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Abstract—The widespread use of distributed energy sources
(DERs) raises significant challenges for power system design,
planning, and operation, leading to wide adaptation of tools
on hosting capacity analysis (HCA). Traditional HCA methods
conduct extensive power flow analysis. Due to the computation
burden, these time-consuming methods fail to provide online
hosting capacity (HC) in large distribution systems. To solve
the problem, we first propose a deep learning-based problem
formulation for HCA, which conducts offline training and deter-
mines HC in real time. The used learning model, long short-term
memory (LSTM), implements historical time-series data to cap-
ture periodical patterns in distribution systems. However, directly
applying LSTMs suffers from low accuracy due to the lack of
consideration on spatial information, where location information
like feeder topology is critical in nodal HCA. Therefore, we mod-
ify the forget gate function to dual forget gates, to capture the
spatial correlation within the grid. Such a design turns the LSTM
into the Spatial-Temporal LSTM (ST-LSTM). Moreover, as volt-
age violations are the most vital constraints in HCA, we design a
voltage sensitivity gate to increase accuracy further. The results
of LSTMs and ST-LSTMs on feeders, such as IEEE 34-, 123-bus
feeders, and utility feeders, validate our designs.

Index Terms—Hosting capacity, deep learning, data-driven
method, long short-term memory (LSTM), spatial-temporal
correlation, distributed energy resource.

I. INTRODUCTION

NOWADAYS, a growing number of renewable energy-
based distributed energy sources (DERs) have been used

in the low-voltage distribution grid, e.g., photovoltaics (PVs).
The widespread use of DERs brings many advantages, includ-
ing voltage profile control, line loss reduction, and cost
decrease. Meanwhile, challenges appear when the distribu-
tion grid is turned into an active grid. This is because DERs
inevitably change load shapes, voltages, fault current profiles,
etc., when the penetration level is substantial. For example,
grid operators face over-voltages at solar-rich feeders instead
of low voltage issues like the past. Specifically, solar energy
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often peaks at valley load for communities with lots of roof-top
PVs. The net load then turns negative and introduces reverse
power flow and over-voltages at the lateral end, causing the
malfunction of voltage regulators and protection coordination.
Without proper awareness of potential capacity to accommo-
date PVs, grid planners and operators find it challenging to
handle capacity planning and take appropriate control actions,
which leads to hosting capacity analysis (HCA) to assess the
distribution grid for further operation [1].

Specifically, HCA is to determine the value of the hosting
capacity (HC). HC is denoted as the maximum active power
that can be injected by DERs at a bus in an existing distribution
grid without causing technical problems or requiring changes
to power system facilities. [2], [3], [4], [5] provide systematic
and comprehensive introductions to the research, development,
evaluation, and enhancement of HC. Traditional HCA meth-
ods typically conduct power flow analysis for a baseline feeder
model and modified scenarios with different load profiles,
DER penetration, and other uncertainties caused by the envi-
ronment, power equipment, and human activities [6]. Then,
these methods implement different techniques to check the
violation conditions of operation constraints and thus quantify
the HC [7], [8].

Related works [2], [3], [4], [5] classified current HCA meth-
ods into the deterministic (worst-case), stochastic, streamlined,
and iterative Integration Capacity Analysis (ICA) methods.
The deterministic method [9], [10], [11] and the stochastic
method [12], [13], [14], [15], [16], [17] focus on specific
scenario(s) without considering time correlation. The deter-
ministic method obtains an optimal solution on a single
scenario, usually the worst-case scenario(s), while a stochas-
tic method uses the probabilistic technique, e.g., Monte Carlo
simulation, to model the uncertainties in the power system.
However, they cannot capture the relation between the system
variables over time, which is important in HCA [18], [19],
[20], [21]. Differently, using historical time-series data, the
streamlined method [22] and the iterative ICA [23], [24]
method provide insight into how hosting capacity changes
over time and the ability to derive a corresponding hosting
capacity pattern subjected to time. To determine the HC, the
streamlined method applies a set of equations and algorithms
to evaluate power system criteria at each node, whereas the
ICA method iteratively increases the DERs at each node until
system violations occur. Though they can consider time-related
scenarios and increase the calculation accuracy of the time-
varying power system model, each separate step is a complex
calculation, e.g., iterative optimal functions. Therefore, the
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calculation burden is still the limit of traditional HCA for
real-time tasks.

Since we aim to calculate HC in real time with high accu-
racy, the previous HCA methods cannot meet the requirements.
Instead, we propose a machine learning-based problem formu-
lation [25]. This formulation uses historical time-series data
to conduct offline training and obtain the HC value based on
real-time system conditions. Specifically, we model HCA as
a supervised learning problem that uses data of power system
features and operating conditions as input vector and HC data
as target label. To achieve such a learning target, the map-
ping from historical data on different input features to the
HC is highly nonlinear, and deep learning is a promising
method to deal with the non-linearity. In order to capture the
periodic pattern of the power system, e.g., hourly, daily, and
yearly patterns, we use the recurrent neural network (RNN)
as the basic learning framework [26], [27], [28]. In such a
model, RNNs need some past context to predict the current
output, but in practice, it can hardly capture the relationship
in a long sequence. One of its variants, the long short-term
memory (LSTM), has a much better performance of long-term
learning [29]. While LSTM can improve our deep learning
framework, the direct application on HCA still has some
challenges.

Though the basic LSTM framework can capture the time-
varying impacts in HCA, the impact of spatial information
cannot be embedded directly. Such information includes the
locations of nodes, current DERs, and potential DERs in the
feeder. Ignoring these spatial relationships and simply relying
on deep learning will limit the accuracy in our analysis [30],
[31], [32]. Because of the flexibility of the deep neural network
(DNN) and our motivation to consider both spatial and tem-
poral correlation for HCA, we develop the basic LSTM to
the Spatial-Temporal LSTM (ST-LSTM) [33], [34], [35], [36],
[37]. We have two major contributions to achieve this goal.
First, we modify the structure of LSTM cells. The most cru-
cial LSTM design for capturing temporal correlation is the gate
function. Reference [38] proposed the forget gate for the first
time, and [29] emphasized that the forget gate is the most criti-
cal gate among all the gates. Therefore, we modified the forget
gate to dual forget gates, which allows the model to transfer
temporal and spatial memory in parallel. Second, to make the
model perform well in our HC determination work, we design
a sensitivity gate to use the voltage sensitivity data. The volt-
age sensitivity data is a particular data for HCA because it
is related to the voltage violations constraint, which is one of
the most critical limits in HCA [39]. Therefore, we design the
voltage sensitivity gate to improve the accuracy further. This
gate can work with the input gate, which is also an essential
gate in the LSTM cell [40], to filter the new inputs.

We validate our new model using the IEEE 34-bus feeder,
IEEE 123-bus feeder, and an Arizona generic utility feeder.
The ST-LSTM has a much better performance for these feed-
ers than the temporal or spatial LSTM models. Moreover, the
designed sensitivity gate using the voltage sensitivity data in
our LSTM model can improve the accuracy.

The remainder of this paper is organized as follows.
Section II proposes the problem formulation. Section III

illustrates the design of the dual forget gates and the sensi-
tivity gate. Section IV provides the numerical validation using
different models. Conclusion and discussions are in Section V.

II. PROBLEM FORMULATING

As our target is to provide real-time hosting capacity for
each bus, we are not focusing on one single scenario. Different
from the static snapshot hosting capacity, we first formulate
a data-driven machine learning problem model for dynamic
hosting capacity (DHC) analysis, which will help the distribu-
tion system operators enhance hosting capacity determination,
facilitate optimal control, and dispatch of DERs in real time.
Specifically, this can be achieved by integrating this func-
tion as a module in the data platform. The information of
the HC values allows the other modules in the data platform,
specifically the module on coordinated control of DERs, to
determine which regions/buses are operating near their HC
limit, how to control the DERs at these regions and around
it, to mitigate HC violations such as overvoltage. This can be
achieved by a cloud-based platform called end-to-end solar
energy optimization platform (e-SEOP) that receives these
data and performs multiple analytics, including dynamic HCA
described in this paper and real-time control of DERs through
the network of edge intelligent devices (EIDs) [41].

A. Per-Bus Hosting Capacity Analysis

The Per-bus Hosting Capacity Analysis determines the host-
ing capacity values for each bus, which are per-bus HC values.
We use a two-bus example with current injection at both buses
of (p1, p2) = (0, 2) to introduce the per-bus HC values. To
determine the HC value for bus 1, we gradually increase the
injection by bus1 and keep all the other settings the same,
including the injection by bus 2. If (p1, p2) = (1, 2) is the
maximum value without causing problem, the HC number of
bus 1 is 1 − 0 = 1. To determine the HC value for bus 2,
we also keep all the other settings the same and only change
the injection by bus 2. If (p1, p2) = (0, 3.5) is the maximum
value without causing problem, the HC number of bus 2 is
3.5 − 2 = 1.5. Therefore, the HC numbers for both buses are
(hc1, hc2) = (1, 1.5). In this case, we have the per-bus host-
ing capacity under this scenario setting. Then, we can use the
same metric for other scenarios and finally obtain time-series
HC results for these time-series scenarios.

The per-bus hosting capacity values for each bus within
a feeder are drastically different based on the impedances,
short circuit ratios, and loads at the transformers. To deter-
mine per-bus HC values, traditional methods need to solve
optimal functions or do iterative HCA to check the system vio-
lations for each bus respectively. Unlike these time-consuming
methods, our learning-based HCA is to find a mapping rule
between the power flow data and the hosting capacity data.
With the offline trained model, the online prediction process
can compute the per-bus HC values in real time.

B. Problem Formulation

With power flow data and per-bus hosting capacity data, we
formulate our hosting capacity analysis (HCA) as a regression
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problem. Our deep learning-base model has offline training
and online prediction. In the training, the model uses the his-
torical time-series data from system setups. Specifically, the
power flow data from power flow analysis is the training
input, including the voltage magnitude, voltage angle, load
profiles, and PV profiles, etc. Moreover, the per-bus HC data
is the desired output, which is also generated from simula-
tion. Since the data from the simulation is required by our
training, the detailed feeder settings for power flow analy-
sis are also essential. Our learning model can capture the
HC-related information among these data. Subsequently, we
can apply the well-trained learning model to calculate the HC
value according to the new inputs of the system in real time.

Our deep learning-based HCA will not calculate the per-
bus HC values independently. Instead, we use two data
sequences for better HC determination, considering power
systems’ temporal and spatial correlations. Specifically, the
temporal sequence, which is the historical time-series data,
can allow the model to learn the periodic pattern of the power
system and obtain the HC changes over time [21]. The spatial
sequences the topology of the distribution network. The per-
bus HC values of the two adjacent buses could be different
because of different load profiles, PV profiles, etc. Also, the
constraints when determining the hosting capacity are highly
related to the spatial relationships of buses. For example,
the new PV may introduce the reverse current or the over-
voltage violation at an upstream bus. Therefore, the spatial
sequences provide a physical model embedding to improve the
accuracy [42].

To capture the spatial configuration and temporal dynamics,
and determine the HC with high accuracy, both spatial and
temporal information needs to follow well-formed orders. Our
proposed ST-LSTM model has two dimensions, which are the
temporal and spatial sequences. The temporal sequence can be
derived from the time-series models. However, for the spatial
information, it is difficult to put all the buses in the complex
distribution grid into a single sequence. A random traversal
in the network will result in wrong spatial correlation. Thus,
to convert the network into a spatial sequence, we propose
traversing the network with paths. This method divides the
distribution grid into different paths, from the slack bus or
three-phase main trunk to each lateral end. These paths to the
lateral ends will cover all the feeder buses, and we call it the
longest paths method. Due to the fewer buses in one path, the
dimensionality of the input data will also decrease, which will
reduce the computation burden. In the following, we formally
define the problem of learning-based hosting capacity analysis.

C. Mathematical Problem Definition

Mathematically, in the offline training, we define input ten-
sor X as the values of all the time-series power flow data from
time 0 to time T . Moreover, n is the number of input features
of each bus, and m is the number of buses. X is a R

T×n×m

tensor and xs,i(t) is the value of the i-th power system feature
component of bus s at time-series t. X(t) ∈ R

n×m denotes the
feature values of all the buses at time t. Similarly, the output
H is a R

T×1×m tensor, which represents the calculated HC

values. H(t) will denote a slice of H at time t and hs(t) is the
HC value of bus s.

With the historical data, we want to learn a regression model
f : X → H to predict the future H(τ ) based on X(τ ). This
mapping is achieved by updating the parameters of our neu-
ral network model. In our training, we decomposed the input
tensor X ∈ R

T×n×m into slices. Each slice X(t) ∈ R
n×m

represents the input data at time series t. In our recurrent
Spatial-Temporal LSTM model, at each time series step, the
input is one slice of the data tensor.

The problem with using the deep learning-based model to
calculate the HC value is defined as follows.

The offline training process:
• Given: a sequence of time-series historical power flow

data X(t), t = 1, . . . , T , where xs,i(t) is the value of the
i-th power system feature component of bus s at time t.

• Target: learn the mapping f : X → H that outputs the
time-series HC value H(t), t = 1, . . . , T , where hs(t) is
the HC value of bus s at time t.

The online testing and forecasting process:
• Given: new historical or online time-series power flow

data X(τ ), where xs,i(τ ) is the value of the i-th power
system feature component of bus s at time τ .

• Find: use the trained model to find the time-series HC
value H(τ ), where hs(τ ) is the HC value of bus s at
time τ .

• Online update: use the new time-series historical or online
power flow data X(τ ) to update the model f : X → H
and have a better prediction performance.

III. SPATIAL-TEMPORAL LONG SHORT-TERM MEMORY

With the formulated problem, we will illustrate the proposed
deep learning method, the Spatial-Temporal LSTM, for data-
driven HCA. The basic LSTM model is first introduced to
consider temporal correlation. While the basic LSTM model
cannot consider spatial and temporal correlations simultane-
ously in the power system, we modified the forget gate in
the LSTM cell to dual forget gates to process the temporal
and spatial information in parallel. Moreover, another sensi-
tivity gate is designed to boost the HCA accuracy with critical
factors: the voltage violations constrain in the HCA.

A. Illustration of Basic LSTM

To consider the correlation over time in learning, we use
the Recurrent Neural Network (RNN), which is designed for
sequential information. An RNN is a series of identical feed-
forward neural networks, one unit for each time or step, which
are known as ‘RNN cells’ [43], [44]. The input of an RNN
cell has two parts. One is the output from the last cell, which
is hidden state ht−1, and the other is the input vector for this
cell, which is xt. In this way, an RNN can use its internal state
(memory) to process sequences of inputs. By transferring the
information through these repeating cells, the network can be
trained recurrently. Each RNN cell will have an output ht as

ht = φ
(
W

([
ht−1, xt

]) + b
)
, (1)

where φ(·) is the activation function to extract non-linearity.
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Fig. 1. The comparison between cell structures of the basic LSTM and the
proposed ST-LSTM. In our ST-LSTM cell design, the red rectangle boxes are
the dual forget gates and the sensitivity gate.

Though RNNs are designed to process sequential data, it
has drawbacks for HCA. One is that RNNs cannot transfer
information correctly between two cells with relatively long
distances. To solve this problem, LSTMs improve basic RNNs
via gate functions, which are capable of learning short-term
and long-term dependencies [45]. Such gate design also avoids
gradient exploding and vanishing, which are another signifi-
cant drawback of RNNs [45]. Therefore, LSTMs have become
an effective model for sequential prediction problems.

Different from the basic recurrent unit, each LSTM unit,
which is shown in Fig. 1(a), use the cell state ct to memorize
the long-term information and the hidden state ht to capture the
short-term information, where the RNNs only use the hidden
state ht. To control the information stream in the model, the
designed three gates recurrently update the ct and the ht, which
is the most important design of the LSTM. The functions of
a single cell are

it = σ
(
Wi

([
ht−1, xt

]) + bi
)
, (2)

ft = σ
(
Wf

([
ht−1, xt

]) + bf
)
, (3)

gt = tanh
(
Wc

([
ht−1, xt

]) + bc
)
, (4)

ot = σ
(
Wo

([
ht−1, xt

]) + bo
)
, (5)

where it, ft and ot represent the input, forget, and output gates
of the t-th cell, respectively. In order to handle long-term

dependencies in data, the input gate works together with the
candidate gt to decide what information should be input and
the forget gate decides what information should be forgotten.
Additionally, the output gate decides what information should
be output. These three gates use the sigmoid function, which is
represented as σ(·), as the activation function. This nonlinear
function σ(·) can map the input values between 0 to 1, where
1 means to keep the information while 0 means to abandon
the information. Each of the gates and the candidate is a small
neural network to learn functional mapping. ht−1 is the hidden
output vector of the last cell and xt represents the input vector.
Specifically, xt is the power flow data in our problem formu-
lation. Besides, Wi, Wf , Wo and Wc are the weight matrices
and bi, bf , bo and bc are corresponding biases to parameterize
the functional gates and candidate.

Since we have the output of all the gates, the next step is
to use them to update the cell state ct and the hidden state ht.
The ct updating function is

ct = ft � ct−1 + it � gt. (6)

The former term is the previous cell state ct−1 controlled by
the forget gate ft, which is to decide how much long-term
memory should be forgotten. The latter term is the mapped
new input candidate value controlled by the input gate, which
decides how much new input should be added. The two terms
of this function will work together to update the cell state ct

using the element-wise (Hadamard) product �. Subsequently,
the ht is denoted as

ht = ot � tanh(ct), (7)

where the ht is the hidden state that needs to be transferred
to the next cell. In this way, the LSTM model can follow a
sequence to conduct training. The output ht of each cell is the
result we want to obtain, which is the hosting capacity value
in our problem.

B. Temporal and Spatial Sequence in HCA

A basic LSTM is assertive when processing temporal
sequential data, e.g., the historical time-series power flow data.
Thus, this model can learn the HC changes over time with
respect to different system conditions like loads, inverter set-
points, etc. However, a power system is a complex network
where buses will have mutual effects with each other. We
expect the model to be coupled or coordinated because we are
looking for violations not only at the bus under consideration
but anywhere in the feeder due to the power injection at this
bus. An overvoltage violation may occur at an upstream bus
even though the bus where the power is injected does not see
overvoltage. Therefore, the connectivity relationship is crucial
in HCA, and ignoring the spatial correlation will cause low
accuracy.

Since an LSTM is trained as a simple chain, and one cell
can only receive information from the last cell, this recur-
rent network calculates both the ct and the ht according to
one sequential data series. Thus, the LSTM network is unable
to process two data sequences of different dimensions simul-
taneously. In order to consider both temporal and spatial
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Fig. 2. The comparison between the structures of the basic LSTM and
the ST-LSTM. The top sub-figure is the structure of the basic LSTM model,
and the bottom sub-figure is the structure of the ST-LSTM model. Compared
with the basic LSTM model, the ST-LSTM model can capture the spatial
correlation among buses.

correlation for HC, we embed the topology information of the
power system by modifying the LSTM to the Spatial-Temporal
LSTM. The spatial sequences we used are the paths in the
network, and each of the paths is from the feeder head to the
lateral end.

In Fig. 2 and Fig. 3, we use the comparisons of the structures
and information flow between the basic LSTM and ST-LSTM
to show how cells transfer ct and the ht in the ST-LSTM model.
The cell design to embed temporal and spatial correlation is
detailed in the next subsection.

C. Design of the Dual Forget Gates

Specifically, to process temporal and spatial sequences
simultaneously, we reconstruct the structure of the cells as
shown in Fig. 2. Though the forget gate is critical in the basic
LSTM, the single gate cannot process information from two
dimensions separately. Therefore, we modified this gate to dual
forget gates. The dual forget gates are designed to decide what
information the cell should memorize from these two dimen-
sions. Consequently, one new cell can receive the cell states
and hidden states from the last temporal cell and the last spa-
tial cell separately. Mathematically, we design the dual forget
gates and modify the other functional gates from (2), (3), (4),

and (5) accordingly as follows,

is,t = σ
(
Wi

([
hs,t−1, hs−1,t, xt

]) + bi
)
, (8)

f T
s,t = σ

(
Wft

([
hs,t−1, hs−1,t, xt

]) + bft
)
, (9)

f S
s,t = σ

(
Wfs

([
hs,t−1, hs−1,t, xt

]) + bfs
)
, (10)

gs,t = tanh
(
Wc

([
hs,t−1, hs−1,t, xt

]) + bc
)
, (11)

os,t = σ
(
Wo

[
hs,t−1, hs−1,t, xt

] + bo
)
, (12)

where f T
s,t and f S

s,t are the dual forget gates. f T
s,t represents the

temporal forget gate based on temporal information, while f S
s,t

is the spatial forget gate based on spatial information. Besides,
hs,t−1 is the hidden state from the last time step t − 1 while
the hs−1,t is the hidden state from the last space step s − 1.
The designed dual forget gates are highlighted in Fig. 1(b).

To decide which temporal information needs to be memo-
rised, we multiply the cell state cs,t−1 element-wise by our
temporal-based forget gate f T

s,t. Similarly, the element-wise
multiplication of the cell state cs−1,t and spatial-based for-
get gate f S

s,t is to determine which spatial information to
keep/leave. Thus, the new cell state is

cs,t = f T
s,t � cs,t−1 + f S

s,t � cs−1,t + is,t � gs,t. (13)

The design of the dual forget gates causes the cell state ct

and the hidden state ht of this cell to be impacted by both
the temporal forget gate and the spatial forget gate. In this
case, the ST-LSTM model can capture the temporal and spatial
correlation in parallel.

D. Design of the Sensitivity Gate

Previous input features come from power flow anal-
ysis and lack specific HC-related information. However,
this information cannot be directly added because it cov-
ers information over different locations. To improve the
performance of the ST-LSTM, we design a new gate, namely
the sensitivity gate, to decide which information should be
input. The sensitivity gate, collaborating with the input gate,
use the voltage sensitivity information to control the input
when adding new information into the cell state.

During hosting capacity analysis, we notice that the limit
of voltage violations constraint plays a crucial role in HCA,
which is similarly concluded by [5]. It is to check the over-
voltage on the other buses after adding PV generators at one
selected bus. Specifically, [39] illustrates that voltage increase
at load bus bars is a severely limiting factor when installing
DERs. Based on this, we use this voltage sensitivity data as
the input of the sensitivity gate. The voltage sensitivity data
is the voltage changes of the other buses when adding a unit
number of generation at one bus.

The voltage sensitivity is considered over buses, where the
locations of nodes lead to different impacts on the other buses.
To embed the impact based on locations, we use the average
sensitivity data. We define the average voltage sensitivity of
bus s as the number of the average voltage change of the
other buses on the path it belongs to when adding a gener-
ator at bus s. Our simulation found that the maximum bus
voltage change of one path always happens at the lateral end.
Additionally, the voltage change of the neighbor nodes has a
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Fig. 3. The comparison between the information flow of the basic LSTM and the ST-LSTM.

higher error than the average bus voltage change. Thus, we use
the average bus voltage change to reflect the impact brought
by each individual bus on the entire path.

Moreover, we can observe that, when adding a generator at
bus s, the voltage change of the buses from the same path will
be higher than the buses from the other paths, which shows the
independence of paths. Thus, this weaker interactive impact
between two paths supports our design of the longest paths
method.

Mathematically, the sensitivity gate function is

Ss,t = σ
(
Wd�Vs,t + bd

)
, (14)

where �Vs,t is the vector of voltage sensitivity data and it
will be mapped using the weight matrix. In this gate, we also
use the sigmoid function as our activation function, which can
extract non-linear impact of voltage sensitivity on HC. The
designed sensitivity gate is highlighted in Fig. 1(b).

Consequently, the cell state function is updated from (13) to

cs,t = f T
s,t � cs,t−1 + f S

s,t � cs−1,t + is,t � Ss,t � gs,t. (15)

Since we do not modify the output gate, the function of hs,t

will be remained as

hs,t = os,t � tanh
(
cs,t

)
. (16)

In summary, to capture the temporal and spatial correla-
tion, the designed dual forget gates can allow the ST-LSTM
model to process information in these two dimensions in par-
allel. To improve the model’s accuracy, we embed the physical
information by designing the sensitivity gate, which can con-
sider the voltage violations constraint in HCA. Furthermore,
to achieve the goal of online prediction, we keep using new
time-series data to update the model.

Fig. 4. The detailed illustration of the ST-LSTM structure using one path
(the red line in this figure) of the IEEE 34-bus feeder at t2 as an example. This
path is from the substation to the lateral end. Each box with the character ‘C’
represents the ST-LSTM cell for bus s at time tn. Each box with the character
‘H’ represents the calculated HC value for bus s at time tn.

IV. NUMERICAL RESULTS

The proposed Spatial-Temporal LSTM model for hosting
capacity analysis is validated extensively on various test cases.
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Fig. 5. The Arizona generic utility feeder.

This section illustrates the results on test distribution grids,
including the IEEE 123-bus feeder and a utility high pen-
etration feeder. This utility feeder, shown in Fig. 5, is an
actual 12.47 kV, 9 km-long Arizona utility feeder with 3.8
MW of residential roof-top PV installed, leading to a penetra-
tion level of more than 200% (3.8 MW/1.6 MW) as compared
to the feeder total gross load during peak PV production
hours [46]. To simplify the calculation, we assume that all
equipped PVs at residential customers are integrated into the
secondary side of each distribution transformer. The simpli-
fied model of this feeder contains 2100 bus nodes and 371
distribution transformers [47].

We will validate the performance of the designed dual forget
gates and the sensitivity gates via the comparison with base-
line models, which are the temporal sequence LSTM and the
spatial sequence LSTM. These comparison results will support
our design.

A. Dataset Preparation

To prepare training and testing data for validation, we use
CYME to generate time-series data by conducting power flow
analysis and hosting capacity analysis. CYME is a power engi-
neering simulation software by EATON which can be used to
analyze power systems [48]. In CYME, the Load Flow module
can provide power flow analysis, and the Integration Capacity
Analysis module can calculate the HC. Specifically, we use
the Integration Capacity Analysis module in CYME software
to calculate the hosting capacity as part of the training data
set [49], [50]. This module can set different constraints, includ-
ing voltage violation constraints, thermal loading constraints,
etc. Then, the software will progressively add PV and run
power flow simulations until violations of one or more oper-
ation standards appear. Our learning-based model is to find a
mapping rule from the power flow data to the HC values for
each bus. Since these different constraints already limit the
simulated HC datasets we used in our model, our learning-
based model can naturally consider the constraints. We have
time-series models of the IEEE 123-bus feeder and the Arizona
utility high penetration feeder in CYME.

We use the result of Load Flow analysis as our input vec-
tor. Specifically, we use the voltage magnitude, voltage angles,
load profiles, and PV profiles, etc. The ht of each cell is the HC
value. We use the min-max normalization method to prepro-
cess the input vector. For each feature in the input vector, we
convert the minimum and maximum values to 0 and 1, respec-
tively. All other values are converted to a decimal number

between 0 and 1. For the HC data, we directly use a selected
constant to scale the value. This linearity scale method allows
us to retrieve the output to the expected HC value easily.

To use the voltage sensitivity data on one selected path,
first, we add a generator at one bus. Then, we calculate the
average voltage change at the other buses on this path. This
average voltage change vector is the input of the sensitivity
gate in the ST-LSTM cell. In this way, the sensitivity gate can
capture the overall impact of each bus on this path.

B. Experiment Setups

1) Baseline Methods: As shown in Fig. 2, the basic LSTM
model can only flow one type of sequential information, either
temporal or spatial sequence. Thus, we use the basic LSTM
as the baseline model to test the performance using either
temporal or spatial sequences.

For temporal sequence LSTM, we have time-series models.
In each training step, we input the power flow data from power
flow analysis of all the time-series at one bus and can have
the output as the HC data vector for all the time series at this
bus. For spatial sequence LSTM, we use different paths in the
feeder, all from the slack bus to the lateral ends. Then, we
collect the data of one path for each time and put them into
the ST-LSTM model. In this way, we can obtain the HC data
vector of all the buses at this time. For our ST-LSTM model,
we make a similar setting to the spatial sequence LSTM. The
difference is that we use the outputs from the last time as part
of the input each time. In the IEEE 123-bus feeder, we have
12 time-series models, 8 of which are the training set and 4 of
which are the testing set. The utility feeder has 24 time-series
models where 16 are training sets and 8 are testing sets.

2) Proposed ST-LSTM (Longest Paths Method for Spatial
Correlation): For the IEEE example feeders, we will show
the result of the IEEE 123-bus feeder. The longest path in the
IEEE 123-bus feeder is the red path shown in Fig. 6. This path
contains 24 buses and two critical regulators. Node 67 on this
path is one of HCA’s most critical nodes. Besides the longest
path, different paths will compose the whole network. Because
the IEEE 123-bus feeder does not have long lateral branches,
we can add PV generators on the three-phase main trunk, we
have paths from the slack bus to each lateral end. Since we
can obtain the HC value of all the buses on the trained path,
theoretically, we can find a finite number of paths to cover the
whole feeder. In this feeder, we have 39 paths and calculate the
HC value of all buses in the feeder. The computed results may
be slightly different on the buses from the overlapped paths.
To reduce this overfitting risk, we use a boosted method which
takes the average of the computed value from different paths.
Compared to the IEEE feeder, the utility feeder has fewer
overlapped paths, and the paths are from the three-phase main
trunk to each lateral end. We divide the whole network into 5
different zones and use a depth-first search (DFS) based script
to find about 6 paths in each zone. In this way, we can obtain
the HC value of all the buses.

3) Proposed ST-LSTM (Online Update for Better
Performance): The proposed ST-LSTM is a regression
model to find a mapping rule from historical power flow data
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Fig. 6. Three examples of paths in the IEEE 123-bus feeder. The red path
is the longest path.

TABLE I
COMPARISON AMONG THE TWO BASIC LSTM MODELS AND THE

ST-LSTM MODEL ON THE LONGEST PATH OF THE IEEE 123-BUS

FEEDER

to the hosting capacity data. After we conduct the offline
training and get a well-trained model, we use the computed
mapping rule to determine the HC value according to new
power flow data. However, along with the continuous changes
of the load profiles, PV profiles, climate, facility settings,
etc., the trained model may not have a good prediction after
a long time. To solve this problem for better performance,
we continue to update our model using the new power flow
data and corresponding HC data.

4) Performance Evaluation Metrics: We use two criteria
to evaluate the performance of the models. The first is the
Mean square error (MSE) criteria, and the second is the
percentage accuracy. The model uses the MSE to conduct
back-propagation, and the percentage accuracy can give an
intuitive comparison between the simulated HC and the cal-
culated HC. Specifically, simulated HC is the simulation result
from CYME, and the calculated HC is the output of the deep
learning models.

C. Accuracy of ST-LSTM With Multi-Dimension Information

To validate the performance of our ST-LSTM with the
designed dual forget gates, this section shows the results of
the longest path in the IEEE 123-bus feeder using different
models, which are the temporal sequence LSTM, the spatial
sequence LSTM, and the ST-LSTM models.

As shown in Table I, the temporal sequence LSTM has
the worst performance. HC is highly correlated to spa-
tial information, while the temporal sequence LSTM lacks
this crucial information. Compared with the spatial sequence
LSTM, the ST-LSTM model has lower MSE and percentage
error. Fig. 7 shows the comparisons between these two models
at time t, which is time-series 11.

Fig. 7. Computation results of the longest path in the IEEE 123-bus feeder
at time-series 11 using different models. The simulated HC values are from
software simulation, and the computed HC values are from the learning-based
models. The ST-LSTM model has a better performance compared to the basic
spatial LSTM model in the IEEE 123-bus feeder.

TABLE II
COMPARISON BETWEEN THE BASIC ST-LSTM MODEL AND THE

GCN-BASED ST-LSTM MODEL IN THE IEEE 123-BUS FEEDER

Remark 1: For the ST-LSTM model, we need to find a
method to build a spatial sequence and capture the structural
relationship for simulation. In computer science, graph neu-
ral network (GNN) is a popular way to embed the topology
information [51]. Therefore, we implement the GNN in the
ST-LSTM to compare with the proposed longest path method
for spatial correlation. Specifically, we add a graph convo-
lutional network (GCN), which is a representative type of
the GNNs, layer before the input of the ST-LSTM cell [51].
This GCN layer is built based on the adjacency matrix, map-
ping the original input power flow data to output. However,
the direct model combination did not improve the learning
performance in the IEEE 123-bus feeder. In the simulation,
we use the order of bus numbers as the spatial sequence.
The results of the basic ST-LSTM model and GCN-based
ST-LSTM model are shown in Table II. Neither of the mod-
els has a sensitivity gate to consider spatial correlation as
proposed. Thus, we proposed the longest paths method to
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TABLE III
COMPARISON BETWEEN THE SPATIAL SEQUENCE LSTM MODEL AND

THE ST-LSTM MODEL ON OTHER PATHS OF THE IEEE 123-BUS FEEDER

TABLE IV
COMPARISON OF PERCENTAGE ERROR BETWEEN THE SPATIAL LSTM

AND ST-LSTM IN THE UTILITY FEEDER

divide the feeder network into paths for a better learning
performance.

D. Accuracy of the ST-LSTM on Different Paths

To prove that the high accuracy of the ST-LSTM is not an
accidental experimental result, this section shows the results
of other paths in the IEEE 123-bus feeder using the spatial
sequence LSTM and the ST-LSTM models.

We choose another two paths in the IEEE 123-bus feeder.
In Fig. 6, the yellow and blue paths represent Path 2 and Path
3 in the IEEE 123-bus feeder, respectively.

The numerical results comparison between the spatial
sequence LSTM and the ST-LSTM of path 2 and path 3
are shown in Table III. We can see, compared with the spa-
tial sequence LSTM, the ST-LSTM model has a significantly
smaller percentage error on both of the two paths. That is to
say, the ST-LSTM model will increase the accuracy of HC
calculation for different paths in the IEEE 123-bus feeder.

E. Practicality of the ST-LSTM

This section will show the accuracy of the ST-LSTM in a
utility feeder, which will further verify the practicality of the
ST-LSTM in HCA.

The network we used is a generic Arizona utility high pene-
tration feeder. We divide this utility feeder into different zones.
The division of the zones was primarily based on the location
of the buses and where those buses are connected into the
three-phase main trunk. In each zone, we also use a script to
find all the paths. In this way, we can obtain the HC value
for all the buses. The comparison is shown in Table IV. The
accuracy of the ST-LSTM is higher compared with the basic
LSTM as well. The detailed results of time t, which is time-
series 16, of one of the paths using the spatial sequence LSTM
and the ST-LSTM models are shown in Fig. 8(a) and Fig. 8(b)
respectively.

F. Accuracy of the ST-LSTM With the Sensitivity Gate

Since we already verified the performance of the ST-LSTM
with the designed dual forget gates, this section will show
the accuracy of the ST-LSTM with and without the sensitiv-
ity gate, which will further validate the performance of the
sensitivity gate of ST-LSTM.

In our review and simulation, we found that the volt-
age sensitivity data correlates with the HC. To make use of

Fig. 8. Computation results of one path in the utility feeder at time-series 16
using different models. The simulated HC values are from software simulation,
and the computed HC values are from the learning-based models. The ST-
LSTM model with the sensitivity gate has the best performance in the utility
feeder.

this correlation, we use the voltage sensitivity data as the
input of the sensitivity gate. The comparison between the
ST-LSTM without and with the sensitivity gate is shown in
Table V and the detailed results of one time t, which is
time-series 16, of one of the paths using the ST-LSTM with
and without sensitivity gate models are shown in Fig. 8(b)
and Fig. 8(c) respectively. Notice, the sensitivity gate can
significantly decrease the percentage error.
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TABLE V
COMPARISON OF PERCENTAGE ERROR FOR ST-LSTM WITHOUT AND

WITH SENSITIVITY GATE ON UTILITY FEEDER

V. CONCLUSION

This paper uses a developed deep learning-based method,
namely Spatial-Temporal LSTM, to calculate the distribution
grids’ hosting capacity (HC). There are three main con-
tributions of this paper. First, the paper proposed a deep
learning-based method to calculate the HC in real time.
Second, the paper modifies the basic LSTM to the ST-LSTM.
This paper updates the forget gate to dual forget gates to
build a correlation between temporal and spatial sequences
because the forget gate is exceptionally significant in the basic
LSTM model. Third, this paper increases the accuracy of the
deep learning-based HC calculation method using the designed
sensitivity gate. These gates use the result of the voltage sensi-
tivity analysis. Comparing basic LSTM and the ST-LSTM on
IEEE example feeders confirms that the new ST-LSTM has
a considerable increase in the average and the respective HC
accuracy at the buses. To further validate the design of the ST-
LSTM deep learning framework, we test the performance on
a generic Arizona utility high penetration feeder, which also
reinforces the superiority of our new designs.

In our future work, we plan to theoretically investigate
how voltage sensitivity data can improve the performance of
deep learning-based HCA. Furthermore, we will use a more
efficient way to embed spatial information, for example, a tree-
structured LSTM network or a combination of the GNN and
LSTM network may be feasible research directions to extend
the ST-LSTM design.
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