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In this paper, we consider a perturbed version of a very simple and exactly solvable model that
supports Fermi arcs and pseudogap in its ground state and excitation spectrum, which includes

Hubbard-like interactions in both momentum and real spaces. We ¯nd that the combined e®ects

give rise to non-Fermi liquid behavior in the electron self-energy. This points to a novel
mechanism that leads to non-Fermi liquid behavior, which is of strong current interest in the

context of strongly correlated metals, that often become superconductors. Comparison will be

made with phenomenology of high- temperature cuprate superconductors.
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1. Introduction

The normal state of high transition temperature (Tc) cuprate superconductors is

known to exhibit non-Fermi liquid behavior in the underdoped regime. Among their

mysterious properties,1 they support pseudogaps and Fermi arcs2 instead of closed

Fermi surfaces of ordinary Fermi liquid.3 Non-Fermi liquid behavior is also manifested

in the lack of coherence in quasiparticle excitations and unusual transport proper-

ties.1,2 Understanding such non-Fermi liquid physics is an exciting challenge we face.
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In an earlier paper,4 one of us introduced an extremely simple and exactly solvable

model, and showed that Fermi arcs and pseudogap appear very naturally

(and hand-in-hand) in its ground state and excitation spectrum. That model is a

variant of a model introduced by Hatsugai and Kohmoto (HK)5 (a model similar to

that of HK was considered earlier by Baskaran6).

An unusual property of this model4 (which we refer to as HKY model from now

on) is that all quasiparticle and quasihole excitations are sharp, albeit being gapped

in the pseudogap region. This is, of course, opposite to non-Fermi liquids where

quasiparticle and quasihole excitations are incoherent, rendering the electron spec-

tral functions very broad. The sharpness of the electron spectral function in the HKY

model is the consequence of the fact that its interaction is local in momentum space

and only gives rise to forward scattering. To remove this artifact, in this paper, we

perturb the HKY model with a (real space) Hubbard interaction, and calculate its

contribution to electron self-energy. We demonstrate that the combined e®ects of the

Hubbard and HKY interactions render the quasiparticle and quasihole excitations

incoherent, consistent with the cuprate phenomenology. More importantly, our

results point to a novel mechanism that leads to non-Fermi liquid behavior, which is

of strong current interest in the context of strongly correlated metals, where related

non-Fermi liquid behaviors are often observed.

The rest of the paper is organized as follows. In Sec. 2, we introduce the HKY

model perturbed by the Hubbard interaction, and its mean-¯eld solution which gives

rise to Fermi arcs and pseudogap regions. In Sec. 3, we set up the Feynman rules for

perturbative treatments of interactions, and demonstrate that all non-vanishing

diagrams involving HKY interactions form particle–particle and particle–hole lad-

ders that can be summed exactly. In Sec. 4, we calculate the electron self-energy to

the second order in Hubbard interaction, and demonstrate its imaginary part

remains ¯nite in the low-energy limit, resulting in non-Fermi liquid behavior. A brief

summary is provided in Sec. 5.

2. Model and Mean-Field Solution

We start by considering the HKY model:

HHKY ¼
X
k

½�kðn̂k" þ n̂k#Þ þ ukn̂k"n̂k#�; ð1Þ

where �k is the single-particle energy, nk� ¼ c†k�ck� is the fermion occupation for

momentum k and spin � ¼ "; #, and uk is the interaction energy between the spin-up

and spin-down particles. When uk is a constant, the model is reduced to the HK

model.5

While (1) is exactly solvable, in preparation for the breakdown of solvability once

the (real space) Hubbard (or any other generic) interaction is introduced we ¯rst

introduce a mean-¯eld solution to (1), which we will use as the starting point for
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perturbation theory later on. Note that this mean-¯eld solution is exact for the

ground state and single-particle/hole excitations. We separate the operator n̂k� into

its expectation value and °uctuation:

n̂k� ¼ nk� þ �n̂k�; ð2Þ
where nk� ¼ hn̂k�i, and write the Hamiltonian as

HHKY ¼ H0 þH1 þH2; ð3Þ
such that

H0 ¼
X
k�

Ek�n̂k�; ð4Þ

H1 ¼ �
X
k�

nk;��ukn̂k�; ð5Þ

H2 ¼
X
k

ukn̂k"n̂k#; ð6Þ

where Ek� ¼ �k þ nk;��uk, is the single-particle energy within the Hartree approxi-

mation and we denote �� as the opposite spin of �. The ground state of H0, which is

also the exact ground state of HHKY, has the following occupation pattern:

nk ¼
0; �k > 0 and �k þ uk > 0;

1; �k < 0 and �k þ uk > 0;

2; �k < 0 and �k þ uk < 0

8<
: ð7Þ

and those regions are distinguished by the surfaces de¯ned by

�k ¼ 0; ð8Þ
�k þ uk ¼ 0; ð9Þ

uk ¼ 0: ð10Þ
As pointed out in Ref. 4, we have pseudo-Fermi surfaces across which occupation

numbers change by 2 (�nk ¼ 2) where there is a single-particle energy gap of jukj=2
(i.e. pseudogap), and Fermi-arcs across which occupation numbers change by 1

(�nk ¼ 1) with no such gap. In the region with nk ¼ 1, each state can be occupied by

either spin-up or spin-down fermions, resulting in a massive degeneracy. In order to

remove this degeneracy, we can introduce an in¯nitesimal Zeeman splitting �Z

between the spin-up and spin-down fermions:

HZ ¼ �Z

X
k

nk" ð11Þ

¼ �Z

2

X
k

ðnk" � nk#Þ þ
�Z

2

X
k

ðnk" þ nk#Þ; ð12Þ

so that the nk ¼ 1 regions are occupied by the spin-down fermions only in the ground

state.4 The occupation conditions in nk ¼ 0 and nk ¼ 2 region would not be a®ected
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by the Zeeman splitting and remain as they are in Eq. (7). The Fermi arcs are then

the Fermi surfaces for spin-up and spin-down fermions, respectively, albeit they are

not closed (hence arcs). The single-particle Green's function of H0, again the same as

the exact Green's function of HHKY is

G0
�ð!kÞ ¼

ð1� nk�Þð1� nk;�Þ
!þ i� � }�1�k

þ ð1� nk�Þnk;��

!þ i� � }�1ð�k þ ukÞ
þ nk;��ð1� nk;�Þ

!� i� � }�1�k

þ nk;��nk;��

!� i� � }�1ð�k þ ukÞ
ð13Þ

¼ ð1� nk�Þ
!þ i� � }�1Ek�

þ nk�

!� i� � }�1Ek;��

; ð14Þ

where ! is the frequency of the particle, k is the momentum of it, and � is an

in¯nitesimal positive. We have already de¯ned nk�, Ek�, �k, uk earlier where Eqs. (1)

and (4)–(6) appear. Here, nk;�� gives an opposite spin compared tonk� so that we have

ð1� nk�Þð1� nk;��Þ stands for the nk� ¼ 0 region, nk�nk;�� stands for the nk� ¼ 2

region, and ð1� nk�Þnk;��, togetherwithnk�ð1� nk;��Þ, stands for thenk� ¼ 1 region.

In addition to the Hamiltonian in Eq. (3), we consider a perturbing Hubbard

interaction:

HHubbard ¼ V
X
i

n̂i"n̂i# ¼
V

N

X
kk0q

c†kþq"c
†
k0�q#ck0#ck"; ð15Þ

where V is the interaction strength, i is site index, N is system size, k, k0 and q are

the variables for momenta, and c†k and ck are the creation and annihilation operators

as we de¯ned earlier in nk� ¼ c†k�ck� for Eq. (1). Hence, the full Hamiltonian we

would like to consider is the sum of the HKY Hamiltonian and the Hubbard

interaction:

H ¼ HHKY þHHubbard ¼ H0 þH0; ð16Þ
where we treat H1, H2, and HHubbard perturbatively such that

H0 ¼ H1 þH2 þHHubbard: ð17Þ

3. Feynman Rules and Ladder Sums

The Feynman rules can be established following standard textbooks.7 We start by

considering the perturbative expansion of the exact single-particle Green's function

given by the full Hamiltonian in Eq. (16):

iG�ðk; t� t0Þ ¼ 1

D

X1
�¼0

� i

}

� �
� 1

�!

Z 1

�1
dt1 . . .

Z 1

�1
dt�

� h�0jT ½H0ðt1Þ . . .H0ðt�Þck�ðtÞc†k�ðt0Þ�j�0i; ð18Þ
where � is an integer, j�0i is the ground state ofH0, and the denominatorD results in

all disconnected diagrams containing the components that are not connected to the
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rest of the diagram by any lines. We apply Wick's theorem based on this ex-

pansion so that all the disconnected diagrams could be ignored. In addition, we

introduce a solid line to denote the unperturbed Green's function G0
�ð!;kÞ in

Eq. (13), a cross symbol to denote the interaction given by H1 in Eq. (5), a

dashed line to denote the one given by H2 in Eq. (6), and a wavy line to denote

the Hubbard interaction in Eq. (15). Hence, it is necessary to consider those three

kinds of vertices in Fig. 1. In terms of these diagrammatic components, we ¯nd

the diagrams in Fig. 2 cancel each other, where the second one is the Hartree

diagram in terms of the H2 interaction. Note this cancellation occurs not only

when they stand alone in the ¯rst-order diagram illustrated here, but also when

they are embedded in higher-order diagrams. This cancellation, guaranteed by the

self-consistent Hartree condition, is a signi¯cant simpli¯cation, as we can now

drop all diagrams that involve the cross symbol given by Fig. 1(a) and/or a

Hartree bubble. Other than this simpli¯cation, the Feynman rules are the same

as the usual ones.7

In addition to Fig. 2, another major simpli¯cation is all other contributions from

H2 interaction can be organized as particle–particle and particle–hole ladder dia-

grams illustrated in Figs. 3 and 4. The ¯rst line of the equation in Fig. 4 includes all

particle–particle crossing diagrams, which are equivalent to the particle–hole ladder

diagrams on the following line. Figures 3 and 4 are the only nonzero contributions

given by the H2 term. This is because H2 only gives rise to forward scattering, and

cannot create particle–hole pairs. Also for this reason, these ladder diagrams can be

summed up easily because they form geometric series. To see this, we inspect the

Fig. 1. Vertices given by the interaction resulting from (a) H1, (b) H2, and (c) HHubbard.

Fig. 2. An example of diagrams that are not part of the particle–particle or particle–hole ladder of HKY
interaction (H2). All such diagrams vanish.
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Fig. 3. Particle-particle ladder diagrams.

Fig. 4. Particle-hole ladder diagrams.
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corresponding Bethe–Salpeter equations7

�ppðp0
1 þ p0

2;pÞ

¼ uðpÞ þ uðpÞ�ðp0
1 þ p0

2;pÞ
Z

dq0

2�
G 0

�

p0
1 þ p0

2

2
þ q0;p

� �
G0

��

� p0
1 þ p0

2

2
� q0;p

� �
; ð19Þ

and

�phðp0
1 � p0

4;pÞ

¼ uðpÞ þ uðpÞ�ðp0
1 � p0

4;pÞ
Z

dq0

2�
G 0

�

p0
1 � p0

4

2
þ q0;p

� �
G0

��

� q0 � p0
1 � p0

4

2
;p

� �
; ð20Þ

where p0
1, p

0
2 and p0

4 are the frequencies carried by the external propagators. Due to

the forward-scattering nature, there is no momentum integral, as a result, � does not

enter the integrals on the right-hand side, allowing the integrals to be carried out

explicitly, yielding

�ppðp0
1 � p0

2;pÞ ¼
uðpÞð1� np�Þð1� np;��Þ
1� uðpÞ

}ðp 0
1
þp 0

2
Þ�ðEp�þEp;��Þþi�

þ uðpÞnp�np;��

1þ uðpÞ
}ðp 0

1
þp 0

2
Þ�ðEp�þEp;��Þ�i�

; ð21Þ

�phðp0
1 � p0

4;pÞ ¼
uðpÞð1� np�Þnp;��

1� uðpÞ
}ðp 0

1
�p 0

4
Þ�ðEp��Ep;��Þþi�

þ uðpÞnp�ð1� np;��Þ
1þ uðpÞ

}ðp 0
1
�p 0

4
Þ� Ep��Ep;��ð Þ�i�

: ð22Þ

All other diagrams (which inevitably mix particle–particle and particle–hole ladders)

vanish, an example of which is shown in Fig. 5. This is due to the restrictions on the

occupations in Eqs. (21) and (22), where we only have the combinations of np�np;��,

ð1� np�Þð1� np;��Þ for the former, and ð1� np�Þnp;��, np�ð1� np;��Þ for the latter.

Fig. 5. An example of diagrams that are not part of the particle–particle or particle–hole ladder of HKY

interaction (H2). All such diagrams vanish.
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4. The Self-Energy Diagrams

In this section,we study the electron self-energy��ð!;kÞ, especially its imaginary part,

which tells us the decay rate and the broadening of the electron spectral function

measured in the angle-resolved photoemission spectroscopy (ARPES):

1

�
¼ Im��ð!;kÞ: ð23Þ

We evaluate the self-energy diagrams to the second order of Hubbard interaction (V 2),

which is the lowest order that gives rise to an imaginary part.Wewill, however, include

all contributions from HKY interaction, using the ladder sums performed in the pre-

vious section.

The simplest diagram is the one with Hubbard interaction only (Fig. 6(a)).

Its imaginary part is

Im�6ðaÞ
� ð!;kÞ ¼ V 2

Z
d2k0

ð2�Þ2
d2q

ð2�Þ2 �ð!þ Ek0;�� þ Ek0�q;�� � Ekþq;�Þ

� ½ð1� nk�Þnkþq;�ð1� nk0;��Þnk0�q;��

� nk�ð1� nkþq;�Þnk0;��ð1� nk0�q;��Þ�; ð24Þ
which yields the familiar Fermi liquid result near the (pseudo) Fermi surface:

Im�6ðaÞ
� ð!;kÞ � �D3V 2ð}!Þ2; ð25Þ

where D is the density of states at the non-interacting Fermi level. We note

however this results in much more broadening in the pseudogap region as the

quasiparticle energy }! � juj is bounded below by the size of the pseudogap,

compared to that near the Fermi arcs where }! can be arbitrary small. This is

consistent with the cuprate phenomenology.

We now turn to the diagrams that involve HKY interaction (H2). Those diagrams

are in Fig. 6. Here, we present the calculation on the self-energy diagram given by

Fig. 6(b) as an example. A full calculation on each diagram is presented in the

appendix of the arXiv version.12

After performing the frequency integrals, the corresponding imaginary part of

Fig. 6(b) takes the following form:

Im�6ðbÞ
� ð!;kÞ ¼ i6�V 2

Z
d2q

ð2�Þ2 f½�ð!þE�kþ2q;�� �Eq� � Eq;��Þ

� �ð!þ E�kþ2q;�� � Eq� � Eq;�� � uq�ð1� nq�Þ
� ð1� nq;��Þn�kþ2q;�� � ½�ð!þE�kþ2q;�� �Eq� � Eq;��Þ
� �ð!þ E�kþ2q;�� � Eq� � Eq;�� þ uqÞ�nq�nq;��ð1� n�kþ2q;��Þg:

ð26Þ
Note that compared to Eq. (24) we have one fewer momentum integral to perform,

despite the extra loop. This is due to the fact HKY interaction forces the propagators

coupled by it to have the same momentum. This simpli¯cation changes the phase

space constraints signi¯cantly and enhances Im �, as we demonstrate in the following.
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To bring Eq. (26) to a form closer to Eq. (24), letting �kþ 2q ! q0, we treat q0

as an additional integration variable, compensated by an additional delta

function. Rewrite the integrals in terms of the polar coordinates such that ðqx; qyÞ ¼
ðq cos	; q sin	Þ and ðq 0x; q 0yÞ ¼ ðq0 cos	0; q0 sin	0Þ. Equation (26) becomes

Im�6ðbÞ
� ð!;kÞ ¼ i6�V 2 1

ð2�Þ2
Z

qdqq0dq0d	d	0 1

q0
�ðq0 � j � kþ 2qjÞ�ð	0 � 	�kþ2qÞ

� f½�ð!þEq0;�� � 2�qÞ � �ð!þ Eq0;�� � 2�q � uqÞ�
ð�qÞ
� 
ð�Eq0;��Þ � ½�ð!þ Eq0;�� � 2�q � 2uqÞ
� �ð!þ Eq0;�� � 2�q � 2uq þ uqÞ�
� 
ð��q � uqÞ
ðEq0;��Þg: ð27Þ

Fig. 6. Self-energy Feynman diagrams to the second order in Hubbard interaction (V 2). (a) The self-

energy diagrams in the second order with Hubbard interaction only. (b)–(i) The self-energy diagrams with
both Hubbard and the HKY (H2) interactions.
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We transform the integral from
R
qdqq0dq0 to

R
d�dE0Jð�;E0; 	; 	0Þ andR

dEdE0d	d	0, where � ¼ �q, E ¼ �q þ uq, and E0 ¼ Eq0;��, and the Jacobian

Jð�;E0; 	; 	0Þ ¼ q
@q

@�
q0

@q0

@E0 ¼ Dð�; 	ÞDðE0; 	0Þ; ð28Þ

JðE;E0; 	; 	0Þ ¼ q
@q

@E
q0

@q0

@E0 ¼ DðE; 	ÞDðE0; 	0Þ; ð29Þ

with the angle-dependent density of states

Dð�; 	Þ ¼ q
@q

@�
; ð30Þ

DðE; 	Þ ¼ q
@q

@E
; ð31Þ

DðE0; 	0Þ ¼ q0
@q0

@E0 : ð32Þ

In a two-dimensional system, it is a good approximation to treat them as a constant

in terms of density of states D:

Dð�; 	ÞDðE0; 	0Þ � DðE; 	ÞDðE0; 	0Þ � ð2�DÞ2: ð33Þ
Equation (27) then becomes

Im�6ðbÞ
� ð!;kÞ � i6�D2

Z
d�dE0d	d	0 1

q02
� 1� j � kþ 2qj

q0

� �
�ð	0 � 	�kþ2qÞ

�

� ½�ð!þ E0 � 2�Þ � �ð!þE0 � 2�þ uqÞ�
ð�Þ
ð�E0Þ

�
Z

dEdE0d	d	0 1

q02
� 1� j � kþ 2qj

q0

� �
�ð	0 � 	�kþ2qÞ

� ½�ð!þ E0 � 2EÞ � �ð!þ E0 � 2E þ uqÞ�
ð�EÞ
ðE0Þ
�
; ð34Þ

where we have four integrals and three delta functions, and we let

�ðq0 � j � kþ 2qjÞ ! 1
q0 �ð1� j�kþ2qj

q0 Þ. We then consider the angle integral on 	0. In
order to express j � kþ 2qj, q, q0 in terms of the integral variables and their corre-

sponding angle dependence, we solve the equation Eðk; 	kÞ ¼ E so that k ¼ fðE; 	Þ.
Rewriting uq ¼ uq	, the approximate equation (34) becomes

Im�6ðbÞ
� ð!;kÞ � i6�D2

Z
d	0�ð	0 � 	�kþ2qÞ

�
Z

d�dE0d	
1

f2ðE0; 	0Þ � 1� fð�; 	�kþ2qÞ
fðE0; 	0Þ

� ��

� �ð!þ E0 � 2�Þ � �ð!þ E0 � 2�þ ufð�;	Þ;	Þ
� 	


ð�Þ
ð�E0Þ

�
Z

dEdE0d	
1

f2ðE0; 	0Þ � 1� fðE; 	�kþ2qÞ
fðE0; 	0Þ

� �

� �ð!þ E0 � 2EÞ � �ð!þE0 � 2E þ ufðE;	Þ;	Þ
� 	


ð�EÞ
ðE0Þ
�
: ð35Þ
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Performing the angle integral over 	0 yields

Im�6ðbÞ
� ð!;kÞ � i6�D2

Z
d�dE0d	

1

f2ðE0; 	�kþ2qÞ
� 1� fð�; 	�kþ2qÞ

fðE0; 	�kþ2qÞ
� ��

� ½�ð!þE0 � 2�Þ � �ð!þ E0 � 2�þ ufð�;	Þ;	Þ�
ð�Þ
ð�E0Þ

�
Z

dEdE0d	
1

f2ðE0; 	�kþ2qÞ
� 1� fðE; 	�kþ2qÞ

fðE0; 	�kþ2qÞ
� �

� �ð!þ E0 � 2EÞ � �ð!þ E0 � 2E þ ufðE;	Þ;	Þ
� 	


ð�EÞ
ðE0Þ
�
: ð36Þ

We note that 	�kþ2q can be further replaced by another function g in terms of k, �, E

and 	. Equation (35) becomes

Im�6ðbÞ
� ð!;kÞ � i6�D2

Z
d�dE0d	

1

f2½E0; gðk; �; 	Þ� � 1� f½�; gðk; �; 	Þ�
f½E0; gðk; �; 	Þ�

� ��

�½�ð!þ E0 � 2�Þ � �ð!þE0 � 2�þ ufð�;	Þ;	Þ�
ð�Þ
ð�E0Þ

�
Z

dEdE0d	
1

f2½E0; gðk;E; 	Þ� � 1� f½E; gðk;E; 	Þ�
f½E0; gðk;E; 	Þ�

� �

� ½�ð!þ E0 � 2EÞ � �ð!þ E0 � 2E þ ufðE;	Þ;	Þ�
ð�EÞ
ðE0Þ
�
: ð37Þ

We ¯rst perform the integral over 	. The remaining delta functions give us 	's

dependence on k, �, E and E0, and we denote it as a function h. Hence, (37) becomes

Im �6ðbÞ
� ð!;kÞ

� i6�D2

Z
d�dE0 1

f2fE0; g½k; �;hðk; �;E0Þ�g
�

� ½�ð!þ E0 � 2�Þ � �ð!þE0 � 2�þ uf½�;hðk;�;E0Þ�;hðk;�;E0ÞÞ�
ð�Þ
ð�E0Þ
�

Z
dEdE0 1

f2fE0; g½k;E;hðk;E;E0Þ�g
� ½�ð!þ E0 � 2EÞ � �ð!þ E0 � 2E þ uf½E;hðk;E;E0Þ�;hðk;E;E0ÞÞ�
ð�EÞ
ðE0Þ

�
: ð38Þ

While we do not know the exact form of the terms 1=f2, they give us quantities of order

1=ðFermi momentumÞ2, which is of orderOð1Þ for generic lattice ¯lling. Its dependence
on �, E, E0 and k is unimportant due to the phase space constraints, as will become

clear soon. We are then left with integrals with energy variables �, E and E0:

Im�6ðbÞ
� ð!;kÞ � i6�V 2D2 �

Z
d�dE0½�ð!þ E0 � 2�Þ � �ð!þ E0 � 2�

�

� uf½�;hðk;�;E0Þ�;hðk;�;E0ÞÞ�
ð�Þ
ð�E0Þ
�
Z

dEdE0½�ð!þE0 � 2EÞ � �ð!þE0 � 2E

þ uf½E;hðk;E;E0Þ�;hðk;E;E0ÞÞ� � 
ð�EÞ
ðE0Þ
�
: ð39Þ
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We can then carry out the integral by assuming uf½�;hðk;�;E0Þ�;hðk;�;E0Þ
� uf½E;hðk;E;E0Þ�;hðk;E;E0Þ � juj, where juj is some constant average overuf½�;hðk;�;E0Þ�;hðk;�;E0Þ
or uf½E;hðk;E;E0Þ�;hðk;E;E0Þ. The integrals over E0 give

Im�6ðbÞ
� ð!;kÞ � i6�V 2D2

Z
d�
ð�Þ½
ð�2�þ !Þ � 
ð�2�þ !� jujÞ��

�

�
Z

dE
ðEÞ½
ð�2E þ !Þ � 
ð�2E þ !� jujÞ�
�
: ð40Þ

The integrals on �, E give

Im�6ðbÞ
� ð!;kÞ � i6�V 2 !

2
� !� juj

2

� �
� !

2
� !þ juj

2

� �� �
ð41Þ

¼ i6�V 2D2 juj
2

� � juj
2

� �� �
ð42Þ

¼ i6�V 2D2juj: ð43Þ
Here, we note that the linearity in juj comes from the energy integral per the phase space

restrictions given by the step functions 
ð�2�þ !Þ, 
ð�2�þ !� uqÞ, 
ðEÞ, and


ð�2E þ !þ uqÞ. The ¯nal resultwould not be exactly linear in juj. Hence,we append a

function fðkÞ varying in k:

Im�6ðbÞ
� ð!;kÞ � ��V 2D2jujfðkÞ; ð44Þ

where fðkÞ is a dimensionless quantity of order Oð1Þ. Letting ! ! Ek�, we obtain the

self-energy results from other diagrams:

Im�6ðfÞ
� ðkÞ � ��

2
V 2D2ukðnk� � nk;��Þ; ð45Þ

Im�6ðgÞ
� ðkÞ � Im�6ðhÞ

� ðkÞ � Im�6ðiÞ
� ðkÞ � ��V 2D2ukðnk� � nk;��Þ2: ð46Þ

The rest imaginary parts resulting fromFigs. 6(c), 6(d) and 6(e) share the same formbut

appear more complicated as we presented later in the appendix in the arXiv version.12

However, sinceweare only interested in the cases that occur nearFermi arcs andpseudo-

Fermi surfaces, further simpli¯cations can be done so that overall these imaginary parts

results in zero or a quantity linear in uk.

5. Summary and Discussions

In this paper, we studied the model introduced in Ref. 4 (referred to as HKY model)

which gives rise to Fermi arcs and pseudogap, perturbed by Hubbard interaction. We

found the combination of Hubbard and HKY interactions gives rise to a nonzero

imaginary part to the electron self-energy in the low-energy limit. The origin of such

non-Fermi liquid behavior lies in the singular nature of HKY interaction, which has

in¯nite range in real space.

While our work was motivated by the cuprates, and gives rise to results that are

qualitatively consistent with its phenomenology, the speci¯c (and certainly

R. Wang & K. Yang
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over-simpli¯ed) model we studied should not be taken as a realistic description of the

physics of cuprates. Its value lies, instead, in

(1) Its simplicity which demonstrates not only the possibility of Fermi arcs and

pseudogap, but also that they go hand-in-hand with each other and with the

observed non-Fermi liquid behavior. In fact, recent years have witnessed in-

creasing activities in research using models that are extensions of the HK

model8–11 aimed at understanding cuprate phenomenology, including super-

conductivity itself.

(2) A starting point to build more realistic models for cuprates and other strongly

correlated electron systems.
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