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Prediction-aware and Reinforcement Learning based
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Abstract— Autonomous vehicle (AV) navigation in the presence
of Human-driven vehicles (HVs) is challenging, as HVs continu-
ously update their policies in response to AVs. In order to navigate
safely in the presence of complex AV-H V  social interactions, the
AVs must learn to predict these changes. Humans are capable of
navigating such challenging social interaction settings because of
their intrinsic knowledge about other agents’ behaviors and use
that to forecast what might happen in the future. Inspired by
humans, we provide our AVs the capability of anticipating future
states and leveraging prediction in a cooperative reinforcement
learning (RL)  decision-making framework, to improve safety
and robustness. In this paper, we propose an integration of two
essential and earlier-presented components of AVs: social navi-
gation and prediction. We formulate the AV ’s decision-making
process as a R L  problem and seek to obtain optimal policies that
produce socially beneficial results utilizing a prediction-aware
planning and social-aware optimization R L  framework. We also
propose a Hybrid Predictive Network (HPN) that anticipates
future observations. The HPN is used in a multi-step prediction
chain to compute a window of predicted future observations to
be used by the value function network (VFN). Finally, a safe
VFN is trained to optimize a social utility using a sequence of
previous and predicted observations, and a safety prioritizer is
used to leverage the interpretable kinematic predictions to mask
the unsafe actions, constraining the R L  policy. We compare our
prediction-aware AV  to state-of-the-art solutions and demonstrate
performance improvements in terms of efficiency and safety in
multiple simulated scenarios.

Index Terms—Altruistic Cooperative Driving, Prediction-
aware, Reinforcement Learning.

I . INTRODUC T I ON

HE adoption of connected and autonomous vehicles
(CAVs) is expected to improve safety and efficiency,

decrease traffic accidents, and increase mobility [1]. A  nec-
essary step toward the widespread integration of autonomous
vehicles (AV) in society is allowing coexistence of safe AVs
and human-driven vehicles (HVs). Nevertheless, coordination
and cooperation with HVs are still challenging for AVs,
particularly in complex social interactions [1]–[3]. In order
to experience those benefits and allow real adoption of AVs
on the road, AVs should not only perceive and understand
the current environment state but also proactively predict their
future states and learn to coordinate and influence other agents.
The innate capability to anticipate agents’ behaviors and use
this knowledge to forecast potential future outcomes allows
humans to navigate through complex scenarios; therefore,
prediction capabilities are a crucial component in creating
secure AVs that can be integrated into society. [4], [5].
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Fig. 1: It is crucial for AV  being capable of anticipating future
situations of other vehicles using spatial and temporal information.
Decision-making by AVs can be enhanced by anticipating the in-
tentions of other agents, which is crucial in complex scenarios and
safety-critical situations. The figure depicts an AV  (in green) and HVs
(in blue) with corresponding predictions within the AVs perception
window.

CAVs  use Vehicle to Vehicle (V2V) communication to ac-
quire precise situational awareness [6]–[10]. We highlight the
advantage of CAVs  to improve AVs ’  robustness and safety in
two main directions, first, to overcome the limitations of local
sensors, and second, to allow coordination among AVs. An
effective and reliable means of communication among agents
can facilitate AV-HV coordination. AVs and HVs equipped
with such reliable vehicular communication can coordinate,
improving safety and efficiency [6]. However, even in the
presence of perfect communication, HV-AV interactions are
still challenging as the behavior and intentions of HVs are
still unknown, despite the vehicles’ ability to perceive or
share information in the communication network. Anticipating
agents’ behaviors and actions is an important part of real
AVs, particularly in mixed autonomy environments. Due to
the significance, prediction and HV behavior modeling is an
active area of research [4], [5], [11]–[13].

However, while extensive research has been done in fore-
casting vehicles trajectories for classical AV  stack [4], [5],
[11], [12]; using prediction in the decision-making process has
received less attention. Particularly in the domain of coopera-
tive driving, social interactions, and multi-agent reinforcement
learning (MARL), it is important to provide AVs with such
capabilities, as presented in Figure 1, in which AV  decision-
making may benefit from anticipating the future states of
other vehicles. Existing literature proposes probabilistic HV
modeling [14] learned from human driving data or rule-based
or hand-engineering methods to guide the AVs [15]. These
systems frequently have difficulty communicating or negotiat-
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Fig. 2: An overview of our prediction-aware and social-aware cooperative driving approach for Multi-agent Cooperative Reinforcement
Learning to improve the safety of CAVs. The proposed decentralized R L  architecture employs an HPN, which gives AVs the ability to
anticipate future states, which is used by the VFN to optimize for social utility and by the safety prioritizer to avoid high collision potential
actions.

ing with other vehicles in complex scenarios. Other approaches
use R L  [16]–[18] and consider social interactions [17], [18] of
AVs-HVs, proposing AVs that can learn from experience and
influence HVs, while optimizing a social utility function that
benefits all vehicles on the road. However, these approaches do
not consider the evolution of the environment into the future
and lack the capability of anticipating future states that can be
used for decision-making.

Towards this end, we study how CAVs  can leverage predic-
tion and social awareness in R L  decision-making, to improve
safety and efficiency. Therefore, we propose the integration of
those important components for AVs, i.e., prediction and social
navigation. Figure 2 presents an overview of our approach.
First, we propose a Hybrid Predictive Network (HPN) that
intends to provide AVs the ability to predict other agents’
potential future, as illustrated in Figure 2-I. Second, we use the
HPN in a multi-step prediction chain that delivers a window of
predicted observations to the value function network (VFN) (as
illustrated in Figure 2-II). Finally, the safe VFN relies on a
decentralized cooperative R L  architecture that optimizes for a
social utility and uses expressive velocity map predictions as
part of the input states and interpretable kinematic predictions
for a safety prioritizer. The safety prioritizer uses the kinematic
predictions from the multi-step HPN to constrain the R L
policy to ensure safety decision-making by masking the Q-
states that produce unsafe results, as shown in Figure 2-III.
We evaluate our prediction-aware and social-aware AV  with
related approaches under a variety of settings and show that,
given the ability to forecast future observations, the AVs can
use our proposed approach to improve safety, effectiveness,
and overall traffic flow.

Our contributions are as follows:

 We present a prediction-aware, social-aware decentralized
cooperative R L  framework and formalize the altruistic
cooperative driving problem as a partially observable
stochastic game (POSG).

 We present a hybrid predictive network that provides AVs
the ability to anticipate future observations and use it in
a multi-step prediction chain that delivers multiple future
observations to the value function network.

 We describe a robust safety prioritizer that uses inter-
pretable kinematic predictions from the HPN to minimize
future high-risk actions, constraining the R L  policy to
ensure safe decision-making, enhancing awareness of the
imminent hazards, reducing collisions, and accelerating
the learning process.

I I . R E L AT E D  WO R K

A. Reinforcement Learning and Social Navigation

Current research in social navigation has demonstrated the
importance of AVs as social actors and the benefits of AV-
HV coordination [19]. A  method for modeling and forecasting
human behavior in situations involving multi-human interac-
tions in highly multi-modal situations is proposed in [20].
HV models are learned from demonstration using inverse R L
in [21] and [22]. Similarly, a centralized stochastic game
model approach is presented in [23]. The authors in [24]
and [25] proposed a shared reward function to enable cooper-
ative trajectory planning for robots and humans. Sadigh et al.
presents a strategy based on imitation learning, allowing AVs
to influence HVs [26].

At the traffic level, the importance of coordination and
the benefit of using AVs to guide traffic have also been
investigated. Wu et al. [27] examines AVs ’  ability to
stabilize a system of HVs and presents conditions under which
enforcing safety constraints on the AVs while stabilizing the
traffic improves the overall traffic performance. Similar works
have highlighted the potential of influencing HVs and how
AVs can guide the traffic flow [27], [28].

Recent works focus on optimizing traffic networks in mixed
autonomy to reduce traffic congestion and improve safety and a
model of vehicle flow is presented in [29] in which the
planner optimizes for a social goal while improving traffic
efficiency. The vehicle routing problem is studied in [30],
which proposes an innovative learning-augmented local search
system using a transformer architecture to mitigate the prob-
lem. In contrast to previous works, we do not rely on human
cooperation, and secondly, our AVs incorporate prediction and
planning to improve decision-making in cooperative driving.
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B. Safety in Autonomous Vehicles

Safety is a priority for real-world adoption of AVs [31], [32].
As a result of the complexity of the driving task, safety
concerns have been raised, such as: How can we prioritize
AV  safety in the face of uncertainty? and How can we train
R L  agents that prioritize AV  safety?

Although priority should be given to safety, it often comes at
the expense of effectiveness. Consider the following scenario:
you decide to pass a car that is moving slowly in front of
you. Overtaking a slower car poses a risk because the driver
may abruptly change lanes and cause an accident. The only
way to ensure safety is to avoid overtaking. Following this and
similar arguments, it becomes clear that the only condition that
completely guarantees safety is avoiding driving. As a result,
the goals of efficiency and safety are frequently conflicting.

AVs based on R L  can raise safety concerns as they can
select unsafe actions due to function approximation [33]. To
improve safety, authors in [34] propose a rule-based system
for evaluating controller decisions and masking collision-
causing actions. Cameron et al. investigate how humans can
supervise agents to achieve an acceptable level of safety [35].
Others use a pure reward-shaping strategy, however, in this
case, safety is not prioritized and the AVs are susceptible to
select dangerous actions [33], [36]. To overcome this problem,
authors in [33] present the concept of safe RL,  which aims to
increase safety in unobserved environment conditions. A  short-
horizon safety supervisor is proposed in [36] to replace unsafe
actions with safer ones. A  Q-masking strategy is presented
in [37] to prevent collisions by deleting actions that might
lead to a crash. Authors in [38] propose a safety supervisor
that considerably decreases crashes [38].

To improve safety we employ a safety prioritizer that uses
kinematic predictions from the multi-step prediction network
to look ahead and avoid imminent collisions by masking high-
risk actions in the short-horizon.

C. Behavior Modeling and Prediction

Human behavior is difficult to predict, and human decision-
making is governed by inherently unobservable cognitive
processes. The current works on driver behavior and social
navigation approaches agents’ coordination by either modeling
driver behavior [14], [20], [39], [40] or simplifying and mak-
ing assumptions about the nature of agent interactions [41],
[42]. Other works on driver behavior modeling consider data
mining [43], driver attributes [44], graph theory [45], or game
theory [2].

In vehicular safety applications, the use of kinematic equa-
tions by CAVs  for the prediction of neighboring vehicles’
positions and trajectories in short time horizons is a com-
mon approach. Dynamic and kinematics-based solutions are
used in [46]. These methods usually consider the vehicles
to be rigid point masses and assume that the longitudinal
velocity, acceleration, or other motion moments are constant,
which are frequently accepted assumptions for prediction by
conventional vehicle manufacturers. Amongst these kinematic
models, the constant speed (CS) or acceleration (CA) model
has more popularity for the prediction of road participants’

position and speed in the cooperative vehicle safety application
domain [47]–[51].

Numerous methods have defined trajectory prediction as
a regression problem, and potent methods like Inverse Re-
inforcement Learning [52], Recurrent Neural Networks [53],
[54] and Gaussian Process Regression and Gaussian Mixture
Models [55]–[58], have been successfully applied in dif-
ferent applications. Authors in [59] present a LSTM model
to forecast vehicle’s trajectories. Other works leverage non-
parametric Bayesian approaches to predict fundamental pat-
terns of observable time series. Particularly, within the non-
parametric bayesian inference approaches, Gaussian Process
(GP) has demonstrated a significant performance [51]. Because
of recent advances in deep generative models, generative
approaches have been widely used [60], [61]. The majority of
works in this domain use Autoencoders, such as Conditional
Variational Autoencoder, Recurrent Variational Autoencoder,
or Generative Adversarial Network [60], [61].

Differently, we propose a combined approach to predict
velocity map images directly using a predictive autoencoder
architecture and interpretable kinematics predictions using a
GP solution. We use these predictions to improve decision-
making, thereby integrating social navigation with prediction,
which are crucial elements for AV  navigation.

I I I . P R E L I M I N A R I E S AND P RO B L E M FO R M U L AT I O N

A. Autoencoder

An Autoencoder (AE) is a neural network that is trained in
an unsupervised approach to minimize the reconstruction error.
The A E  learns important features that allow reconstructing
the original input and its architecture is generally divided into
two main components: an encoder and a decoder. Following a
similar approach, an A E  can be trained for a prediction task
assuming that we have the state at time t and the corresponding
state at time t +  1. Formally, the encoder maps the input x
to a latent feature representation z  denoted by z =  fw  (x).
The decoder uses the latent representation z  to obtain a
reconstruction y  of the input x  , denoted by y =  fw  (z).
The reconstruction error, i.e., the difference between x  and
the reconstruction y  is used as the objective function.

B. Gaussian process

Gaussian processes (GP) are frequently used to predict
future trajectory time series by regressing the observed time-
series realizations from history, capturing the distinct patterns
as they emerge in the data, making GP a useful tool for
detecting patterns in time series [14], [62]. When using GP
to forecast future trajectories, the set of m observed values
is represented by an m-dimensional multivariate Gaussian
random vector, described by an m  m covariance matrix and
a m mean vector. This covariance matrix, often known as the
GP kernel, is the foundation upon which GP detects and
anticipates the underlying behavior of time series based on
their recorded history. The fundamental GP components can
be expressed mathematically as follows:



:
P 1

k = 0

~

~ ~ ^

~
^

^

~ e
e e e

e

t t

~ ~t + 1 : t + M

~
~0

t + 1 : t + M

~
~0

t + 1 : t + M

4

f (t)   gp
 
m(t); k(t; t0);                          (1a) fX i g i = 1 ; 2 ; : : : ; m

=  ff (t i )g i = 1; 2 ; : : : ; m   N (;  );         (1b)  =

m(t1); :::; m(tm) T  ;                         (1c)

i j  =  (ti ; tj ) 8i; j 2  f1; 2; :::; mg (1d)

target network weights (updated at frequency T argetupdate).
The experience replay buffer (RM ) is used to generate training
samples (s; a; r; s0), which are randomly drawn to protect from
correlated observations and non-stationary data distribution.

E. Driving Scenarios and Behaviors

where X i ,  f (t), m(:), and (:; :) are the samples of the
vehicles’ state, observed or to be predicted at the time ti ,
the unknown underlying function that the vehicles’ states
are sampled from, the mean and the covariance functions,
respectively.

In this work, we leverage GP to improve kinematics pre-
diction, and instead of working directly with the position
time series, our GP inference algorithm treats the vehicles’
heading and longitudinal speed as two independent time series
that are regressed using GPs, and then using the predicted
heading and longitudinal speed, the vehicles’ positions are
calculated. A  model built using a non-parametric Bayesian
inference framework dynamically adapts its complexity to
the observed data, preventing overly complicated models yet
catching unexpected patterns in the data as they emerge.

C. Partially Observable Stochastic Games (POSG)
In this section we present the notation for our R L  based altruis-
tic cooperative driving problem, defined as a POSG denoted by
hI ; S ; P ; fAi g i 2 f 1 ; : : : ; N g ; fOi g i 2 f 1 ; : : : ; N g ; fR i g i 2 f 1 ; : : : ; N g i ; .  At
a given time t each agent i  2  I  perceives the environment
and receives a partial observation oi : S  !  Oi , considering
the observation oi and its policy i      : Oi  A i      !  [0; 1], the
agent takes an action ai 2  A i  and transits to the state s0

2  S  based on the transition probability P (s0js; a) and
receives a local reward r i  2  R .  Each agent i  seeks to find
an optimal policy  : S  !  A ,  that maximizes the sum of
future rewards r i  2  R ,  i.e., (s) =  arg maxa Q(s; a), where,
Q(s; a) =  E[ k Rk (s; a)js0 =  s; a0 =  a], in which,

2         [0; 1)      is the discount factor. The
optimal       action-value       function       can then be
obtained       using       the       Bellman       optimality       equation,
Q(s; a) =  E [R(s; a) +   maxa0 Q(s0; a0)js0 =  s; a0 =  a].

D. Deep Q-Network
Deep Q-network (DQN) and Double Deep Q-Network
(DDQN) have been widely used in R L  problems. DDQN
regularly samples data from a buffer in order to calculate
an estimate of the Bellman error, which is denoted by the
following formula:

L (w)  =  Es ; a ; r; s 0 R M [(T arg et      Q(s; a; w))2] (2)

T arget =  R(s; a) +  Q(s0; arg maxQ(s0; a0; w); w)) (3)
a0

Following this, the DDQN algorithm learns an approximate
action-value function (Q(:)) by performing gradient descent
steps as wi + 1  =  wi   i r w L ( w ) ,  on the loss L .  Here, w
represents the online network weights and w represents the

We study the performance of our framework on multiple
HV behaviors and scenarios. We design a set of scenar-ios,
F  such as straight highway, highway exiting, highway
merging, intersection, and roundabout scenarios, defined as
fh ; f e ; f m ; f i ; f r  2  F  correspondingly. Using these scenarios,
we train AVs that are social-aware by using an altruistic reward
that embedded Social Value Orientation (SVO) in the AVs.
Properly, we describe social preferences (altruism or egoism)
by the AV ’s  SVO angular phase  [17], [63]. To simulate di-
verse behaviors we compute the appropriate parameter values
that simulate the desired behaviors. We compute the HV driver
parameters (P ) and based on the parameters (P ) generate a
set of behaviors B, i.e., conservative, moderate and aggressive,
bc; bm; ba 2  B  used within the simulator [45], [64]. A  mixed
behavior scenario is obtained by sampling from the behaviors
in B.

F. Problem Formulation

In this work, we focus on prediction-aware planning for
altruistic cooperative driving. We assume our scenarios contain a
set of AVs i i  2  I  and HVs hk 2  H ,  with diverse SVO. We
assume that AVs are connected and perceive a partial
observation of the environment oi 2  Oi, perceiving a subset of
vehicles C =  H  [  I ,  i.e., a subset of HVs H   H  and AVs
I   I .  We study the following problem: How AVs can
leverage prediction in decision-making to learn optimal
cooperative policies (s) in a mixed-autonomy environment
under different HVs behaviors b 2  B  and scenarios f  2  F .

The RL-based altruistic cooperative driving problem is
formalized as a POSG as described previously, attempting
to obtain optimal policies that produce socially advantageous
outcomes. To formalize our prediction problem, let us rep-
resent our state at time t for the vehicle (car) c, c 2  C,
as sc and let st =  s1;::: ; jC j  represent the state for all the
vehicles within the perception range. We assume that our
state st consists of a stack of N  past observations and M
future hypotheses, accounting for temporal and prediction
information, i.e., st =  [ot N :t; o0 ] for all the vehicles
within the local observation. The prediction system takes as
input the previous observations ot N : t  and aims to produce o

. We note that this is the general notation, and in
our framework, st is not just the vehicle trajectory, but a
combination of vehicle kinematic trajectory and a velocity
map, the details of which are presented in the following
sections.

The     previous     (ot N :t )     and     anticipated     observations (o
) are used to learn an optimal policy at a given state

st,  : S  !  A  The goal of this work is to train prediction-aware
and social-aware AVs that can drive safely in a mixed-
autonomy scenario.
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I V. PR E D I C T I O N- AWA R E A LT R U I S T I C  C O O P E R AT I V E
DR I V I NG

The POSG becomes significantly more complex in the pres-
ence of HVs since their behavior is difficult to predict and
change over time. Therefore, predicting HV behavior is crucial
for AVs ’  in a mixed-autonomy environment. On the basis of
this insight, we develop a framework that combines prediction
and planning. We propose a predictive network that provides
predictions to the planner, and the planner learns to use those
predictions for decision-making. The prediction networks give
the AV  the capability to anticipate the future, and the VFN
embeds the predictions and learns the inter-agent relations
while optimizing for a social utility.

Our approach uses the HPN that provides possible future
observations. Then the HPN is used in a multi-step prediction
chain that produces multiple possible future observations to the
VFN. Finally, the VFN is trained to optimize a social utility
within the R L  framework. The VFN outputs Q-values, that are
masked by a safety prioritizer, constraining the R L  policy to a
safe action space. The outline of our framework is presented in
Figure 2.

The two main sub-systems are the HPN and the VFN,
where HPN is a predictive autoencoder and VFN is a 3D
convolutional neural network (CNN). We hypothesize that the
combination of prediction (HPN) and decision-making (VFN)
improves the AVs ’  ability to learn to navigate complex sce-
narios. The input of the system is the hybrid spatio-temporal
state representation, i.e., VelocityMaps and kinematic state and
the output are the action-values, and after the unsafe actions
are masked, the action with the highest Q-values is selected
(a =  max 0        e Q(s; a0; w) at the given state s 2  S ). To
encourage the required safe social behavior in the AVs, we
design a suitable reward function.

A. Action and State Space
Action Space: This study aims to investigate interactions

between agents and between AVs and HVs. As a result, we
decide to choose the action-space as a collection of discrete
meta-actions ai 2  A i  at an abstract level, and the abstract
actions are transformed into control signals. We specifically
choose a set of actions (ai) as follows:

Lane L e f t
6 I d l e 7

ai 2  A i  =  6Lane R i g h t 7 (4)
A c c e l e r a t e
D e c e l e r a t e

State Space: The AVs at every time step t receive a
local observation of the environment ot 2  Ot. As temporal
information is crucial for the driving task we incorporate N
consecutive observations. We use VelocityMaps (V M) and
Kinematic (K )  information, at time step t, each combination
of V M and K  is an observation from the environment as,

ot 2  Ot =  K t  =  Xt ; Yt ; Vt ;     t
(5)

The kinematic information is included to explicitly incor-
porate the movement data, which helps the training process,

and also serves to obtain accurate Kinematic prediction for the
safety prioritizer. Additionally, as anticipating futures states is
also important for decision-making in complex scenarios, the
prediction chain generates a sequence of M hypotheses from
the observations that provide information on how the envi-
ronment could probably evolve into the future. We combine
N  consecutive past observations and M hypotheses from the
prediction network to construct a more useful state. Therefore,
our state consists of a stack of N  past observations and M
futures hypothesis, accounting for temporal and prediction
information, i.e., st =  [ot N :t; o0 ].

The V M information incorporates the relative vehicle’s
speed in pixel values [63]. The K t  is a matrix in which the
rows are the number of vehicles included in the observation
and the columns contain the kinematics information for each
vehicle. The kinematics information for each vehicle c, i.e.,
kc, is a 4-dimensional vector encoding the vehicle’s position,
velocity and heading, and it is formed by the kinematics
of the vehicle x; y; v; , where (x; y) represents the vehicle
position, v is the longitudinal speed,  is the heading, and
(x_; y_) are computed as x_ =  v cos ; y_ =  v sin . The K t

embeds the kinematics of surrounding vehicles, and it includes
the kinematics information kc for all the c 2  C vehicles, in
addition to the ego vehicle, i.e., K t  =  kego; k1; k2; :::; kjCj > .
Each row r  of K t  matrix contains the kinematics information
for the vehicle c, kt =  [xt ; yt ; vt ; t  ].

B. Reward Function
Inspired by the work in sympathy and cooperation for au-
tonomous driving [17] [63], we design a reward function that
takes into account the traffic metrics, social and individual
rewards of AVs and HVs. Therefore, we separate the reward
function for each agent I i  2  I  in two terms: an egoistic reward
Rego , and a social reward Rsocial , as

Ri (s; a) =  Rego +  Rsocial ;                         (6a)
Rego =  cos iri (s; a);                             (6b)

Rsocial =  sin i r i ; j  (s; a) +  sin i r i ; k  (s; a) (6c)
j                                                         k

in which i  2  I ,  j  2  ( I  n f I i g) ,  k 2  H .  The ego vehicle’s
reward is defined by r i  and the angle  allows the adjustment of
the level of the egoistic and social components.

The Rsocial term considers the social utility of the k HVs
and j  AVs  for the agent i, i.e., r H V  and r AV  defined as
r H V      =   1 !  x and r AV      =   1 !  x  , re-
spectively, 

i
where m is the set of traffic

i;
metrics that have

been taken into account in the utility of the vehicle (crashes,
speed, and distance traveled), x m  represents the m metric,
and wm represents the weights (metrics importance). The
terms di;k =di; j  represent the gap between the ego-AV and the
associated HV/AV and  is a hyperparameter that sets the
importance of neighboring vehicles.

C. Architecture.
The proposed prediction-aware planning architecture is pre-
sented in Figure 2 and consists of the Hybrid predictive
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network (HPN, Figure 2-I), the multi-step prediction chain
(Figure 2-II), the value function network (VFN, Figure 2-III),
and the safety prioritizer. The HPN (as shown in Figure 3)
serves as a predictive autoencoder network. It takes as input
the history of observations at time t, i.e., ot N : t  and produces
a predicted observation at time t + 1, i.e., o . The prediction
chain is a multi-step prediction chain that uses the HPN in a
chain to produce a set of M hypotheses. It takes a history
of observations at time t, i.e., ot N : t  and produces a set
of M predicted observations, i.e., o                  for the VFN.
Prediction-aware planning is made possible by combining
prediction (HPN) and decision-making (VFN), which improve
driving performance in challenging situations. The details of
the architecture are presented in the following sections.

1) Hybrid predictive network (HPN): The HPN (Figure 3)
is a prediction autoencoder network, it uses the sequence of
N  observations at time t, i.e., ot N : t  and outputs a predicted
observation at time t +  1, i.e., o . The HPN consists of a
symmetric encoder-decoder architecture. The encoder consists
of 3 convolutional layers with 3x3 filters, with 32, 64, and
64 feature maps. The encoder takes as input the history of
observations (ot N :t ), where each observation consists of a
velocity map image (V Mt) and the Kinematic matrix (Kt ).
The V M from t N  : t are passed through the 3-convolutional
layers and the K  vectors from t   N  : t are passed through
2-FC (fully connected) layers with 128 hidden units, whose
final layer contains the same number of hidden units as in the
convolution network (CNN) output. The outputs (V M features
and K  features representations) are combined using element-
wise addition operation. The decoder consists of a symmetric
version of the encoder, i.e., a deconvolutional network with
3-convolutional layers and 2-FC layers. The convolutional
layers produce a prediction for the next V M0 and the FC
layers produce the prediction for the next K 0        . The CNN
encoder is designed to extract important spatial information
of the input V M image. The predictive autoencoder is trained
by minimizing the Mean Squared Error (MSE) between the
prediction o0 and the target ot+1 .

Although the A E  provides kinematic predictions, we found
that an indirect hybrid GP prediction approach to correct the
kinematic predictions provides better results. Our findings are
based on previous works that show how a GP-based prediction
system is powerful for accurate kinematic predictions and
often performs better than other models like A E  and LSTM
models [14] [56] [32].

Therefore, while we use the predictive A E  to predict the
next V M0 image and K 0 state, we correct the kine-
matic state K 0          using a GP approach to improve kinematics
prediction. We particularly find that accurate kinematics pre-
diction are important for the safety prioritizer that uses the
predictions to constrain the R L  policies to a safer space. In
this work, instead of directly using the position time series
(xt N :t ; yt N :t ) for each vehicle, our GP inference algorithm
treats the vehicles’ heading ( t  N :t ) and speed (vt N :t ) as two
independent time series that are regressed using GPs, and then
calculates the vehicles’ position (x0 ; y0 ) using
the predicted heading and speed. We call this approach GP-
indirect prediction and present more details in the following

Fig. 3: Architecture of the hybrid predictive network (HPN) for one
prediction step. Using HPN in a chain will give AVs the ability to
predict future observations.

sections.
For each vehicle c, the GP prediction algorithm takes

as input the history of the 4-dimensional kinematic vector
(xt N :t ; yt N :t ; vt N :t ; t  N :t , ), uses the heading ( t  N :t )
and speed (vt N :t ) time series to predict their future values
( 0 ; v0 ). Then after modelling speed and head-
ing, the future position of the vehicle, i.e., x0 ; y0

is computed as follows,

fVi gi=1;2 ; : : : ;m =  ffspeed (ti )gi=1;2; : : : ;m  N (v ;  v ); (7a) v  =
mv (ti ); v i ; j  =  kv (ti ; tj ) 8i; j 2  f1; 2; :::; mg; (7b)

fspeed(t)  gp(mv (t); kv (t; t0))                    (7c)

f  i gi=1;2; : : : ;m =  ffheading (t i )gi =1;2; : : : ; m   N (  ;  ); (8a)

 =  m (ti );  i ; j  =  k (ti ; tj ) 8i; j 2  f1; 2; :::; mg; (8b)
fheading (t)  gp(m (t); k (t; t0))                  (8c)

Z t + 1
x t + 1  =  x t  +  

t
fspeed(t) cos(fheading (t)) dt; (9a)

t + 1

yt +1  =  yt +  
t

fspeed(t) sin(fheading (t)) dt (9b)

From the output of the GP model, the 4-dimensional
kinematic vector (k G P       =  xt+1 ; yt+1 ; vt+1 ; t +1 )  for each
vehicle is used to correct the A E  kinematic prediction (k A E  ),
and the GP prediction is performed for each vehicle in
the K  matrix (rows of the matrix) and a new matrix is
formed with all the predictions at time t +  1, i.e., K t + 1  =
k       ; k1      ; k2      ; :::; k        . The final predicted observation is

a combination of the predicted velocity map (V M0       ) and the
corrected kinematic prediction (K 0       ) as shown in Figure 3,
i.e.,

0

ot +1  =  K t + 1  =  Xt + 1 ; Yt + 1 ; Vt + 1 ;      t + 1
(10)
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Algorithm 1 Multi-step prediction chain.
Input ot N :t . The sequence of previous observations.
for t =  t to t +  M do

Predict o0 = HPN (ot N :t )
Save prediction o and use it for the next step

end for
Output o t + 1 : t + M  . The sequence of predicted observations.

2) Multi-step prediction chain: The prediction chain, as
presented in Figure 4 is a multi-step prediction process that
uses the HPN (Figure 3) in a chain to produce a set of M
future hypotheses. It takes a history of observation at time t,
i.e., ot N : t  and produces a set of M predicted observations,
i.e., o , as described in algorithm 1, to compute the
input state for the VFN, i.e., st =  [ot N : t ; o t + 1 : t + M  ].

3) Safety Prioritizer: In order to improve safety, we pro-
pose a safety prioritizer within our VFN. The safety priori-
tizer penalizes high-risk actions, thereby reducing imminent
crashes. If the AVs come into an unexpected situation and
based on the output of the VFN, decide to perform a high-risk
action, the safety prioritizer will mask the action. The safety
prioritizer is comprised of two algorithms, i.e., Algorithm 2
that checks for safe actions and Algorithm 3 that performs
action selection.

Algorithm 2 verifies if the selected action at is safe based
on a safety score for Msteps     of prediction. Algorithm 2
simulates I i      taking the action at     and uses the kinematic
predictions from HPN, i.e., K = HPN (K t  N :t ), for
all vehicles in the road c 2  C to compute the time-to-collision
(ttc) at time t, i.e., ttct between I i  and all c 2  ( I  [ H ) n f I i g
using x; y; v; , at each prediction step is calculated and the
minimum ttc is saved, and using the predicted ttc for all the
Msteps of prediction (ttct+1: t + M  ), the saf escore is computed.
The saf escore is a weighted average of the ttct + 1 : t + M  , with
exponential decay to give more importance to the short-
term predictions. Finally, if saf etyscore <  saf eth or any
of the predicted ttc is less than the critical threshold, i.e.,
any(ttct+1:t+M ) <  criticalth , the action is considered un-
safe. The saf eth is the safe ttc threshold for possible crash,
and criticalth is a critical ttc threshold for imminent crash.
If the current action is considered unsafe, Algorithm 3 will
select another action.

Algorithm 3 presents the selection of the action. It itera-
tively verifies the actions using Algorithm 2 and selects a safe
action that follows the learned policy. The restricted actions
will prevent the agent from engaging in risky behavior during
training, resulting in a more balanced learning and efficient
sampling.

4) Safe Value Function Network (VFN): The VFN esti-
mates the state-action value function. The combination of pre-
diction (HPN) and decision-making (VFN) allows prediction-
aware planning and improves the AVs ’  ability to learn to
navigate complex scenarios, and the safety prioritizer further
increases safety. The proposed approach utilizes deep rein-
forcement learning (DRL) to achieve a high-level policy for
safe tactical decision-making. As presented, the input consists

Algorithm 2 Action evaluation.
Simulate I i  taking the action at

Get Kinematic predictions from HPN, i.e., K t + 1 : t + M      =
HPN (K t  N :t ) for all vehicles in the road c 2  C =  ( I  [ H )

for t =  t +  1 to t +  M (Compute safety score for Msteps
predictions) do

Compute ttct between I i  and all c 2  C n f I i g  using
x; y; v; at time t
Compute min(ttct)
Get next prediction at t =  t +  1

end for
Compute saf escore using the predicted ttct + 1 : t + M

saf escore = i = t + 1  w i t t c i

if saf escore <  saf eth or any(ttct+1:t+M )  <  criticalth
then

Return unsafe
else

Return safe
end if

Algorithm 3 Action selection.

Initialize A s a f e  = A
while A s a f e  is not empty do

if during training then
Select at following the exploration policy on set A s a f e

else if during test then
Select at =  max 0        e Q(st; a0; w)

end if
if at is safe (Algorithm 2) then

Return at

else
Remove at from A s a f e

end if
end while
Compute the saf etyscore as in Algorithm 2
Return at with highest saf etyscore in A

of a stack of N  past observations and M future hypotheses,
i.e., st =  [ot N : t ; o t + 1 : t + M  ], and the 3D CNN operates as a
feature extractor. The VFN is trained to learn the optimal Q-
values that maximize our social reward function, optimizing
social utility. During training, agents are trained in a semi-
sequential manner, as in [17].

The VFN outputs the Q-values that are masked by a safety
prioritizer, constraining the R L  policy to a safe action space.
Therefore, in our framework, when the agent policy chooses
an unsafe action, the safety prioritizer masks the action and
selects a safer action, saving the unsafe action (at) and the
associated state in the RM with a negative reward (runsaf e ).
By reducing episode restarts due to potential collisions, the
safety prioritizer increases sample efficiency and safety.

The proposed prediction-aware planning and the social-
aware optimization algorithm is described in Algorithm 4. We
first run a batch of sample simulations to pre-fill our replay
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Fig. 4: Multi-step prediction chain and Safe Value Function Network (VFN). The prediction chain is a multi-step prediction chain that uses the
HPN in a chain to produce a set of M future hypotheses. The VFN is a 3D CNN that acts as a function approximator, it uses temporal
information and prediction to improve decision-making.

buffer before starting the learning phase. To account for the
unbalance in training data, the experience replay buffer is re-
balanced [63].

V. E X P E R I M E N TA L R E S U LT S

This section begins with a description of the simulation
environment and the HV model in mixed-autonomy traffic.
Before presenting our findings, practical aspects of training
and validation are explored. Finally, we present our results
showing the importance of prediction-aware planning for co-
operative driving.

A. Implementation Details

1) RL environment and Computational Details: We cus-
tomize the OpenAI Gym Highway environment in [65]. We de-
sign five scenarios for our experiments, i.e, a straight highway,
highway exiting, highway merging, intersection, and round-
about scenarios (fh ; fe ; fm ; f i ; f r  2  F ).  The AVs are trained
surrounded by HVs with various behaviors, i.e, conservative,
moderate, and aggressive, (bc; bm; ba 2  B). A  scenario with
mixed behavior is obtained by sampling from the behaviors in B
for each HV. The VFN is trained for Nepisodes =  15; 000
episodes and multiple iterations of the training procedure are
carried out to guarantee the convergence of the policies. Table I
lists our training and simulation parameters.

TA B L E  I: Simulation parameters.

Parameter Value Parameter Value
K  prediction             GP, RBF  kernel                  N                                15,000

Prediction Horizon                   4s                                 decay                    Linear
History window 2s R M  buffer size 8,000

Latent Dimension                   512                  Initial exploration 0               1.0
Batch size 64 Final exploration 0.05

Learning rate 0                        0.0005                          Optimizer                 ADAM
T argetupdate 300 Discount factor 0.95

2) Driver Modeling: We model the HV’s lateral behavior
using the MOBIL model [66] and the longitudinal behavior of
HVs is based on the Intelligent Driver Model (IDM) [67].
MOBIL is based on the safety and incentive criteria. For
safety, it verifies a     >   bsafe, where a     is the deceleration
of the following vehicle in the new lane, and  bsafe is a safe
threshold. Then MOBIL verifies the incentive to change lane
measured by aego      aego + p  (an      an ) + (ao      ao) >  ath ,
where p is the politeness term and a , a and a     are
the accelerations of the ego-HV, the new following vehicle,
and the old following vehicle, respectively. Finally, based on
the MOBIL model, if both criteria are verified, then the HV
performs a lane change.

The longitudinal behavior of HV k is modeled by using
the IDM model which computes the acceleration v_k as v_k =
amax 1   v k   d ( v k ; v k ) ; in which  is the exponent
of acceleration, dk is the gap, vk is the preferred speed, and vk
is the current speed. Following, the preferred minimum gap is
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Algorithm 4 Prediction-aware planning DDQN.
Define and Initialize Replay Memory buffer RM .
Define and Initialize action-value function Q(:; w     )  and
target network Q(:; w) with w  =  wi n i  and w =  w
Save in the RM the first’s E i n i  episodes.
for e =  E i n i  to Nepisode do

Obtain observation history ot N : t
Predict M hypothesis o (Algorithm 1)
Compute st =  [ot N :t; o0 ]
for t =  t i n i  to T  do

for I i  in I  do
For agents I j ,  j  =  i, freeze w
for Ni t e r a t i o n s  do

With probability  choose at randomly,
else choose at =  maxa 0 2 A  Q(st; a0; w+)
Verify action at (Algorithm 2)
if at is not safe then

Store transition (st ; at ; runsaf e ; ;) in RM
at = Select a safe action (Algorithm 3)

end if
Take at (asaf e), and observe rt ; ot+1
Store transition (st ; at ; rt ; st+1 ) in RM
Compute w w      r w L ( w + )

end for
Disseminate weights w  =  w +  for all I i  2  I

end for
Reset w w  every T argetupdate

end for
end for

computed as d(vk ; vk ) =  d0 + vk T 0 +  ( 2 p a
k  

:a
         

) , where d is
the minimum distance, T     is the safe time gap, amax is the
acceleration limit, and ades is the deceleration limit.

We use the centrality metrics as in [45], [64] to obtain the
parameters P  that simulate the driver behaviors for the MOBIL
and IDM models. In our scenarios, the computed parameters P
that represent aggressive, conservative, and moderate behavior
are shown in Table II.

TA B L E  II: Computed parameters P  for different simulated driver
behaviors.

Fig. 5: Kinematic prediction baseline comparison in terms of position
error (P E )  in meters.

is measured in terms of the prediction reconstruction error
(P R E )  of the V M predictions and in terms of position
error (P E )  for the Kinematic prediction K .  Based on those
evaluation metrics we investigate the following hypotheses:

 H1. The GP is a more powerful approach to predicting
time series when compared to the AE for Kinematic pre-
dictions, therefore, using the GP for kinematic prediction
improved the prediction performance when measured by
the position error P E .  Additionally, temporal informa-
tion is important for accurate prediction, therefore we
expect a higher performance of the V M prediction from
our predictive autoencoder when using the observation
history, measured by the prediction reconstruction error
(P RE ) .

 H2. The ability to forecast future states improve decision-
making in AVs, therefore we anticipate a performance
improvement of our prediction-aware VFN measured in
terms of safety and efficiency when using the HPN.

C. Analysis and Results
1) Learning how to predict, Hybrid predictive network

(HPN): Predicting the actions of HVs is a crucial component
of AVs ’  decision-making. We take advantage of this feature
and investigate how incorporating prediction into our frame-
work improves safety and efficiency. We look into this insight

Model Parameter
MOBIL      p

ath
bsafe

IDM T
d0

accmax
accdes

Aggressive
0

0 m=s2

12.0 m=s2

0.5s
1 m

7.0 m=s2

12.0 m=s2

Moderate
0.3

0.1 m=s2

6.0 m=s2

1s
2 m

3.0 m=s2

7.0 m=s2

Conservative
1

0.4 m=s2

2.0 m=s2

3s
6.0 m

1.0 m=s2

2.0 m=s2

B. Evaluation Metrics and Hypotheses
The system’s performance is evaluated based on safety, effec-
tiveness, and prediction error. We select two indicators that,
notwithstanding their correlation, offer distinct perspectives on
the effectiveness of our approach. We calculate the proportion
of episodes with at least one crash (C (%)) in order to measure
safety. The vehicles’ average traveled distance (DT (m)) is
utilized to measure efficiency. Finally, the prediction error

Fig. 6: Training and validation loss of the predictive network using
observation history (left), and without history (right).
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Fig. 7: Internal representations of the features at different layers for a merging scenario (Top), selected Internal representations that have
been zoomed in (Bottom).

Fig. 8: Prediction chain for merging when using observation history
(top), and without history (bottom).

while investigating H1. Particularly, we show that prediction
in the image domain allows learning powerful representations,
and we present how the HPN learns to predict the V M image
and the advantages of using the GP approach to improve
Kinematic prediction.

Kinematic prediction. We first investigate our H1 and
show how using the GP for kinematic prediction improves
the prediction performance. We compare different kinematic
prediction baselines and measure their performance using the
position error P E  in meters. We compare five prediction
approaches, i.e, the GP prediction approach, an LSTM net-
work, Constant Speed (CS), Constant Acceleration (CA) based
prediction, and the predictive A E  kinematic prediction. GP,
LSTM, and A E  can be used to predict any time series and
leveraging that, we consider two approaches for each method:
direct and indirect prediction. Therefore, we compare eight
baselines the GP direct (GP D), the GP indirect (GP I), LSTM
Direct (LSTM D), LSTM Indirect (LSTM I), CS, CA, A E
direct (AE D) and A E  indirect (AE I).

In a direct prediction approach, (x; y) are regressed by
two distinct models learned from the history (xt  N :t ; yt N :t ),
producing direct predictions of futures (x; y). Differently, in
an indirect prediction approach, the vehicle’s heading (t N :t )
and speed (vt N :t ) histories are considered and the models
for heading and speed (; v) are learned using the predictive

approach. Using the learned models, the predictions for future
heading and speed (; v) are computed and utilized to calcu-late
future position (x t + 1 : t + M  ; y t + 1 : t + M  ). In our experiments, a
compound kernel of linear and RBF  is used following
previous work [14].

As illustrated in Figure 5 the indirect GP (GP I, in orange)
approach outperforms the other baselines in terms of P E ,
showing how this non-parametric Bayesian scheme allows the
incorporation of complex model structures and is a suitable
option for our kinematic prediction method, verifying our H1.

Observation history. Together with the Kinematic pre-
diction, the HPN outputs the velocity map image prediction
(V M). A  prediction reconstruction error (P R E )  loss is uti-
lized to calculate the error between the predicted observa-
tion opred and the corresponding o, i.e., L2 (ot + 1 ; o0          )  =

(oi      o0)2. We evaluate the HPN’s performance using only
the current observation as input and history of N  observations,
demonstrating the importance of temporal information for
accurate prediction measured by the P R E .  Figure 6 depicts
the training loss results, where the left image is for the HPN
that uses the history of N  observation and the right image
uses just the current observation. As shown in the figure, when
using the temporal information the P R E  loss is approximately
20% smaller when using history (left) than without history
(right). Similarly, Figure 8 shows the qualitative output of
the HPN prediction chain using the current observation or a
history of observations as input. The results with history (top)
show clearer and more accurate visual predictions and confirm
why the P R E  is lower when using the history.

Figure 7 presents some qualitative results of the internal
representations at different layers of the HPN for a merging
scenario. In Figure 7 (bottom), a zoomed-in version of some
internal representations are illustrated for visualization. As
observed, the HPN learns to extract and highlight important
information from the input observation, such as (a) lanes, (b)
road agents, (c) road segments, and (d) possible hypotheses
on how the environment evolves. Despite the fact that the
HPN has not been trained for a segmentation task, it learns
to segment the road, agents, and lanes, which could be useful
information for the prediction and driving tasks.
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Fig. 9: Performance enhancement in a highway merging scenario
resulted from using prediction. Safety is measured in terms of crash
percentage (Top, C (%)) and efficiency by average traveled distance
(Bottom, DT (m)).

2) Safer VFN leveraging prediction: Using the HPN and
prediction chain, the VFN is trained to optimize for a social
utility. We evaluate the performance of the VFN when using
just the history as input, i.e, st =  [ot N :t ] and when addi-
tionally utilizing the prediction output of the prediction chain,
i.e. st =  [ot N : t ; o t + 1 : t + M  ]. Figure 9 shows performance im-
provement by using prediction quantified by crash percentage
(Top, C (%)) and average distance traveled (Bottom, DT (m)).
The results present the AV ’s  performance in the highway
merging scenario f m ,  in the presence of HVs with conser-
vative, aggressive or mixed behavior. We observe that when
train and test are performed in a conservative environment,
or in other words, when HV yields and takes safer actions,
the gains from prediction capabilities are not as noticeable,
whereas, in an aggressive and mixed environment in which the
behavior changes, the performance increases are significant.
We believe that anticipating the future is especially useful in
those scenarios, which is why performance has improved.

We evaluate the effectiveness of our architecture in diverse
scenarios, as well as the performance enhancement of leverag-
ing prediction. We argue that by using prediction, we provide
the VFN a prior on how the world will evolve which is helpful
for decision-making. Table II I  presents the results in different
traffic scenarios, i.e, Exiting (fe), Merging (fm ), Roundabout
(fr ), intersection (fi ), and Highway (fh ) under mixed HV
behaviors (b 2  B). We compare our architecture when using
prediction (VFN+P), and without prediction (VFN) with other
related architectures [17], [18], [68]. Our architectures as
shown in Table II I  outperform the alternative methods, and
the improvements are particularly pronounced in the more
complex scenarios.

The combination of prediction (HPN) and decision-making
(VFN) allows for prediction-aware planning and improves
the AVs ’  ability to learn to navigate complex scenarios, and
the safety prioritizer is further improved by leveraging the

Fig. 10: Qualitative results of the prediction chain output for multiple
scenarios

information provided by the prediction chain, increasing safety
and efficiency. The results presented in Figure 9 and Table I I I
verify our H2. Additionally, Figure 10 provides the output
of the prediction chain for different traffic scenarios, showing
qualitative results that further illustrate the capabilities of the
prediction network to forecast the future.

TA B L E  III: Performance Comparison (Measured by C (%)) of
related architectures showing the performance improvement
of our predictive VFN, particularly in challenging scenarios
such as intersection and roundabout. The results are shown in
different scenarios, Exiting (fe), Merging (fm ), Roundabout
(fr ), intersection (fi ), and Highway (fh ).

Approach fe f m f r f i f h

Conv2D+DQN [68]       24.62       29.12       49.03       54.78       17.21
Conv3D+A2C [17]         9.23        14.99       21.17       36.62        7.43
Conv3D+DQN [18]        3.91         2.59        14.62       24.30        1.31

Safe DQN [64]            2.51         1.95         9.04        18.67        0.44
VFN                      2.47         1.96         8.94        17.90        0.39

VFN + P                 1.91         1.04         7.01        11.10        0.31

V I . CO N C L U S I O N

We propose the integration of two crucial components for AVs,
social navigation and prediction. The safety and reliability of
AVs depend on their predictive capabilities, social awareness,
and ability to engage in complex social interactions. For
that reason, we propose prediction-aware planning and social-
aware optimization in a cooperative R L  framework, to allow
safe and socially-desirable outcomes. We provide AVs the
ability to anticipate the future, allowing them to take informed
decisions and proactive actions in AV-HV social interaction
scenarios. The safety prioritizer leverages interpretable kine-
matic predictions from the HPN to restrict the R L  policy to
assure safe decision-making, reducing future high-risk actions,
increasing awareness of the immediate risks, and consequently
decreasing crashes. We compare our prediction-aware AV  to
other solutions and demonstrate how our approach consistently
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improves safety and efficiency on the road in multiple scenar-
ios.

Further research needs to be done using real human driver
data, and more complex traffic scenarios. We plan to extend
this work in this direction and show robust generalization
capabilities of our agents. We intend to explore learning
meaningful and interpretable representations and predictions
to help build intuition on the AV ’s  decision-making process.
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