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THE UBIQUITY OF data in recent years has led to wide 
use of automated, data-driven decision-making tools. 
These tools are gradually supplanting humans in a 
vast range of application domains, including decisions 
about who should get a loan,a hiring new employees,b 
student grading,7 and even assessing the risk of paroling 
convicted criminals.4 Our growing dependence on 
these tools, in particular in domains where data-
driven algorithmic decision making may affect 
human life, raises concerns regarding their reliability. 
Indeed, with the increasing use of data-driven tools, 
we also witness a large number of cases where these 

a	 https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-that-beatsyour-bank-
manager/?sh=4fbafadc1ae9

b	 https://www.nytimes.com/2015/06/26/upshot/can-an-algorithm-hire-better-thana-human.html

tools are biased. For instance, COMPAS, 
a risk assessment tool that predicts the 
likelihood of a defendant re-offending, 
was widely used in courtrooms across 
the U.S. ProPublica, an independent, 
nonprofit newsroom that produces in-
vestigative journalism in the public in-
terest, conducted a study on COMPAS, 
which showed the software discrimi-
nated based on race. Black people were 
scored as a greater risk to re-offend 
than the actual, while White people 
were scored as a lower risk than the ac-
tual.4 Further analysis5 revealed issues 
with other groups as well. For example, 
the error rate for Hispanic women is 
very high because there are not many 
Hispanic women in the dataset. It is 
not only that there are fewer Hispanics 
than Black and White people, and few-
er women than men, but also fewer 
Hispanic women than one would ex-
pect if these attribute values were inde-
pendently distributed.

Another example, recently pub-
lished in The New York Times,7 show-
cases a different bias scenario. The 
International Baccalaureate (IB) is 
a global standard of educational 
testing that allows U.S. high-school 
students to gain college credit. The 
final exams, a major factor in stu-
dent scores, were canceled due to the 
COVID-19 pandemic. Instead, stu-
dents were assigned grades based on 
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for years after making generalizations 
to age, sex, and the maturity of the 
children.19

The need to address such concerns 
has been felt by many. There is a sig-
nificant body of literature on fairness 
in AI,21 on estimating the reliability of 
statements representing a document 
or dataset,11 and so on. However, out 
of necessity, most such works have 
addressed a particular narrow con-
cern. The challenge for a data-science 
pipeline is that it has to establish end-
to-end reliability. Reliability is a wide 
concept that encompasses numer-
ous aspects. In particular, there are 
many facets in which the reliability 
of data-driven decision systems can 
be improved along its development 
process. The following example dem-
onstrates potential challenges and pit-
falls in the development process.

Example 1. Consider an initiative 
to improve the educational level in 
Portugal by identifying students likely 
to fail core classes. Providing these stu-
dents with academic assistance at an 
early phase could potentially increase 
their success rate. Figure 1 depicts the 
development process of a data-driven 
decision system for identifying students 
who need support.

The process starts with data col-
lection. Multiple datasets with infor-
mation on student performance are 
available. For instance, “The Student 
Performance Data Set”8 features data 
collected from two schools in Portugal’s 
Alentejo region: Gabriel Pereira (GP) 
and Mousinho da Silveira (MS). The 
data was collected during the 2005–
2006 school year and contains the per-
formance of 1,044 students in the Math 

and the Portuguese language exams, 
along with demographic, social/emo-
tional, and school-related information. 
A similar dataset is also available from 
the capital Lisbon.

The data scientist then needs to 
decide which data should be used for 
the development of the system. Since the 
system is developed as part of a national 
effort, the data should represent stu-
dents from different geographic areas. 
Exhausting and time-consuming pro-
filing of the two datasets reveals insuf-
ficient representation of students from 
rural addresses in the data collected 
from schools in Lisbon. Keeping in mind 
that low representation of students from 
rural addresses may lead to poor per-
formance of the resulting system with 
respect to this group, the data scientist 
selects the Alentejo region data.

In analyzing the data, the scientist 
executes queries over the dataset to 
gain a better understanding of the data. 
One of the queries computes the aver-
age grades of students based on their 
address. According to the query result, 
the data scientist concludes that the 
grades of students with a rural address 
are higher than the grades of students 
with an urban address. While this state-
ment is true, it is in fact misleading. 
Closer examination of the data reveals a 
big disparity in trends based on sex: The 
grades of female students from urban 
addresses are higher, but the grades of 
male students from rural addresses are 
higher. Pooling these two together gives 
rural students a small lead in the aggre-
gate, but that misses the key trends.

Finally, the data scientist uses the 
data to train a machine-learning (ML) 
model. In the analysis of the resulting 

a predictive model. As a result, high-
achieving students from poor school 
districts were severely hurt, because 
the model placed great weight on 
school quality. For example, students 
from low-income families were pre-
dicted to fail the Spanish exam, even 
when they were native Spanish speak-
ers. Many of them had studied for 
the IB hoping to save thousands of 
dollars on tuition by earning college 
credit with their scores.

Erroneous decisions may also be 
caused by generalizing from detailed 
data to statements in a broader con-
text. Aggregation queries (that is, que-
ries that group multiple data items 
and form a single summary value, 
such as average) can be used to gen-
erate such statements. Statements 
based on aggregation query results 
over datasets are commonly used by 
data scientists when analyzing large 
datasets. These statements, which 
we refer to as generalizations, allow 
analysts to achieve and to convey a 
high-level understanding of the data. 
Poorly constructed generalizations 
might convey misleading information 
even if the statements are technically 
supported by the data. Misleading 
statements could be made intention-
ally—for example, by using some 
highly influential data points, namely 
data points with high variance val-
ues (such as outliers). This affects an 
entire aggregated group result when 
performing aggregation. Examples 
can be found in many statements 
made by politicians, but they can even 
occur in “objective” arenas, such as 
science and medicine. For instance, 
doctors have over-diagnosed ADHD 

Figure 1. Data-driven decision systems’ development pipeline: generating decision-making tools from raw data. The pipeline begins with data 
acquisition and consists of data preprocessing and ML model training. Our proposed methods for increasing end-to-end reliability include data 
labeling, which allows users to determine the fitness of data representation for the application; aggregation results quality assessment; and 
detection of unfairly treated groups.

Data acquisition Data analysis and preprocessing Model training and analysis

Data should include infor-
mation about students from
different geographic areas

Task: Identifying students
that are likely to fail

Student performance
data – Alentejo

Student performance
data – Lisbon

Low representation
of students from
rural addresses

i

SELECT Address, avg(Grade) as AVG_Grade
FROM Grades
GROUP BY Address

“On average, the grades of students with a rural address are
higher than the grades of students with an urban address”

Result does not reliably represent
the situation captured in the data

!

Students from the Gabriel Pereira
school with an urban address
have low accuracy compared to
the overall model accuracy



NOVEMBER 2022  |   VOL.  65  |   NO.  11  |   COMMUNICATIONS OF THE ACM     121

contributed articles

number of past class failures). The 
grade attribute depicts the student 
grades on a scale from 0–20, and the 
prediction attribute describes the pre-
diction, “pass” (grade > 10) or “fail” 
(grade ≤ 10) of a predictive model.

Reliable Datasets
The data on which data-driven decision 
systems depend, as is often the case in 
data science, is typically “found data.” 
That is, the data was not collected as 
part of the development of the analyt-
ics pipeline but was acquired indepen-
dently, possibly assembled by others 
for different purposes. When using 
“found data,” analysts typically perform 
data profiling, a process of extracting 
metadata or other informative sum-
maries of the data.2 While informative 
and useful, data profiling is hard to 
do well, is usually not automated, and 
requires significant effort. Instead, 
inspired by the notion of a “nutrition 
label,”20 where the basic idea is to cap-
ture dataset properties of interest in a 
succinct label, we propose14,15 labeling 
datasets with information regarding 
the count of different groups (defined 
using value combinations) in the data. 
Needless to say, there are a number of 
such combinations possible. So, stor-
ing individual counts for each is likely 
to be impossible. To this end, we focus 
on techniques to estimate these counts 
based on storing only a limited amount 
of information.

Given a dataset, if we do not know 
anything about its value distributions, 
a common assumption to make is 

model, the user observes a satisfactory 
overall accuracy. To further verify the 
model’s fairness, the scientist com-
putes the accuracy of different groups 
in the data: male and female, students 
from urban and rural addresses, and 
any combination thereof. As the accu-
racy of all groups is comparable, the 
model is deployed in the system. When 
using the system, users in some of 
the schools encountered high error 
rates among students with an urban 
address. As a result, students who 
needed assistance were not identified 
by the system, while others, who were 
able to succeed without help, were 
given extra support. A reexamination 
of the ML model reveals that, indeed, 
due to the use of historical results of 
the schools, students from the Gabriel 
Pereira school who live in an urban 
address suffer from a significantly low 
accuracy compared with the model’s 
overall accuracy.

We next outline our proposed solu-
tions to assist users in the development 
process and eliminate potential bias.

Fitness of data representation to the 
application. When a decision is made 
by a machine-learned model, the qual-
ity of the decision depends centrally 
on the data used in the model train-
ing phase. For instance, as shown 
in Asudeh et  al.,5 insufficient group 
representation may lead to poor per-
formance with respect to the group. 
Thus, our first approach focuses on 
the selection of training data and, par-
ticularly, on the representation of dif-
ferent groups in the data to help users 
determine the fitness of the data for 
the intended application. For instance, 
in Example 1, the representation of 
students from different geographic 
areas is crucial to the task. Different 
tasks may imply other representa-
tion requirements. For example, the 
Lisbon dataset may be a better fit for 
a program by the Lisbon Municipality 
aimed at advancing women in STEM. 
In this case, the number of females is 
also an important feature in selecting 
the dataset.

Detection of unfairness. The second 
method considers the fairness mea-
sures of the model. Data-driven tools 
that seemingly work well in general 
may treat minority groups in an unfair 
manner. The common approach in 
fairness analysis assumes a given set 

of sensitive attributes, which defines 
groups that may be treated unfairly. 
Following this assumption, an ana-
lyst may miss out on groups that are 
defined using attributes that are not 
naturally considered as “sensitive,” 
as demonstrated in the IB example, 
where the school ID is used to define 
the unfairly treated group. Without a 
deep understanding of the domain, 
we would not know to choose a combi-
nation of school ID and home address 
as a sensitive attribute. To this end, 
we present a technique for detecting 
groups that are treated unfairly by a 
given ML model. In other words, we 
want to let the data speak to (poten-
tial) unfairness without requiring a 
human modeler to identify protected 
attributes ahead of time.

Aggregation-result quality assessment. 
Aggregation queries are commonly 
used by analysts throughout the analy-
sis of large datasets, the development 
of data-driven decision tools, and in the 
decision-making pipeline. Analysts use 
aggregation queries to gain an under-
standing and a high-level description of 
the data. Evaluating the “representabil-
ity” quality of an aggregate query result is 
crucial to detecting misleading conclu-
sions. We thus propose a model to quan-
tify the quality of generalizations derived 
by aggregate queries.

We will demonstrate the ideas 
presented in the paper using the “The 
Student Performance Data Set.”8 Figure 
2 depicts a sample from the data with 
the attributes: gender, school, address 
(urban or rural), and failures (the 

Figure 2. Student grades and ML prediction model for sample data from the “Student  
Performance Data Set.” 8 The ML prediction is wrong for the highlighted rows (false positive 
in green, and false negative in red). 

# Gender School Address Failures Grade Prediction
1 F MS R 1 11 Pass
2 M MS R 1 14 Pass
3 M GP U 1 9 Pass
4 M GP U 2 7 Fail
5 M MS R 0 19 Pass
6 F MS U 1 7 Fail
7 F GP R 1 9 Fail
8 M GP R 1 8 Fail
9 F MS R 0 12 Pass

10 F MS R 2 9 Fail
11 M MS R 2 12 Pass
12 F GP U 0 19 Pass
13 F GP U 2 12 Fail
14 M MS U 1 12 Pass
15 F GP U 1 8 Fail
16 M GP U 0 9 Fail
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Patterns count. Given a database 
D with attributes  
A  we use Dom(Ai) to denote the active 
domain of Ai for i  [1..n]. A pattern 
p is a set  where 

 and  for 
each  in p. We use Attr(p) to denote 
the set of attributes in p. We say that 
a tuple t  D satisfies the pattern p if 
t.Ai = ai for each Ai  Attr (p). The count 
cD(p) of a pattern p is then the number 
of tuples in D that satisfy p.

Example 2. Consider the dataset 
in Figure 2. p = {Gender = M, School 
= MS, Address = R} is an example of a 
pattern. The tuples 2, 5, and 11 satisfy 
it and thus cD(p) = 3.

While useful, storing count informa-
tion of the patterns appearing in the 
data is likely to be impossible as their 
number is exponential in the number of 
attributes. We next present our method 
for estimating these counts using only a 
limited amount of information.

Pattern count-based labels. Our 
problem, intuitively, is to choose a 
small number of patterns (limited  
by a given space budget), among the 
exponential number, that can be used 
to estimate the count for any pattern 
with minimal error. We envisage this 
information being made available 
as metadata with each dataset. In 
deference to the idea of a nutrition 
label, we call our stored information 
a “label.” An important feature of our 
model that is missing in previously 
proposed models for data labeling is 
the ability to generate labels in a fully 
automated way. We define our notion 
of data labels with respect to a subset 
of attributes S, as the count informa-
tion of all possible value combinations 
of attributes in S in the data. The size 
of the label is then determined by the 
space required for the count informa-
tion. More formally, a label LS(D) of D 
defined with respect to a subset S of 
the database attributes contains the 
following: (1) the pattern count (PC) for 
each possible pattern over S (that is, 
p with Attr(p) = S), and (2) value count 
(VC) of each value appearing in D.

Example 3. Consider the dataset in 
Figure 2. The label resulting from use 
of the attributes set S = {School, Address} 

that of independence between attri-
butes. Then, we can keep counts for 
only individual attribute values, and 
estimate counts for attribute value 
combinations, assuming indepen-
dence. However, this defeats the cen-
tral purpose of profiling—we only get 
information about individual attri-
butes (the “marginal distributions”) 
but nothing about any correlations. In 
the study of discrimination, there is a 
considerable examination of intersec-
tionality, the whole point of which is 
to understand how the social conse-
quence of being a member of a pro-
tected class on multiple axes is not 
simply the “sum” of each alone. For 
example, to understand the discrimi-
nation faced by Black women, it is not 
enough to understand independently 
the impacts of race and gender alone. 
In other words, we have to ensure 
that our estimates for the count of 
any group in the database are at least 
approximately correct.

Histograms have long been used 
for similar purposes in relational data-
bases;9 however, they do not do very 
well in high dimensions. Other preva-
lent techniques for selectivity estima-
tion include sampling16 and machine 
learning-based methods.22 The former 
suffers from insufficient performance 
in the presence of skews and high-selec-
tivity queries, and the latter requires 
training and results in very complex 
models. Following the concept of nutri-
tion labels for datasets, a key require-
ment in our problem context is that the 
metadata annotation can be immedi-
ately comprehensible to a potential user 
of the dataset.

We enhance user understanding of 
the appropriateness of datasets, and 
hence their willingness to trust them, 
through the effective use of dataset 
labels. We start by presenting our 
model of label construction, based on 
counts. We assume the data is repre-
sented using a single relational data-
base, and that the relation’s attribute 
values are categorical. Where attribute 
values are drawn from a continuous 
domain, we render them categorical 
by bucketing them into ranges—very 
commonly done in practice to present 
aggregate results. In fact, we may even 
group categorical attributes into fewer 
buckets where the number of individ-
ual categories is very large.

Automated, data-
driven decision-
making tools 
are gradually 
supplanting 
humans in a vast 
range of application 
domains.
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user-friendly visualization), the typical 
bound over the label size is small. Sec-
ond, we argue that in practice, labels 
generated with a set of attributes S are 
preferable over labels generated using 
any subset of S. Intuitively, for two at-
tribute sets S1 and S2, if  the label 
generated using S2 has more details 
than the one generated using S1.

Our solution is inspired by the Apriori 
algorithm3 and the Set-Enumeration 
Tree for enumerating sets in a best-first 
fashion.17 We use a lattice over the set of 
all possible subsets of attributes, each 
corresponding to a possible label, such 
that labels located higher in the lattice 
are smaller. Following the first observa-
tion (the typical bound is small), we tra-
verse the lattice in a top-down fashion. 
Traversing the lattice does not require 
explicit representation of it, as children 
nodes can be generated on demand 
from their respective parents. Moreover, 
each node is generated at most once 
in the scan. For each node generated 
by the algorithm, we compute the cor-
responding label size and prune the 
search based on the given label bound. 
Finally, the algorithm computes the 
error of potential labels observed dur-
ing the search. The error computation 
of a label is time-consuming; thus, to 
optimize the performance of the algo-
rithm, based on the second observation, 
the algorithm computes the error only 
for maximal sets. The label with mini-
mal error is then returned. Our experi-
ments demonstrate the high accuracy 
of the labels generated, even with a very 
limited space budget, and indicate the 
usefulness of our proposed optimized 
heuristic compared with the naive 
algorithm (see our previous work15 for 
details).

Example 6. Figure 3 shows a label 
of “The Student Performance Data 
Set”8 (including only data in Math) 
with the label size (the PC set) limited 
to 4. The label was generated using 
the “School” and “Address” attributes 
and includes information on the esti-
mations error with respect to the pat-
terns in the data (average error, 
maximal error, and standard devia-
tion). Some immediate observations 
that can be made based on this infor-
mation are that there is a high repre-
sentation of students with urban 
addresses compared with students 

consists of the following:c

The label resulting from use of the 
attributes set S′ = {Gender, School} 
consists of the same VC set and the fol-
lowing PC set:

Count estimation. Given a database D 
with attributes and a subset of attri-
butes , we use PS to denote the set 
of all possible patterns over S such that 
cD(p) > 0. Let S1 and S2 be two subsets  
of attributes such that  
Given a pattern  we use p|S1 to 
denote the pattern that results when 
p is restricted to include only the attri-
butes in S1. Given a label  of D 
using S1, we may estimate the count of 
each pattern in  as follows.

Example 4. Consider again the data-
set Figure 2, and the label l = LS(D) 
generated using S ={School, Address} 
shown in Example 3. The estimate of 
the pattern p ={Gender = M, School = 
MS, Address = R} using l is

Using the label l′ = LS′(D) generated 

c	 The grade attribute is bucketized into two 
bins: Pass (>10) and Fail (≤10).

from S′ = {Gender, School}, with a sim-
ilar computation we obtain

Given the estimation procedure, each 
label entails an error with respect to 
the real count of patterns in the data. 
We define the error of a label l = LS (D) 
with respect to a pattern p as

Example 5. Reconsider the estimates 
Est(p, l) and Est(p, l′) of the pattern 
p ={Gender = M, School = MS, Address 
= R} shown in Example 4. The count of 
the pattern p in the database is 3; thus, 
the error of l with respect to p is 0 and 
the error of l′ is 1.

Abusing notation, we use  
for a set of patterns , to denote the 
maximum error in the estimate for 
any individual pattern in . The 
problem of finding an optimal label 
within a given bound on the label size 
is NP-hard (see our previous work15 
for details). This problem resembles 
the problem of query optimization 
with materialized views,6 where the 
goal is to find a set of views that could 
be used to optimize query evaluation 
time, when the number of the views is 
limited and their maintenance under 
data updates is taken into account. In 
contrast, in our problem, we search 
for a label that would result in the 
most accurate estimations.

Optimal label computation. We next 
present our solution for optimal label 
computation. A naive algorithm for 
the problem would traverse over all 
possible attribute subsets in increas-
ing size order, compute the size of the 
corresponding label for each set, and 
choose the one that entails minimal 
error within the budgeted space. 
The naive algorithm is unacceptably 
expensive; therefore, we developed a 
much faster heuristic solution15 for the 
optimal label problem. Our algorithm 
builds upon two observations. First, 
due to the nature and purpose of the la-
bels (that is, conciseness that allows for 
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designed to capture case-appropriate 
properties: Different definitions may be 
used in different use cases. For instance, 
one natural fairness definition con-
siders the accuracy among different 
groups. According to this definition, a 
classifier is fair if different groups in the 
data (that is, Hispanic students from 
low-income families) have the same 
overall accuracy in prediction as other 
groups. Another plausible definition 
takes into account the false-positive 
error rates. This definition is appropri-
ate when we wish to minimize the error 
of falsely classifying subjects in the 
negative class as positive—for example, 
granting loans to people who would not 
be able to pay back. Whether a classifier 
is fair depends on the notion of fairness. 
Different definitions can lead to differ-
ent outcomes as we next show.

Example 7. Consider the data-
set in Figure 2 and the classifier 
whose results are depicted in the 
“Prediction” column. The classifier’s 
overall accuracy (based on the given 

data) is 0.875; however, for students 
from the GP school with an urban 
address, the accuracy is only 0.67, sig-
nificantly lower than any other group 
in the data (that may be defined by 
values of the different attributes). 
Another fairness measure, known 
as equal opportunity, focuses on the  
false-positive error rate  
Intuitively, by this measure the clas-
sifier should produce similar results 
for all students who fail the exam. In 
this case, a high FPR indicates fairness 
issues. In our example, male students 
with a single previous failure have a 
high FPR (0.5) compared with the over-
all FPR (0.11).

There is extensive work on fairness, 
but the typical formulation works with 
explicitly pre-identified “protected” 
groups identified by particular values 
in specified attributes. For example, 
women can be a protected group based 
on a gender attribute. While it is impor-
tant to work with protected groups due 
to historical discrimination based on 
race, gender, and ethnicity, these are 
not the only groups that can suffer 
from unfairness. Furthermore, as indi-
viduals, each of us is identified with 
many different groups.

Several recently developed tools (see, 
for example, the AI Fairness 360 project1) 
allow users to assess fairness of ML sys-
tems and even assist in mitigating the 
bias and provide explanations. However, 
they focus on investigating only user-
specific protected groups. To build a reli-
able system, we must detect unfairness 
for all groups, including intersectional 
groups. Once such groups are detected, 
the user can remedy the problem, either 
by adjusting the ML model or altering 
the training data. We start by presenting 
our method12 to do this for the problem 
of detecting groups with low accuracy 
and then present a generalized solution 
for other fairness definitions.

Detecting groups with low 
accuracy. Given a classifier M and 
a labeled dataset D, the accuracy of a 
pattern p, denoted as accM(p), is the ratio 
of the number of tuples in D satisfying p 
that are correctly classified by M to cD(p).

Example 8. Consider again the data-
set in Figure 2. The accuracy of the 
pattern p = {School=GP, Address=U} 
is  since among 

from rural areas. Additionally, due to 
the low number of students who get 
extra paid classes, their number is 
likely to be insufficient for the develop-
ment of a non-biased algorithm using 
this data. Note that even with a size 
limit as low as 4 the label significantly 
improves count estimations. For 
instance, assume that we are inter-
ested in the number of students from 
the GP school with a rural address  
and who do not pay for extra classes. 
Their true number in the dataset is 72. 
Using the attribute independence 
assumption, the count estimation is 

 whereas using 
the label we get a much more accurate 
estimation of 

Reliable Fairness Measures
Fairness is a crucial aspect of decision-
making tool reliability. Once the ML 
model is trained, data analysts may 
wish to validate its fairness toward dif-
ferent groups in the data. Various fair-
ness measures have been proposed, 
where different measures are typically 

Figure 3. A label computed for The Student Performance Data Set8 (using only data in Math) 
with the size limited to 4. Note: the PC set is only the last four rows of the table; the top  
20 rows are the marginal distributions of individual attributes, which are basic statistics 
about this dataset.

Total size: 649
Attribute

School
Gabriel Pereira 65%
Mousinho da Silveira 35%

Gender
Male 41%
Female 59%

Address
Urban 70%
Rural 30%

Failures

0 85%
1 11%
2 2%
3 or more 14

68
581

2%

School support
Yes 10%
No 90%

Family support
Yes 61%
No 39%

Extra paid classes
Yes 39

610
244
12

6%
No 94%

Absences

0 37%
1 2%
2 110 17%
3 or more 283 44%

School Address Count

Gabriel Pereira
Urban 345 53%
Rural 78 12%

Mousinho da Silveira
Urban 107 17%
Rural 119 18%

Average Error 1.08 0.17%
Maximal Error 9 1.39%
Standard deviation 1.8

Value Count

423
226
266
383
452
197
549
70
16

398
251



NOVEMBER 2022  |   VOL.  65  |   NO.  11  |   COMMUNICATIONS OF THE ACM     125

contributed articles

most general patterns. Note: the accu-
racy of a pattern p is lower than τa if

that is,  

Since we are interested only in 
patterns p with  we get 

 Thus, patterns 
with size less than  can be 
pruned as well.

Example 9. Consider again the data-
set in Figure 2 and the classifier M whose 
results are depicted in the Prediction 
column. Given the thresholds τs = 5 
and Δτa = 0.2, the algorithm first com-
putes τa and the set of misclassified 
tuples  In this case, the overall 
accuracy of the classifier is 0.875, thus 
τa = 0.675 and  The most 
general patterns are p1 ={Gender = M}, 
p2 ={Gender = F}, p3 ={School = MS}, 
p4 ={School = GP}, p5 = {Address = U}, 
p6 = {Address = R}, p7 = {Failures = 0}, 
p8 = {Failures = 1}, and p9 = {Failures 
= 2}. The algorithm first considers p1. 
Since  
this pattern and all of its descendants 
can be pruned. Similarly, p2 and p3 and 
their descendants are pruned. Next, 
the algorithm considers p4. There 
are two students in the GP school 
with incorrect predicted grades, thus 

 Since the total 
number of students in GP is 8, the accu-
racy of p4 is  
thus its children are generated. 
Similarly, the children of p5 are gener-
ated. Patterns p6 through p9 (and their 
descendants) are pruned as well. The 
patterns p6 and p9 are pruned due to 
their low number of misclassified 
tuples. For the patterns p7 and p8, cD(p7) 
= cD(p8) = 4 < τs = 5, thus they and their 
descendants are pruned. Finally, the 
pattern p10 ={School = GP, Address = U} 
(generated as a child of p4) is consid-
ered. Since cD(p10) = 6 and  
the accuracy of p10 is 0.67 < 0.675 and 
p10 is added to the result set. In this 
example, this is the only pattern with 
low accuracy.

Generalized solution. We now pro-
pose a generalization of the algorithm 
described in the section “Detecting 
groups with low accuracy” to account 
for other definitions for algorithmic 
fairness.21 In particular, we consider 

the six tuples that satisfy p, two are 
misclassified.

Our goal is to detect significant groups 
(that is, large enough) that are treated 
unfairly by the algorithm (that is, have 
low accuracy compared with the overall 
algorithm accuracy). In particular, we 
wish to provide the user with a concise 
description of these groups. Given a 
classifier M and an error threshold τa, 
we say that p is a most general pattern 
with accuracy below τa if  
and  Our prob-
lem is then, given a database D, a 
trained classifier M with overall accu-
racy a, an accuracy delta threshold Δτa, 
and a size threshold τs, find all most 
general patterns with size  and 
accuracy  where τa = a – Δτa. We 
next outline our solution.

Algorithm. Given a labeled test data-
set D, a classifier M, and thresholds τs 
and Δτa over the size and accuracy of 
the patterns respectively, we first use M 
and D to compute the set of misclassi-
fied tuples  (the tuples in D classi-
fied incorrectly by M) and τa = a – Δτa. 
We then traverse the set of possible 
patterns (starting with the most gen-
eral ones) and compute the accuracy 
for each pattern. To do so, we use the 
notion of pattern graph presented in 
Asudeh et al.5 Briefly, the nodes in the 
graph are the set of all possible pat-
terns, and there is an edge between a 
pair of patterns p and p′ if  and 
p′ can be obtained from p by adding a 
single attribute value pair. In this case, 
we say that p(p′) is a parent (child) of 
p′(p). As shown in Asudeh et  al.,5 the 
pattern graph can be traversed in a top-
down fashion, while generating each 
pattern at most once. Moreover, the 
size of a pattern p in a dataset can be 
computed from its parents. We build 
upon this observation to compute the 
size of each pattern p in the given data-
set D and in the misclassified dataset 

 and then use them to compute the 
pattern accuracy accM(p).

Pruning. To optimize the search, 
we prune the search space. First note  
that for every p and p′ 
when p′ is a descendent of p in the pat-
tern graph. Thus, when reaching a pat-
tern p with cD(p) < τs , the descendent of p 
can be pruned. Moreover, if  
and  its descendent can be 
pruned as well since we are looking for 

The challenge for 
a data-science 
pipeline is that it has 
to establish end-to-
end reliability.



126    COMMUNICATIONS OF THE ACM   |   NOVEMBER 2022  |   VOL.  65  |   NO.  11

contributed articles

pruning based on  as presented 
is not applicable in general; however, 
other methods, such as pruning based 
on the numerator value, can be used.

The proposed method aims to assist 
users in assessing the fairness of an 
ML model for any given test data. This 
is in line with the common practice 
of performance analysis of ML mod-
els. Consequently, a limited amount 
of data in the test set may affect the 
results. In particular, the test data 
should be representative.

Reliable Result Derivation
In the process of data analysis and the 
development of data-driven tools, query 
results are often conveyed and even 
used in practice, based on generaliza-
tions that represent “the main take-
away” from the analysis. In this section, 
we describe our model for evaluating 
the quality of generalizations derived by 
aggregate queries.

Bias in the result of aggregation 
queries was studied—for example, in 
Salimi et al.,18 which use causal analysis 
to define the bias. As such, they focus on 
inferring covariates, attributes that are 
correlated with the aggregation result, 
whose distribution differs in different 
groups. Our model aims at assessing 
the quality of the results by examining 
the subgroups of the groups in the out-
put. An interesting application of our 
proposed model is the detection of the 
Simpson’s paradox that was also stud-
ied in Guo et al.10 We start by present-
ing the notion of statements based on 
aggregation queries and then discuss 
their score, which reflects the degree to 
which the result of aggregation repre-
sents the underlying data.

Aggregation query-based state-
ments and refinement queries. We 
consider statements on the relation 
between groups in the results of an 
aggregation query.

Example 10. Consider the Grades 
table in Figure 2 and the following 
aggregation query Q:

�SELECT Address, avg(Grade) 
as AVG_Grade
FROM Grades
GROUP BY Address

The result of the query is shown in 

Conditional use accuracy equality. All 
groups should have similar probability 
of subjects to be accurately predicted 
as positive  and accurately pre-
dicted as negative 
Treatment equality. This considers 
the ratio of error. A classifier satisfies 
it if all groups have a similar ratio of 
false negatives and false positives.

Generalized algorithm. Our solution 
can be generalized to capture these 
fairness definitions (and any defini-
tion that relies on the values TP, FP, 
FN, and TN). The general algorithm 
is similar to the algorithm for detect-
ing patterns with low accuracy with 
the following modifications. First,  
the algorithm computes four datas
ets (instead of ): ,  
and  containing the tuples from D 
that are TP, FP, FN, and TN, respectively. 
The algorithm traverses the pattern 
graph in a top-down fashion. For each 
pattern, it computes the size, and the 
fairness measure using   
and  We use τf to refer the fair-
ness measure in the general case. 
Note that for some fairness measures 
(for instance, false positive/negative 
error-rate balance) lower values are 
preferred. In this case, the algorithm 
returns groups with a fairness value 
higher than τf . Moreover, note that the 

definitions based on the model’s pre-
diction and actual outcomes. These sta-
tistical measures of fairness rely on the 
possible cases of a classifier’s outcome: 
True Positive (TP), False Positive (FP), 
False Negative (FN), and True Negative 
(TN). We next offer a brief overview of 
such definitionsd and refer readers to 
Verma and Rubin21 for more details.

Predictive parity. The fraction of cor-
rect positive prediction  should  
be similar for all groups.
False-positive error-rate balance (pre-
dictive equality). The probability of a sub-
ject in the actual negative class to have a 
positive predictive value  is 
similar for all groups.
False-negative error-rate balance (equal 
opportunity). Similar to the above, but con-
siders the probability of falsely classifying 
subjects in the positive class as negative 

Equalized odds. Combines the previ-
ous two definitions. All groups should 
have both similar false-positive error- 
rate balance  and false-negative 
error-rate balance 

d	 The definitions given in Verma and Rubin21 
consider two groups (protected/unprotected 
groups defined using a sensitive attribute). We 
generalize the definitions to fit our problem of 
detecting unfairly treated groups.

Figure 5. The set of possible refinement queries, their support, and weight.

weight WHERE
GROUP BY

Address Address, Failures
1 – 1 7

9
0.5
0.5
0.5
0.5

0.25
0.25
0.25
0.25

Gender = M 1 1

Gender = F 0 1
3

School = GP 0 0

School = MS 1 1

Gender = MandSchool = GP 0 1
3

Gender = MandSchool = MS 0 0

Gender = FandSchool = GP 0 1
3

Gender = FandSchool = MS 1 1

Figure 4. Aggregation and refinement query results.

Address AVG_Grade
R 11.75
U 10.38

(a) Result of query Q

(b) Result of refinement query Q'

Address Failures AVG_Grade

R

U

0 12
1 10
2 9
0 19
1 7.5
2 12
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the original query) such that Ai is an 
attribute and ai is a value in the domain 
of Ai, the weight of a refinement query 
is the relative size of the tuples that 
confirm the value assignment from the 
total size of tuples involved in the state-
ment groups.

Example 12. Consider the query Q′ 
that refine the query Q given in Examples 
11 and 10 respectively. The statement 
S, based on the original query Q, con-
siders students from rural and urban 
addresses. There are 16 such tuples in 
the data (all tuples in this case). Eight 
of those tuples confirm the condition 
Gender = Female; namely, the relative 
portion of female students is  
and so is the weight of Q′.

The support of a statement. To 
measure the support of a statement, 
we consider pairwise comparison 
between subgroups of the statement’s 
groups, obtained by refinement of the 
GROUP BY clause. The support is then 
the number of subgroup comparisons 
that align with the original statement 
divided by the total number of compar-
isons applied.

Example 13. The refinement query 
Q′ refines each group in the statement 
S: students with a rural address and an 
urban address, into three subgroups 
based on the number of past failures. 
To compute the support of Q′ in S, we 
apply pairwise comparison between the 
subgroups—that is, the average grade 
of students with a rural address and 0, 
1, and 2 past failures with the average 
grade of students with a rural address 
and 0, 1, and 2 past failures. The total 
number of comparisons applied in 
this example is nine, out of which there 
were only three cases where the average 
grade of students with a rural address is 
higher than the grade of students with 
an urban address (when comparing the 
grades of students from rural addresses 
with 0, 1, and 2 failures to those with 
urban addresses and a single past fail-
ure). Thus, the support of the query Q′ 
is 

The score of a statement. Finally, the 
score of a statement is defined with  
respect to a set of refinement attri-
butes  and , which define  
the attribute that can be used to 

Figure 4a. Based on the result, we can 
state that (S): on average, the grades 
of students with rural addresses are 
higher than the grades of students 
with urban addresses.

To explore the possible refined 
subgroup entities, we next define the 
notion of query refinement. Intuitively, 
the groups in the results of an aggrega-
tion query Q can be refined either by 
adding attributes to the WHERE clause 
of Q (that is, adding attribute-value 
assignments), or the GROUP BY clause 
(that is, adding grouping attributes).

Example 11. Consider again the 
query Q from Example 10. A possible 
refinement query Q′ of Q is

�SELECT Address, Failures, 
avg(Grade) as AVG_Grade
FROM Grades
WHERE Gender = F
GROUP BY Address, Failures

In this example, Q was refined by add-
ing Gender = F to the WHERE clause 
and adding Failures to the GROUP BY 
clause. The result of the refined query is 
given in Figure 4b. Adding an attribute 
to the WHERE or the GROUP BY clause 
allows for the comparison of the aggre-
gation results of subgroups, which can 
determine how well the underlying data 
is reflected by the query result and reveal 
misleading conclusions. For instance, 
the statement S from Example 10 is sup-
ported by the result of the given query Q 
but does not reflect the fact that this is 
not th case if we consider only female 
students, for which the grades of stu-
dents from urban addresses are higher.

Statement’s score. Given a statement 
and the set of refinement attributes (to 
be added to the WHERE and GROUP BY 
clause), our goal is to define the score of 
the statement, which measures how well 
it reflects the underlying data. We do it 
by considering all possible refinements 
of the given query Q and taking into 
account the size of the subgroups in the 
result as their potential influence on the 
score. To this end, we define the weight 
of a refinement query and the support of a 
statement. Using these two notions, we 
define the score of a statement.

The weight of a refinement query. 
Given a set of attributes with value 
assignments Ai = ai (not appearing in 

Once the ML 
model is trained, 
data analysts may 
wish to validate its 
fairness toward 
different groups in 
the data.
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of applying Q are added to  (used 
for “similar” subgroup comparison). 
Attributes having unique values (for 
example, ID, names) are ignored. The 
rest are added to 

Score computation. A naive algorithm 
for score computation would iterate 
over the set of all possible refinement 
queries, compute the weight and sup-
port for each query, and then use them 
to compute the score. The number of 
refinement queries is exponential in 

 and  Executing all que-
ries for weight and support computa-
tion may lead to prohibitive execution 
time. Lin et al.,13 presents an improved 
algorithm that works well in practice 
(as we show in our experimental study). 
The algorithm uses a Hasse diagram, 
which represents a partial order over 
the refinement queries, based on their 
WHERE and GROUP BY attributes. 
Enumerating the refinement queries 
in a bottom-up fashion allows for the 
reuse of computational results (using 
a dedicated data structure) and thus 
refrains from repeated access to the 
dataset to get aggregate results. This 
significantly reduces running time.

Given a low score, the user may wish 
to: (i) understand why the score is low 
(that is, which parts of the data do not 
“agree with the statement”) and (ii) 
refine the statement, such that the new 
refined statement better represents the 
data but is “as close as possible” to the 
original query. To provide the user with 
a better understanding of the resulting 
score, Lin et  al.13 introduces the prob-
lem of providing counterexamples—that 
is, disclosing significant parts of the 
data opposing the statement. We fur-
ther discuss the problem of refining the 
statement to obtain more representative 
alternatives for identifying counterexam-
ples and statement refinement using an 
inverted index structure (see Lin et al.13).

Conclusion
We have presented data-centric meth-
ods designed to increase the reliability 
of data-driven decision systems. While 
limited to categorical data, these meth-
ods may be used at different points in 
developing the data-driven decision-
system pipeline. We believe that mul-
tiple such tools will need to be used 
together to be able to construct data-
based decision systems with end-to-
end reliability.
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refine the aggregation query through 
the WHERE and GROUP BY clauses 
respectively. Given a statement SQ 
based on the result of a query Q and the 
sets of refinement attributes  and  

 let  be the set of all pos-
sible refinement queries of Q obtained 
using  and  The score of SQ 
is then defined as the sum of the prod-
uct of the weight and score for every 
possible refinement query, normalized 
by the sum of weights of all refinement 
queries.

Example 14. Consider again the query 
Q and the statement S given in Example 
10, and let  
and  The set of all 
possible refinement queries is sum-
marized in Figure 5. Rows correspond 
to refinements through the WHERE 
clause, and columns to refinements 
through the GROUP BY clause. The 
value in each cell depicts the support of 
the corresponding refinement query. 
For instance, the value  in the second 
column of the third row is the support 
of the query Q′ given in Example 11. 
The weights of the queries are shown 
next to each row (recall that the weight 
is determined merely by the WHERE 
clause; thus, queries in the same row 
have equivalent weight). There are 18 
refinement queries with total weight of 
8, and the sum of product of the weight 
and support for every possible refine-
ment query is 4.61; thus, the score of 
the statement S is 

Intuitively, the score reflects the 
fraction of subgroup populations sup-
porting the generalization. A higher 
score (close to 1) indicates a better 
reflection of the underlying data. The 
score of the statement S in the running 
example is relatively low, although it is 
supported by the result of the query Q. 
The reason is that there is a large frac-
tion of subgroups, such as female stu-
dents or students from the GP school 
opposing the statement.

Refinement attributes. The attribute 
sets  and  can be defined by  
the end user; however, we propose a 
default setting. Given a query Q, attri-
butes that share (almost) the same 
data domain in all groups of the result 


