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ABSTRACT

Diversity, group representation, and similar needs often apply to

query results, which in turn require constraints on the sizes of

various subgroups in the result set. Traditional relational queries

only specify conditions as part of the query predicate(s), and do not

support such restrictions on the output. In this paper, we study the

problem of modifying queries to have the result satisfy constraints

on the sizes of multiple subgroups in it. This problem, in the worst

case, cannot be solved in polynomial time. Yet, with the help of

provenance annotation, we are able to develop a query refinement

method that works quite efficiently, as we demonstrate through

extensive experiments.
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1 INTRODUCTION

With increasing awareness of the need to improve representation of

historically underrepresented population groups, many companies,

government agencies, educational institutions, professional soci-

eties, and other organizations have adopted diversity initiatives as

part of their selection processes for recruitment, award nomination,

etc., aiming to challenge long-standing biases, creating a diverse en-

vironment in the long run. For example, fellowship programs often

require a diverse pool of nominees, ensuring representation from

underrepresented demographic groups in a particular field [1, 2].

The NFL’s Rooney Rule [3] mandates that teams interview at least

one candidate from racially or ethnically diverse backgrounds for

senior leadership positions, aiming to disrupt entrenched biases, al-

though it does not dictate the final hiring decision. In these contexts,

relational databases are frequently employed to select candidates.

Traditional relational queries output tuples that meet specified

conditions in the query predicates. If a query is used as part of some
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Table 1: Applicants table with primary

key ID. Job applicants selected by queries

Q1, Q2, and Q3 are marked with ✓.

ID Gender Race Major GPA Q1 Q2 Q3

1 F White ME 3.65
2 F White CS 3.95 ✓ ✓ ✓

3 F Black CS 3.40
4 F White ME 3.60
5 F White EE 3.85 ✓

6 F Black EE 3.90 ✓ ✓

7 F Asian EE 3.85 ✓

8 M White CS 3.65
9 M White CS 3.90 ✓ ✓ ✓

10 M Black CS 3.85 ✓ ✓

11 M White CS 3.40
12 M White EE 3.85 ✓

13 M Asian EE 3.95 ✓ ✓

14 M Black ME 3.60

Table 2:

Internships

table, with

primary key

(ID, Type).

ID Type Hours

2 r.l. 80

2 t.c. 90

3 t.c. 90

6 g.a. 120

7 t.c. 40

7 g.a. 60

9 r.l. 60

13 g.a. 100

14 t.c. 100

high-stakes selection process, it would be natural to state diversity

requirements as cardinality constraints for including specific demo-

graphic groups in the query result, like inviting a certain number of

individuals from different demographic groups for job interviews.

Unfortunately, such constraints are currently not supported by rela-

tional systems: We can specify criteria on how to select candidates

for a job interview, but cannot impose constraints on demographic

group membership of the selected candidates. In this paper, we pro-

pose a method to augment relational queries with group cardinality

constraints to fulfill diversity requirements. Our approach is based

on existing query refinement literature, which modifies queries to

meet overall cardinality bounds [4ś12]. However, existing methods

do not handle constraints over specific groups in the query result.

We further explain the need for such constraints and provide an

overview of our approach using an example.
Example 1.1. Table 1 shows a dataset D of 14 job candidates ap-

plying to a tech company, with five attributes: ID, gender, race,

(college) major, and GPA. Among these, gender and race are the

sensitive attributes that denote demographic group membership.

The employer may wish to state cardinality constraints w.r.t. such

attributes, to counteract the effects of historical discrimination. Ma-

jor and GPA are qualification attributes, and can be used in selection

conditions. The company would like to interview applicants who

graduated from college with a technical major and a high GPA. To

start, the data analyst uses the following query to select candidates:
Q1: SELECT *

FROM Applicants AS a

WHERE a.Major = 'CS' AND a.GPA >= 3.85

Query Q1 selects candidates #2, #9, and #10, as marked in Table 1.

Notably, only one female applicant is chosen despite half of the
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applicants being female, and no Asian is selected, although Whites,

Blacks and Asians are all present in the applicant pool. To increase

diversity, the company aims to interview at least two females, and

at least one applicant of each race. These requirements can be

expressed as group cardinality constraints, achieved by slightly ad-

justing the selection criteria, such as expanding the set of majors to

also include Electrical Engineering (EE), thus relaxing the query:

Q2: SELECT *

FROM Applicants AS a

WHERE (a.Major = 'CS' or a.Major = 'EE')

AND a.GPA >= 3.85

In addition to Q1, query Q2 adds applicants #5, #6, #7, #12 and #13

to be interviewed, as marked in Table 1. The selected set includes

four women and at least one individual of each race, satisfying the

diversity requirement on both gender and race.

Next, the data analyst observes that a total of eight candidates

will be interviewed based on Q2. This will require a substantial time

commitment from the company’s human resources department,

who then impose an additional requirement Ð to limit the number

of selected candidates to no more than five, thus introducing an

upper-bound constraint on the size of the overall result set. To

satisfy this additional constraint, the query can, once again, be

refined, this time restricting the GPA range:
Q3: SELECT *

FROM Applicants AS a

WHERE (a.Major = 'CS' or a.Major = 'EE')

AND a.GPA >= 3.90

The result of Q3 consists of 4 applicants, #2, #6, #9, and #13, with 2

of each gender and at least 1 of each race, satisfying all constraints.

Example 1.2. Next, suppose the employer introduces an addi-

tional requirement of selecting applicants with internship experi-

ence, with information in Table 2. To select applicants with at least

80 internship hours, the data analyst uses this query:
Q4: SELECT *

FROM Applicants, Internships AS a, i

WHERE a.ID = i.ID

WHERE (a.Major = 'CS' or a.Major = 'EE')

AND a.GPA >= 3.85 AND i.Hours >= 80

To have a teamwith diverse professional backgrounds, the company

may wish to interview at least one applicant for each internship

type: research lab (r.l.), tech company (t.c.), and government agency

(g.a.). This can, once again, be expressed as a cardinality constraint,

using attributes from Internships (Table 2). Thus, together with

predicates and constraints from Example 1.1, we now have multiple

selection predicates and cardinality constraints involving attributes

from both tables. Then we can continue to refine the predicates in

this query, as already discussed.

Outline of our approach. In this paper, we study the problem of

finding minimal refinements of a query so that its result satisfies the

given group cardinality constraints. Our goal is to modify selection

predicates just enough to meet all the constraints, while preserving

the intention of the original query as much as possible. Note that

unlike the running example, our solution does not divide the pro-

cess into steps. Instead, it considers all constraints and returns all

minimal refinements that comply with them.

Finding minimal refinements presents two challenges: 1) the

time-consuming execution of candidate query refinements to test

constraint satisfaction, especially for large datasets or remote databases,

and 2) the computationally expensive exhaustive analysis due to

the combinatorially large number of possible predicate changes.

To address these challenges, we adopt a provenance model that

annotates tuples with relevant predicate information and translates

cardinality constraints into algebraic expressions for constraint

testing, following Green et al. [13]. Additionally, we introduce Pos-

sible Value Lists (PVL), a data structure encompassing all possible

predicate values, and employ an efficient searching algorithm with

pruning techniques to identify minimal refinements.

Diversity is a compelling need when distributing resources and

opportunities in a society, as we saw in our running example. Fur-

thermore, it is also desirable in many other settings. For example,

we usually want search and recommendation systems to produce

diverse results [14]. While we use a running example about fairness

(in the sense of representation), we underscore that the techniques

we propose in this paper can be applied in many other contexts.

Alternative approaches. One way to satisfy group cardinality con-

straints is to modify the result set directly in a post-processing step,

adding or removing tuples: Adding candidate #7, who is both female

and Asian, to the result of Q1wouldmeet the diversity requirements.

However, this method may be illegal in some jurisdictions and ap-

plication contexts (e.g., it would be illegal in the US in the context

of employment, housing, and lending), because it uses demographic

group membership explicitly as part of decision making, effectively

subjecting applicants from different demographic groups to differ-

ent processes. Even where legal, this method may have undesirable

side effects, such as tarring all members of a group, including its

best-qualified members, as łweakerž, on account of there being a

different standard applied to the group.

Unlike post-processing, modifying the query predicates is usu-

ally legal, as it applies the same evaluation process to all individuals.

One famous case involves the University of Texas, which was not

permitted to give African Americans explicit (post-processing) pref-

erence in admissions; however, it was allowed to use rank in school

as the basis for admission, thereby admitting top students from

poor-performing segregated schools in preference to second-tier

white students from top schools who may have better test scores.

Another alternative approach proposed by Shetiya et al. [15]

shares similar motivation with our work but differs in four im-

portant ways. The first three are technical. First, they only handle

constraints over a single binary sensitive attribute (e.g., male vs.

female gender or majority vs. minority ethnicity), while we handle

multiple sensitive attributes and do not limit them to be binary. Sec-

ond, we support both query relaxation (i.e., generating more result

tuples, asquery Q2) and query contraction (i.e., generating fewer

result tuples, as Q3), while [15] only supports query relaxation.

Third, [15] only focuses on queries over a single relation, while we

support SPJ queries with predicates and constraints of attributes

over multiple tables joined together, as shown in Example 1.2.

The fourth difference between our work and [15] is conceptual.

Their diversity objective aims to minimize the distance between the

result sets of the original query and the rewritten query, while our

objective is to minimize the distance between the queries themselves.

Although this difference might seem subtle, it leads to fundamen-

tally different objectives in the rewriting process: preserving the

salient properties of the selection process while potentially chang-

ing the result substantially vs. preserving the result as much as
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possible while potentially making substantial changes to the selec-

tion process. For example, in the running Example 1.1, Q2 and Q3

are two refinements of Q1. Shetiya et al. would consider Q3 to have

higher similarity (0.4) to Q1 than Q2 (0.375), while we consider Q2

to have higher similarity to Q1 based on the query predicates.

Contributions and roadmap. In Section 2, we formally define

the Query Refinement Problem, the problem of finding minimal

refinements of a query sequence given a dataset and a set of con-

straints on the query results, analyze its theoretical complexity,

and prove its hardness. In Section 3, we describe our provenance

model based on [13]. Then, Section 4 introduces the Possible Value

Lists (PVL), a data structure that represents possible refinements

based on provenance expressions. The PVL aims to enhance the

efficiency of searching for minimal refinements. Our algorithm for

generating minimal refinements using the PVL is detailed in Section

5, along with proposed optimizations for special cases. In Section

6, we experimentally evaluate our solution with multiple datasets,

queries, and constraints. We give an overview of related work in

Section 7 and conclude in Section 8.

2 PROBLEM DEFINITION

In this section, we introduce the notion of query refinement, car-

dinality constraints, and formally define theQuery Refinement

Problem. Additionally, we prove that the defined problem is not

solvable in polynomial time, in the worst case. Table 3 summarizes

the notations used in this paper.

2.1 Query Refinement
We support the class of queries considered in [4], conjunctive Select-

Project-Join (SPJ) queries with selection predicates over numeri-

cal or categorical attributes. Selection predicates over numerical

attributes include range (<, ≤, ≥, >) and equality (=). Categorical

predicates are of the form attribute = constant_1 OR...OR

attribute = constant_n. For ease of presentation, in the rest

of the paper, we assume numerical predicates are of the form

attribute <op> constant.1, where <op> can be one of {<, ≤, ≥, >}.

Equality predicates attribute = constant are translated into two

predicates attribute >= constant and attribute <= constant.

For a query 𝑄 , we use 𝑄𝑛 and 𝑄𝑐 to denote the set of numer-

ical and categorical selection predicates, respectively. The parts

of a predicate are represented as 𝑝.𝐴, 𝑝.𝑜𝑝 , and 𝑝.𝐶 . Specifically,

for numerical predicates in the form attribute >= constant,

𝑝.𝐴 represents the attribute, 𝑝.𝑜𝑝 represents the operator >=, and

𝑝.𝐶 represents the constant. Similarly, for categorical predicates

of the form attribute = constant_1 OR...OR attribute =

constant_n, 𝑝.𝐴 represents the attribute, and 𝑝.𝐶 represents the

set of constants {constant_1,...,constant_n} in predicate 𝑝 .

We use the notion of query refinement defined in [4] to for-

mally state our problem. For a numerical predicate, refinements are

changes to the value of the constant; while for categorical predi-

cates, a refinement is done by adding and/or removing predicates

from the original constant list.We say that a query𝑄 ′ is a refinement

of query 𝑄 if 𝑄 ′ is obtained from 𝑄 by refining some predicates of

𝑄 . For example, query Q3 (selecting applicants with CS or EE major

1Extending our solution to support other forms of numerical predicates, such as
attribute1 <op> constant·attribute2 is straightforward, and we do not discuss
them in this paper.

Table 3: Notation Table

Notation Description

𝐷 dataset
𝑄 query or refinement query
𝑄 (𝐷) result of executing 𝑄 over 𝐷
𝑄𝑛, 𝑄𝑐 numerical predicates, categorical predicates of 𝑄
𝑝.𝐴, 𝑝.𝐶, 𝑝.𝑜𝑝 attribute, constant, and operator of predicate 𝑝
G conjunction of conditions
𝑄 (𝐷)G group of tuples in 𝑄 (𝐷) satisfying G
𝐶𝑟 cardinality constraints defining a group
V𝑄 (𝐷 ) set of variables in provenance expressions
𝑝𝑟𝑜𝑣 (𝑡) annotation of tuple 𝑡 ∈ 𝐷

I𝐶𝑟
𝑄 (𝐷 )

provenance expression set

𝑣𝑎𝑙𝑄 ′ (𝐴𝑣) valuation of 𝐴𝑣 ∈ V𝑄 (𝐷 ) with refinement 𝑄 ′

𝑇𝑣𝑎𝑙𝑄 ′ (I𝐶𝑟
𝑄 (𝐷 )

) truth value of expression set I𝐶𝑟
𝑄 (𝐷 )

𝐿𝐷,𝑄 PVL given 𝐷,𝑄
𝑄.𝑅 list of indices representing 𝑄 in PVL 𝐿𝐷,𝑄
𝑄 |𝑃 partial query of 𝑄 containing predicates in set 𝑃

and GPA at least 3.90) is a refinement of Q1 (selecting applicants

with CS major and GPA at least 3.85) from Example 1.1.

2.2 Group Cardinality Constraints

Let 𝑄 (𝐷) be the result of executing query 𝑄 over dataset 𝐷 , and G

be a group defined by a conjunction of conditions with specified

the value of some attributes. For instance, the group of Black fe-

males is {𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹, 𝑅𝑎𝑐𝑒 = 𝐵𝑙𝑎𝑐𝑘}. We use𝑄 (𝐷)G to denote the

group of tuples in 𝑄 (𝐷) that satisfy the condition G. A cardinality

constraint 𝐶𝑟 over 𝑄 (𝐷)G is a conjunction of expressions of the

form |𝑄 (𝐷)G | 𝑜𝑝 𝑥 , where 𝑜𝑝 ∈ {=, ≤, <, >, ≥} and 𝑥 is a constant,

or a function of the size of some other data group defined using G′.

We say that 𝑄 (𝐷) satisfies 𝐶𝑟 if all the expressions hold. Namely,

multiple cardinality constraints should be satisfied conjunctively.

Given a dataset 𝐷 , a query𝑄 , and a set of cardinality constraints

𝐶𝑟 such that 𝑄 (𝐷) does not satisfy 𝐶𝑟 , there can be multiple ways

to refine 𝑄 so as to satisfy the constraints, as we demonstrate next.
Example 2.1. Recall in that our running example (Example 1.1),

the original query (Q1) selects applicants with CS major and GPA of

at least 3.85, resulting in only one female being selected. However,

the company aims to select at least two females, which can be

formally expressed as 𝑄 (𝐷)𝐺𝑒𝑛𝑑𝑒𝑟=𝐹 ≥ 2. Both Q2 (adding EE

major) and Q3 (adding EE major and restriting GPA to be at least

3.90) are refinements of Q1 that select at least two females. Another

plausible refinement that qualifies at least two females is to adjust

the GPA predicate to be a.GPA >= 3.40.
The above example suggests that the company can achieve its di-

versity goal through various querymodifications. Minimal modifica-

tions to the original query are preferred, prioritizing a.GPA >= 3.60

over a.GPA >= 3.55. However, refinements modifying different

attributes might be incomparable without additional preference

information provided by the end user (as long as they all satisfy

the constraints). Thus, we define the set of minimal refinements.

For query 𝑄 and its refinements 𝑄 ′ and 𝑄 ′′, 𝑄 ′ dominates 𝑄 ′′ if

𝑄 ′ is łcloserž to 𝑄 than 𝑄 ′′ for every refined predicate. For exam-

ple, in the job applicant context, a.GPA >= 3.85 has refinement

a.GPA >= 3.90 dominating a.GPA >= 3.60. Similarly, for the

predicate a.Major = 'CS', refinement a.Major = 'EE' domi-

nates refinement a.Major = 'EE' or a.Major = 'ME'. A mini-

mal refinement of 𝑄 w.r.t. 𝐶𝑟 satisfies three conditions: (i) 𝑄 ′ is a
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refinement of 𝑄 , (ii) 𝑄 ′ (𝐷) satisfies 𝐶𝑟 , and (iii) there is no other

refinement𝑄 ′′ that satisfies conditions (i) and (ii) while dominating

𝑄 ′. Our goal is to find all minimal refinements of a query with

respect to a set of cardinality constraints as we next define.

Problem 2.2 (Query Refinement Problem). Given a dataset

𝐷 , a SPJ query 𝑄 , and a set of cardinality constraints 𝐶𝑟 , find all

minimal refinements of 𝑄 with respect to 𝐶𝑟 .

Note that multiple minimal refinements may exist, and our ob-

jective is to report all of them. It is also possible that no refinement

meets the constraints, resulting in an empty result set. A straightfor-

ward approach to address the Query Refinement Problem would

be to traverse all possible refinements. For each refinement, we

would check whether it satisfies the constraints and if so, add it

to a result set 𝑅. Queries in 𝑅 that are dominated by others will

finally be removed. However, this naive approach exhibits exponen-

tial time complexity, and as demonstrated shortly, no polynomial

time algorithm can solve theQuery Refinement Problem. Due

to space limitations, the proof is omitted and can be found in [16].

Theorem 2.3. Given a dataset, an SPJ query, and a set of cardi-

nality constraints, no polynomial time algorithm in the number of

selection predicates can guarantee the enumeration of the set of all

minimal refinements.

3 PROVENANCE MODEL
Given a query, the number of possible refinement queries can be

extremely large, especially when dealing with queries involving

multiple tables and numerous attributes. Evaluating their satisfac-

tion of cardinality constraints can be expensive, particularly with

large or remote databases, and/or a large number of constraints.

However, this costly query evaluation process can be eliminated

using data annotations based on provenance theory. In fact, we

can generate provenance annotations within a linear pass over the

dataset, and then propagate them throughout the query evaluation

to generate provenance expression as we next explain.

Our provenance model is inspired by the idea of hypothetical

reasoning using provenance presented in [6]. Intuitively, we gen-

erate provenance expressions, using the data, the given SPJ query,

and the cardinality constraints. We leverage the idea of conditional

tables (c-tables) [17], where tuples are associated with conditions.

To capture the possible refinements, we annotate tuples in the data

with the query selection conditions.

3.1 Provenance expressions
We first define a set of variables used in the provenance expressions.

Given a query 𝑄 over the data 𝐷 , the set of variablesV𝑄 is defined

as V𝑄 (𝐷 ) = {𝐴[𝑡 .𝐴] | ∃𝑝 ∈ 𝑄𝑛 ∪𝑄𝑐 , 𝑝.𝐴 = 𝐴, 𝑡 ∈ 𝐷}, where[𝑡 .𝐴]

denotes the value of the attribute 𝐴 in 𝑡 .

Example 3.1. In Examples 1.1 and 1.2, when the company aims

to select job applicants based on their majors (𝑀), GPA values (𝐺)

(Table 1), and internship hours (𝐻 ) (Table 2), we have the following

variables involved in this query: V𝑄 (𝐷 ) = {𝑀𝐶𝑆 , 𝑀𝐸𝐸 , 𝑀𝑀𝐸 ,

𝐺3.95,𝐺3.90,𝐺3.85,𝐺3.65,𝐺3.60,𝐺3.40, 𝐻40, 𝐻60, 𝐻80, 𝐻90, 𝐻100, 𝐻120}.

We use the set of variables V𝑄 (𝐷 ) to generate provenance an-

notations, and use 𝑄 to denote the query obtained from 𝑄 when

omitting the selection predicates. We generate provenance annota-

tions for each tuple 𝑡 ∈ 𝑄 (𝐷): 𝑝𝑟𝑜𝑣 (𝑡) =
∏𝑖=𝑘

𝑖=1 𝐴𝑖 [𝑡 .𝐴𝑖 ] where each

𝐴𝑖 is an attribute that is involved in𝑄 (i.e., ∃𝑝 ∈ 𝑄𝑛 ∪𝑄𝑐 , 𝑝.𝐴 = 𝐴𝑖 ),

and 𝑘 is the number of such attributes. Intuitively, the annotated

output 𝑄 (𝐷) includes all the tuples after executing only join oper-

ations, and it represents the output of all possible refinements of

𝑄 , where the provenance annotation of each tuple can be used to

determine whether it satisfies any given refinement.

Finally, given a dataset 𝐷 and a query 𝑄 , and a cardinality con-

straint𝑄 (𝐷)G 𝑜𝑝 𝑥 , where 𝑜𝑝 ∈ {>, ≥, <, ≤}, we define expressions

that express the cardinality constraints using the resulting prove-

nance annotations:
(∑

𝑡 ∈𝑄 (𝐷 )G 𝑝𝑟𝑜𝑣 (𝑡)
)
𝑜𝑝 𝑥 . For a given set of

cardinality constrains 𝐶𝑟 over 𝑄 (𝐷) we use I𝐶𝑟
𝑄 (𝐷 )

to denote the

corresponding set of provenance expressions.
Example 3.2. Equation 1 represents the constraint of selecting at

least two females based on their majors, GPA values and internship

hours in our job applicant example (Example 1.1 and 1.2). We get

this expression by joining Table 1 and Table 2 by attribute ID, and

choosing annocations of females applicants #2, #3, #6, #7.

𝑀𝐶𝑆 ·𝐺3.95 · 𝐻170 +𝑀𝐶𝑆 ·𝐺3.40 · 𝐻90+

𝑀𝐸𝐸 ·𝐺3.90 · 𝐻120 +𝑀𝐸𝐸 ·𝐺3.85 · 𝐻100 ≥ 2
(1)

3.2 Refinements through valuation
For a query 𝑄 on data 𝐷 , each possible refinement query 𝑄 ′ cor-

responds to an assignment to the variables set V𝑄 (𝐷 ) in the cor-

responding provenance expression, known as a valuation in the

provenance literature. Variables that satisfy the query are assigned

the value 1 (𝑣𝑎𝑙𝑄 ′ (𝐴𝑣) = 1), while others get 0 (𝑣𝑎𝑙𝑄 ′ (𝐴𝑣) = 0).

Such value assignments can then be used for the valuation of the

provenance expressions associated with each tuple in the data and

in turn, the truth values of the provenance expressions. Given prove-

nance expressions I𝐶𝑟
𝑄 (𝐷 )

and the value assignment 𝑣𝑎𝑙𝑄 ′ , we use

𝑇𝑣𝑎𝑙𝑄 ′ (𝐼 ) to denote the truth value of the expression 𝐼 ∈ I𝐶𝑟
𝑄 (𝐷 )

,

obtained by applying 𝑣𝑎𝑙𝑄 ′ (𝐴𝑖 𝑣) on each variable𝐴𝑖 𝑣 in 𝐼 . Overload-

ing notation we use𝑇𝑣𝑎𝑙𝑄 ′ (I𝐶𝑟
𝑄 (𝐷 )

) to denote the truth value of the

expression setI𝐶𝑟
𝑄 (𝐷 )

, namely𝑇𝑣𝑎𝑙𝑄 ′ (I𝐶𝑟
𝑄 (𝐷 )

) = ∧𝐼 ∈I𝐶𝑟
𝑄 (𝐷 )

𝑇𝑣𝑎𝑙𝑄 ′ (𝐼 )

Example 3.3. Recall in our running example (Example 1.1 and 1.2),

the company would like to have at least two females selected, which

gives us the provenance expression Equation (1) from Example 3.2.

With query Q4 (selecting applicants with CS or EE major, GPA

at least 3.85 and at least 80 hours of internship experience), only

variable 𝐺3.40 is 0, and others are 1, so the truth value is true.

Proposition 3.4. Let 𝐷 be a dataset and 𝑄 a query. 𝑄 satisfies a

set of cardinality constraints𝐶𝑟 if and only if𝑇𝑣𝑎𝑙𝑄 (I𝐶𝑟
𝑄 (𝐷 )

) = 𝑇𝑟𝑢𝑒 .

Namely, given the provenance expressions of the cardinality

constraints, we can efficiently examine the effect of refinements

on constraint satisfaction without the need to access the data and

execute the potential refinements. Furthermore, the provenance

expressions may guide the refinement search as we next explain.

4 POSSIBLE VALUE LISTS (PVL)

With a provenance model available for testing potential refine-

ments without accessing the data itself or repetitively evaluating

refinement queries, the next question is how to find all the minimal

refinements efficiently. A straightforward method is to traverse all

possible refinements one by one, but this can be computationally

prohibitive given the combinatorial number of refinements. Our

solution uses a set of lists depicting the possible refinements based
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on the variables in the provenance expression, called the Possible

Value Lists (PVL), as we next describe.

The PVL is used to enumerate the possible refinement queries.

Each such query can be defined by the modifications, to the original

query, in the predicates’ values. For numerical predicates, minimal

refinements can only include numerical values from the tuples in

the data that are involved in cardinality constraints. For example,

for the constraint over the number of female applicants in our

running example, a refinement changing the GPA predicate to

a.GPA >= 3.45 cannot be minimal. This is because it yields the

same output as refining the GPA predicate to a.GPA >= 3.60 since

no female applicant has a GPA within the range of 3.45 ≤ GPA <

3.60. However, the latter refinement dominates the former.

Given a dataset 𝐷 , query 𝑄 , and cardinality constraints 𝐶𝑟 , the

PVL 𝐿𝐷,𝑄,𝐶𝑟 represents possible modifications using lists of values.

The values in the lists are sorted based on their distance from the

values in the original query𝑄 . Each numerical predicate 𝑝𝑛 (𝐴 𝑜𝑝 𝑐)

are stored in a single list (𝑙𝑝𝑛 .𝐴) of possible values for 𝑝𝑛 .𝐴, sorted

by their absolute distance from 𝑐 (|𝑥 − 𝑐 |, 𝑥 ∈ 𝑙𝑝𝑛 .𝐴). Categorical

predicates 𝑝𝑐 (𝐴 ∈ 𝐶) are represented using multiple lists, including

𝑙𝐴𝑣
for each possible value 𝑣 of 𝐴, with values of 1 (existence) or

0 (absence) to indicate the presence of 𝑣 in 𝐶 . The order of 1 and

0 is determined based on whether 𝑣 is already part of 𝑝𝑐 . In other

words, 1 (existence) is placed higher than 0 (absence) if 𝑣 is already

part of the original predicate 𝑝𝑐 ; and vice versa.

Example 4.1. Figure 1a depicts the PVL 𝐿𝐷,𝑄1,𝐶𝑟 of Example 1.1

with dataset 𝐷 , query Q1 (a.Major = 'CS' AND a.GPA >= 3.85),

and 𝐶𝑟 over the number of females, people of each race, and the

overall size of the result. The Major predicate has CS but not EE

or ME, so 1 is placed above 0 in the list 𝑙𝑀𝐶𝑆
, and 0 is placed above

1 in the lists 𝑙𝑀𝐸𝐸
, 𝑙𝑀𝑀𝐸

. Note that values 4.00, 3.95, and 3.90 in

𝑙𝐺 correspond to values 3.95, 3.90 and 3.85 in 𝐷 , respectively. The

meaning of colors highlighting some values will be explained later.

Note that depending on 𝑝𝑛 .𝑜𝑝 (operators in predicates) and val-

ues in 𝐷 , the values in list 𝑙𝑝𝑛 .𝐴 may be 𝑣 ± 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑝𝑛 .𝐴), where

𝑣 is a value of numerical attribute 𝑝𝑛 .𝐴 in 𝐷 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑝𝑛 .𝐴) is

its precision, e.g., in our running example 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐺𝑃𝐴) = 0.05.

Specifically, when 𝑝𝑛 .𝑜𝑝 is ≥ (<), for values 𝑣 ≥ 𝑝𝑛 .𝐶 , 𝑙𝑝𝑛 .𝐴 should

contain 𝑣 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑝𝑛 .𝐴) instead of 𝑣 ; when 𝑝𝑛 .𝑜𝑝 is ≤ (>),

for values 𝑣 ≤ 𝑝𝑛 .𝐶 , 𝑙𝑝𝑛 .𝐴 should contain 𝑣 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑝𝑛 .𝐴)

instead of 𝑣 . In the running example, to contract GPA predicate

(a.GPA >= 3.85) so that it disqualifies a 3.85 (3.90, 3.95) GPA value,

it needs to be refined to a.GPA >= 3.90 (3.95, 4.00).

Intuitively, each value in a list of PVL 𝐿𝐷,𝑄,𝐶𝑟 demonstrates a

possible refinement of a specific predicate. A combination of one

value from each list corresponds to a refinement of the query 𝑄 . In

this manner, PVL encompasses all minimal refinements.The rela-

tionship between PVL and refinements of query 𝑄 is summarized

in the following proposition.
Proposition 4.2. Given a query 𝑄0 over the dataset 𝐷 and cardi-

nality constraint𝐶𝑟 , let Q∗ be the set of all possible refinement queries

that can be generated using values from 𝐷 .

(1) Every minimal refinement query must be in Q∗.

(2) ∀𝑄 ′ ∈ Q∗, 𝑄 ′ can be represented using a set of indexes

𝑄 ′ .𝑅 in the PVL 𝐿𝐷,𝑄0,𝐶𝑟 such that 𝑄 ′ .𝑅 [𝑙] is the index in

the list 𝑙 ∈ 𝐿𝐷,𝑄0,𝐶𝑟 . ∀𝑝𝑛 ∈ 𝑄 ′
𝑛, ∃𝑙𝑝𝑛 .𝐴 ∈ 𝐿𝐷,𝑄0,𝐶𝑟 , 𝑝𝑛 .𝐶 =

𝑙𝑝𝑛 .𝐴 [𝑄
′ .𝑅 [𝑙𝑝𝑛 .𝐴]]. ∀𝑝𝑐 ∈ 𝑄 ′

𝑐 , ∃𝑙𝑝𝑐 .𝐴𝑣
∈ 𝐿𝐷,𝑄0,𝐶𝑟 such that

𝑙𝑀𝐸𝐸
𝑙𝑀𝑀𝐸

𝑙𝑀𝐶𝑆
𝑙𝐺

1 0 0 1 3.85

2 1 1 0 3.90

3 3.95

4 4.00

5 3.65

6 3.60

7 3.40

(a) The PVL 𝐿𝐷,𝑄1,𝐶𝑟 of run-

ning example (Example 1.1)

𝑙𝑀𝑀𝐸
𝑙𝑀𝐶𝑆

𝑙𝐺
1 0 1 3.85

2 1 0 3.90

3 3.65

4 3.60

5 3.40

(b) The PVL of Example 5.3

𝑙𝑀𝐸𝐸
𝑙𝑀𝑀𝐸

𝑙𝐺
1 0 0 3.85

2 1 1 3.65

3 3.60

4 3.40

(c) The PVL of Example 5.6

Figure 1: Possible value lists (PVL).

𝑙𝑝𝑐 .𝐴𝑣
consists of 0 and 1. If 𝑣 ∈ 𝑝𝑐 .𝐶 then 𝑄 ′ .𝑅 [𝑙𝑝𝑐 .𝐴𝑣

] is the

index of 1, and 0 otherwise.

(3) Every possible index set 𝑄 ′ .𝑅 corresponds to a query 𝑄 ′ ∈ Q∗.

Example 4.3. Revisiting Example 1.1 with PVL in Figure 1a, re-

finement query Q2, compared to the original query Q1, adds EE

as a recognized major, so can be represented as 𝑄2.𝑅 = [2, 1, 1, 1].

This corresponds to values 𝑙𝑀𝐸𝐸
[2] = 1, 𝑙𝑀𝑀𝐸

[1] = 0, 𝑙𝑀𝐶𝑆
[1] =

1, 𝑙𝐺 [1] = 3.85. The refinement query Q3, which adds EE and

adjust GPA range to be a.GPA >= 3.90, can be represented as

𝑄3.𝑅 = [2, 1, 1, 2], as highlighted in blue.

Our algorithm for generating minimal refinements utilizes the

PVL to traverse the possible refinements. As stated in Proposi-

tion 4.2, all minimal refinements can be represented from the PVL.

This representation holds the following properties that serve as the

foundation for the correctness of our algorithm.

Proposition 4.4. Let 𝐷 be a dataset, 𝑄 be a query, and 𝐶𝑟 be

constraints, and 𝐿𝐷,𝑄,𝐶𝑟 be the corresponding PVL consisting of 𝑛𝑙
lists. Additionally, let 𝑄1, 𝑄2 ∈ Q be two different refinement queries.
(1) 𝑄1 dominates 𝑄2 ⇐⇒ ∀𝑗, 1 ≤ 𝑗 ≤ 𝑛𝑙 , 𝑄1 .𝑅 [ 𝑗] ≤ 𝑄2 .𝑅 [ 𝑗].

(2) If 𝑄1 and 𝑄2 are minimal refinements then ∃ 𝑗, 1 ≤ 𝑗 ≤ 𝑛𝑙 ,

such that 𝑄1 .𝑅 [ 𝑗] ≤ 𝑄2 .𝑅 [ 𝑗] and ∃ 𝑗 ′, 1 ≤ 𝑗 ′ ≤ 𝑛𝑙 , such that

𝑄1 .𝑅 [ 𝑗
′] > 𝑄2 .𝑅 [ 𝑗

′]

5 GENERATING MINIMAL REFINEMENTS
We present the algorithm for searching minimal query refinements

using PVL. We will describe the algorithm and then discuss opti-

mizations that can be applied in specific scenarios.

5.1 The algorithm
The algorithm uses the notion of partial queries as we next define.

Definition 5.1 (Partial queries). Given a query 𝑄 with the set of

predicates 𝑄𝑛 ∪ 𝑄𝑐 and a subset 𝑃 ⊆ 𝑄𝑛 ∪ 𝑄𝑐 , the query 𝑄 |𝑃 is

similar to 𝑄 but consists only of the predicates in the set 𝑃 . We say

that 𝑄 |𝑃 is a partial query of 𝑄 .

Example 5.2. Consider the original query Q1 in Example 1.1

with predicates a.Major = 'CS' AND a.GPA >= 3.85. For

𝑃 = {a.GPA >= 3.85}, 𝑄1|𝑃 is a partial query of Q1.

The high-level idea of the algorithm is to generate refinement

queries that satisfy the constraints by completing the predicate set

of partial queries to obtain refinements of the given query 𝑄 . This

process is done for different partial queries using a recursive func-

tion. We next provide details on the different parts of the algorithm.

Finding a minimal refinement (from a partial query). Given a

partial query 𝑄 ′ |𝑃 (where 𝑄 ′ is a refinement of 𝑄), the algorithm

generates one minimal refinement query by completing the pred-

icates of 𝑃 to obtain a refinement of the input query 𝑄 , which is
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Algorithm 1: Search for all minimal refinements

input :PVL 𝐿, query𝑄 , and cardinality constraints I.
output :All minimal relaxations
Function Search(𝐿, 𝑅𝑒𝑠,𝑄 |𝑃 , I):

1 𝑄𝑏 ← findRefinement (𝐿, I,𝑄 |𝑃 )
2 if 𝑄𝑏 .𝑅 ≠ ∅ then
3 update (𝑅𝑒𝑠,𝑄𝑏 )
4 if there are more than one list in 𝐿 then
5 foreach 𝑙 ∈ 𝐿 do
6 𝑘 ← 𝑄𝑏 .𝑅 [𝑙 ]

7 for 𝑖 from 𝑘 − 1 to 1 do
8 𝑄 ′ |𝑃 ′ ←addPredicate (𝑄 |𝑃 , 𝑙 [𝑖 ])
9 I𝑟 ← inequalities of I requiring relaxations

10 if 𝑇 𝑣𝑎𝑙𝑄 ′ |𝑃 ′
(I𝑟 ) = 𝑇𝑟𝑢𝑒 and there are other

lists 𝑙 ′ s.t.𝑄𝑏 .𝑅 [𝑙 ] is not the last index in 𝑙
′

then
11 𝐿′ ← remove 𝑙 from 𝐿

12 𝑅𝑒𝑠 ← Search(𝐿′, 𝑅𝑒𝑠,𝑄 ′ |𝑃 ′ , I)

13 remove values above index𝑄𝑏 .𝑅 [𝑙 ] in list 𝑙

14 return 𝑅𝑒𝑠

procedure findRefinement (line 1). Procedure findRefinement

traverses the PVL in a top-down manner, setting each predicate of

𝑃 according to values in the lists of PVL. It attempts all possible

refinements by exhaustive search but with pruning methods (as

shown in paragraph "Reducing the search space") until a suitable

refinement is found. Each refinement is represented by an index

set, one in each list. The general principle is to check the index

set with smaller indexes earlier. For instance, when searching in

PVL in Figure 1a, we start from an index set with three 1’s and

one 2: [2, 1, 1, 1], [1, 2, 1, 1], [1, 1, 2, 1], [1, 1, 1, 2], but nothing works.

Then we continue with an index set with two 1’s and two 2’s:

[2, 2, 1, 1], [2, 1, 2, 1], · · · . We stop when we find the first refinement

satisfying the cardinality constraints. Since the traversal starts from

values at the top of PVL, which are the closest to the original predi-

cates, the first first satisfying refinement found must be a minimal

one. There can be more than one minimal satisfying refinement,

and findRefinement returns the one it encounters first.
Recursive search. The core of the algorithm is a recursive search

function depicted in Algorithm 1. Given a partial query 𝑄 |𝑃 with

a fixed predicate set 𝑃 (as part of a minimal refinement), a tem-

porary result set 𝑅𝑒𝑠 , a PVL 𝐿, and a set of provenance inequali-

ties, Search function performs the following steps. First, using the

findRefinement procedure, the function identifies a minimal re-

finement𝑄𝑏 (line 1). If no such refinement exists, the current result

set 𝑅𝑒𝑠 is returned. Otherwise, 𝑅𝑒𝑠 is updated with𝑄𝑏 (line 3). Next,

the algorithm generates new refinements by adding a predicate

with a value from a list 𝑙 ∈ 𝐿 to 𝑃 (addPredicate), removing 𝑙 from

𝐿, and recursively searching for new refinements (lines 4ś13). In

this process, for each list 𝑙 ∈ 𝐿, the algorithm considers all possible

predicates that can be generated using values above 𝑄𝑏 .𝑅 [𝑙] in 𝑙 .

This adds a new predicate to 𝑃 and removes one list from 𝐿 in each

iteration. The recursive search continues until no refinements are

found in the PVL or when the PVL contains only one list.
Reducing the search space. When we traverse the possible re-

finements, the search space can be reduced using the notion of

partial dissatisfaction as we next explain. For a given set of prove-

nance inequalities I, we use I𝑟 ⊆ I to denote the subset of in-

equalities that are of the form 𝑄 (𝐷)G 𝑜𝑝 𝑥 , where 𝑜𝑝 ∈ {>, ≥}

and 𝑥 is a constant. These constraints are referred to as relaxation

constraints. For any given (refinement) query 𝑄 ′, if there exists a

predicate set 𝑃 ⊂ 𝑄 ′
𝑛 ∪ 𝑄 ′

𝑐 such that 𝑇𝑣𝑎𝑙𝑄 ′ |𝑃 (I𝑟 ) = 𝐹𝑎𝑙𝑠𝑒 , then

𝑇𝑣𝑎𝑙𝑄 ′ (I𝐶𝑟
𝑄 (𝐷 )

) = 𝐹𝑎𝑙𝑠𝑒 . In other words, if a partial query 𝑄 |𝑃 fails

to satisfy certain relaxation constraints, it implies that the entire

constraint set is not satisfied by 𝑄 ′. For example, if a partial query

𝑄 |𝑃 disqualifies 6 out of 7 females, then any query 𝑄 would not

satisfy the constraint of selecting at least 2 females.

Putting it all together. Given a query𝑄 over 𝐷 and a set of prove-

nance inequalitiesI𝐶𝑟
𝑄 (𝐷 )

generated form the cardinality constraints

𝐶𝑟 , we find the set of all minimal refinements by calling the Search

function. We initiate the search by invoking Search with the ini-

tial parameters: 𝐿𝐷,𝑄,𝐶𝑟 , an empty result set 𝑅𝑒𝑠 , a partial query

𝑄 |𝑃 where 𝑃 = ∅, and I𝐶𝑟𝑄 (𝐷). Search calls findRefinement

procedure, as described earlier, to generate new refinements. The

search is optimized by avoiding refinements that can not satisfy

the constraints based on partial dissatisfaction (lines 9 ś 10). More-

over, to prevent redundant checks, at the end of the recursive call

with values in list 𝑙 , the algorithm removes all these values (values

above index 𝑄𝑏 .𝑅 [𝑙]) from consideration (line 13). This is because

refinements with these values have already been examined.
Example 5.3. Consider Example 1.1, where job applicants are

selected based on their majors and GPA values shown in Figure 1.

The original query Q1 (CS major and GPA at least 3.85) has con-

straints over the number of females, individuals of each race, and

the overall result size. Provenance expressions of the constraints

are generated using the provenance model, and PVL is built as

shown in Figure 1a. To reduce the search space, 3.95 and 4.00 in

𝑙𝐺 (highlighted in grey) are removed since partial queries with

a.GPA >= 3.95 (or a.GPA >= 4.00) do not satisfy the require-

ment of selecting at least two females. We search in PVL for base

minimal refinement by a top-down traversal, and obtain 𝑄𝑏 s.t.

𝑄𝑏 .𝑅 = [2, 1, 1, 2], as highlighted in blue, refining Major predicates

to a.Major = 'EE' or a.Major = 'CS' and GPA predicate to

a.GPA >= 3.90. Next, we explore further refinements by checking

values above the blue ones in PVL.We examine the value in 𝑙𝑀𝐸𝐸
[1]

and 𝑙𝐺 [1]. For 𝑙𝑀𝐸𝐸
[1], we add EE to the Major predicate, generate

a new PVL (Figure 1b), and recursively search, but no base minimal

refinements are found. Similarly, when fixing GPA predicate with

value 𝑙𝐺 [1] = 3.85, we generate another new PVL (Figure 1a), and

the recursive search does not find any more minimal refinements

either. The final result contains only one minimal refinement.

Theorem 5.4. Given a dataset 𝐷 , a SPJ query 𝑄 , and a set of

provenance inequalities I𝐶𝑟
𝑄 (𝐷 )

, our algorithm can find all minimal

refinements, and all of those reported are minimal refinements.

The above theorem states that our algorithm can find all minimal

refinements, without reporting any non-minimal refinements. The

second half of the theorem is trivial as the algorithm always verifies

each refinement before adding it. We use induction to prove the

first half by showing that each iteration of Search(𝐿, 𝑅𝑒𝑠,𝑄 ′
𝑃
) of

Algorithm 1 can find all minimal refinements. It is trivial when

there is only one list in PVL. We assume that the above statement is

true for an 𝑥-list PVL, and then prove it is still true for an (𝑥 +1)-list

PVL. Due to space limitations, the full proof can be found in [16].
Complexity analysis. Generating the provenance inequalities is

polynomial in the data size, as it requires a single linear pass over

the dataset to annotate the data in addition to the query evaluation.
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Algorithm 2: Find a minimal relaxation

input :A 𝑃𝑉𝐿 𝐿 and cardinality constraints I.
output :A minimal relaxation R

1 Procedure findRelaxation(𝐿, I,𝑄 |𝑃 )
2 𝑄𝑏 ← binarySearch(𝐿, I,𝑄 |𝑃 )

3 if 𝑄𝑏 .𝑅 ≠ ∅ then
4 foreach 𝑙 ∈ 𝐿 do
5 𝑓 𝑜𝑢𝑛𝑑𝑀𝑖𝑛 ← 𝐹𝑎𝑙𝑠𝑒

6 while𝑄𝑏 .𝑅 [𝑙 ] ≥ 1 or 𝑓 𝑜𝑢𝑛𝑑𝑀𝑖𝑛 do
7 𝑄𝑏 .𝑅 [𝑙 ] ← 𝑄𝑏 .𝑅 [𝑙 ] − 1

8 if 𝑇 𝑣𝑎𝑙𝑄𝑏
(I) = 𝐹𝑎𝑙𝑠𝑒 then

9 𝑄𝑏 .𝑅 [𝑙 ] ← 𝑄𝑏 .𝑅 [𝑙 ] + 1

10 𝑓 𝑜𝑢𝑛𝑑𝑀𝑖𝑛 ← 𝑇𝑟𝑢𝑒

11 return𝑄𝑏

For the searching algorithm, the worst case is to traverse all possible

refinements, so the time complexity is the number of all possible

refinements is the product of the length of all lists in PVL is

𝑂

((
𝑁𝑛∏

𝑖=1

( |𝐷𝑜𝑚(𝐴𝑖 ) | + 1)

)
· 2

∑𝑁𝑐
𝑗=1 |𝐷𝑜𝑚 (𝐴 𝑗 ) |

)

where 𝑁𝑛, 𝑁𝑐 denote the number of numeric predicates and cat-

egorical predicates, respectively; 𝐴𝑖 , 𝐴 𝑗 denote numeric attributes

and categorical attributes, respectively, and 𝐷𝑜𝑚(𝐴) denotes the

domain of attribute𝐴. In the worst case, |𝐷𝑜𝑚(𝐴𝑖 ) | = |𝐷 | = 𝑛, thus

we have 𝑂

((
𝑛𝑁𝑛

)
· 2

∑𝑁𝑐
𝑗=1 |𝐷𝑜𝑚 (𝐴 𝑗 ) |

)

While the time complexity is exponential to the number of nu-

merical predicates and the size of domains of categorical predicates

in the worst case, we show in our experiments that in practice, the

running time of our algorithm is typically much better, due to our

search space pruning.

5.2 Optimizations

We next describe some optimizations that can be applied when 1)

numerical predicates do not have an equality (=) operator; and 2)

all the constraints are relaxation constraints or all are contraction

constraints, i.e.,𝐶 (𝐷)G 𝑜𝑝 𝑥 , where 𝑥 is a constant and 𝑜𝑝 ∈ {>, ≥}

(or 𝑜𝑝 ∈ {<, ≤}) for all the constraints. For simplicity of presenta-

tion, in what follows, we present the case of relaxation. The case of

contraction is symmetric.

First of all, note that tuples in 𝐷 that already satisfy the cardi-

nality constraints do not impact the refinement process and can

therefore be excluded from both the provenance inequalities and the

PVL. Furthermore, when all constraints are relaxation constraints,

the process of finding a minimal refinement from a partial query

and the subsequent recursive searches can be optimized, owing to

the monotonicity property of relaxation queries in the following

proposition. Details of the proof can be found in [16].

Proposition 5.5. Let𝐷 be a dataset,𝑄 be a query, and 𝐿𝐷,𝑄,𝐶𝑟 be

the corresponding PVL which consists of 𝑛𝑐 lists. Let I
𝐶𝑟
𝑄 (𝐷 )

be a set of

provenance inequalities such that𝐶𝑟 are all relaxation constraints. Let

𝑄1, 𝑄2 be two different relaxations such that 𝑇𝑣𝑎𝑙𝑄1
(I𝐶𝑟

𝑄 (𝐷 )
) = 𝑇𝑟𝑢𝑒

and 𝑄1 dominates 𝑄2. Then 𝑇𝑣𝑎𝑙𝑄2
(I𝐶𝑟

𝑄 (𝐷 )
) = 𝑇𝑟𝑢𝑒 .

Based on the above proposition, minimal refinements can be ef-

ficiently identified. Rather than employing a top-down search that

traverses all potential refinements, we optimize this procedure by

implementing a binary search to locate a refinement that satisfies

the cardinality constraints. Following that, we "tighten" the refine-

ment to make it minimal. This process is depicted in Algorithm 2.

We first use a binary search (line 2) to obtain an initial query 𝑄𝑏

such that ∀𝑙 ∈ 𝐿,𝑄𝑏 .𝑅 [𝑙] = 𝑘 and 𝑣𝑎𝑙𝑄𝑏
(I𝐶𝑟

𝑄 (𝐷 )
) = 𝑇𝑟𝑢𝑒 . For lists 𝑙

with length smaller than 𝑘 , we set𝑄.𝑅 [𝑙] to be the length of 𝑙 . Next,

we tighten 𝑄𝑏 ś make it minimal by moving up the index values in

each list as much as possible (lines 4 ś 10). The refinement we get

at the end of the process is a minimal relaxation.

Proposition 4.4 also provides us with another optimization so

that some recursions can be avoided. When we recursively search

for other relaxations by fixing a predicate with values above 𝑄𝑏 .𝑅,

(lines 7 ś 12 in Algorithm 2), if there is a value 𝑙 [𝑖] that fixing it

ends up adding no new minimal relaxation to the result set, we

do not need to check values above index 𝑖 in list 𝑙 . In other words,

from line 7 to line 12 in Algorithm 2, if one of the iterations in the

for loop does not update the result set 𝑅𝑒𝑠 with any new minimal

relaxations, we execute a "break" after line 12 to end the for loop in

advance, because the following iterations would check values that

relax the query less, and based on monotonicity, will definitely not

satisfy the cardinality constraints.
Example 5.6. To show a simple example with relaxation con-

straints, in our running example (Example 1.1) where job appli-

cants are selected based on their majors and GPA values in Table

1, we only consider the constraint that at least two females are

selected. As mentioned before, when all constraints are relaxation

constraints, provenance inequalities can be simplified by removing

tuples satisfying query already, so the provenance expression is
𝑀𝑀𝐸 ·𝐺3.65 +𝑀𝐶𝑆 ·𝐺3.40 +𝑀𝑀𝐸 ·𝐺3.60

+𝑀𝐸𝐸 ·𝐺3.85 +𝑀𝐸𝐸 ·𝐺3.90 +𝑀𝐸𝐸 ·𝐺3.85 ≥ 1
(2)

Compared to Figure 1a, the PVL in Figure 1c does not contain list

𝑙𝑀𝐶𝑆
and values greater than 3.85 in list 𝑙𝐺 since they already satisfy

Q1. To get an initial relaxation 𝑄𝑏 , we do a binary search and find

that 2 is the smallest index 𝑘 such that ∀𝑙 ∈ 𝐿,𝑄𝑏 .𝑅 [𝑙] = 𝑘 and

𝑣𝑎𝑙𝑄𝑏
(I𝐶𝑟

𝑄1(𝐷 )
) = 𝑇𝑟𝑢𝑒 . Then we tighten 𝑄𝑏 by moving up values

in each list as much as possible, and get𝑄 ′
𝑏
.𝑅 = [2, 1, 1], highlighted

in blue color, which is a minimal relaxation that adds EE to be a

recognized major. Then, we fix the value in 𝑙𝑀𝐸𝐸
[1] and search

for other relaxations recursively, and find another two minimal

relaxations: (1) modifying GPA predicate to be a.GPA >= 3.40;

and (2) adding ME to the major list, and modifying GPA predicate

to be a.GPA >= 3.65.

6 EXPERIMENTS
We empirically evaluate our proposed solutions to demonstrate

their usefulness and effectiveness. We describe the experimental

setup and provide a real-world case study, and then present a quan-

titative study assessing the efficiency of our algorithm, considering

various datasets, queries, and cardinality constraints, and compar-

ing it to the baseline solution. We analyze the impact of data size,

query selectivity, and constraint properties on running time and the

number of checked refinements. Moreover, we validate the effec-

tiveness of the optimization presented in Section 5.2, and provide

a comparison between our approach and [15]. The results show

that our PVL-based search algorithm performs well across diverse

scenarios, achieving up to 100 times faster execution than baseline

traversal. The optimizations improve performance by up to 99.87%.

For more comprehensive experiments, please refer to [16].
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𝑄𝐻
1

𝑄𝐻
2

SELECT * FROM Healthcare WHERE

income >= 200K and

num-children >= 3 and

county in ("county2", "county3")

income <= 100K and

complications >= 5 and

num-children >= 4

𝑄𝐴
1

𝑄𝐴
2

SELECT * FROM ACSIncome WHERE

working_hours >= 40 and

Educational_attainment >= 19 and

Class_of_worker in ("local_gov",

"state_gov", "federal_gov")

working_hours <= 40 and

Educational_attainment <= 19 and

income in ("<20K", "20K-40K")

𝑄𝑇
3

SELECT * FROM customer, order, lineitem WHERE c_custkey = o_custkey and

l_orderkey = o_orderkey and c_mktsegment = ’BUILDING’ and

o_orderdate < date 1995-03-28 and l_shipdate > date 1995-03-28

𝑄𝑇
12

SELECT * FROM order, lineitem WHERE l_orderkey = o_orderkey and

l_commitdate < l_receiptdate and l_shipdate < l_commitdate

l_shipmode in (’RAIL’, ’AIR’) and

l_receiptdate >= date 1995-01-01 and l_shipdate < date 1996-01-01

Figure 2: Queries used in experiments

𝐶𝐻
1

𝐶𝐻
2

𝐶𝐻
3

{𝑟𝑎𝑐𝑒 = 𝑟𝑎𝑐𝑒2}

{𝑎𝑔𝑒 = 𝑔𝑟𝑜𝑢𝑝1}

{𝑟𝑎𝑐𝑒 = 𝑟𝑎𝑐𝑒1}

{𝑎𝑔𝑒 = 𝑔𝑟𝑜𝑢𝑝2}

{𝑎𝑔𝑒 = 𝑔𝑟𝑜𝑢𝑝3}

{𝑎𝑔𝑒 = 𝑔𝑟𝑜𝑢𝑝1}

{𝑟𝑎𝑐𝑒 = 𝑟𝑎𝑐𝑒1}

𝐶𝐴
1

𝐶𝐴
2

𝐶𝐴
3

{𝑠𝑒𝑥 = 𝐹,

𝑚𝑎𝑟𝑖𝑡𝑎𝑙 = 𝑀𝑎𝑟𝑟𝑖𝑒𝑑}

{𝑟𝑎𝑐𝑒 = 𝐵𝑙𝑎𝑐𝑘}

{𝑠𝑒𝑥 = 𝑀, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝

= ℎ𝑢𝑠𝑏𝑎𝑛𝑑/𝑤𝑖𝑓 𝑒}

{𝑎𝑔𝑒 = 30 − 60,

𝑚𝑎𝑟𝑖𝑡𝑎𝑙 = 𝑑𝑖𝑣𝑜𝑟𝑐𝑒𝑑}

{𝑠𝑒𝑥 = 𝑀, 𝑟𝑎𝑐𝑒 = 𝐴𝑠𝑖𝑎𝑛}

{𝑠𝑒𝑥 = 𝐹,𝑚𝑎𝑟𝑖𝑡𝑎𝑙 = 𝑀𝑎𝑟𝑟𝑖𝑒𝑑}

𝐶𝑇,3
1

𝐶𝑇,3
2

𝐶𝑇,3
3

{𝑐_𝑛𝑎𝑡𝑖𝑜𝑛𝑘𝑒𝑦 = 23}

{𝑙_𝑠ℎ𝑖𝑝𝑚𝑜𝑑𝑒 = MAIL}

{𝑐_𝑛𝑎𝑡𝑖𝑜𝑛𝑘𝑒𝑦 = 2}

{𝑜_𝑜𝑟𝑑𝑒𝑟𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑃,

𝑙_𝑟𝑒𝑡𝑢𝑟𝑛𝑓 𝑙𝑎𝑔 = 𝑁 }

{𝑙_𝑠ℎ𝑖𝑝𝑚𝑜𝑑𝑒 = MAIL}

{𝑙_𝑠ℎ𝑖𝑝𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 =

COLLECT COD}

{𝑙_𝑙𝑖𝑛𝑒𝑛𝑢𝑚𝑏𝑒𝑟 = 5}

{𝑙_𝑙𝑖𝑛𝑒𝑛𝑢𝑚𝑏𝑒𝑟 = 6,

𝑙_𝑠ℎ𝑖𝑝𝑚𝑜𝑑𝑒 = SHIP,

𝑜_𝑜𝑟𝑑𝑒𝑟𝑠𝑡𝑎𝑡𝑢𝑠 = 𝐹 ,

𝑜_𝑜𝑟𝑑𝑒𝑟𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 1-URGENT},

{𝑙_𝑠ℎ𝑖𝑝𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 =

DELIVER IN PERSON,

𝑜_𝑜𝑟𝑑𝑒𝑟𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑃 ,

𝑜_𝑜𝑟𝑑𝑒𝑟𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 2-HIGH}

𝐶𝑇,12
1

𝐶𝑇,12
2

𝐶𝑇,12
3

{𝑜_𝑜𝑟𝑑𝑒𝑟𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

= 5-LOW,

𝑙_𝑙𝑖𝑛𝑒𝑛𝑢𝑚𝑏𝑒𝑟 = 3},

{𝑙_𝑠ℎ𝑖𝑝𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 =

COLLECT COD},

{𝑙_𝑟𝑒𝑡𝑢𝑟𝑛𝑓 𝑙𝑎𝑔 = 𝐴}

{𝑜_𝑜𝑟𝑑𝑒𝑟𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =

1-URGENT},

{𝑙_𝑙𝑖𝑛𝑒𝑛𝑢𝑚𝑏𝑒𝑟 = 1}

{𝑙_𝑟𝑒𝑡𝑢𝑟𝑛𝑓 𝑙𝑎𝑔 = 𝐴,

𝑜_𝑜𝑟𝑑𝑒𝑟𝑠𝑡𝑎𝑡𝑢𝑠 = 𝐹 };

{𝑙_𝑙𝑖𝑛𝑒𝑛𝑢𝑚𝑏𝑒𝑟 = 7,

𝑙_𝑠ℎ𝑖𝑝𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 = NONE,

𝑜_𝑜𝑟𝑑𝑒𝑟𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 5-LOW,

𝑜_𝑜𝑟𝑑𝑒𝑟𝑠𝑡𝑎𝑡𝑢𝑠 = 𝐹 },

{𝑜_𝑜𝑟𝑑𝑒𝑟𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =

4-NOT SPECIFIED,

𝑙_𝑠ℎ𝑖𝑝𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 =

TAKE BACK RETURN,

𝑙_𝑙𝑖𝑛𝑒𝑛𝑢𝑚𝑏𝑒𝑟 = 7,

𝑙_𝑟𝑒𝑡𝑢𝑟𝑛𝑓 𝑙𝑎𝑔 = 𝐴}

Figure 3: Constraints used in experiments

6.1 Experiment Setup

Datasets:We use three different datasets to do experiments:

• The Healthcare dataset2 is a dataset used in [18] to train a

classifier identifying patients at risk for serious complications.

It contains demographic and clinical history information of 887

patients, with attributes like the number of children, income,

number of complications, county, race, age, etc..

• ACSIncome dataset is one of five datasets created by [19] as

an improved alternative to the popular UCI Adult dataset. The

data was compiled from the American Community Survey (ACS)

Public Use Microdata Sample (PUMS). It covers all 50 states and

Puerto Rico, with 1,664,500 rows and 11 features.

2https://github.com/stefan-grafberger/mlinspect/tree/master/example_pipelines/
healthcare

• TPC-H benchmark3 is a standard benchmark for measuring

the performance of relational database management systems

(RDBMS) and data warehousing systems. The benchmark con-

sists of a suite of 22 SQL queries and a database schema with 8

relational tables, and is designed to simulate the decision sup-

port systems of a typical data warehousing environment. We use

TPC-H 3.0.1 to generate datasets and queries 100M data size.
To the best of our knowledge, there is no available benchmark

for query refinement testing that provides datasets, queries, and

constraints. For our evaluation, we choose the Healthcare and AC-

SIncome datasets, which are commonly used public demographic

datasets in the context of fairness and diversity. We select attributes

such as gender, race, age, marital status, and relationships to form

the constraints, as these attributes are commonly employed as sen-

sitive attributes that reflect membership in various demographic

groups. Other attributes are used to form the queries. We also use

TPC-H benchmark which includes queries, and we use attributes

such as order priority and order status to form constraints.

Queries:We generated two queries each for Healthcare and AC-

SIncome dataset (denoted as 𝑄𝐻
1
, 𝑄𝐻

2
, 𝑄𝐴

1
, 𝑄𝐴

2
) without JOIN oper-

ations as each dataset has a single relation. From TPC-H bench-

mark queries, we randomly chose #3 and #12 (𝑄𝑇
3
, 𝑄𝑇

12
), which both

include JOIN operations. The TPC-H query was simplified by re-

moving GROUP BY, ORDER BY, and LIMIT clauses which are not

considered in our setting and only affect tuple display. This modi-

fication doesn’t affect the experiment’s validity. Additionally, we

replaced attribute sets in the query projections with SELECT * for

simplicity and to ensure all attributes in the cardinality constraints

were included. One predicate over l_receiptdate in query #12 is

replaced with attribute l_shipdate, which enables us to explore

different scenarios and apply optimizations. An overview of all

queries used in the experiments is presented in Figure 2.

Cardinality constraints: Figure 3 summarizes the constraints

used in experiments. We form three sets of cardinality constraints

for each of the Healthcare, ACSIncome, and TPC-H datasets, by

using representative sensitive attributes such as race and gender

for the first two demographic datasets, and attributes from multiple

tables that are not used in queries for non-demographic TPC-H

dataset. Each set contains 2 to 5 constraints that must be fulfilled

simultaneously. The first set of constraints for each dataset contains

relaxation constraints, the second contains contraction constraints,

and the third contains a combination of both: first group being

relaxed to 105% and second being contracted to 95%. Similar re-

sults were observed for other queries and constraints. Due to space

limitations, please refer to [16] for more detailed experiments in-

volving more queries and constraints (queries 𝑄𝐻
3
, 𝑄𝐻

4
, constraints

𝐶𝐻
4
,𝐶𝐻

5
,𝐶𝐻

6
on the Healthcare dataset, as well as queries 𝑄𝐴

3
, 𝑄𝐴

4
,

constraints 𝐶𝐴
4
,𝐶𝐴

5
,𝐶𝐴

6
on the ACSIncome dataset).

Compared algorithms: In the experimental section, we compare

three approaches: a baseline method, our fully optimized proposed

solution (as detailed in Sec. 5.2), and our proposed solution with-

out optimizations. Each method operates on in-memory data and

utilizes provenance expressions to evaluate potential refinements.

The baseline approach also uses provenance expressions, as man-

aging data on an external database would be less efficient due

3https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
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(a) ACSIncome (b) Healthcare

(c) TPC-H benchmark,𝑄𝑇
3

(d) TPC-H benchmark,𝑄𝑇
12

Figure 4: running time

(a) ACSIncome (b) Healthcare

(c) TPC-H benchmark,𝑄𝑇
3

(d) TPC-H benchmark,𝑄𝑇
12

Figure 5: number of refinements checked

to multiple I/O accesses. In contrast, our solution only requires

a single access to generate provenance inequalities. We begin by

comparing our fully optimized proposed solution with the baseline

approach. Then, we investigate the impact of various parameters

on the performance of our optimized solution. Next, we compare

our optimized solution with the non-optimized version. Finally, we

contrast our approach with existing work in the field. Here are the

three approaches used in the experiments. Note that they all report

all minimal refinements, so the quality of results are the same. They

differ in efficiency due to different searching strategies.
• Baseline Algorithm (Baseline). This naive algorithm, intro-

duced in Section 4, utilizes a provenance model to avoid multiple

database accesses. However, it identifies minimal refinements by

navigating through all potential refinements.

• PVL-based Search (PS). This is Algorithm 1 with all optimiza-

tions in Section 5.2 to identify minimal refinements with PVL.

• PVL-based Search without optimization (PS_no_opt). This

version of our proposed approach is also Algorithm 1, but without

the optimizations described in Section 5.

Metrics: We compare the running time and number of possible

refinements checked by each algorithm.

Platform: All experiments were performed on a macOS Ventura

13.2 machine with an Apple M2 Max chip, 64 GB memory. The

algorithms were implemented using Python3.

6.2 Real-world applications

As mentioned in Section 1, adding cardinality constraints to query

results has many important real-world applications, particularly

where diversity matters. For example, query refinements can be

necessary in the selection of individuals from the Healthcare dataset

and ACSIncome dataset for healthcare subsidies, governmental sur-

veys, and social science studies, etc., for diversity considerations.

Here we show a detailed scenario used in our experiments. Con-

sider a hospital planning to offer financial assistance to patients

in need, specifically those with low incomes, a high number of

children, and a high complication rate, using the Healthcare dataset.

They execute query𝑄𝐻
2
(please see Figure 2) to select patients with

an income less than 100K, more than 4 children, and more than 5

complications, resulting in 42 out of 887 patients being selected.

However, the hospital notices under-representation of certain de-

mographic groups in the query result. Only 17% of the selected

patients belong to race2 among the three races, and there are fewer

individuals from age group1 compared to other age groups. The

hospital worries about criticism for a financial assistance program

that is skewed in this manner. To achieve a more balanced demo-

graphic distribution among the recipients of financial assistance,

the hospital introduces cardinality constraint𝐶𝐻
1
to relax query𝑄𝐻

2
,

aiming to increase the representation of individuals from these two

groups to 105%. Our algorithm provides three methods to minimally

refine 𝑄𝐻
2
: 1) adjusting the lower bound of the number of children

to 3, 2) modifying the lower bound of the number of complications

to 4, and 3) changing the upper bound of income to 134K. The

hospital can choose any of these refinement queries based on their

preference. Additionally, the hospital may utilize constraint 𝐶𝐻
2

to

limit the selection of patients from dominant groups, or combine

both approaches, as demonstrated by 𝐶𝐻
3
.

6.3 Experiment Results

We compare the running time of our algorithm with the baseline in

experiments. Then, we analyze the impact of different parameters

on our algorithm’s running time by systematically altering them,

enabling us to identify the scalability of our algorithm.

Running time. The first set of experiments compares the running

time of our algorithm with a baseline naive algorithm. In all tested

scenarios, our algorithm consistently outperforms the baseline by

more than 100 times, as shown in Figure 4. The blue bar represents

the running time of our solution with PVL, while the green bar

shows the running time for the baseline algorithm. The dark section

represents provenance generation time, and the light section shows

the searching time for minimal refinements. In some cases, the

green bar is omitted because the baseline approach cannot terminate

within a 3-hour time-out. Our solution performs well with various

constraint sets, including relaxation, contraction, and a mix of both,

due to the efficient search checking fewer refinements using the

PVL. The running time for different query-constraint combinations

varies significantly due to factors such as the search space and

the distance between the original query and queries satisfying

cardinality constraints, as demonstrated next.

Number of refinements checked. The number of refinements

checked by the algorithms indicates algorithm effectiveness. Fig-

ure 5a and 5b compare the refinements checked by the PVL-based

search and the baseline. Figures 5c and 5d compare the PVL-based

search with the total number of refinements represented by PVL,

considering that the baseline algorithm cannot complete in most

cases (Figures 4c and 4d). In all scenarios, our algorithm checks up

to 99% fewer refinements compared to both the baseline algorithm
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(a)𝑄𝐴
1
,𝐶𝐴

1
(b)𝑄𝐴

1
,𝐶𝐴

2
(c)𝑄𝐴

1
,𝐶𝐴

3

(d)𝑄𝐴
2
,𝐶𝐴

1
(e)𝑄𝐴

2
,𝐶𝐴

2
(f)𝑄𝐴

2
,𝐶𝐴
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Figure 6: Effect of query selectivity on the running time,

ACSIncome data, x-axis varies constants in a predicate, y-

axis is running time (s)

(a)𝑄𝐻
1
,𝐶𝐻

1
(b)𝑄𝐻

1
,𝐶𝐻

2
(c)𝑄𝐻

1
,𝐶𝐻

3

(d)𝑄𝐻
2
,𝐶𝐻

1
(e)𝑄𝐻

2
,𝐶𝐻

2
(f)𝑄𝐻

2
,𝐶𝐻

3

Figure 7: Effect of query selectivity on the running time,

Healthcare data, x-axis varies constants in a predicate, y-axis

is running time (s)

and the total number. This reduction is particularly notable for re-

laxation/contraction constraints, benefiting from the optimizations

described in Section 5.2. These results align with the running time

comparison, as the running time is influenced by the search space,

which can be inferred from the number of refinements checked. For

simplicity, we focus on comparing the running time in the following

experiments and omit the number of refinements checked.

Data size. We examined the effect of data size on running time

using the TPC-H dataset, and present our findings in Figures 4c

and 4d, which shows the running time for data sizes of 100M, 1G,

and 10G. Data size affects running time in two primary ways: the

time to generate provenance expressions and the search space size.

The time needed to generate provenance expressions and assign

values to them scales linearly with the data size, while the size

of the Provenance Value List (PVL) generally with the number of

attribute values in larger datasets. Due to these factors, for each

query and constraints pair, we observed a clear trend of increasing

running time as the data size increased.

Query Selectivity. We analyzed query selectivity by varying a

single constant in each query’s predicate. Results are shown in

Figures 6, 7, 8, with the 𝑥-axis indicating the constant’s value and

the 𝑦-axis showing running time. For relaxation constraints, in-

creasing selectivity expands the search space, leading to longer

running times (Figures 6a, 6e, 7a, 7d, 8b, 8d). On the other hand, for

contraction constraints, the trend is opposite (Figures 6b, 6d, 7b,

7e, 8a, 8d). In the general case (constraint set 𝐶𝐴
3
,𝐶𝐻

3
,𝐶𝑇,3

3
,𝐶𝑇,12

3
),

increasing the constant in a predicate does not affect the size of

the provenance expression containing the entire data. However,

it impacts the relaxation and contraction constraints in opposite

ways, resulting in a trade-off between the constraints. The running

(a)𝑄3,𝐶
𝑇 ,3
1
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𝑇 ,3
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Figure 8: Effect of query selectivity on the running time, TPC-

H benchmark, 100M data sizes, x-axis varies constants in a

predicate, y-axis is running time (s)
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Figure 9: Effect of constraints on the running time, ACSIn-

come dataset, x-axis shows how much groups are relaxed/-

contracted, y-axis is running time (s)

time is primarily influenced by the contraction constraint for lower

selectivity and by meeting the relaxation constraint for higher se-

lectivity, which may result in a turning point. A similar trend is

observed in Figure 8c. However, some figures, such as Figure 6c,

6f, 7c, 7f, 8f, display a monotonic increase or decrease without a

turning point. This occurs when either the contraction or relaxation

constraints dominate the overall running time of the algorithm.

Constraints satisfaction properties. To analyze the effect of car-

dinality constraints on running time, we varied the relaxation or

contraction ratio of one group to different percentages while keep-

ing the ratios of other groups unchanged, as shown in Figures 9,

10, and 11. The size of the Provenance Value List (PVL) remains

unaffected by these changes since it depends on dataset, query,

and group definitions rather than the constants. As constraints are

tightened or relaxed, we expect the algorithm runtime to increase

or decrease, respectively, as queries satisfying the constraints move

further away from or closer to the original query. An increase in

running time is observed when constraints become more difficult

to satisfy, as seen in Figure 9a, 10a, 10c, 10d, 10f, 11a, 11d, while the

opposite trend is observed when queries become easier to satisfy.

However, some figures show minimal changes in running time

when constraints are altered, such as Figure 9b, 9d, 9e, 9f, 11b, 11f.

This can be attributed to the uneven data group distribution in

the constraints, where adjusting a predicate to a particular value

can simultaneously qualify or disqualify multiple tuples, satisfy-

ing various relaxation/contraction ratios. This effect is particularly

noticeable when there are many tuples with the same value in an

attribute, resulting in minimal refinements that are nearly the same

for different relaxation/contraction ratios.
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Figure 10: Effect of constraints on the running time, Health-

care dataset, x-axis shows how much groups are relaxed/con-

tracted, y-axis is running time (s)
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Figure 11: Effect of constraints on the running time, TPC-H

benchmark, x-axis shows how much groups are relaxed/con-

tracted, y-axis is running time (s)

Effect of optimizations. To assess the impact of the optimizations

described in Section 5.2, we conducted experiments using algo-

rithms both with and without optimizations and compared their

search times. These optimizations incorporate the use of binary

search instead of a top-down traversal when searching for a re-

finement, exploiting the monotonicity property of queries when

all constraints are relaxation constraints or all are contraction con-

straints. We used queries (𝑄𝐻
1
, 𝑄𝐻

2
, 𝑄𝐴

1
, 𝑄𝐴

2
, 𝑄𝑇

3
, 𝑄𝑇

12
) and the first

two sets of constraints (𝐶𝐻
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2
,𝐶𝐴
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2
,𝐶𝑇,3
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2
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1
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2
) for

the three datasets, and the results are shown in Figure 12. The light

blue bar represents the searching time with optimization, and the

light orange bar represents the time without optimization. Our re-

sults indicate that the optimizations significantly reduced execution

times across all tested scenarios and enhance the efficiency of the

algorithm with gains of up to 99.87%.

6.4 Comparison with Related Work

We compared our algorithm with the one by Shetiya et al. [15],

which also addresses group cardinality constraints but with dif-

ferent objectives and settings. Since [15] only supports numerical

predicates with a single binary sensitive attribute, all the compar-

ison experiments are conducted in this setting. We use the C++

implementation provided by Shetiya et al. [15].

Result comparison. To be consistent with [15] and allow for easy

comparison, we use TexasTribune dataset (used by [15]), containing

salary information for Texas state employees, to compare the re-

turned results. Our query imposes both upper and lower bounds for

the salary attribute (a.salary >= 10000 and a.salary <= 20000),

resulting in a gender disparity of 69 with 100 males and 169 females

in the result set. For [15], the query selects tuples with salaries in

(a) ACSIncome (b) Healthcare (c) TPC-H 100M

Figure 12: Effect of optimizations on the searching time, y-

axis is searching time (s)

(a) 1-attribute query (b) 2-attribute query

Figure 13: Comparison between [15] and our PVL-based

searching algorithm, y-axis is running time (s)

range [10000, 20000]. As for cardinality constraints, we require the

gender disparity to be no larger than 62 (90% of the original dispar-

ity), resulting in constraint: |𝑄 (𝐷)𝑔𝑒𝑛𝑑𝑒𝑟=𝑀 − 𝑄 (𝐷)𝑔𝑒𝑛𝑑𝑒𝑟=𝐹 | ≤

62. The refinement returned by [15] is a salary range 𝑟1 =

[10135.7, 19701.5] (Jaccard similarity 0.95), which is also returned

by our algorithm. Additionally, our algorithm returns seven other

refinements: 𝑟2 = [10000, 19629.6], 𝑟3 = [11305.8, 20000],𝑟4 =

[11274.1, 19999.9], 𝑟5 = [11205.2, 19999.2], 𝑟6 = [11138.4, 19759.9],

𝑟7 = [11036.2, 19723.8], and 𝑟8 = [10764.0, 19705.7] (Jaccard simi-

larity 0.95, 0.90, 0.90, 0.90, 0.88, 0.89, 0.91, respectively). All the re-

turned refinements are minimal. The differences in the results are

due to the differentminimality definitions: distance between queries

v.s. distance in the result sets. Our definition of minimality allows

the user to select the most suitable refinement based on their pref-

erences. For instance, if the user prefers to minimize changes to the

lower bound of the salary, 𝑟2 would be the best refinement with the

same best Jaccard similarity as 𝑟1, but it would be ignored by [15].

Running time comparison. To compare the running time of the

two algorithms, considering [15] uses different algorithms for

single-attribute and multiple-attribute queries, we employ both

the one-dimensional TexasTribune dataset used earlier and a two-

dimensional uniform dataset from [15]. The uniform dataset con-

sists of 10,000 points uniformly sampled within a square of length

1,000 units, with two numerical attributes (𝑥 and 𝑦) and a sensi-

tive attribute (color). For each dataset, we use two queries with

different disparities. For TexasTribune dataset, we use queries 1)

selecting salary ∈ [5000, 15000], with a disparity of 62, and 2) se-

lecting salary ∈ [10000, 20000], with a disparity of 69. For uniform

dataset, we use queries 1) selecting records with 𝑥 ∈ [400, 600] and

𝑦 ∈ [400, 600], with a disparity of 30, and 2) selecting records with

𝑥 ∈ [550, 700] and 𝑦 ∈ [550, 700], with a disparity of 35. We eval-

uate the running time for different original queries, setting target

disparities at percentages of the original disparity as cardinality

constraints (ranging from 80% to 20%). Figures 13 presents the com-

parison results with 1-attribute and 2-attribute queries, with the

x-axis representing the target disparity and the y-axis showing

the execution time. To account for the possibility of our algorithm

outputting more than one refinement, the figures include a bar

labeled "PVL-first," representing the time to find the first minimal

refinement using our algorithm, in comparison with [15]. In gen-

eral, the running time increases as the target disparities become
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smaller, as satisfying harder constraints takes more time. For single-

attribute queries, [15] maintains stable runtime because disparity

has a limited impact on their algorithm, primarily depending on

data size. In most cases, PVL-first and [15] exhibit comparable run-

ning times, with the same order of magnitude, indicating similar

efficiency in finding the first minimal refinement. However, there

is an exception in multiple-attribute queries, where [15] is much

faster when the target disparity is high (90% or 80% of the original),

but even so, both algorithms finish within 3 seconds. It is worth

noting that besides comparable execution times in the covered set-

tings of [15], our algorithm handles multiple relations, constraints,

and non-binary sensitive attributes, providing more versatility than

[15]. Additionally, our algorithm includes further optimizations to

improve efficiency in some situations, as discussed in Section 5.2.

7 RELATED WORK
We next overview multiple lines of related work.

Query refinement. The problem of query refinement has been

addressed in previous studies such as [4, 5, 15, 20ś23]. They focus

on modifying queries to satisfy cardinality constraints, mostly em-

phasizing the overall output size rather than specific data groups

within the output. For example, [5, 20] aim to relax queries with an

empty result set to produce some answers. Other works like [4, 21]

address the issues of too many or too few answers by refining

queries to meet specific cardinality constraints on the result’s size.

An exception is the recent work by Shetiya et al.[15], which aims

to refine queries to satisfy constraints on the size of specific data

groups in the result. We discuss and demonstrate the differences

in Section6.4. Other related work by [24, 25] aims to satisfy car-

dinality constraints through minimal query refinement but does

not consider categorical attributes and provides only cardinality

estimations without exact results. Furthermore, the work of [22, 23]

studies the problem of explaining missing tuples in the query result

through query refinement. A key difference is that [22, 23] aim

to include user-specified missing tuples in the result set through

refinement, rather than imposing constraints over groups, where

including or removing tuples not specified by the user may apply.
Query result diversification. Query result diversification is an-

other related topic aiming to increase result diversity while main-

taining relevance of results to the original query [26ś29]. In some

settings, relevance and diversity are tradeoffs [30], and in others,

user information is used to select the result set. However, there

are two main differences between this line of research and our

approach. First, query result diversification involves ranking items

based on their relevance to the query, aiming to select items that are

ranked as high as possible and, at the same time, as diverse as pos-

sible. In contrast, our approach does not involve ranking: an item

is either selected or not based on the query. Second, while query

result diversification explores item selection based on the given

query but without modifying the query, our approach achieves

result diversity through query refinement itself.

Provenance. Data provenance has been studied extensively in

recent years. An early approach to user provenance for RDBMS

[31, 32] finds a set of tuples that contribute to a certain output

tuple. The model proposed in [33] collects contributing input tuples

separately for each step in the derivation of the output tuple so that

it shows how the output is obtained. Then a general framework

proposed in [13] introduced tuple annotations using a semiring𝐾 to

evaluate queries over annotated relations. The Caravan system [6]

enables efficient what-if analysis by creating provisioned represen-

tations for hypothetical reasoning, eliminating the need to access

original data or execute complex queries. MONDRIAN [34] pro-

poses an annotation-oriented data model, facilitating manipulation

and querying of both data and annotations. It allows annotations

to be specified on sets of values, thus enabling efficient querying of

information based on their association. Glavic et al. [35] outlined

a propagation-based method for provenance generation through

operator instrumentation. Their approach modifies operators to

generate and transfer detailed provenance information across the

query network. Our provenance model is inspired by [6], with tuple

annotations propagated through query valuation as in [13].
Fairness constraints in other settings. While our work does not

only apply to fairness context, fairness is an important topic in data

selection and there are many prior works focusing on satisfying

fairness constraints in some settings. Some works aim to satisfy

fairness constraints under a certain diversity model [36ś38], and

others focus on fairness constraints in the optimization of an addi-

tive utility [39]. There is also some work on fairness in set selection

and ranking [40], fairness in classification [41], and diversity in top-

k results [42ś44]. Other works consider constraint query languages

[45], presenting a declarative language with extensions to SQL to

support fairness constraints in queries [46].

8 CONCLUSION AND FUTUREWORK
In this paper, we address the problem of finding all minimal refine-

ments of a given query that satisfy specific cardinality constraints

for data groups within the result set. Unlike many previous studies

that primarily examine query refinement based on the overall result

set size, our focus lies in satisfying size constraints for specific data

groups within the result set. Furthermore, our approach extends

beyond existing research by supporting a wider range of queries

and constraints. Specifically, we enable SPJ queries that involve

multiple constraints on multiple relations, encompassing sensitive

attributes that are more than binary, and supporting both query

relaxations and query contractions. To achieve this, we have pro-

posed a solution that uses a provenance model to annotate tuples

in the source data with the necessary predicate information. The

cardinality constraints are translated into algebraic expressions,

allowing for efficient verification of constraint satisfaction without

accessing the original data. Furthermore, we also propose a search

algorithm that efficiently explores the search space and finds po-

tential refinements, which are then verified using our proposed

provenance-based approach. Experimental results demonstrate the

effectiveness and efficiency of our solution on a variety of datasets

and constraints. For future work, it would be beneficial to inves-

tigate the general applicability of the proposed approach to other

SQL clauses. For instance, queries involving NOT operators would

require searching the complementary space. Moreover, queries com-

bining ranges with both AND and OR operators would translate

provenance expressions that incorporate both logical AND and OR

operations. We left these for future research.
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