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String-like theory of quantum Hall interfaces
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We derive the effective theories for quantum Hall droplets with attractive interaction among the constituent
particles. In the absence of confining potentials, such droplets are defined by their freely moving interfaces
(or boundaries) with the vacuum. We demonstrate that the effective theories take forms like string theories.
Generalization to interfaces between different quantum Hall liquids is discussed.
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I. INTRODUCTION

The quantum Hall (QH) effect is one of the most active
research fields in condensed matter physics [1]. There are
many different approaches to describe QH physics [2–8]. In
the bulk, the low-energy effective theory of a QH liquid is the
Chern-Simons (CS) theory [9]. At the edge, the low-energy
effective theory consists of two pieces: The topological and
dynamical pieces [9]. The topological piece is dictated by
the bulk CS theory (known as bulk-edge correspondence) so
that the overall theory describing the bulk and the edge is
gauge invariant. Just like the bulk CS theory, it describes
the degrees of freedom at the edge (usually chiral bosonic
and Majorana fermionic modes) but contains no dynamical
information. Dynamics at the edge comes from the external
confining potential, which determines the location of the edge
and dictates the edge Hamiltonian [1,9].

Recently, one of us considered a different type of bound-
ary [10], namely, the QH interfaces that separate different QH
phases, whose locations are not determined (or pinned) by any
external potential. A special class of such interfaces separates
a QH liquid from the vacuum, which (superficially) looks very
much like edges. Instead of a repulsive interaction between
the electrons in the system, Ref. [10] invoked attractive in-
teractions to hold the QH liquid together, thus eliminating
the necessity of the external confining potential. Accordingly,
such a QH droplet (QHD) is formed spontaneously and can
move freely. In the absence of a confining potential, the inter-
face behaves like a string, whose dynamics is dominated by
the string tension [10].

Reference [10] focused on the low-energy excitation spec-
tra of various interfaces, which can be accessed easily by
modifying the Hamiltonian of the corresponding edge theo-
ries. To describe the general interface dynamics, however, we
need to study large distortions of the interface configurations
from the ground state. This is the task of this paper. As we will
see, this requires a reformulation of the entire theory (includ-
ing the topological term), which leads to a string-like theory
for the interfaces. At low energy, this allows for improvement
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of the results of Ref. [10] by including curvature effects in
a systematic way, which accounts for the (relatively small
but definitely noticeable) discrepancy between theory predic-
tion and numerical data. More importantly, we demonstrate
that QH interfaces realize certain nonrelativistic versions of
both bosonic strings and superstrings; in the latter case, there
are Majorana fermion modes that live along the strings.
This facilitates synergy between condensed matter and
high-energy physics.

The rest of the paper is organized as follows. In Sec. II, we
start by including the curvature effects in the energy functional
for the interface between a fermionic ν = 1 QH liquid and
the vacuum and demonstrate this leads to significant improve-
ment in the comparison between first-principles prediction
of the low-energy excitation spectrum and numerical results.
In Sec. III, we show similar improvement for the Pfaffian-
vacuum interface. Section IV is devoted to the derivation of
the topological term in the action when the interface config-
uration deviates significantly from that of the ground state.
Some concluding remarks are offered in Sec. V, where we
discuss possible generalization of our approach to interfaces
between different QH liquids.

II. INTERFACE BETWEEN FERMIONIC ν = 1
QH LIQUID AND VACUUM

We start with the simplest possible QH interface separating
the fermionic ν = 1 QH liquid and the vacuum, with the for-
mer stabilized by an attractive HaldaneV1 pseudopotential [1]
and the Pauli principle. Due to the simplicity of this state,
parameters of the string-like theory can be determined from
microscopic calculations.

The effective action of a droplet with N fermions and
radius r0 = √

2N (we set the magnetic length � to unity) in
the low-energy (or linear) regime is a slight modification of
the edge theory with a single chiral bosonic field [10]:

S = − 1

4π

∫
dt

∫ 2πr0

0
dxφ̇φ′ − T0

2

∫
dt

∫ 2πr0

0
dx(u′)2, (1)

where T0 is the string tension, x is the coordinate along the
unperturbed string, t is time, prime is ∂x, dot is ∂t and u, and
the transversal displacement from equilibrium [see Fig. 1(a)]
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FIG. 1. Illustration of a quantum Hall droplet with emphasis on
its interface with the vacuum. (a) A configuration with infinitesimal
distortion. Dashed circle with radius r0 shows the equilibrium config-
uration, cyan is the distorted configuration, x is the coordinate along
the equilibrium, u is the transversal displacement of the interface
from the equilibrium, and X 1,2 are the coordinate system. (b) A
configuration with large distortion.

is given by

φ′ = u, (2)

where φ is a compact scalar with identification:

φ ∼ φ + 2π. (3)

The first term in Eq. (1) is the aforementioned topological
piece which emerges from the bulk CS, and the second term,
the dynamical piece, is the length [11] times the tension in the
limit of |u′| � 1 and r0 → ∞. We will use the term linear
regime for such an approximation, which is valid when the
deviation to the ground state configuration is small and slowly
varying.

A. Action beyond the linear regime

When we consider larger deformations, higher-order terms
in u and its derivatives become important, and Eq. (1) needs to
be modified. As a first step, we must replace the approximated
arc length in Eq. (1) (that renders it quadratic) with the actual
arc length. However, at this point, the energy of the system is
completely determined by the length of the interface. Thus,
classically, energy conservation means conservation of the
string length. This together with the area conservation con-
straint (which comes from the incompressibility of the QHD)
implies that the classical equation of motion of the string
would be trivial, namely, the only allowed motions are rigid
spinning and motion of the center of mass. Thus, as we will
see below, such a modified action would be incomplete; it

misses the curvature dependence of the local energy density,
which has a significant effect on the dynamics.

A convenient way to incorporate the effect of curvature is
to make the tension T a function of the curvature κ of the
string which is given as [12]

κ =
2 u′2

r0
− (

1 + u
r0

)(
u′′ − u

r20
− 1

r0

)
[(

u
r0

+ 1
)2 + u′2]3/2 . (4)

In this case, the Hamiltonian is no longer just proportional to
the string length; thus, energy conservation and area conser-
vation no longer lead to trivial motion. The reason we choose
to make T a function of curvature is, for a planar curve (i.e.,
a curve lying on a plane), arc length and curvature completely
determine a curve up to a rigid motion [12,13]. Thus, our more
general model that includes the curvature effect is

S = − 1

4π

∫
d2xφ̇φ′ −

∫
d2xT (κ )

√(
u

r0
+ 1

)2

+ (u′)2

+
∫

d2xλ(φ′ − u)

+
∫

dtw

[
1

2

∫
dxr0

(
u

r0
+ 1

)2

− πr20

]
, (5)

where λ is the Lagrangian multiplier field to enforce Eq. (2);
w is also a Lagrangian multiplier field which only depends on
time, and it enforces area conservation. If we set r0 → ∞ and
expand Eq. (5) up to quadratic order and set T → T0, we will
get Eq. (1) back.

B. Extracting the curvature-dependent tension

We can find T (κ ) by extending the method of Ref. [10] that
determined T (κ = 0). In units of |V1| (set to be one from now
on), the ground state energy of the droplet in terms of number
of electrons was found to be [10]

〈V 〉 = 1

2
N

[
4 − 42−N (2N − 1)!

(N − 1)!N!

]
. (6)

Expanding at large N yields

〈V 〉 = −2N + 4
√
N√
π

−
√

1
N

2
√

π
+ O

[(
1

N

)3/2
]
. (7)

The first term is the bulk contribution, and the rest is the
surface contribution that can be compared with our low energy
effective theory in Eq. (5). According to Eqs. (5) and (4), the
energy of a perfectly circular interface is just 2πr0T (1/r0). As
we show below, this with Eq. (7) determines T (κ ) up to third
order in κ:

T (κ ) = T0 + T1κ + T2κ
2 + O(κ4), (8)

where T0, T1 and T2 are constants. Comparing Eqs. (8) and (7)
yields

T

(
κ = 1

r0
= 1√

2N

)
2π

√
2N = 4

√
N√
π

−
√

1
N

2
√

π
, (9)
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which implies T1 = 0 and

T2 = −T0
4

= − 1√
8π3

, (10)

Finally, we can substitute Eq. (10) into Eq. (8) and find, for an
arbitrary local curvature κ ,

T (κ ) = 4 − κ2

√
8π3

+ O(κ4). (11)

Note our finding T1 = 0 is not an accident; in fact, all odd
terms in the expansion in Eq. (8) are zero because, if we
exchange the regions of QH liquid and the vacuum, the sign of
the curvature flips, but the surface contribution to the energy
remains the same due to the particle-hole symmetry of the
two-body Hamiltonian.

C. Effects of the curvature-dependent tension
on the low-energy excitation spectrum

We substitute Eq. (8) into Eq. (5) and expand it up to
quadratic order in u, which gives

S = − 1

4π

∫
d2xφ̇φ′ +

∫
d2xλ(φ′ − u)

−
∫

d2x

[
T0

u′2

2
+ T2

(
u2

r40
+ 4uu′′ + 3

2u
′2

r20
+ u′′2

)]

+
∫

dtw

[
1

2

∫
dxr0

(
u

r0
+ 1

)2

− πr20

]
+ O(u3),

(12)

where we have dropped unimportant total derivative terms.
To obtain the mode spectrum, we first integrate out the λ and
then express the action in terms of φ in momentum-frequency
space:

φ(t, x) ∝
∫

dω
∑
k

exp(−iωt + ikx)φkω, (13)

where the discrete momentum (due to the finite size of QHD)
is k = n/r0 with n ∈ Z. The action in momentum-frequency
space is thus

S =
∫

ω

∑
k

|φ|2k
[

ω

4π
− T0

k3

2
− T2

(
k

r40
− 5

2r20
k3 + k5

)]

+
∫

dtw

[
1

2

∫
dxr0

(
u

r0
+ 1

)2

− πr20

]
. (14)

We can neglect terms of the order of 1/r0 and higher for
sufficiently large N . The quadratic action is thus (back to
space-time domain)

S = − 1

4π

∫
d2xφ̇φ′ −

∫
d2x

(
T0

u′2

2
+ T2u

′′2
)

+
∫

d2xλ(φ′ − u) + O(u3) + O
(
1

r0

)
. (15)

Comparing with Eq. (1), we find a correction due to T2 in
this limit. The chiral mode dispersion relation can be easily

FIG. 2. Comparison between the bosonic spectrum (with and
without curvature corrections) and numerical results of Ref. [10], for
the interface between a ν = 1 fermionic integer quantum Hall liquid
and the vacuum. The agreement is much better when the curvature
effects are included (red solid line) than that without the curvature
effects (black dashed line).

extracted:

ω =
√

8

π

(
k3 − k5

2

)
, (16)

which compares extremely well with numerical results (see
Fig. 2); the agreement is significantly better than the spectrum
without considering the curvature effect. We note that, if we
had included in Eq. (8) higher-order terms, their contribu-
tion would vanish at the present level of approximation (i.e.,
keeping quadratic terms only and taking the r0 → ∞ limit).
This is clearer if we just express the curvature in the linear
regime as

κ = u′′ + O(u2) + O
(
1

r0

)
. (17)

This means the spectrum Eq. (16) is exact in the large N or r0
limit; any further deviation with numerics (see Fig. 2) must
be accounted for by nonlinearity (or interaction among the
bosons) and/or finite-sized effect.

D. General form of string action

Our discussion thus far has assumed the deviation of the
interface from its ground state (circular) configuration is (still)
small. As a result, our action in Eq. (5) is an expansion
of the deviation parameterized by u. However, since there
is no confinement potential, such a deviation is unbounded
in the present case of the interface (and unlike the edge),
rendering u hard to define, let alone using it for expansion
in general [see Fig. 1(b)]. In the general case, we should
instead work directly with the world sheet of the interface
X(t, σ ), where σ parameterizes a point on the interface [see
Fig. 1(b)]. The general form of the interface action is a func-
tional of the world sheet X(t, σ ) and is a sum of a topological
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(or Wess-Zumino-like) term and an energy term:

S = Stop[X(t, σ )] −
∫

dtE [X(t, σ )], (18)

where, based on our analysis above,

E [X(t, σ )] =
∫

dσT [K (σ )]

∣∣∣∣∂X∂σ

∣∣∣∣. (19)

The derivation of Stop[X(t, σ )] is subtler and will be the sub-
ject of Sec. IV. What should be clear at this point is the action
in Eq. (18) takes the form of some kind of (bosonic) string
theory [14].

III. PFAFFIAN-VACUUM INTERFACE

In this section, we consider a more complicated and inter-
esting interface: That between a Moore-Read (Pfaffian) state
formed by bosons of filling factor ν = 1 with a trivial vacuum.
Here, again, the ν = 1 boson droplet is formed spontaneously
by an attractive V0 pseudopotential, supplemented by an in-
finitely strong three-body interaction that prevents the bosons
from collapsing, which also makes the Moore-Read (Pfaffian)
wave function the exact ground state [10]. The edge theory
of the regular Moore-Read state consists of a chiral Majorana
mode and a chiral bosonic mode which are decoupled, and
both have linear dispersions. In the present interface case,
however, the dispersion of the bosonic mode was found to
have a similar form as in the previous section, while the
dispersion of the Majorana mode remains linear [10]. We can
still expect them to decouple since, by a simple dimensional
analysis (or power counting), there is no relevant interaction
term between the bosonic and fermionic modes. While we
cannot extract parameters from microscopics in this case as
in the previous section, we expect the curvature effects to be
present and affect the spectrum of the bosonic mode, which
we now analyze.

We write the effective edge theory for such a system as

S =
∫

d2x(iψψ̇ − viψψ ′) + SB, (20)

where SB is the action given in Eq. (5), with different co-
efficients for T0, etc., which will be estimated by fitting to
numerical data, Fig. 3. Accordingly, we find the dispersion
relation for pure bosonic excitations to be

ω � 0.2k3 − 0.04k5, (21)

from which we extract T0 � 0.031 and T2 � −0.0031. The
fermionic excitation dispersion relation remains linear with
v � 0.98, all in units of |V0|. Since there is no particle-hole
symmetry for bosons, T1 is not expected to be zero in this case.
However, it does not enter the quadratic action in Eq. (12), as
a result of which it has no effect on the dispersion. It does,
however, have effects on the action beyond the quadratic level,
which gives rise to boson-boson interaction.

Due to the presence of the fermionic mode, the interface
here is more like a superstring [14], although there is no
supersymmetry here. It has been shown [15], however, the
Moore-Read (Pfaffian) edge can be made supersymmetric,
and this supersymmetry can even be broken spontaneously,

FIG. 3. Same as Fig. 2, for the Pfaffian-vacuum interface with
N = 10 bosons. The influence of the curvature corrections here is
not as drastic for the bosonic mode as in Fig. 2, but we still see better
agreement with the numerical result. The fermionic mode spectrum
(included here for reference) is not affected.

resulting in a Goldstino mode at low energy. It is thus worth-
while to explore the analogy between the dynamics of this
interface and superstring theory in future work.

IV. TOPOLOGICAL TERM OF THE STRING THEORY VIA
CS THEORYWITH FLUCTUATING BOUNDARY

So far, we have treated interfaces as string-like objects such
that the energy of the system is a functional of its length and
local curvature. We showed that this identification enabled us
to derive an effective low-energy interface theory that gives a
low-energy dispersion relation that agrees with the numerical
calculations of the microscopic models extremely well. We
have achieved this success by combining the energy func-
tional with a topological term in the action that was derived
earlier for edge theory which, as we discussed in Sec. II D,
is only appropriate for small fluctuations of the interface. In
this section, we attempt to derive the topological action that
is appropriate for large fluctuations, for the simplest case of
interface between the fermionic ν = 1 QHD and the vacuum.

Let us recall how the topological term in the edge theory,
namely, the first term of Eq. (1), was obtained [9]. One starts
with the bulk CS theory and places it on a two-dimensional
(2D) manifold with a fixed (or time-independent) boundary.
One finds that the CS theory is not gauge invariant, as a gauge
transformation generates an additional boundary term to the
action. This indicates there must be boundary degrees of free-
dom not captured by the bulk CS theory, which are precisely
the edge states. To describe such edge states, one imposes a
certain gauge fixing condition at the boundary, which turns a
certain gauge degree of freedom there to a physical degree of
freedom, whose dynamics is actually sensitive to the gauge
fixing condition. One thus has to carefully choose the gauge
fixing condition (in an ad hoc way) to get the correct edge
dynamics.

The situation we are facing here has three important dif-
ferences: (i) The interface, as parameterized by X(t, σ ), is
fluctuating and time dependent. (ii) X(t, σ ) is the explicit
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physical boundary degree of freedom, so no new degree
of freedom needs to be introduced. (iii) Perhaps most im-
portantly, the dynamics of X(t, σ ) comes from the energy
functional E [X(t, σ )] in Eq. (18). We thus should not get an
additional dynamical term from gauge-fixing the CS theory.
As we show below, these allow us to derive the appropriate
topological term in the action in Eq. (18).

To proceed, we go back to the bulk CS theory and now
explicitly assume a kinematically time-dependent boundary
and discuss its gauge properties. The theory is given as

SCS =
∫ ∞

−∞
dt

∫
D(t )

d2x

×
[
− 1

4π
εμνλaμ∂νaλ + 1

2π
εμνλAμ∂νaλ

]
, (22)

where A is the background gauge field, and D is the time-
dependent region in which the droplet lives. Under the
gauge transformation aμ → aμ + ∂μ
, the total change of the
action is

�SCS =
∫
R
dt

∫
D(t )

d2xεi j∂t (
∂ia j )

+
∫
R
dt

∫
∂D(t )

dx j
(−∂t a j + ∂ jat )

=
∫
R
dt

∫
∂D(t )

[dx j (−∂t a j + ∂ jat )


− dx�vkεk�ε
i j (
∂ia j )], (23)

where we have used the Reynolds-Leibniz rule for differen-
tiation under the integral [16], R is [−∞,∞], and v(X, t )
is the velocity vector of the boundary at point X. Note, in
earlier work considering a fixed boundary, v = 0 and only
the first term above is present, and it is the existence of such
a boundary term that ruins the gauge invariance of the CS
theory in manifolds with boundaries. We note, however, in the
present case, we can make �SCS zero and hence the theory
gauge invariant, if we impose the following local boundary
condition:

Jn(X, t ) = J0vn(X, t ), (24)

where we used the fact that the bulk current [9]:

Jμ = 1

2π
εμνλ∂νaλ, (25)

and the subscript n stands for the normal component of a
(spatial) vector at the boundary point X. Specifically, J0 = 1

2π
is the density of the ν = 1 QH liquid which is a constant
when the background magnetic field B = εi j∂iA j is uniform,
although everything we say applies to nonuniform B as well.

The boundary condition [Eq. (24)] has a very clear physical
meaning: When there is a bulk current Jn flowing toward the
boundary, the boundary must recede with speed vn to accom-
modate the excess charge. As a result, charge conservation is
preserved, hence gauge invariant. This contrasts with the usual
approach to the edge theory which assumes the boundary

is fixed; as a result, charge would not be conserved (hence
lacking gauge invariance, or charge conservation becomes
anomalous at the boundary) without the additional degree of
freedom u introduced by hand. It should be clear from Fig. 1
that u is nothing but the fluctuation of the boundary. Our
discussion above thus provides a perspective of the traditional
edge theory. A bonus of Eq. (24) is it also enforces area
conservation (which is nothing but charge conservation for an
incompressible liquid).

The topological term of the full string theory Stop of
Eq. (18) is nothing but the CS action in Eq. (22) subject to
the constraint, Eq. (24), which is an (implicit) functional of
X(t, σ ). In other words, Stop can be obtained from integrating
over the gauge fields a in Eq. (22), subject to the constraints
of Eqs. (24) and (25).

Armed with Eq. (24) which couples the boundary (inter-
face) with the bulk CS field a, we are ready to derive the
topological action Stop in Eq. (18). To do that, we adopt the
gauge-fixing condition a0(X) = 0 at the interface, which is
known not to generate (additional) dynamical terms [17]. Fol-
lowing the standard procedure, we introduce a scalar field φ

such that

aj = Aj + ∂ jφ (26)

in the bulk, which solves the bulk constraint εi j∂ia j = εi j∂iA j

obtained from integrating over a0. With Eq. (26), SCS reduces
to a boundary term:

Stop = − 1

4π

∫
dt

∫
dσ φ̇φ′, (27)

which is essentially the first term of Eq. (1) but with arbi-
trary parametrization along the boundary X(t, σ ), and now
φ′ = ∂φ

∂σ
, so Stop as well as the entire action in Eq. (18)

is explicitly invariant under reparameterization. Most cru-
cially, however, φ is constrained by Eq. (24), via the
identification:

Jn(X, t ) = 1

2π

(
∂φ̇

∂σ

)/∣∣∣∣∂X∂σ

∣∣∣∣. (28)

As a result, Stop is an (implicit) functional of X(t, σ ).

V. CONCLUDING REMARKS

In this paper, we have studied string-like theories for free
interfaces separating QHDs from the vacuum. The two cases
we studied correspond to bosonic strings and superstrings,
respectively, in terms of the degrees of freedom associated
with their interfaces. While they may seem like the usual
QH edges, we demonstrated their dynamics is very different
when such interfaces are not pinned by confining potentials
and requires string-like theories to describe. We derived such
a theory for the case of the bosonic string and leave such a
derivation for the superstring to future work.

Physically, more interesting cases are interfaces between
different QH liquids. A particularly interesting example is
the ν = 5

2 QH liquid, where multiple energetically competi-
tive states are present and may form various interfaces (see
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Ref. [18] for a recent review). The methods we developed in
this paper can be generalized to such interfaces as well. The
energy term in Eq. (18) should be present in the generic case.
The topological term, on the other hand, needs to be derived
by combining the bulk CS-like theories on both sides of the
interface, supplemented by appropriate boundary conditions
like Eq. (24).
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