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In this paper, we consider a perturbed version of a very simple and exactly solvable model that
supports Fermi arcs and pseudogap in its ground state and excitation spectrum, which includes
Hubbard-like interactions in both momentum and real spaces. We find that the combined effects
give rise to non-Fermi liquid behavior in the electron self-energy. This points to a novel
mechanism that leads to non-Fermi liquid behavior, which is of strong current interest in the
context of strongly correlated metals, that often become superconductors. Comparison will be
made with phenomenology of high- temperature cuprate superconductors.
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1. Introduction

The normal state of high transition temperature (7,) cuprate superconductors is
known to exhibit non-Fermi liquid behavior in the underdoped regime. Among their
mysterious properties,’ they support pseudogaps and Fermi arcs® instead of closed
Fermi surfaces of ordinary Fermi liquid.? Non-Fermi liquid behavior is also manifested
in the lack of coherence in quasiparticle excitations and unusual transport proper-
ties.l'? Understanding such non-Fermi liquid physics is an exciting challenge we face.

*Corresponding author.
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In an earlier paper,* one of us introduced an extremely simple and exactly solvable
model, and showed that Fermi arcs and pseudogap appear very naturally
(and hand-in-hand) in its ground state and excitation spectrum. That model is a
variant of a model introduced by Hatsugai and Kohmoto (HK)® (a model similar to
that of HK was considered earlier by Baskaran®).

An unusual property of this model® (which we refer to as HKY model from now
on) is that all quasiparticle and quasihole excitations are sharp, albeit being gapped
in the pseudogap region. This is, of course, opposite to non-Fermi liquids where
quasiparticle and quasihole excitations are incoherent, rendering the electron spec-
tral functions very broad. The sharpness of the electron spectral function in the HKY
model is the consequence of the fact that its interaction is local in momentum space
and only gives rise to forward scattering. To remove this artifact, in this paper, we
perturb the HKY model with a (real space) Hubbard interaction, and calculate its
contribution to electron self-energy. We demonstrate that the combined effects of the
Hubbard and HKY interactions render the quasiparticle and quasihole excitations
incoherent, consistent with the cuprate phenomenology. More importantly, our
results point to a novel mechanism that leads to non-Fermi liquid behavior, which is
of strong current interest in the context of strongly correlated metals, where related
non-Fermi liquid behaviors are often observed.

The rest of the paper is organized as follows. In Sec. 2, we introduce the HKY
model perturbed by the Hubbard interaction, and its mean-field solution which gives
rise to Fermi arcs and pseudogap regions. In Sec. 3, we set up the Feynman rules for
perturbative treatments of interactions, and demonstrate that all non-vanishing
diagrams involving HKY interactions form particle—particle and particle-hole lad-
ders that can be summed exactly. In Sec. 4, we calculate the electron self-energy to
the second order in Hubbard interaction, and demonstrate its imaginary part
remains finite in the low-energy limit, resulting in non-Fermi liquid behavior. A brief
summary is provided in Sec. 5.

2. Model and Mean-Field Solution
We start by considering the HK'Y model:

Hygy = Z[Ek(ﬁm + o)) + Uy gy (1)
K

where ¢ is the single-particle energy, ny, = c;rwck(7 is the fermion occupation for
momentum k and spin o = T, |, and wy is the interaction energy between the spin-up
and spin-down particles. When uy is a constant, the model is reduced to the HK

model.”
While (1) is exactly solvable, in preparation for the breakdown of solvability once
the (real space) Hubbard (or any other generic) interaction is introduced we first
introduce a mean-field solution to (1), which we will use as the starting point for
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perturbation theory later on. Note that this mean-field solution is exact for the
ground state and single-particle/hole excitations. We separate the operator 7, into
its expectation value and fluctuation:

kazf = Nko + (Sﬁkm (2)

where ny, = (), and write the Hamiltonian as

Hyxy = Hy + Hy + Hy, (3)
such that
HO = Z Ekaﬁk(ﬂ (4)
ko

- an,fouk’ﬁ‘km (5)
ko

H, = Zukﬁmflkl, (6)
k

where Ey, = €, + ny _,uy, is the single-particle energy within the Hartree approxi-
mation and we denote —o as the opposite spin of . The ground state of H), which is
also the exact ground state of Hyyky, has the following occupation pattern:

0, €x > 0 and €k + Uy > 0,
ng=+<1, <0 and ¢ +u, >0, (7)
2, <0 and e +u,<0

and those regions are distinguished by the surfaces defined by

€x = 0, (8)
e +ux =0, (9)
e = 0. (10)

As pointed out in Ref. 4, we have pseudo-Fermi surfaces across which occupation
numbers change by 2 (An, = 2) where there is a single-particle energy gap of |uy|/2
(i.e. pseudogap), and Fermi-arcs across which occupation numbers change by 1
(Any = 1) with no such gap. In the region with n, = 1, each state can be occupied by
either spin-up or spin-down fermions, resulting in a massive degeneracy. In order to
remove this degeneracy, we can introduce an infinitesimal Zeeman splitting A,
between the spin-up and spin-down fermions:

Hy = AZanT (11)
k

Ay
= 7 Zk:(nm — lel ; nkT + lel (12)

so that the ny = 1 regions are occupied by the spin-down fermions only in the ground
state.* The occupation conditions in ny = 0 and ny, = 2 region would not be affected
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by the Zeeman splitting and remain as they are in Eq. (7). The Fermi arcs are then
the Fermi surfaces for spin-up and spin-down fermions, respectively, albeit they are
not closed (hence arcs). The single-particle Green’s function of H, again the same as
the exact Green’s function of Hyyy is

G() (Wk) _ (1 - nka’)(l - nkﬁa) (1 - nkg’)nk,fﬁ nk7,(,(1 — nk,o’)
o (,L)Jri?]*ﬁ*lek erinfﬁfl(ekJruk) W*in—ﬁflek
Nk,—oMk,—o
h( 13
W—in—ﬁ’l(ek—kuk) ( )
1 —ny, .

wtin—h1lE, w—-in—htE. _,’

where w is the frequency of the particle, k is the momentum of it, and 7 is an
infinitesimal positive. We have already defined ny,, Ey,, €, u earlier where Egs. (1)
and (4)—(6) appear. Here, ny _, gives an opposite spin compared to ny, so that we have
(1 = ny,)(1 — ny ) stands for the ny, = 0 region, ny,ni _, stands for the ny, = 2
region, and (1 — ny,)ny _,, together with ny, (1 — ny _,), stands for the ny, = 1region.

In addition to the Hamiltonian in Eq. (3), we consider a perturbing Hubbard
interaction:

. \%4
HHubba‘rd = VzniTniL = N ZC]T(JquCqule’LCkTa (15)
i kk'q

where V is the interaction strength, 7 is site index, N is system size, k, k’ and q are
the variables for momenta, and cL and ¢y are the creation and annihilation operators
as we defined earlier in ny, = CL,—Cka for Eq. (1). Hence, the full Hamiltonian we
would like to consider is the sum of the HKY Hamiltonian and the Hubbard
interaction:

H = Hyxy + Huwpbara = Ho + H', (16)
where we treat H,, Hy, and Hyypharq perturbatively such that

H' = Hl + H2 + HHubbard' (17)

3. Feynman Rules and Ladder Sums

The Feynman rules can be established following standard textbooks.” We start by
considering the perturbative expansion of the exact single-particle Green’s function
given by the full Hamiltonian in Eq. (16):

1 o0 iV 1 00 o0
Z.Gg(k,t - t/) = E E (— %) J / dtl .. / dtl,
v=0 tY= -

X @ T[H (1) . .. H'(t,)ers (t) e, (8)]|R), (18)

where v is an integer, |®,) is the ground state of Hj, and the denominator D results in
all disconnected diagrams containing the components that are not connected to the
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wko w+ s’k 1
Uk
-—
wko wk 1 s’
(a) (b)

Fig. 1. Vertices given by the interaction resulting from (a) Hy, (b) Hs, and (¢) Hyuppard-

wko wko

Fig. 2. An example of diagrams that are not part of the particle—particle or particle-hole ladder of HKY
interaction (H,). All such diagrams vanish.

rest of the diagram by any lines. We apply Wick’s theorem based on this ex-
pansion so that all the disconnected diagrams could be ignored. In addition, we
introduce a solid line to denote the unperturbed Green’s function Go(w,k) in
Eq. (13), a cross symbol to denote the interaction given by H; in Eq. (5), a
dashed line to denote the one given by H, in Eq. (6), and a wavy line to denote
the Hubbard interaction in Eq. (15). Hence, it is necessary to consider those three
kinds of vertices in Fig. 1. In terms of these diagrammatic components, we find
the diagrams in Fig. 2 cancel each other, where the second one is the Hartree
diagram in terms of the H, interaction. Note this cancellation occurs not only
when they stand alone in the first-order diagram illustrated here, but also when
they are embedded in higher-order diagrams. This cancellation, guaranteed by the
self-consistent Hartree condition, is a significant simplification, as we can now
drop all diagrams that involve the cross symbol given by Fig. 1(a) and/or a
Hartree bubble. Other than this simplification, the Feynman rules are the same
as the usual ones.”

In addition to Fig. 2, another major simplification is all other contributions from
H, interaction can be organized as particle—particle and particle-hole ladder dia-
grams illustrated in Figs. 3 and 4. The first line of the equation in Fig. 4 includes all
particle—particle crossing diagrams, which are equivalent to the particle-hole ladder
diagrams on the following line. Figures 3 and 4 are the only nonzero contributions
given by the H,y term. This is because H, only gives rise to forward scattering, and
cannot create particle—hole pairs. Also for this reason, these ladder diagrams can be
summed up easily because they form geometric series. To see this, we inspect the
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Fig. 3. Particle-particle ladder diagrams.

Pl N
= oo + Y L VA B
\pl s b /// \\\
= | _____ + + Lo ___ +
0 0 —p 0 0, +A s u 0}
pip TAP17P3 ypup | pipth 5 U Ypupl
= L ____ + Lo _____]
0 tp 0 0 0. A 0_ .0
p3p b pap | pi—-s pt Ypi—-s pl
g ——
pip 1A Yrop |

Fig. 4. Particle-hole ladder diagrams.
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Fig. 5. An example of diagrams that are not part of the particle-particle or particle-hole ladder of HKY
interaction (Hs). All such diagrams vanish.

corresponding Bethe—Salpeter equations’

I‘pp(p(l) +pg, pP)

dqo pO +p0
=u(p)+U(p)F(p(f+p3,p)/§G3<%+q°,p GY,

0 0
><<M—q°,p), (19)
and

th(p(l) _pgy p)
0

dg® _o(pl—p
= u(p) + u(p)T'(p! —pi,p)/§G§<%+q°,p GY,

0 0
P11 —Dy
(r-t5) o
where p{, p9 and p} are the frequencies carried by the external propagators. Due to
the forward-scattering nature, there is no momentum integral, as a result, I' does not
enter the integrals on the right-hand side, allowing the integrals to be carried out
explicitly, yielding

u(p)(l -—n U)(]- —n ,70) u(p)n o"lp,—o
Fpp(p(l] - pg,p) = L u(p) L + pu(p? ; (21)
- i(pS+pY)—(Epot+Ep o) +in + R(pV+p9)—(Epe+Ep o) —in
uw(p)(l — npy)Np —o U(P)Npe(l — Ny _4
T} - pp) = P teeltnce PNl Zece) g

1— u(p) i 1
B(p)—pY) —(Epe—Ep—o)+in + 1(pY—pY)—(Epe—Ep,-o ) —in

All other diagrams (which inevitably mix particle-particle and particle-hole ladders)
vanish, an example of which is shown in Fig. 5. This is due to the restrictions on the
occupations in Eqgs. (21) and (22), where we only have the combinations of np,n, _,,
(1 = npe)(1 = np, ) for the former, and (1 — ny,)np — ) 1pe (1 — 1y, ;) for the latter.
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4. The Self-Energy Diagrams

In this section, we study the electron self-energy ¥, (w, k), especially its imaginary part,
which tells us the decay rate and the broadening of the electron spectral function
measured in the angle-resolved photoemission spectroscopy (ARPES):

% = Im¥, (w, k). (23)

We evaluate the self-energy diagrams to the second order of Hubbard interaction (V2),
which is the lowest order that gives rise to an imaginary part. We will, however, include
all contributions from HKY interaction, using the ladder sums performed in the pre-
vious section.
The simplest diagram is the one with Hubbard interaction only (Fig. 6(a)).
Its imaginary part is
A’k d?q

Im¥ 8 (w, k) = V2/ on)? @n?

X [(1 — nkg)nkJrq’U(l — nk@_a)nk/_q,_a
- nka(l - nk+q,o)nk’,ﬂr(1 - nk’fq,fa)]a (24)
which yields the familiar Fermi liquid result near the (pseudo) Fermi surface:

6(0} + Ek’ﬁa + Ek’fq,fo - Ek+q,o)

Im¥ 8 (w, k) ~ —D*V2(hw)?, (25)

where D is the density of states at the non-interacting Fermi level. We note
however this results in much more broadening in the pseudogap region as the
quasiparticle energy hw ~ |u| is bounded below by the size of the pseudogap,
compared to that near the Fermi arcs where fiw can be arbitrary small. This is
consistent with the cuprate phenomenology.

We now turn to the diagrams that involve HKY interaction (H,). Those diagrams
are in Fig. 6. Here, we present the calculation on the self-energy diagram given by
Fig. 6(b) as an example. A full calculation on each diagram is presented in the
appendix of the arXiv version.'?

After performing the frequency integrals, the corresponding imaginary part of
Fig. 6(b) takes the following form:

d*q
o)
O+ Borng o — By — B o — ugl(1 — )

X (1 =ng o) xi2q-—0 — [0(W+ E_yi9q-0 — Ego — Eq—0)
=W+ E yi9q-0— Eqo — Eq o + Ug)|NgoNq, o (1 = N _ki0q,0)}-
(26)

Imy 8O (w, k) = 712 / {0+ E x990~ Ego— Eq_o)

Note that compared to Eq. (24) we have one fewer momentum integral to perform,
despite the extra loop. This is due to the fact HKY interaction forces the propagators
coupled by it to have the same momentum. This simplification changes the phase
space constraints significantly and enhances Im ¥, as we demonstrate in the following.
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(2)

(b) (c) (d) (e)

(f) (2) (h) )

Fig. 6. Self-energy Feynman diagrams to the second order in Hubbard interaction (V2). (a) The self-
energy diagrams in the second order with Hubbard interaction only. (b)—(i) The self-energy diagrams with
both Hubbard and the HKY (H,) interactions.

To bring Eq. (26) to a form closer to Eq. (24), letting —k + 2q — ¢, we treat q’
as an additional integration variable, compensated by an additional delta
function. Rewrite the integrals in terms of the polar coordinates such that (g,,q,) =
(qcos ¢, gsing) and (q),q;) = (¢ cos ¢/, ¢ sin¢'). Equation (26) becomes

. 1 1
St k) = 7V o [ adad g dgas’ o — | =l 2aD8(0 = 61z
x {60+ By — 2eq) — 8(w + By — 26q — uq)|f(cq)
XO(—Ey ) — 0w+ Eq _, — 264 — 2uy)
— 0w+ Ey_, — 264 — 2uq + uq)]
X 0(—eq — uq)0(Eq o) }- (27)
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We transform the integral from [qdgddd to [dedE'J(e,E',¢,¢') and
JdEdE' dpd¢', where € = €, E = €, + ug, and E' = Ey _,, and the Jacobian

q’
8 oq
(6 EI (b ¢) q 82/ - D(€a¢)D(E/7¢,)a (28)
J(E,E',6,¢') = 8‘1 2L~ p(B,6)D(E, ) (29)
b b b aE aEl b b b
with the angle-dependent density of states
_ %
Dled) = a5, (30)
_ 9
D(E,6) = apt. (31)
D(E.¢)=d ot (32
’ OF' "

In a two-dimensional system, it is a good approximation to treat them as a constant
in terms of density of states D:

D(e,p)D(E',¢') = D(E, ) D(E', ¢') = (27D)*. (33)
Equation (27) then becomes
Ime 8 (w, k) ~ i%DQ{ / dedE'dgdg/ q%a( (¢ — b _xi2q)
X [8(w+ E' —2€) — §(w+ E' — 2¢ + ug)]0(e)0(—E)
- / dEdE’d(bd(b’%&( |kqi+2q|) 6(¢" = ¢ xr2q)

X [§(w+ E' — 2B) — §(w + E' — 2E + uq)]ﬁ(—E)Q(E’)}, (34)

| — k+2q|>
q

where we have four integrals and three delta functions, and we let
6(¢ — | —k+2q|) — %6(1 - I—kq_ﬂq\) We then consider the angle integral on ¢'. In
order to express | — k + 2q|, ¢, ¢ in terms of the integral variables and their corre-
sponding angle dependence, we solve the equation E(k, ¢\ ) = E so that k = f(E, ¢).
Rewriting u, = u,,, the approximate equation (34) becomes

Imy 8 (w, k) ~ i%7D? / de/s(¢' — ¢_k+2q)
Y _ ¢ k+2q :|
{/ dedErd¢ fZ(E’ o’ [l (B, &)
[5(w+E’—26)—6(w—|—E—26+ufm 5)]0(€)0(—E")

_ / ABAE' i)y ¢,)5[1 _IE ];‘5/ ‘;;2‘1

X [6(w+ E —2E) —6(w+ E —2E + uypg)4)] 0(—E)9(E’)}. (35)
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Performing the angle integral over ¢’ yields

X80 (w, k) ~ 7D { / dedE'd¢ Llwq))}

. — -
E. ¢ k+2q) |: ( ¢

T
X [O(w+ B —2€) = 6(w+ E' — 2€ + uy 9)6)]0()0(—E')
_ ! 1 _ ( ¢ k+2q )
/dEdE ¢ fQ(E'7¢k+2q>6{1 fE 7¢k+2q>]

X [6(w+ E —2E) — §(w+ E' —2E + uf(E7¢),¢)]6(—E)0(E’)}. (36)

We note that ¢_i 94 can be further replaced by another function g in terms of k, ¢, &/
and ¢. Equation (35) becomes

Im% 8 (w, k) ~ mDQ{/ dedE'd¢ . Tt 2 ¢<£]}

o Ul oo
X[0(w+ E" —2€) — 6(w+ E" — 2+ ug(c g)4)]0(€)0(—E)

) , 1B, gk B, 9)]
/ WEAE A B g B, 9)] {1 f[E/,g(k,E,qb)]}

x [6(w+ E —2E) —6(w+ E —2E + uf(E"(p),o)]Q(—E)G(E’)}. (37)

We first perform the integral over ¢. The remaining delta functions give us ¢’s
dependence on k, €, F and F’, and we denote it as a function h. Hence, (37) becomes

Im 250 (w, k)
1
~ -6 D? El
o {/ I BT gl b, B}
X [8(w+ E"—2€) — 6(w + E" — 2€ + e h.e, )] h(ke. 7)) | 0(€)0(—E')
1

— dEdE'
/ JHE gk, E, Wk, E, E')]}

) [+ B — 2B) — 8w+ E' — 2B + s nge oy e 0~ EYO(E') } (38)

While we do not know the exact form of the terms 1/ f2, they give us quantities of order
1/(Fermi momentum)?, which is of order O(1) for generic lattice filling. Its dependence
on €, F, E' and k is unimportant due to the phase space constraints, as will become
clear soon. We are then left with integrals with energy variables ¢, F and E:

%8 (w, k) ~ i57V2D? x {/ dedE'|6(w + E' —2¢€) — §(w+ E' — 2¢

— Ufle (ke )] h(ke, )] 0(€)0(—E')
- / dEE'[6(w+ E' — 2E) — §(w+ E' — 2E

+ UfE he, BB h kBB )] X 9(—E)9(E/)}- (39)
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We can then carry out the integral by assuming g (ke ) h(ke.B)

R U f1,h(k,E, )| h(k, E,E7) ~ [u], where |u| is some constant average over u s i (ke g)) (k.. ")
or uf[E,h(k,E<E’)],h,(k,E,E’)' The integrals over E/ give

e (w, k) ~ iGwVQDQ{/ def(e)[0(—2€ + w) — O(—2¢ + w — |u])]—
y /dEG(E)[H(—2E+w) —Y(—2E tw— |u|)]}. (40)

The integrals on €, F give

80 (w, k) ~ 0712 K;’ - ;'“') = (w _er |u|)] (41)

2 2

_ a2 [@_ (_ @)} (42)
= i%7V2D?|ul. (43)

Here, we note that the linearity in |u| comes from the energy integral per the phase space
restrictions given by the step functions 6(—2¢ +w), 0(—2¢ 4w —uy), O(F), and
6(—2F + w + ug). The final result would not be exactly linear in |u|. Hence, we append a
function f(k) varying in k:

35" (w, k) & —7V2D?|ulf(k), (44)

where f(k) is a dimensionless quantity of order O(1). Letting w — F),, we obtain the

self-energy results from other diagrams:
g0 (k) & 2 VDui (e — i), (45)

M8 (k) ~ 28" (k) ~ T80 (k) & —7V2D2up (g — mye_y)?- (46)

The rest imaginary parts resulting from Figs. 6(c), 6(d) and 6(e) share the same form but
appear more complicated as we presented later in the appendix in the arXiv version.!?
However, since we are only interested in the cases that occur near Fermi arcs and pseudo-
Fermi surfaces, further simplifications can be done so that overall these imaginary parts
results in zero or a quantity linear in wy.

5. Summary and Discussions

In this paper, we studied the model introduced in Ref. 4 (referred to as HKY model)
which gives rise to Fermi arcs and pseudogap, perturbed by Hubbard interaction. We
found the combination of Hubbard and HKY interactions gives rise to a nonzero
imaginary part to the electron self-energy in the low-energy limit. The origin of such
non-Fermi liquid behavior lies in the singular nature of HKY interaction, which has
infinite range in real space.

While our work was motivated by the cuprates, and gives rise to results that are
qualitatively consistent with its phenomenology, the specific (and certainly
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over-simplified) model we studied should not be taken as a realistic description of the
physics of cuprates. Its value lies, instead, in

(1)

(2)

Its simplicity which demonstrates not only the possibility of Fermi arcs and
pseudogap, but also that they go hand-in-hand with each other and with the
observed non-Fermi liquid behavior. In fact, recent years have witnessed in-
creasing activities in research using models that are extensions of the HK
model® !
conductivity itself.

A starting point to build more realistic models for cuprates and other strongly
correlated electron systems.

aimed at understanding cuprate phenomenology, including super-
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