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By using the AdS/CFT correspondence, we construct an Einstein-Maxwell-Dilaton model to
map the thermodynamics of strongly interacting matter. The holographic model, constrained to
reproduce the lattice QCD equation of state at zero baryon chemical potential, predicts a critical
end point and a first order phase transition line. We also obtain the equation of state of the model
for a large region of the phase diagram. We characterize the crossover transition region by two
lines, one associated to the inflection of the second order baryon susceptibility, and another one
associated to the minimum of the square of the speed of sound along trajectories of constant

entropy per baryon number. We observe that both lines merge at the critical point.
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1. Introduction

The QCD phase diagram, usually represented in a plane of temperature and baryon chemical
potential, is the subject of active research in the theory of strong interactions. Lattice QCD
calculations at vanishing chemical potential have shown that strongly interacting matter undergoes
a rapid crossover transition [1] characterized by a change in degrees of freedom from the low
temperature hadrons to a novel high temperature phase of matter corresponding to a deconfined
state of quarks and gluons, i.e. the quark-gluon plasma (QGP). The extreme conditions needed for
this phenomenon to take place can be reproduced in relativistic heavy ion collisions at the Large
Hadron Collider at CERN, and the Relativistic Heavy Ion Collider at BNL and have shown the
QGP is the smallest and hottest fluid that exhibits the smallest viscosity over entropy density ratio
n/s ever observed [2].

Additionally, it is conjectured that the crossover at zero chemical potential evolves into a line
of first order phase transition with a critical end point at increasing baryon chemical potential, as
suggested by the effects of nonzero quark mass in chiral models [3]. It is the goal of the experiments
to find the QCD critical point by systematically decreasing the center of mass energy in relativistic
heavy ion collisions, thus increasing the baryon chemical potential and scanning the phase diagram.
Unfortunately, lattice QCD calculations cannot be performed at finite chemical potentials due to the
Fermi sign problem, even though there have been efforts to circumvent this issue such as the Taylor
expansion of the pressure and baryon density for small chemical potential. As a consequence, most
of the QCD phase diagram remains unexplored. Therefore, another model is needed to guide the
experimental search for the predicted critical point and the line of first order phase transition at
increasing chemical potential. Such a model should reproduce the equation of state from lattice
QCD at small baryon chemical potential, and exhibit the near perfect fluidity of the QGP implied
by experimental data from heavy ion collisions. [4]. The present work summarizes the results of a
holographic model [5] that fulfils such requirements.

2. The Holographic Model

The Einstein-Dilaton-Maxwell (EMD) model is described by the simplest, 5-dimensional
gravitational action that can generate a QCD-like theory, [4-6],

(Oud)?
2

1
2K§ Ms

f(§)F2,

S R - s
4

d’x~g - V(¢) - (1)

where g, and Kg = 871G are the 5-dimensional metric tensor and gravitational constant respec-
tively, R is the Ricci scalar, and ¢ is the dilaton field. Since QCD is a nonconformal quantum field
theory, the dynamical breaking of the conformal symmetry is driven by a scalar potential of the
dilaton field V(¢), which is a free function in the holographic model and determines the thermo-
dynamics of the QCD-like theory at zero chemical potential. The dilaton potential V(¢) is fixed
by solving the equations of motion and constraining the holographic equation of state to match the
corresponding lattice QCD results shown in [7]. Additionally, effects due to a finite baryon chemical
potential can be taken into account by introducing a Maxwell field A, in F,,, = 6, A, — 0,,A, with
another free function f(¢) that couples the Maxwell and dilaton fields. This coupling function
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is fixed by matching the holographic second order baryon susceptibility )(f to the corresponding
lattice result at up = 0 in [8]. Additionally, by taking the AdS radius L to be unity, an energy scale
A can be introduced to convert the physical observables from holographic units to physical ones in
powers of MeV [4, 5].
The metric for charged black holes, spatially isotropic and translationally invariant, can be
described by the following Ansatz [6],
ds? = e2A0) [ 2, =2 d_”z
s =e [h(r)dt” +dx°] + , 2)
h(r)
which also considers that the dilaton field is a function of the holographic direction ¢ = ¢(r) as
well as the Maxwell field A, dx* = ®(r)dt. The black hole fields, ¢(r), h(r), A(r), ®(r), near
horizon Taylor coefficients needed for the numerical integration of the equations of motion can
be parametrized by two initial conditions (¢g, ®;) which are the value of the dilaton field and the
electric field at the horizon [4, 6]. With the ultraviolet coefficients of the black hole fields, it is
possible to obtain the temperature, T, baryon chemical potential, u g, entropy density, s, and baryon
density, pp, for the QCD-like theory by making use of the holographic dictionary, that is, a pair
of initial conditions (¢g, ®1) results into a mapping of the state variables (s, pp) into a plane of
temperature 7, and baryon chemical potential up.
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Figure 1: Mapping of the black hole initial conditions into a rectangular region of the QCD phase diagram.

An example of how the black hole initial conditions (¢g,®;) should be taken to map a
rectangular region in the QCD phase diagram is shown in Fig. 1. The value of ¢q is roughly
translated as the temperature 7, and provides the EoS at zero chemical potential when ®@; = 0.
On the other hand, a nonzero ®; is mapped into a finite baryon chemical potential value. The
lines in Fig. 1 are produced by first obtaining equally spaced values of temperature when varying
¢o at ®; = 0. The lines are color coded to easily notice that large values of ¢¢ produce small
values of temperature and vice versa. Then, for each value of ¢g, ®@; is varied starting from zero
to cover a region up to ug = 1100 MeV, although it could be increased up to its maximum value
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where the solutions to the black hole fields are still asymptotically AdS. The lines shown in Fig. 1
clearly exhibit a region of three competing solutions in the QCD phase diagram which suggest the
presence of a critical point where this region starts. The exact point where the overlapping solutions
begin (T = 89 MeV, uy = 724 MeV) was identified as the critical point in this current holographic
model by finding the location in the holographic phase diagram where the second order baryon
susceptibility x2 diverges [4].
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Figure 2: Entropy density s (upper panels) and its integral with respect to the temperature, corresponding to
the pressure (lower panels), for three different values of up > uSFF ~ 724 MeV.

Beyond the critical point, the solutions of the black hole EOM generates the coexistence region
that characterizes a first order phase transition and corresponds to all the extrema of the free energy
although only one of these solutions minimizes the free energy. To the right of the critical point,
ie. T < T, and up > ugy, the entropy and baryon density exhibit a characteristic S shape which
means that at a given temperature we can find three different values for these observables. The case
for the entropy density s is shown in Fig. 2. In order to obtain the first order phase transition line,
the entropy density was integrated with respect to the temperature over the multivalued region, and
we located the point where the resulting curve, which corresponds to the pressure or minus the free
energy, crosses itself. This procedure is analogous to a Maxwell equal-area construction, although
it is computationally easier to perform. The result of this procedure is shown in the lower panel of
Fig. 2.

Because of the nature of the crossover, from vanishing chemical potential up to the critical
point, there is not a unique method to characterize a transition temperature. On the contrary, a
transition temperature can be obtained from the inflection point or the extrema of quantities sensitive
to a change of degrees of freedom from the confined hadronic phase to a system of deconfined quarks
and gluons [5, 9]. For this holographic model, we have chosen to characterize the crossover by
computing the speed of sound squared at constant entropy per baryon number ¢, and the inflexion
point of the second order baryon susceptibility )(f . In the case of the square of the speed of sound,
a formula that considers only derivatives of the pressure in the direction of the chemical potential
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or the temperature was used since it is practical over a regular grid, and reads [10, 11],

2o p%@%P—ZspB(')TE)ﬂBP+326/%BP. 3
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However, since the derivatives of the pressure diverge at the critical point, and the numerical
noise associated to the derivatives increases near the critical point, it was necessary to replace the
noisy points with the result from computing the derivative of the pressure with respect to the energy
density c¢2 = (OP/d¢€) over several isentropic trajectories and use an interpolation method to cover
the regions affected by the noise. The result of the mentioned procedure is shown in Fig. 3. The
inflection point of ,\(23 and the minimum of ¢ converge to the location of the critical point where
the line of first order phase transition starts.
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Figure 3: Left: the speed of sound squared at constant entropy per baryon number computed from Eq. 3.
Right: the phase diagram of our EMD model. The inflection point of Xf and the minimum of ¢? are used to
characterize the crossover region.

4. Conclusions

The holographic model is constrained to mimic the lattice QCD equation of state and second
order susceptibility to study the behaviour of strongly interacting matter at finite baryon chemical
potential. The QCD phase diagram can be mapped from a pair of initial conditions (¢, @) for the
black hole fields to obtain the entropy density s and baryon density pp in a plane of temperature
and baryon chemical potential for a QCD-like theory.

The crossover, described in this work by the inflection point of the second order baryon
susceptibility and the minimum of the square of the speed of sound at constant entropy per baryon
number, evolves into a first order phase transition line with a critical point characterized by the
divergence of the second order baryon susceptibility or the global minimum of the speed of sound
squared at the critical point located at 7. = 89 MeV and uf, = 724 MeV. The transition line is found
by integrating the entropy density s with respect to the temperature over the multivalued region and
obtaining the points where the resulting curve intersects itself.
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