assess fairness of ML sys-
tems and even assist in mitigating the
bias and provide explanations. However,
they focus on investigating only user-
specific protected groups. To build a reli-
able system, we must detect unfairness
for all groups, including intersectional
groups. Once such groups are detected,
the user can remedy the problem, either
by adjusting the ML model or altering
the training data. We start by presenting
our method" to do this for the problem
of detecting groups with low accuracy
and then present a generalized solution
for other fairness definitions.

Detecting groups with low
accuracy. Given a classifier M and
alabeled dataset D, the accuracy of a
pattern p, denoted as acc, (p), is the ratio
of the number of tuples in D satisfying p
that are correctly classified by M to ¢, (p).

Example 8. Consider again the data-
set in Figure 2. The accuracy of the
pattern p = {School=GP, Address=U}
is acc,(p)=+=0.67, since among



the six tuples that satisfy p, two are
misclassified.

Our goalis to detect significant groups
(that is, large enough) that are treated
unfairly by the algorithm (that is, have
low accuracy compared with the overall
algorithm accuracy). In particular, we
wish to provide the user with a concise
description of these groups. Given a
classifier M and an error threshold 7,
we say that p is a most general pattern
with accuracy below 7_if acc,,(p) <7,
and Vp'C p, acc,,(p') > 7,. Our prob-
lem is then, given a database D, a
trained classifier M with overall accu-
racy a, an accuracy delta threshold A7,
and a size threshold 7, find all most
general patterns with size >7, and
accuracy <7,, where 7, = a - A7 We
next outline our solution.

Algorithm. Given a labeled test data-
set D, a classifier M, and thresholds 7,
and A7, over the size and accuracy of
the patterns respectively, we first use M
and D to compute the set of misclassi-
fied tuples DY (the tuples in D classi-
fied incorrectly by M) and 7, = a - Ar,.
We then traverse the set of possible
patterns (starting with the most gen-
eral ones) and compute the accuracy
for each pattern. To do so, we use the
notion of pattern graph presented in
Asudeh et al.® Briefly, the nodes in the
graph are the set of all possible pat-
terns, and there is an edge between a
pair of patterns p and p’ if pcp’ and
p’ can be obtained from p by adding a
single attribute value pair. In this case,
we say that p(p’) is a parent (child) of
P'(p). As shown in Asudeh et al.,’ the
pattern graph can be traversed in a top-
down fashion, while generating each
pattern at most once. Moreover, the
size of a pattern p in a dataset can be
computed from its parents. We build
upon this observation to compute the
size of each pattern p in the given data-
set D and in the misclassified dataset
DY and then use them to compute the
pattern accuracy acc, (p).

Pruning. To optimize the search,
we prune the search space. First note
that ¢,(p) = ¢,(p") for every p and p’
when p’ is a descendent of p in the pat-
tern graph. Thus, when reaching a pat-
tern pwith ¢, (p) <7, the descendentof p
can be pruned. Moreover, if ¢,(p)>T,
and acc,,(p) < 7,, its descendent can be
pruned as well since we are looking for

The challenge for

a data-science
pipeline is that it has
to establish end-to-
end reliability.
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most general patterns. Note: the accu-
racy of a pattern p is lower than 7_if

CpM_(p)
Dinis

cp(p)
thatis, c,(p a-7,) < ¢p (P)-

accy,(p)=1- <Tgy

Since we are interested only in
patterns p with ¢, (p)>7, we get
T, (1= T)<CDM (p). Thus, patterns
W1th size less than T,-(1-7,) can be
pruned as well.

Example 9. Consider again the data-
setinFigure 2 and the classifierMwhose
results are depicted in the Prediction
column. Given the thresholds 7, = 5
and A7, = 0.2, the algorithm first com-
putes 7, and the set of misclassified
tuples Dm,s In this case, the overall
accuracy of the classifier is 0.875, thus
7,=0.675and D, ={3, 13}. The most
general patterns are p, ={Gender = M},

, ={Gender = F}, p, ={School = MS},
p ={School = GP}, p, = {Address = U},
= {Address = R}, p, = {Failures = 0},
p8 = {Failures = 1}, and p, = {Failures
= 2}. The algorithm first considers p..
Since Cp (p)=1<(1-71,)7,=1.625
this pattern and all of its descendants
can be pruned. Similarly, p, and p, and
their descendants are pruned. Next,
the algorithm considers p,. There
are two students in the GP school
with incorrect predicted grades, thus
Com (p,)=2>1.625. Since the total
number of students in GPis 8, the accu-
racy of p, isacc,,(p,)=0.75>71,=0.675,
thus its children are generated.
Similarly, the children of p_ are gener-
ated. Patterns p, through p, (and their
descendants) are pruned as well. The
patterns p, and p, are pruned due to
their low number of misclassified
tuples. For the patterns p_and p,, ¢, (p,)
=c¢,(p,) =4 <7 =5, thus they and their
descendants are pruned. Finally, the
pattern p, ={School = GP, Address = U}
(generated as a child of p,) is consid-
ered. Since ¢ (p,)) =6 and ¢ o (pyp)=2
the accuracy of p, is 0.67 < 0 675 and
D,, is added to the result set. In this
example, this is the only pattern with
low accuracy.

Generalized solution. We now pro-
pose a generalization of the algorithm
described in the section “Detecting
groups with low accuracy” to account
for other definitions for algorithmic
fairness.*" In particular, we consider
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Figure 4. Aggregation and refinement query results.

Address  Failures  AVG_Grade
0 12
Address  AVG_Grade 1 10
R 11.75 2 9
U 10.38 0 19
1 7.5
(a) Result of query 0 2 12

(b) Result of refinement query Q'

Figure 5. The set of possible refinement queries, their support, and weight.

. GROUP BY
weight WHERE Address Address, Failures

1 - 1 Z
0.5 Gender=M 1 1
05 Gender =F 0 3
05 School = GP 0 0
05 School = MS 1 1
0.25 Gender = MandSchool = GP 0 %
0.25 Gender = MandSchool = MS 0 0
0.25 Gender = FandSchool = GP 0 1
0.25 Gender = FandSchool = MS 1 1

definitions based on the model’s pre-
diction and actual outcomes. These sta-
tistical measures of fairness rely on the
possible cases of a classifier’s outcome:
True Positive (TP), False Positive (FP),
False Negative (FN), and True Negative
(TN). We next offer a brief overview of
such definitions? and refer readers to
Verma and Rubin?! for more details.

Predictive parity. The fraction of cor-
rect positive prediction I should
be similar for all groups.

False-positive error-rate balance (pre-
dictive equality). The probability of a sub-
jectin the actual negative class to have a
positive predictive value FPR=;2— is
similar for all groups.

False-negative error-rate balance (equal
opportunity). Similar to the above, but con-
siders the probability of falsely classifying
subjects in the positive class as negative
FNR =

Equalized odds. Combines the previ-
ous two definitions. All groups should
have both similar false-positive error-
rate balance £~ and false-negative
error-rate balance gy

d The definitions given in Verma and Rubin®
consider two groups (protected/unprotected
groups defined using a sensitive attribute). We
generalize the definitions to fit our problem of
detecting unfairly treated groups.
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Conditional use accuracy equality. All
groups should have similar probability
of subjects to be accurately predicted
as positive 75 and accurately pre-
dicted as negative .

Treatment equality. This considers
the ratio of error. A classifier satisfies
it if all groups have a similar ratio of

false negatives and false positives.

Generalized algorithm. Our solution
can be generalized to capture these
fairness definitions (and any defini-
tion that relies on the values TP, FP,
FN, and TN). The general algorithm
is similar to the algorithm for detect-
ing patterns with low accuracy with
the following modifications. First,
the algorithm computes four datas-
ets (instead of D)): Dy, Dy, Dn,
and Dy, containing the tuples from D
thatare TP, FP, FN, and TN, respectively.
The algorithm traverses the pattern
graph in a top-down fashion. For each
pattern, it computes the size, and the
fairness measure using Dy, Dipy D s
and Dy,. We use 7, to refer the fair-
ness measure in the general case.
Note that for some fairness measures
(for instance, false positive/negative
error-rate balance) lower values are
preferred. In this case, the algorithm
returns groups with a fairness value
higher than 7. Moreover, note that the
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pruning based on Coy as presented
is not applicable in general; however,
other methods, such as pruning based
on the numerator value, can be used.

The proposed method aims to assist
users in assessing the fairness of an
ML model for any given test data. This
is in line with the common practice
of performance analysis of ML mod-
els. Consequently, a limited amount
of data in the test set may affect the
results. In particular, the test data
should be representative.

Reliable Result Derivation

In the process of data analysis and the
development of data-driven tools, query
results are often conveyed and even
used in practice, based on generaliza-
tions that represent “the main take-
away” from the analysis. In this section,
we describe our model for evaluating
the quality of generalizations derived by
aggregate queries.

Bias in the result of aggregation
queries was studied—for example, in
Salimi et al.,'s which use causal analysis
to define the bias. As such, they focus on
inferring covariates, attributes that are
correlated with the aggregation result,
whose distribution differs in different
groups. Our model aims at assessing
the quality of the results by examining
the subgroups of the groups in the out-
put. An interesting application of our
proposed model is the detection of the
Simpson’s paradox that was also stud-
ied in Guo et al.’® We start by present-
ing the notion of statements based on
aggregation queries and then discuss
their score, which reflects the degree to
which the result of aggregation repre-
sents the underlying data.

Aggregation query-based state-
ments and refinement queries. We
consider statements on the relation
between groups in the results of an
aggregation query.

Example 10. Consider the Grades
table in Figure 2 and the following

aggregation query Q:

SELECT Address,
as AVG Grade
FROM Grades
GROUP BY Address

avg (Grade)

The result of the query is shown in



Figure 4a. Based on the result, we can
state that (S): on average, the grades
of students with rural addresses are
higher than the grades of students
with urban addresses.

To explore the possible refined
subgroup entities, we next define the
notion of query refinement. Intuitively,
the groups in the results of an aggrega-
tion query Q can be refined either by
adding attributes to the WHERE clause
of Q (that is, adding attribute-value
assignments), or the GROUP BY clause
(that is, adding grouping attributes).

Example 11. Consider again the
query Q from Example 10. A possible
refinement query Q’ of Q is

SELECT Address, Failures,
avg (Grade) as AVG Grade
FROM Grades

WHERE Gender = F

GROUP BY Address, Failures

In this example, Q was refined by add-
ing Gender = F to the WHERE clause
and adding Failures to the GROUP BY
clause. The result of the refined query is
given in Figure 4b. Adding an attribute
to the WHERE or the GROUP BY clause
allows for the comparison of the aggre-
gation results of subgroups, which can
determine how well the underlying data
isreflected by the queryresult and reveal
misleading conclusions. For instance,
the statement S from Example 10 is sup-
ported by the result of the given query Q
but does not reflect the fact that this is
not th case if we consider only female
students, for which the grades of stu-
dents from urban addresses are higher.

Statement’s score. Given a statement
and the set of refinement attributes (to
be added to the WHERE and GROUP BY
clause), our goal is to define the score of
the statement, which measures how well
it reflects the underlying data. We do it
by considering all possible refinements
of the given query Q and taking into
account the size of the subgroups in the
result as their potential influence on the
score. To this end, we define the weight
of a refinement query and the support of a
statement. Using these two notions, we
define the score of a statement.

The weight of a refinement query.
Given a set of attributes with value
assignments A, = a, (not appearing in

Once the ML
model is trained,
data analysts may
wish to validate its
fairness toward
different groups in
the data.
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the original query) such that 4. is an
attribute and a,is avalue in the domain
of A, the weight of a refinement query
is the relative size of the tuples that
confirm the value assignment from the
total size of tuples involved in the state-
ment groups.

Example 12. Consider the query @/
that refine the query Q given in Examples
11 and 10 respectively. The statement
S, based on the original query Q, con-
siders students from rural and urban
addresses. There are 16 such tuples in
the data (all tuples in this case). Eight
of those tuples confirm the condition
Gender = Female; namely, the relative
portion of female students is =1
and so is the weight of Q'.

The support of a statement. To
measure the support of a statement,
we consider pairwise comparison
between subgroups of the statement’s
groups, obtained by refinement of the
GROUP BY clause. The support is then
the number of subgroup comparisons
that align with the original statement
divided by the total number of compar-
isons applied.

Example 13. The refinement query
Q' refines each group in the statement
S: students with a rural address and an
urban address, into three subgroups
based on the number of past failures.
To compute the support of Q' in S, we
apply pairwise comparison between the
subgroups—that is, the average grade
of students with a rural address and 0,
1, and 2 past failures with the average
grade of students with a rural address
and 0, 1, and 2 past failures. The total
number of comparisons applied in
this example is nine, out of which there
were only three cases where the average
grade of students with a rural address is
higher than the grade of students with
an urban address (when comparing the
grades of students from rural addresses
with 0, 1, and 2 failures to those with
urban addresses and a single past fail-
ure). Thus, the support of the query Q’
is 2=1.

The score of a statement. Finally, the
score of a statement is defined with
respect to a set of refinement attri-
butes A,, and A, , which define

pre
the attribute that can be used to
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refine the aggregation query through
the WHERE and GROUP BY clauses
respectively. Given a statement S
based on the result of a query Q and the
sets of refinement attributes A, and
legrp, let R(Q) be the set of all pos-
sible refinement queries of Q obtained
using A, , and A, . The score of §
is then defined as the sum of the prod-
uct of the weight and score for every
possible refinement query, normalized
by the sum of weights of all refinement
queries.

Y oerio) Weight(Q)- supp(Q')

2 oer(o) Weight(Q')

score(SQ) =

Example14.Consider again the query
Qand the statement S given in Example
10,andlet A, , ={Gender, School}
and A, ={Failures}. The set of all
possible refinement queries is sum-
marized in Figure 5. Rows correspond
to refinements through the WHERE
clause, and columns to refinements
through the GROUP BY clause. The
value in each cell depicts the support of
the corresponding refinement query.
For instance, the value 1 in the second
column of the third row is the support
of the query Q' given in Example 11.
The weights of the queries are shown
next to each row (recall that the weight
is determined merely by the WHERE
clause; thus, queries in the same row
have equivalent weight). There are 18
refinement queries with total weight of
8,and the sum of product of the weight
and support for every possible refine-
ment query is 4.61; thus, the score of
the statement S is 42.=0.576.

Intuitively, the score reflects the
fraction of subgroup populations sup-
porting the generalization. A higher
score (close to 1) indicates a better
reflection of the underlying data. The
score of the statement S in the running
example is relatively low, although it is
supported by the result of the query Q.
The reason is that there is a large frac-
tion of subgroups, such as female stu-
dents or students from the GP school
opposing the statement.

Refinement attributes. The attribute
sets A, and A, can be defined by
the end user; however, we propose a
default setting. Given a query Q, attri-
butes that share (almost) the same
data domain in all groups of the result
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of applying Q are added to A, (used
for “similar” subgroup comparison).
Attributes having unique values (for
example, ID, names) are ignored. The
restare addedto A,,.
Scorecomputation. Anaive algorithm
for score computation would iterate
over the set of all possible refinement
queries, compute the weight and sup-
port for each query, and then use them
to compute the score. The number of
refinement queries is exponential in
|A,.| and | A, |. Executing all que-
ries for weight and support computa-
tion may lead to prohibitive execution
time. Lin et al.,” presents an improved
algorithm that works well in practice
(as we show in our experimental study).
The algorithm uses a Hasse diagram,
which represents a partial order over
the refinement queries, based on their
WHERE and GROUP BY attributes.
Enumerating the refinement queries
in a bottom-up fashion allows for the
reuse of computational results (using
a dedicated data structure) and thus
refrains from repeated access to the
dataset to get aggregate results. This
significantly reduces running time.
Given a low score, the user may wish
to: (i) understand why the score is low
(that is, which parts of the data do not
“agree with the statement”) and (ii)
refine the statement, such that the new
refined statement better represents the
data but is “as close as possible” to the
original query. To provide the user with
a better understanding of the resulting
score, Lin et al.?* introduces the prob-
lem of providing counterexamples—that
is, disclosing significant parts of the
data opposing the statement. We fur-
ther discuss the problem of refining the
statement to obtain more representative
alternatives for identifying counterexam-
ples and statement refinement using an
inverted index structure (see Lin et al.'®).

Conclusion

We have presented data-centric meth-
ods designed to increase the reliability
of data-driven decision systems. While
limited to categorical data, these meth-
ods may be used at different points in
developing the data-driven decision-
system pipeline. We believe that mul-
tiple such tools will need to be used
together to be able to construct data-
based decision systems with end-to-
end reliability.
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