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Abstract—Power distribution grids experience the proliferation
of solar photovoltaics (PV) at the system edge. However, its
counterpart of sparse meter deployment provides insufficient
monitoring of PVs, for which the potential violations challenge
the operators for energy management and stable operation. Some
previous works use satellite imagery to detect distributed PVs for
easy access to data. However, their PV localization methods rely
on the label-rich area with a unitary background/environment to
implement well; even further/harder, they do not provide precise
metered-PV detection and quantification to estimate/know PV
generation outputs in unobservable areas, which is essential to
prevent the edge from excessive two-way power flow and other vi-
olations. Thus, we combine the two steps of detecting PV existence
and quantifying PV amount into one classification task. To boost
the classification performance in the unobservable edge area, we
construct a generative adversarial network that simultaneously
augments the diversity of labeled PV satellite images and embeds
distinct PV characteristics/features for training the classifier.
Furthermore, the PV localization and quantification result is
combined with geographic information, historical weather con-
ditions, and neighboring generation patterns to estimate power
output at the system edge. We validate the proposed approaches
on PV systems in the southwest of the U.S. Experiment results
show high accuracy and robustness in predicting distributed solar
power without sufficient prior information.

Index Terms—Distributed PV forecast, diversified data sources,
structured learning, weak supervised learning, variational GANs.

I. INTRODUCTION

Sustainable and inexhaustible solar energy is one of the
fastest increasing renewable resources in the smart power
grid. For example, research estimates that 150 - 530 GW
of cumulative solar-based power will potentially be available
in the U.S. by 2040 [1]. Unlike the conventional energy
source with scheduled power output, PV generation depends
on various temporal and spatial factors, e.g., weather, atmo-
spheric conditions, and installation position and quantity [2].
They naturally bring variability and uncertainty, leading to
bidirectional power flow and frequent voltage fluctuations of
voltages and currents in distribution grids [3], [4]. To maintain
the safety and reliability of the grid, distribution system oper-
ators (DSOs) require accurate information on the solar panel
locations and PV generation forecasts for system remodeling
and predictive energy management [5]-[7]. Moreover, the
foreseeable future of PV energy-sharing and its economics
posits in urban areas raise a high demand for precise and easily
accessible information on distributed PV systems [8], [9].

For PV generation forecast, existing approaches can be
divided into two folds: the physical model-based methods
and the data-driven approaches [10]-[20]. Physical model-
based methods rely on numerical weather prediction (NWP)

or satellite imagery to analyze the atmospheric conditions for
solar irradiance, with which the power output is computed
using physical characteristics [10], [13]. Some of the data-
driven approaches directly estimate PV outputs from histor-
ical data, primarily extracting the statistical properties from
PV measurements for new predictions [11], [12]. Machine
learning models have been developed to consider highly
correlated factors to characterize solar irradiance and predict
PV generation. Such methods require complete information
on PV locations, panel numbers, solar meter measurements,
etc. However, in power distribution grids, the scattered PV
generation data may come from different sources, including
solar panel/inverter manufacturers, PV system development
companies, utilities, and residential/commercial consumers.
The methods mentioned above rely on the timely data aggre-
gation from these different sources, which requires constant
and intensive manual efforts [21], [22]. Thus, the knowledge
is often incomplete or unavailable, especially for residential-
level consumers. For example, the National Renewable Energy
Laboratory (NREL) focuses on an Open PV Project to track
distributed PV installations. The project relies on voluntary
surveys and self-reports to provide a general understanding of
PV distribution but is still unreliable in precision. Moreover,
the database is easily outdated due to the rapid growth and
widespread PV installations [23].

Instead of multiple PV data sources, the other group of data-
driven methods uses smart meter data to detect unauthorized
PV installation, and estimate behind-the-meter PV generation
[14]-[20]. These methods are summarized in Fig. 1. Specif-
ically, smart meters record the net load data of customers,
which is the conventional load minus the PV generation.
While the PV is invisible, different model-free methods are
adopted to uncover its existence and generation output. For
example, the change points in historical measurements are
detected, verified, and estimated, but the unsupervised method
requires predefined hyperparameters to work properly [14].
The supervised learning methods in [17], [20] need sufficient
labeled data to fit an accurate estimator, especially the deep
neural networks. Only net load data is used to disaggregate
unknown PV generation based on the inherent temporal and
spatial correlations [16], [19]. However, the distribution grids
may have unobservable areas on edge, for which we have no
access to complete smart meter data [9].

While the primitive information in distribution grids is
limited, it can be inferred from extra public data sources that
are easy to access, e.g., satellite images of PVs. Previous
efforts lead to several approaches to identifying PV locations
from Geographic information system (GIS), which is an image
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2
References Target Data Sources Prior Requirement Model-Free Methods
[14] PV Detection & Generation Estimation Smart Meter Precise Predefined Change-Point Detection Algorithm
Cloud Cover Index Hyperparameters
[15,16] PV Detection & Generation Estimation Smart Meter Access to All-Customer Net SVM Classification & LSTM
Load Data Regression
[17] PV Generation Estimation Smart Meter Sufficient Labeled Data K-Means & PCA Feature Selection,
and Linear Regression
[18] PV Generation Estimation Smart Meter Available PV Locations & Integrated Learning and Physics in
‘Weather Conditions PV Physical Model SunDance
[19] PV Generation Estimation Smart Meter Access to All-Customer Net Gaussian Process Regression
Load Data
[20] PV Size, Tilt, and Azimuth Estimation Smart Meter Sufficient Labeled Data Deep Neural Networks
Fig. 1: A summary of model-free PV detection and generation estimation works using smart meter data.
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Fig. 2: An overview of the proposed approaches.

classification task [24]-[28]. However, the informative image
data has complex structures to provide precise inference, and
the insufficient labeled data in practice makes the classification
method difficult for implementation.

For example, [24] and [25] train and test using similar
PV system images without considering significant variations
in solar panel positions, textures, numbers, and backgrounds.
Though the rooftop solar detection tool based on convolutional
neural networks (CNNs) claims better feature extraction for
classification [26], [27], they rely on abundant hand-annotated
data sets and are unclear about how to obtain the PV coordi-
nates effectively [26], [27], [29]. Hence, these approaches are
limited to solving the problem of locating and quantifying the
distributed PVs in raw satellite images on their own.

Furthermore, a precise PV generation estimate helps max-
imize the information gain for DSOs. In the literature, [30]
considers solar irradiation for an extended time period at a
particular region to estimate generation. However, it is limited
to addressing the concern of feature limitation. Also, [31]
has introduced a support vector machine (SVM) as a base
learner together with a meta learner, based on the K -means
algorithm to cluster the training set for predicting short-term
solar power generation. Such a methodology requires labeled
historical PV data of the same solar power system, which
is the same assumption of deep learning models such as
probabilistic neural networks (PNNs) [32]. Therefore, previous
methods find it difficult to extrapolate information, providing a
solution when some PVs do not come with complete historical
recordings.

To address the problems, we propose to utilize different data
sources of publicly available information together with utility-
owned measurements to enhance PV localization and genera-

tion forecast. Specifically, we use available GIS and satellite
image data for PV detection and quantification. While existing
works have also utilized such data sources, they have not
considered the practical problem of labeled data deficiency as
the first step, not to mention generation estimation. Therefore,
we enhance PV localization and quantification by designing
weak-supervised generative adversarial networks (GANSs).

The proposed model not only generates diversified labeled
data to address data deficiency but also embeds PV character-
istics during generation to enable distinct PV image augmen-
tation. The PV images are augmented for more accurate PV
detection. Instead of separating two tasks, we integrate them
into one model as a feedback loop, which makes improvements
simultaneously for both data augmentation and PV detection
during training. On the input side, we provide backbone
structures as informative inputs to the generative model. The
proposed model not only generates diversified labeled data
to address data deficiency but also embeds PV characteristics
during generation to enable distinct PV image augmentation.
The PV images are augmented for more accurate PV detection
in the downstream task. Instead of separating two tasks, we
integrate them into one model as a feedback loop, which makes
improvements simultaneously for both data augmentation and
PV detection during training. Based on the detected PV
information, we adopt the K -nearest neighbors method to
estimate the best possible generation considering the relevant
factors of solar irradiance. Fig. 2 shows an overview of the
proposed method for generation predictability enhancement.

Our contribution lies in designing a constructive GAN to
expand both the volume and diversity of labeled datasets for
PV detection and enhancing generation estimation by utilizing
effective features and neighboring generation patterns. Specifi-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3262773

cally, the learning performance of detection and quantification
is boosted via specific knowledge embedding:

1) using diversified backbone structures (grey-scale images
with different PV quantities and locations) as additional
informative inputs;

2) integrating the evaluation of solar panel classification
into the data augmentation process as guidance;

3) adopting both content and style losses to train the GAN
model specifically for rooftop solar panel datasets.

II. FORMULATE LEARNING PROBLEM TO PREDICT
DISTRIBUTED SOLAR POWER FROM (DIVERSIFIED) DATA

To predict widely distributed solar power, we need to
accomplish three steps: 1) detect the PV existence with re-
spect to locations, 2) quantify the amounts, and 3) estimate
the output generation. While we have no access to direct
information, it is inherently contained/held in diversified data
sources. We fully utilize these data sources to infer the power
output of distributed PVs in this paper. The task of latent
information discovery is to solve a comprehensive/structural
machine learning problem. Specifically, we start with the pub-
licly available data sources (i.e., Google Earth) to sample raw
satellite images (resolution of 4800 x 2987) with coordinates
in the geographic information system (GIS). Since the raw
image covers a large geographical area, we segment each one
into M = 400 pieces to zoom into rooftops. Fig. 3 shows one
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Fig. 3: A real image acquired from Google Earth and sliced.

sample image, where a few locations of the raw images have
solar panels. With M = 400, less than 2% of segmentation is
labeled as 1.

For segment ¢ € {1,2,---,M}, the label ¢; €
{0,1,2,--- ,k} indicates the amount of solar panels, which
is used in a multi-class classification for PV quantification.
For a simplified PV detection task, the label is ¢f € {0,1}
to indicate the non-existence and existence of solar panels in
an image. Moreover, y;, where t = 1,---,T time points,
is the generation of the corresponding solar power system
based on the generation gX of K nearest neighbor PVs.
For generation estimation, other available data include the

temperature, humidity, and cloud cover with respect to the
coordinates, which are the same location information used to
sample satellite images. Therefore, the problem setup is as
below.

o Problem: location detection, quantity assessment, and
power generation estimation of rooftop PV systems;

e Given: 1) raw image z"*" from Google Earth and
available labels ¢;, 2) the known PV generation time
series g of solar panel systems covered in the z"*Y
solar panel image, and 3) time-series weather data f/< of
locations covered in the ™*" image;

« Find: for a new single segmented image z;, 1) existence
gi of solar panels, 2) quantity ¢; of solar modules, and
3) power generation time series y; ¢.

This paper aims to estimate distributed PV generations
based on accurate PV location detection and quantity assess-
ment. A robust image detector requires a large quantity of
diversified data to train, while the known installation locations
from the utility are limited to less than 2% of the total
segments. To enlarge the labeled image data, an intuitive way
is to use augmentation techniques (e.g., flip, rotate, extract
patches, and transform color spaces) to operate on obvious
data invariants [33]. For the solar panel case, we can rotate
slices of images to contain different orientation angles of PV
installations. This data augmentation is realistic, but there are
no new instances created for data variability/diversity. The
detection model may easily cause overfitting and perform
poorly in unseen data. For a diversified image augmentation,
deep learning-based generative models, such as generative
adversarial networks (GANSs), are popular at generating similar
but varied samples as compared to the existing instances.
GANs gain benefits from rich feature extraction of neural
networks and the adversarial-training scheme; however, the
lack of learning guidance causes the model to collapse easily,
which creates bad samples like clustered solar panels pixels
and object mixtures. Moreover, the labeled data is augmented
with the goal of improving the training of a classification
model (PV detection and quantification). The separation of
the two steps can lead to propagation errors. To address
these concerns, we aim to integrate both tasks into one
compact learning model and train the entire model with mutual
benefits to achieve high accuracy of PV classification against
unbalanced data.

III. PROPOSED VARIATIONAL GANS WITH WEAK
SUPERVISION FOR PV DETECTION AND QUANTIFICATION

To address the concerns of insufficient labeled data, we
propose in this section an enhanced solar image classification
based on weak supervision over GANS, as shown in the middle
of Fig. 2.

A. Recall Basic GANs to Augment Image Samples

As mentioned in Section II, the goal of augmentation is to
generate various solar images that mimic the original data in
feature patterns as well as provide diversity.

To achieve this, we train a generator GG as a feed-forward
neural network parametrized by 6 to produce new data z*"9,
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e.g., a rooftop solar panel image. "9 is a random variable,
whose complex distribution is expected to be learned from
the distribution of real data samples 2"°®. In basic genera-
tive adversarial networks (GANSs), the generator captures the
mapping from a random variable z to image z*"9, where z
is usually sampled from Gaussian noise distribution with the
same size of x7°*. To enforce the similar feature pattern in
augmented images, the generative model G is trained discrim-
inatively against another neural network, a discriminator D.
The discriminator is parameterized by ¢ to score the outputs
(comparing %9 with 27°*), computing the probability that
one image comes from the real dataset. It aims to assign a
high score to a real image 2"“* while assigning low scores to
the generated image z*“9. Mathematically, the discriminator
is realized as a classifier to maximize the binary cross-entropy
loss while increasing the distinguishability between real and
fake data. In contrast, the goal of generator GG is to produce
outputs that achieve high scores from the discriminator D,
satisfying the constraints imposed by D in the process. There-
fore, G minimizes the loss. Thus, for training the GANS, the
objective takes the expectation of random variables as

Loan = Egreat[log D(27°)] + E.[log(1 — D(G(2)))], (1)

and the training optimizes over ming maxs Lgan. Such an
adversarial-training scheme can augment images on a larger
invariant space, which is implicit for the data space.

GAN has become popular in solving power system prob-
lems because it adopts an adversarial strategy in generative
learning to augment the diversity of labeled data. [34] firstly
leverage the characteristic to generate scenarios of renewable
outputs, which can mimic diverse conditions and uncertainties
to produce more renewable data. Similarly, the GAN model is
used to estimate the unknown power injection at unobservable
loads based on the available historical measurements [35],
[36]. While the generation from Gaussian noises is insuffi-
cient to cover the needs of specific data patterns, conditional
inputs are used to restrict the generated data to a particular
class like weather conditions of high wind, real-time system
configurations of topology/admittances, and electricity market
data [34], [35], [37], [38].

B. Embed PV Characteristics in Image Augmentation to En-
hance Detection

The basic GANs generate new instances from noise inputs
z to provide flexibility in the output. However, it easily causes
insufficient learning of complex image distribution, especially
when the labeled PV image data is limited for discriminative
learning. The direct application of GANS creates bad samples
like clustered solar panels pixels and object mixtures in the
background. The generation process needs to be materialized
with more explicit information. Moreover, unlike the assump-
tion of sufficient training data in other GAN implementations,
our task has the precondition of limited labeled solar panel
images. And, the expected outputs should have distinct solar
panels located on the roof, trees, pools, and other objects in
the background.

Therefore, we adopt the conditional settings of GANs to
consider extra information together with Gaussian noises.

Specifically, y is an embedding variable to condition the
generative model on the external information. In our case, the
solar panels naturally have the characteristic shape to be dis-
tinguished from other objects so we use the grey-scale outlines
for y. The joint inputs of y and noise z contribute to replicating
real PV images with both “backbone” representation and
flexible background, as presented in the left-hand side Fig.
4. Similar to the basic GANS, the generator improves during
training to fool the discriminator for a relatively high score
compared to the real images. Mathematically, the generators
in conditional GANSs learn the mapping {y, z} — x*“9, where
y is the given information, z is the random noise, and x*"9
is the output image. Meanwhile, discriminator D is trained to
distinguish between the real and generated images, for which
Fig. 4 illustrates the adversarial training scheme in the middle
part. D is also conditional in such settings. It is fed with
the concatenated image and the corresponding “backbone”
information y. In the implementation, we have compared the
conditional and unconditional settings of D, and it appears that
conditional D better leads the augmented image z**9 to follow
the PV characteristics. Thus, we have modified the objective
for training GAN in (1) with consideration of extra information

LAug = E(L.'rcal7y |:10g D(Ireal, y):|

+E,. [log (1 - D(y,G(y,z)))} )

Despite the benefit, the input of grey-scale outlines has
reduced the information on PV characteristics, which mainly
embed the shape and position. To compensate for the re-
maining information that is essential for PV classification,
we consider regularizing the generation process with limited
but available labeled data. Although GANs do not use an
explicit loss function, adding a traditional loss could benefit
image generation. Motivated by [39], we consider the content
loss and style loss to retain consistent PV characteristics on
the pixel level and in the feature space. In the PV image
generation task, the content loss is the mean square error
between the generated image and the real image at the pixel
level. Minimizing the content reconstruction loss recovers the
detailed pixel information when the pair of grey-scale outline
and ground-truth images are available. Notably, using the
content loss will only have blurring and deterministic output
images, which makes the conditional inputs of GANs in (2)
necessary for our task. Moreover, while the labeled PV image
data is limited, we use style loss minimization to guarantee
style consistency from feature space among different images.
Thus, the loss of image consistency of PV characteristics is

le = aLContent + ﬂLStyle
aEx"'eal,y.,z [”G(yv Z) - xreal H] (3)

+ ﬁEwrea,l’y)z [”AG(y,z) - Axreal |H .

Similar to the content loss, the style loss is the error be-
tween the features correlations expressed by Gram matrices
A = Zé;le‘ijk (F' is the feature map of the image).
The hyperparameters « and 3 are weights to determine the
emphasis of the two losses.
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Fig. 4: Block diagram of the proposed variational GANs with weak supervision for PV detection and quantification.

C. Integrate Classification Feedback into PV Image Augmen-
tation for Mutual Benefits

The generator is enhanced by embedding prior knowledge of
PV characteristics on both inputs and loss functions. Besides,
GANSs use the discriminator to judge the quality of generated
data by assigning scores. Although the discriminative learning
scheme benefits, the DNN-based discriminator can be too
general to control the generation process as expected. In our
case, the specific goal of image generation/augmentation is
to improve the accuracy of PV detection and quantification.
GANSs aim to enlarge the data to train the classifier for rooftop
solar panels. Usually, data augmentation and classification are
separate steps, where the former step cannot receive perfor-
mance feedback from the latter task. It is difficult to make
an improvement based on causal reasoning, and propagation
errors between steps may exist. To solve the problems, we
propose to integrate the two steps in a loop, which guides
the augmentation towards improving the classifier f;. As Fig.
4 shows in the bottom half, we feed the augmented images
from the generator into the f; and include the classification
loss during training,

LC’lass = 7E|:10g Pn(xaug)]’ (4)

where 1 parameterizes the classifier network. P is the proba-
bility of x to be class 1, which means the solar panel exists
in the augmented image. In this way, the evaluation metric
constrains the generation process. Since the classifier f; is
integrated into the GAN structure, we recognize it as the
other discriminator to distinguish augmented images that can
improve PV classification.

In short, the final optimization is ming , maxy Laug +
Ly + ALcigss- A is the hyperparameter (defaulted as 10
in this paper) to specify the weight of the classification loss
compared to the generator loss L 4,4. In this way, the labeled
satellite images are effectively augmented to improve detecting
PV systems.

Moreover, since we utilize task feedback as weak super-
vision, the PV classifier is trained via minimizing Lcjgss-
During the training process, the generator and the classifier

are updated in turn for multiple iterations and converge. After
learning, we simultaneously finish dataset augmentation and
classification, so there is no extra step to train an additional
model for the solar panel detection task.

D. Specify Conditional Inputs to Represent Distinct PV Fea-
tures

The self-enhancement and feedback control discussed above
provide weak supervision for generating images of rooftop
solar panels. Not only increasing the volume of labeled data
is beneficial, but also diversity is essential. For example, an
effective classifier training expects images with different num-
bers of solar panels and various background objects. Although
the available training dataset never has such instances, we
introduce the randomness function to form the backbone, i.e.,
grey-scale outline as shown in Fig. 4. To enable it, we first
apply different abstractions to the real labeled images, such
as Sobel filter, semantic segmentor, landmark extractor, and
color-specific filter [40], [41], after which we crop the basic
backbone of the solar panel target. We then define ¢ and s as
the center and size (amount) of the single target, and r is the
rotation degree if needed. The backbones of the diversified
samples are constructed by different values of ¢, s, and 7.
The reconstructed backbone images are fed into the proposed
variational GANSs.

E. Proposed GAN Architectures and Optimization for PV
Classification

The previous designs involve different deep learning func-
tions to enhance PV detection and quantification. In this
section, we specify the model architectures of each function
and illustrate the training setups.

1) Generator G for Image Generation: To embed PV
position and shape, we input conditional “backbones” to the
generator. The desired output should not only retain the lo-
calized information from the grey-scale images but also reach
high precision in context for classification. To enable such a
transformation between high-dimensional inputs and outputs,
we adopt the U-shaped architecture [42]. Its upsampling layers
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balance the accurate object localization and context usage,
which is capable of generating distinct features of solar panels.

2) Discriminator D with Markovian Consistency: As the
consistencies in both pixel level and feature space are impor-
tant for solar panel images, the discriminator follows the same
rule. Different from the regular classifier, the whole image
(real or generated) is scored in the unit of patch identically
and independently, which is an N x N (N € {1, 16,70} [43])
square of the image. A smaller N focuses on the pixel level to
benefit color representation, and a larger value sharpens spatial
statistics across features. For example, N = 1 is the special
pixel-level assessment, but the generated images cannot bring
greater color diversity to our task. We find N = 70 works best
to generate distinct objects in solar panel images.

3) Classifier fy for PV Quantification: The classifier is the
last and most important step to detect and quantify solar panels
in images. Meanwhile, it is expected to weakly supervise
the generation process by feedback evaluation. The model
Inception-v3 achieves state-of-the-art performance in image
classification, whereas the feature extraction layers require a
large and diversified dataset to train. Therefore, we pre-train
the Inception-v3 model with 1.28 million images containing
1,000 different classes in the ImageNet and achieve 93.3%
accuracy [44], [45]. We reuse the feature extraction layers and
retrain the last layer of decision-making with our generated
solar panel dataset for evaluation.

4) Configuration: During training, we use the Adam opti-
mizer with a learning rate of 0.0002, and momentum param-
eters 51 = 0.5, 82 = 0.999 to train for 200 epochs for each
experiment. For each epoch, the batch size is chosen as 5 due
to the device limit. All the experiments are completed with
a computer equipped with Inter(R) Core(TM) i7-9700k CPU
and Nvidia GeForce RTX 3080Ti GPU.

IV. ESTIMATE GENERATION OUTPUT VIA CLOSE
PROXIMITY OF PV SYSTEMS

Knowing the quantity of solar panels at a specific location
helps gain insight into predicting generation capability, but its
effectiveness needs to be further enhanced by historical PV
generation profiles. Thus, to estimate solar generation output,
we integrate the proposed PV detection and quantification
with the data-driven solar irradiance forecasting, as shown in
the right-hand side of Fig. 2. Specifically, based on historical
observations, the PV generation patterns of neighbor instal-
lations are similar because of the similar numerical weather
conditions. In residential areas, the neighboring houses are
usually covered in one basic spatial unit to have the same
feature values of numerical weather predictions. Therefore,
this section describes the feature selection and generation
estimation based on neighbor information.

A. Select Relevant Features Based on Weather Conditions

There are many different features available for making gen-
eration estimations. For example, the geographical features of
longitude, latitude, altitude, weather conditions of temperature,
pressure, humidity, cloudiness, and the quantities of modules.
To increase the information gain and select the most relevant
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Fig. 5: Plot of raw data from the industrial partner SunPower
Inc. shows homogeneous curves of power generation for three
different ZIP code areas on a single day.

features, we followed a filter method for feature selection
based on the information gain of minimum descriptive length
(MDL) [46]. Let a.. denote the number of training samples.
a;,. is the number of training samples from class F;, and a. ;
gives the number of samples with the ;%" value of the provided
feature. Therefore, a; ; is the number of instances from class
P; and has the j*" value of the provided feature. If we have P
classes, the information gain MDL is defined as a logarithm
of all combinations of class labels

1 a.. a.
MDL = — ’ -1 ’
a... ( (a1,~7' o aaP,'> ; °8 ((117]'7‘ o 50‘P,j)
a.,.+P -1 a.j;+P—1
“Og( P-1 )‘Zbg< P-1 ))
J

(&)

A high score of information gain on geographical space
shows that neighboring regions have similar PV generation
patterns. The quantity of the modules is already available
from previous learning results and serves as one of the most
important variables, in that more solar panel units generate
more power.

Moreover, to further boost the information gain for genera-
tion estimation, we consider the thermal space. The tempera-
ture is correlated with the efficiency of solar cells [47], which
is also the efficiency of power generation. Based on the feature
set, we learn to predict the power generation time series of the
unknown solar power system.

B. Apply Nearest Neighbor Approach

With a set of carefully selected relevant features, we aim to
fully utilize the latent correlation to make a precise estimation
of PV generation. Fig. 5 shows a clear correlation among
generations of the “neighboring” PV systems that locate
in different ZIP (Zone Improvement Plan) code areas. The
Euclidean distance is a promising measure for the distance
between any two samples in feature space, not limited to
only geographical distance [48]. With identified PVs in the
previous learning process, the coordinates are known. Let g;,
glatitude gnq glongitude " and gweather i — 1 ... N, form

(2

the features of SZ.F that are selected from IV-A. Now, the
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distances of a new test sample S% _, comprising of features

; longitud :

Qrest, Slatitude  GonIUuae and geather The data of different

features are standardized to have a value range between
. . altitude temperature

0.0 and 1.0 in preprocessing. Sty and S;_.;

with K number of training samples can be calculated in a
Euclidean manner. d¥ (8%, SE ) = \/2?21(5}; — SLa)2,
where K = 1---,K* and d¥ is the vector of feature
distances. In the feature space, the closest K points to SE _,
are used for training purposes. Their respective distances are
used as the weights dx and the PV generation time series of
K nearest neighbors are represented as g/<. For t = 1,--- , T
time points, the PV generation of the unknown solar power
system is given by y,. Thus, the optimization problem becomes

N K* T

min e — d¥ gl 2 6
dyg;};;w af"| (6)

This procedure gives an estimate of power generation for the
unknown rooftop solar power system. We select the hyperpa-
rameter of K through two different error metrics, namely mean
square errors (MSE) and mean absolute percentage errors
(MAPE) respectively. MSE is calculated using the predicted
power generation time series y; and real power generation
Yt,real, Where t = 1,--- T are the sequential time slots
MSE = % Zthl (Yt,reat—Yyt)?. The variance of the distribution
can be captured in mean absolute percentage error (MAPE)
MAPE = L Y7 Bereatzuel 1009,

Yt,real

V. NUMERICAL TESTS

To evaluate the proposed methods on PV detection and
generation estimation, we conduct experiments on realistic test
cases in the following.

A. Data Pre-Processing and Tool Selection for Validation

First, we aim to enlarge the labeled solar panel image data
so that we can train a classifier to detect the rooftop solar
panel location from the geographic information system (GIS).
We collect the original data from SunPower Inc. and the
local utility, which contains the known installation locations of
rooftop solar panels in GIS. With the longitudes and latitudes,
the satellite images are sampled with a fixed resolution of
4800 x 2987 on Google Earth (fixed zoom level). It is free
and has several benefits when compared to its commonly
used rivals like SPOTS5 or DigitalGlobe satellite imagery.
[49] illustrates the high-resolution imagery of the Google
Earth archive has robust positional accuracy and plays a vital
role in solar panel image recognition and quantification. The
original positive sample number is only 1017 + 2813 = 3830,
while related detection work used tens/hundreds of times of
positive samples for training. The classification performance
is greatly affected since the limited image data cannot cover
the scenarios that exist in reality. Due to the high unbalance
in the original image dataset, we select partial images without
solar panels to be negative samples and get 15000 as a total.
Moreover, we use the geographic coordinates to integrate
a time series of power generation data (612 4 239 data
sequences). Typically, the recorded time series of PV data

is with a time resolution of 15 minutes for a whole year.
So, to align the data format we chose the time resolution of
weather conditions to be 15 minutes as well. We aim to show
robustness by validating the method in two different states in
the U.S., 1) Tempe, Arizona, and 2) Santa Ana, California.
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Fig. 6: The classic augmentation of solar panel image via basic
operation of circular rotation.

B. Enriched Labeled Data with Physics Embedding Improve
Detection Accuracy

In the following, we validate the accuracy of PV detection
and quantification of the proposed weakly supervised GANS.

1) Effective Augmentation: To solve the data deficiency
problem, we first consider standard augmentation techniques
with respect to real conditions that residential houses can
face from different directions, and the house styles can
be quite similar within each community. Therefore, by
adequately rotating images via the rotation matrix R =
[cos @, —sin6;sin 0, cos 0], § € [0, 27], we increase the labeled
dataset. Since direct rotation changes the horizontal structure
of the image, we pre-process the data to crop them circularly,
using the circular segmentation-based approach as in [50],
where the shape will be consistent no matter how it is rotated
(Fig. 6). In such augmentation, the information around the
edges and vertices is compromised, and the performance
suffers. Meanwhile, the improvement of the classifier requires
sufficient and various positive samples, e.g., images with solar
panels in different scenarios. Therefore, we expand the labeled
dataset by the GANSs.

We validate the proposed GAN with two types of metrics on
the generated data quality. On one hand, Fréchet Inception Dis-
tance (FID) [51] measures the closeness of extracted features
between generated data and real data for image generation
tasks. Namely, the lower FID score reveals more similarity,
which is a better quality of augmented images. On the other
hand, the image dataset is enlarged to boost classification
performance so that we use the test performance of the solar
panel classification to assess the augmentation quality. The
output labels of the classifier f; are for the quantification task,
and we compute the accuracy by comparing the f; outputs
with ground truth labels, which is:

A t S l i = q;
Quantification Accuracy = mount of Samples{q; = ¢;}

Amount of Total Samples
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We further compute the commonly used metrics to evaluate
the detection performance, which are

TP
Detection Precision = ———— 7
etection Precision = — T EFP’ )
TP
Detection Recall = TPTEN’ (8)
TP + TN
Overall Accuracy = i )

Amount of Total Samples

The “true” and “false” represent whether or not the clas-
sification results are the same as labels, while “positive”
and “negative” mean with and without solar panels in the
image as two classes. Namely, “true positive (TP)” represents
that solar panels exist and are correctly detected. Similarly,
“false positive (FP)” means the positive (wrong) estimation of
negative samples. For our task, we aim to evaluate the model’s
capability of correct solar panel detection. First, we expect
to know what proportion of the detected solar panels does
actually exist. Thus, the detection precision in (7) measures
the ratio of correct solar panel detection among all the positive
output (with solar panel) samples. It is used to evaluate the
quality of augmented positive examples, as shown in Table
I. Meanwhile, we are interested in what proportion of the
images with actually existing solar panels are detected. This is
computed by the detection recall in (8). Moreover, we include
1) the overall classification accuracy to represent the correct
classification for both positive and negative samples, and 2) the
quantification accuracy to represent the correct identification
of the amount of existing solar panels.

Fig. 7: Generated results after training the popular architec-
tures of GANs. There appears to be visually under-fitting and
missing training direction via repeated noise textures across
multiple samples.

First, we tried popular architectures, such as DCGAN,
LSGAN, and WGAN-GP [52]-[54]. However, the learning of
mapping from simple noises to target images poorly follows
our expected direction of distinct solar panels in images, as

shown in Fig. 7. Thus, the proposed model improves upon two
aspects: providing informative inputs and embedding feedback
evaluation.

2) Informative Inputs for Self-Enhancement: In this task,
dependent information y is the grey-scale image that covers
the number of solar panels and their positions in an image.
We adopt the Pix2Pix model [55] as a basis for its superior
image translation. The abstraction of grey-scale images is
an edge detection task, for which we select the Sobel filter
among different filters [40]. It convolves the image with a
small, separable, and integer-valued filter in the horizontal and
vertical directions and is relatively efficient in computations.
The Sobel filter enhances the edges of objects in grey-scale
images by providing differentiating (which gives the edge
response) and smoothing (which reduces noise) concurrently.

NF=0
=

2

Input Outlines

Pix2Pix

Proposed Model

Fig. 8: Given conditional inputs of “backbones” (top), com-
pare the generated rooftop solar panel images from Pix2Pix
(middle) and our proposed model (bottom). Without specific
guidance, the solar panels easily mix with background objects.

During training, we found that using the base model
(Pix2Pix) only makes the generator hard to converge. The
discriminator converges fast and cannot further improve the
generation, because our solar panel data is complex with
multiple objects. Such data complexity can also be observed
from a high base FID value (131.07 £ 3.47), for which
we randomly separate the real solar panel dataset into two
groups and measure the similarity in between them. Therefore,
we increase the depth of discriminator D to balance with
the generator capability and use more task-specific losses as
proposed, leading to the complete model in Table I. The solar
images generated by the proposed complete model achieve a
much lower FID score than the base data generation model
(Pix2Pix). The visual comparison in Fig. 8 shows intuitive
improvement. The images “translated” by Pix2Pix in the
middle resemble the real ones from Google Earth, which
are more comparable than those from standard GANs (Fig.
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TABLE I: The quality of generated data after 200 epochs. A lower FID indicates better similarity and a higher accuracy means
that the data augmentation better benefits the post classification task. To serve as a basis, the FID of two randomly separated
real datasets is 131.07 &£ 3.47 and the classifier trained with real data has the test accuracy of 0.59 % 0.030.

Proposed Model

Model Pix2Pix Complete Model W0 Loonten: WO Lsigie Wio Lciass
FID 17150 £2.74 151.06 £0.73 | 17456 £3.49 155.37 £1.34 156.18 £ 0.01
Detection Precision (x100%) 0.81 £0.017 0.88 £ 0.054 0.62 £ 0.021 0.87 £0.013 0.82 £ 0.038
Detection Recall (x100%) 0.83 +0.023 0.91 + 0.005 0.60 £ 0.097 0.88 +0.034 0.81 4+ 0.062
Overall Accuracy (x100%) 0.84 £ 0.006 0.89 + 0.068 0.68 +0.043 0.89 + 0.045 0.84 £ 0.056
Quantification Accuracy (x100%) 0.80 £ 0.092 0.87 £ 0.047 0.55 £ 0.089 0.87 £ 0.042 0.82 £ 0.101
7). Nevertheless, the generated solar panels often mix with
the background objects, and the Pix2Pix model sometimes ¢ S = T - ‘ =
. “ |
collapses around 100 epochs or even earlier. In contrast, our .S / ,n%(,_ o) ]" k b{ | J
. . . =] / ——— = [N CTiren| A ' I 0
model with specific guidance can better recover the target solar 8 ! % \ ] ] ‘ 1%
panels in the image with clear edges and color, as shown 2 I ______”_ R | 9 T a2 | ,| | |
in the bottom of Fig. 8. To demonstrate the contributions of @ ,{ ] ary A “{ J “_‘|
£ \ - = Y

each component, we conduct an ablation study. The first row
of Table I shows that content loss plays an essential role in
synthesizing images. We select Lcontent and Lgeyie, which
both make a large difference in the FID score, as shown in Fig.
9. While the pixel-level loss can encourage color similarity
of the image, it can also bring blurring results. The style
loss better corrects the color of the target objects, leading
to distinct solar panels. Moreover, the contribution to the
following classification task is more essential for PV detection,
which is revealed in the next rows of Table I, and we analyze
it in the next section.

3) Feedback Evaluation to Constrain the Augmentation:
As the goal is to improve the classifier for solar panel
detection, we channel the feedback from the state-of-art pre-
trained Inception-v3. The images generated under such weak
supervision are then fed into the classifier as positive samples,
and the cross-entropy loss is fed back to the generator for
control. The GAN and the inception-v3 classifier are trained
simultaneously to augment positive samples. Specifically, the
last four columns of Table I show the results of an ablation
study of the proposed variational GAN model, where each
column reveals the contribution of each design to the PV image
augmentation and PV classification. Without any design, the
performance deteriorates. To compare the third and the last
columns of Table I, we observe that although integrating
the classifier does not significantly improve FID on image
similarity, it benefits the post-classification task with higher
accuracy.

Except for the comparison in the ablation study, we explore
the improvement of the classifier with different data availabil-
ities to show the benefit of GAN-based augmentation. The
following datasets are considered to train the classifier for PV
detection and quantification: 1/2 of the original dataset with
limited labels (1/2), the entire original dataset (original), the
enlarged labeled dataset by basic functional image augmenta-
tion such as rotation and flip (basic Aug.), and different sizes
of expanded labeled datasets from the proposed variational
GAN (GAN Aug. 1x, 2%, and 3x), respectively.

Fig. 10 demonstrates the trends of loss during training.
There are significant decreases in converged losses when
training the classifier with the data augmented by the proposed

W/o Leontent

W/o Lstyie ‘

Proposed Model

Fig. 9: Visual results of the ablation study based on the obvious
differences in FID values (Table I). While the content loss
incentives the color similarity of the whole image (pixel-level),
the logical constraint focuses on the target objects more. Such
weak supervision improves the generation quality, leading to
distinct solar panels in the image.

GAN. Specifically, Fig. 10a - Fig. 10c present fast loss de-
creases before 50 epoch, but the classification losses cannot
be lower after then. In contrast, the training losses of Fig.
10d - Fig. 10f experience an increase and then go down. It
is due to the simultaneous training of the classifier and the
generator for image augmentation. In the first few epochs,
the proposed GAN keeps updating parameters from random
initialization, for which the generated labeled images are not
perfect yet. Therefore, the classifier trained by these generated
images has high losses. With the image generation improving,
the loss of the classifier keeps decreasing until convergence.
We observe that the losses close to convergence are lower
and more stable. Moreover, we test the trained model on the
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Fig. 10: Classification loss during training (epochs) using different training datasets with respect to augmentation methods:
(a) 1/2 of the original dataset with limited labels, (b) the entire original dataset, (c) the enlarged labeled dataset by basic
functional image augmentation, and (d) - (f) different sizes of expanded labeled datasets from the proposed variational GAN

(GAN Aug. 1x, 2x, and 3x).
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Fig. 11: The testing accuracy of PV detection and quantification when training the classifier f; using different training datasets

with respect to augmentation methods.

randomly sampled images of the residential areas in California
and Arizona and show the results in Fig. 11. Previous data-
driven methods assume sufficient labeled data for training,
so the accuracy is high when using only sufficient original
datasets or basic augmented data. The adopted classifier fi,
the Inception-v3 model, has state-of-the-art performance in
image classification, which is a benchmark model. In our
case, using only the original labeled dataset or dataset with
basic augmentation, the accuracy is low for PV detection and
quantification. We observe a noticeable increase in accuracy

from the barplot when using the proposed GAN method
to augment labeled data. With the increasing amount and
diversity of augmented data, the testing accuracy keeps going
up and reaching comparable and even better performance than
a previous data-driven method that assumes sufficient labeled
data.
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Fig. 12: Compare the real and the predicted downsampled PV
generation of a rooftop solar power system.

C. Robust Generation Estimation via Flexible Features and
K-NN

The validation to detect and quantify PV systems brings us
to the next stage of generation estimation validation. There
are many different features available for making estimations
of PV generation. But, to maximize the information gain,
we propose to select the most relevant features using a filter
method-based approach. The result of that approach is a set
of features that include geographical coordinates, weather
conditions of temperature and cloudiness, and the quantity of
modules. Furthermore, the regions differ in solar irradiance,
climate, soiling profile, and terrain from one another [56]. The
generation of such solar panels is provided by SunPower Inc.
and is used as the training set for learning. We use the K-
nearest neighbor (K -NN) method for learning by assigning
the weights to the time-series data of the nearest points
geographically. The only hyperparameter to be tuned here is
K. We will present the performance changes with respect to
K later.

Then, we apply the weighted K-NN regression to predict
short-term solar power generation. Fig. 12 compares the
predicted generation with the ground truth for an entire year.
The previous data-driven method refers to the support vector
regression (SVR) model, which has shown good performance
in PV generation estimation [11], [12], [15]. Since the exper-
iment setups are different, we use the SVR model but change
the inputs to be the same as that of our case. Specifically,
the SVR implementation does not have a GAN-based data
augmentation to train a classifier for PV quantification as a
preliminary step. To better visualize the comparison, both real
and predicted generation data are downsampled. We plot the
long-term accumulated generation based on months in Fig.
13. The results are expressed in a bar plot over 12 months
in 2015, where the black error bars indicate the variance in
generation estimation. From a general energy production point
of view, the model performance is stable in the months when
the weather is stable. For example, estimations of June, July,
November, and December have higher accuracy than March,
April, September, and October.

To select the best K data samples of neighbors for PV
generation estimation, we compare the performances in Table
II. Obviously, K = 3 is the optimal choice for both error
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Fig. 13: Comparison of accumulated real and predicted
monthly PV energy generations for the year 2015.

TABLE II: Compare errors of generation estimation with
respect to different K values.

No. of Neighbors (K) MSE MAPE (%)
1 0.2422 24.14
2 0.2056 5.80
3 0.1528 5.21
4 0.1719 8.92
5 0.2062 19.85
6 0.2187 21.78

metrics. If the data samples of more or less nearest neighbors
are considered, the estimation errors increase. Especially, if
we select K > 4, the error is much higher, for which too
much feature distance between the considered PV systems
could increase the variance for estimation.

VI. CONCLUSION

To accommodate the limited data availability and timeliness
of PV data in distributed power systems, we propose to
systematically enhance PV localization and generation forecast
using multiple data sources such as satellite imagery and
numerical weather conditions. Specifically, we first design
weakly supervised GANs for solar panel image augmentation.
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Multiple aspects of GAN enhancement are designed to aug-
ment the images that can improve PV classification, including:
1) preparing backbones images as conditional inputs to embed
PV characteristics, and 2) restricting the inexplicit learning
process of the GAN model by specific losses. Moreover, we
leverage the discriminative training mode of GAN to integrate
PV detection and quantification into the augmentation loop.
In this way, the performance of the targeted downstream clas-
sification task guides the image generation process. Thus, we
obtain the detection results without further effort and combine
them with historical neighboring measurements to estimate
the PV generation. We validate the proposed approaches on
areas of distribution grids that have wide PV coverage but
limited prior information. The result shows that the proposed
approaches can efficiently avoid model collapse in image
generation, reach comparable classification performance with
methods trained using sufficient data, and obtain accurate
generation estimation.
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