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1 Introduction and summary

For string theory in critical dimensions conformal invariance plays a crucial role. Demanding
conformal invariance we get the on-shell condition for the string states k2

i = −m2
i with mi as

the tree level mass for the i-th mass level of the strings. On the other hand defining S-matrix
elements via the LSZ prescription imposes the constraint k2

i = −m2
Ri where mRi denotes the

renormalized mass of that state. Since conformal invariance implies manifest UV finiteness,
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hence renormalized masses in string theory are finite unlike in the case of ordinary quantum
field theory. For states whose masses are protected against quantum corrections we have
mRi = mi and S-matrix elements can be defined without any problem. But for generic
states in string theory we have mRi ̸= mi and for them there is an apparent conflict and
usual string amplitudes do not compute S-matrix beyond tree level in such cases.

One needs an off-shell formulation of string theory to resolve this apparent conflict
because once we have a definition of the off-shell amplitudes we can then use the standard
LSZ prescription to compute S-matrix elements. An ad hoc definition of off-shell amplitudes
can be given [1–8], and has been fully developed in the context of bosonic string theory. Off-
shell amplitudes however depend on spurious data encoded in the choice of local coordinates
around the punctures due to the external vertex operators. So the result for such amplitudes
are ambiguous. In [9, 10] it was shown that the renormalized masses and S-matrix elements
computed using off-shell amplitudes do not depend on the spurious data provided we restrict
the choice of local coordinates to within a special class − those satisfying the requirement
of gluing compatibility. Gluing compatibility implies that near the boundary of the moduli
space where the punctured Riemann surface Σ degenerates to two separate punctured
Riemann Surfaces Σ1 and Σ2 glued at one each of their punctures by standard plumbing
fixture prescription, the choice of local coordinate at the external punctures of Σ must
agree with those induced from the choice of local coordinates at the punctures of Σ1 and
Σ2. Restricting the choice of local coordinates within this class guarantees that the result
for all physical quantities are independent of the coordinate choice.

For bosonic string theory one can talk about an underlying string field theory [11, 12].
Off-shell amplitudes computed from this field theory in Siegel gauge fall within the general
class of off-shell amplitudes discussed in [1], and automatically provides a set of gluing
compatible coordinate system [13]. All physical quantities computed from the general system
of gluing compatible coordinates thus agree with those computed from string field theory.
The generalisation to the case of superstring theory was carried out in [14] (see also [18, 22–
35]). Computation of on-shell superstring amplitudes using superconformal coordinates on
super-Riemann surfaces have been the topic of much research [36–51]. The final result in
this language is expressed as integrals over supermoduli space of super-Riemann surfaces
instead of ordinary moduli space of Riemann surfaces.

A more practical approach to compute such physical quantities with a proper definition
of off-shell amplitudes in superstring theory was presented in [52] using the formalism
involving picture changing operators(PCO) [53, 54]. In this formalism the spurious data
resides in the choice of local bosonic coordinates and the locations of the PCOs. So the final
result is an integral over the ordinary moduli space of Riemann surfaces. Since [54] it is
known that the choice of PCO locations correspond to the choice of gauge of the gravitino
field. It is impossible to make a global choice of gauge for the gravitino [50, 51] and this
breakdown of a global gauge choice shows up in the PCO formalism as spurious singularities
of the integration measure appearing in a real co-dimension 2 subspace of the moduli space.
The practical approach of computing physical quantities is to specify a choice of section
avoiding these spurious singularities using the so called “vertical integration” procedure as
described in [52]. Although actual computation of renormalized mass consistent with this
procedure exits only upto one loop i.e. the two point amplitude on the torus [55, 56].
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Figure 1. Loop corrected propagator.

Figure 2. Genus 2 Riemann surface degenerating into two genus 1 surface, each wit 1 extra puncture.

Figure 3. 1 Particle Reducible diagrams at 2 loop order.

In this paper we attempt to compute the renormalized mass at two loop for heterotic
string theory which is relatively simpler to compute. The relevant amplitude one needs
to consider in this case is the two point amplitude on a genus 2 Riemann surface. For
this one needs to integrate a 10 form over the moduli space of a genus 2 Riemann surface
with 2 punctures which has 10 real or 5 complex dimensions. But to get the renormalized
mass we must integrate over only a part of the full moduli space which is called the 1
particle irreducible (1PI) subspace in the literature [9, 10]. This follows from our usual
intuition in QFT that the loop corrected propagator is obtained by summing over diagrams
given by joining 1PI amplitudes by tree level propagators (see figure 1). Writing the
propagator as (k2 + m2)−1 and the amputated 1PI amplitude as F(k) we get the loop
corrected propagator as,

1
k2 +m2 + 1

k2 +m2F(k) 1
k2 +m2 + 1

k2 +m2F(k) 1
k2 +m2F(k) 1

k2 +m2 + . . .

⇒ 1
k2 +m2

(
1 − F(k)

k2 +m2

)−1
⇒ 1

k2 +m2 −F(k)

(1.1)

implying that the renormalized mass is given by, δm2 = −F(k). As for the integration
over moduli space of genus 2 Riemann surface with two punctures this means we leave out
the region where the surface degenerates into two tori each with one extra puncture as
in figure 2.

In terms of Feynman diagrams this amounts to dropping diagrams which are 1 particle
reducible as shown in figure 3. We will see how to do this explicitly in section 4. We identify
the 1PI subspace explicitly and use the Mapping Class Group (more precisely a subgroup of
it) to get the region of integration for the moduli parameters which will be necessary for our
case. We will closely follow the method that was used for computing the two loop dilaton
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tadpole in [21]. The reason being that in this method starting from the large Hilbert space
one writes the relevant amplitude as a total derivative i.e. a boundary term on the moduli
space. So the contribution can be identified as coming completely from the boundary of the
moduli space. This has several advantages such as the range of integration for the moduli
parameters become straight forward as well as identifying the 1PI subspace. The other
advantage is more technical in nature since at the boundary we can deal with the theta
functions on the torus rather than those on the genus 2 Riemann surface. Lastly one of the
crucial observations of [21] was that assuming that there is no global obstruction to writing
the integrand on the moduli space as a total derivative, the two marked points p1 and p2 of
the two tori T1 and T2 in the degeneration limit must approach two of the PCO locations
(one on each torus) to keep their locations fixed under global diffeomorphisms of the metric
associated with the choice of a gluing compatible local coordinates.

The rest of the paper is organised as follows. In section 2 we set up our conventions
and briefly review some results in the literature which will be necessary for our purpose.
The results of the ghost and matter conformal field theories are collected in 2.1 and 2.2
respectively. In 2.4 we briefly review the so called vertical integration procedure. In section 3
we describe the details of the technique used in [21] which sets the stage for computing
of the two point function. Sections 3.1, 3.2 and 3.3 are devoted to the choice of local
coordinates, then avoiding the spurious singularities to writing the integrand as a total
derivative and then identifying the contribution due to the superghost system. In section 3.4
we add the b, c ghost and matter contribution to show that the 1 point function of the
massless states vanish at two loop as expected from the results of [20]. Finally in section 4
we address the mass renormalization of the states in the first massive level of the heterotic
string theory. In 4.1 and 4.2 we choose coordinates and avoid the spurious poles as in the 1
point case. Then in 4.3 we identify the 1PI subspace at the boundary of the moduli space
and evaluate superghost as well as the b, c ghost contribution which are common for states
at all mass levels. Section 4.4 shows the vanishing of the renormalised mass for massless
states as expected from the non renormalisation theorem [20]. Then section 4.5 deals with
the renormalised mass for the first massive level and 4.6 gives the region of integration for
the moduli parameters. We end with some discussions in section 5.

2 Conventions and necessary results

In this section we specify the conventions that we will be using throughout this paper and
quote the results that we will need in later sections. Let us emphasise here again that we
will be working with the E8×E8 or SO(32) Heterotic strings to keep our analysis simple. So
we have world sheet supersymmetry for only the right moving part hence there are no β̄, γ̄
(which are left moving) in this case. All through the paper we set α′ = 1.

2.1 Ghost CFT

We will use the standard ξ, η, ϕ CFT to describe the super-conformal β − γ ghost system as
in [52],

β = ∂ξe−ϕ, γ = ηeϕ . (2.1)
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The (ghost no., picture no., GSO parity) assignment of different ghost fields including the
usual conformal ghosts are given by,

c, c̄ : (1, 0,+), b, b̄ : (−1, 0,+), γ : (1, 0,−), β : (−1, 0,−),
ξ : (−1, 1,+), η : (1,−1,+), eqϕ : (0, q, (−1)q) .

(2.2)

Thus e±ϕ are fermionic i.e. they have odd GSO parity. The conformal weights (h̄, h) of
these fields are,

Fields Conformal weights
c, c̄ (0,−1), (−1, 0)
b, b̄ (0, 2), (2, 0)
β (0, 3/2)
γ (0,−1/2)
ξ (0, 0)
η (0, 1)

eqϕ (0,−q(q + 2)/2)

(2.3)

Let us now give the relevant OPEs of the different ghost fields (we give the holomorphic
ones and the anti-holomorphic ones are exactly same with z̄ and w̄),

c(z)b(w) = (z − w)−1 + . . . , ξ(z)η(w) = (z − w)−1 + . . . ,

∂ϕ(z)∂ϕ(w) = −(z − w)−2 + . . . ,

eq1ϕ(z)eq2ϕ(w) = (z − w)−q1q2e(q1+q2)ϕ(w) + . . . , (2.4)
⇒ β(z)γ(w) = −(z − w)−1 + . . . . (2.5)

The . . . denote terms which are regular. The BRST charge, QB is given by,

QB =
∮
dz jB(z) +

∮
dz̄ j̄B(z̄) , (2.6)

with,

j̄B(z̄) = c̄(z̄)T̄m(z̄) + b̄(z̄)c̄(z̄)∂̄c̄(z̄) (2.7)

jB(z) = c(z)(Tm(z) + Tβ,γ(z)) + γ(z)TF (z) − b(z)c(z)∂c(z) − 1
4γ(z)2b(z) (2.8)

where Tm and Tβ,γ are the world-sheet matter and the β, γ energy momentum tensors
respectively. TF is the world-sheet matter super-current. With these definitions at our
disposal we now define the Picture Changing Operator (PCO) which in terms of the ξ, η, ϕ
fields is given by,

χ(z) = {QB, ξ(z)} = c∂ξ(z) + eϕTF (z) − 1
4∂ηe

2ϕb(z) − 1
4∂(ηe2ϕb(z)) . (2.9)

It is a dimension zero primary operator with picture number 1 satisfying [QB, χ(z)] = 0.
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The correlation function of ξ, η, ϕ in the large Hilbert space on a genus g Riemann
surface can be found in [54] and is given by,

〈n+1∏
i=1

ξ(xi)
n∏

j=1
η(yj)

m∏
i=1

eqkϕ(zk)
〉

δ

=
∏n

j=1ϑ[δ]
(
−y⃗j +∑ x⃗−

∑
y⃗+∑qz⃗−2∆⃗

)
∏n+1

i=1 ϑ[δ]
(
−xi+

∑
x⃗−

∑
y⃗+∑qz⃗−2∆⃗

) ∏
i<i′E(xi,xi′)

∏
j<j′E(yj ,yj′)∏

i,jE(xi,yj)∏k<lE(zk,zl)qkql
∏

k σ(zk)2qk
,

with
m∑

k=1
qk = 2(g−1) .

(2.10)
Here ϑ[δ] denotes the theta functions on higher genus Riemann surface with spin structure
δ.1 The function E(x, y) is called the prime form which has a zero only at x = y and
behaves like E(x, y) ∼ (x− y) in the limit x→ y. σ(z) is a 1

2g differential with no zeros or
poles, representing the conformal anomaly of the ghost system and ∆⃗ is the Riemann class
characterising the divisor of zeros of the theta function. For a more elaborate definition
of these quantities we refer the reader to [54, 57]. ∑ x⃗,

∑
y⃗ and ∑ qz⃗ denote respectively∑n+1

i=1 x⃗i,
∑n

j=1 y⃗j and ∑m
k=1 qkz⃗k with

x⃗ ≡
∫ x

p
ω⃗ , (2.11)

where ω⃗ is a g-dimensional vector of holomorphic one forms on the Riemann surface(also
called abelian differentials) and p is an arbitrary point on the Riemann surface and this
dependence on p is compensated by the p-dependence of ∆⃗.

The fact that (2.10) is a correlation function on the large Hilbert space is corroborated
by the fact that we have one extra number of ξ than the number of η.2 Otherwise this
correlation function vanishes.

Note: to get the correlation functions in the small Hilbert space we need to consider a
correlation function in the large Hilbert space where all but one ξ has a derivative acting
on them. Then we have the following result,

⟨ξ(z0)(. . . )⟩large → independent of z0.

Thus we have the following prescription for obtaining the correlation function on the small
Hilbert space,

⟨ξ(z0)(. . . )⟩large ≡ ⟨(. . . )⟩small (2.12)

2.2 Matter CFT

We know that superstring theory in 10 dimensions is described by the ghost and matter
CFT together with total central charge being 0. So along with the ghost CFT described in
the previous subsection we also need the matter sector which we describe now.

1e.g. For genus g = 1 they are the elliptic theta functions on the torus.
2In the large Hilbert space there is a ξ zero mode on any Riemann surface that needs to be soaked up.
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The primary operators of the matter CFT in the heterotic string are, ∂Xµ, ∂̄Xµ, ψµ (µ =
0, . . . , 9) and eik.X ,3 with conformal weights (h̄, h) given by,

Fields Conformal weights
∂Xµ, ∂̄Xµ (0, 1), (1, 0)

ψµ (0, 1/2)

eik.X
(
k2/4, k2/4

)
S±

1 , . . . , S
±
5 (0, 1/8)

(2.13)

All the matter fields have ghost no.= picture no.= 0. As for the GSO parity, only ψµ are
GSO odd(−), all other fields are GSO even(+). Finally we need the OPE of these fields
and we provide the ones which are singular (again we give only the holomorphic ones),

∂Xµ(z)∂Xν(w) = − ηµν

2(z − w)2 + . . . , ψµ(z)ψν(w) = ηµν

2(z − w) + . . . , (2.14)

∂Xµ(z)eik.X(w,w̄) = − ikµ

2(z − w)e
ik.X(w,w̄) + . . . . (2.15)

The factor of 1/2 in the ψ,ψ OPE is taken so that the complex fermions built out of the
Majorana ones, have the OPE Ψi(z)Ψ̄i(w) ∼ (z − w)−1. In [61, 62] no such factor is there
so Ψi, Ψ̄i OPE will have a factor of 2. Using bosonization we can write,4

Ψj = 1√
2

(ψj + iψj+5) ≡ eiHj , Ψ̄j = 1√
2

(ψj − iψj+5) ≡ e−iHj , (j = 1, . . . , 5)

S±
j ≡ e±

iHj
2 , : Ψ̄iΨi : ≡ ∂Hi .

We also have,

Ψ̄i(z)S+
i (w) ∼ (z − w)−

1
2S−

i , Ψi(z)S−
i (w) ∼ (z − w)−

1
2S+

i ,

Ψ̄i(z)S−
i (w) ∼ (z − w)

1
2 Ŝ−

i , Ψi(z)S+
i (w) ∼ (z − w)

1
2 Ŝ+

i ,

Ψ̄i(z)Ψi(w) ∼ (z − w)−1 , S+
i (z)S−

i (w) ∼ (z − w)−
1
4 .

(2.16)

All the other ones are regular. Let us also give the expression of TF here as it will be needed
for later analysis.

TF (z) = i
√

2 ψρ∂X
ρ . (2.17)

For the case of genus 2, the correlation function of the different chiral matter fields
were provided in [40–46] and the result for non-chiral Xµ can be found in [54]. Let us first
state some necessary definitions.

• Prime form :-

E(x, y) =
ϑ[δ1]

(∫ x
y ω⃗|Ω

)
ζ(x)1/2ζ(y)1/2 ∼ (x− y)dx−1/2dy−1/2 (for x ∼ y), (2.18)

3We also have ψ̄µ along with the others for the type II string theories.
4Here we do the usual Wick rotation ψ0 → iψ10 to define the complex fermions appropriately.
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where, δ1 denotes the odd spin structure i.e. ϑ[δ1](0|Ω) = 0, ∂ziϑ[δ1](0|Ω) ̸= 0. ζ(x)
is given by,

2∑
i=1

∂ziϑ[δ1](0|Ω)ωi(x).

If we label the four non contractible cycles of the genus 2 surface by, a1, b1 and a2, b2
then, ∫

ai

ωj = δij , Ωij =
∫

bi

ωj , ∀i = 1, 2

defines the period matrix Ω with a fixed normalisation.

• Szego Kernel :-

Sδ(x, y) =
ϑ[δ]

(∫ x
y ω⃗|Ω

)
ϑ[δ](0|Ω)E(x, y) ∼ 1

x− y
dx1/2dy1/2 (for x ∼ y). (2.19)

Here δ denotes the even spin structures i.e. ϑ[δ](0|Ω) ̸= 0.

With these definitions we have the following correlation functions on genus 2 for the
matter sectors,

⟨Xµ(z1, z̄1)Xν(z2, z̄2)⟩pk
=−η

µν

2 ln |E(z1,z2)|2+2πpµ.Im(z⃗12)pν .Im(z⃗12) , (2.20)

⟨ψµ(z1)ψν(z2)⟩=−1
2Sδ(z1,z2) , (2.21)〈∏

j

: eikj .X(zj ,z̄j) :
〉

=CX
g=2(2π)10δ10

∑
j

kj

∏
i<j

|E(zi,zj)|ki.kje−2πkµ
i pµ.Im(z⃗ij)kν

j pν .Im(z⃗ij)

(2.22)

where pµ
k denotes the loop momenta along the bk cycle with k = 1, 2 for a genus 2 surface.

They are related to the determinant of imaginary part of the period matrix. Also we have,

Im(z⃗ij) = 1
2i

(∫ zj

zi

ω⃗ −
∫ z̄j

z̄i

⃗̄ω

)
⇒ pµ.Im(z⃗ij) ≡ 1

2i

2∑
k=1

(∫ zj

zi

pµ
kωk −

∫ z̄j

z̄i

pµ
k ω̄k

)
.

Finally CX
g=2 is the normalisation due to the matter partition function and the ∂zE(0) in the

denominator is due to the self contractions. The correlation function for the vertex fields can
be found by generalising the torus result given in [61, 62]. With these, all other correlation
functions (for the NS states)5 can be determined as in the case of torus, [55, 56, 58].

2.3 Vertex operators for the heterotic string

Let us now consider the full matter ghost CFT and define a subspace H0 of the off-shell NS
string states with picture number -1 by,

|Ψ⟩ ∈ H0 if (b0−b̄0)|Ψ⟩ = 0, (L0−L̄0)|Ψ⟩ = 0, η0|Ψ⟩ = 0, Picture no.(|Ψ⟩) = −1. (2.23)
5For R sector we also need the correlation function for the spin fields which we do not discuss.
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The η0|Ψ⟩ = 0 condition implies that we are working in the small Hilbert space [53]. Let us
also define H1 ⊂ H0 containing off-shell states with ghost number 2 in the Siegel gauge,

|Ψ⟩ ∈ H1 if |Ψ⟩ ∈ H0, (b0 + b̄0)|Ψ⟩ = 0, Ghost no.(|Ψ⟩) = 2. (2.24)

Since our ultimate goal is to compute the renormalized mass of the on-shell string states,
let us give the on-shell vertex operators for the E8×E8 or SO(32) Heterotic theory, which
for non-zero momentum has the general form,

Vi(z, z̄) = cc̄e−ϕWi(z, z̄), ⇒ On-shell states := |Vi⟩ = Vi(0, 0)|0⟩ ∈ H1 (2.25)

where Wi(z, z̄) are some dimension (1,1/2) super-conformal primary with odd GSO parity
so that Vi(z, z̄) is GSO even. By |0⟩ we denote the SL(2,C) invariant vacuum of the CFT.

For concreteness let us specify the CFT with central charge 16 for the anti-holomorphic
part world-sheet which does not have supersymmetry.

• We introduce 16 scalars YI(z̄) with I = 1, . . . , 16

• We consider theory with weight (1,0) primary fields given by,

J̄a(z̄) = ∂̄YI for a, I = 1, . . . , 16 (2.26)

J̄a(z̄) = eim⃗.Y⃗ with m⃗.m⃗ = 4, for a = 17, . . . , 496. (2.27)

Note in the above, that m⃗ is an array of 16 numbers taking value in the dual lattice of
E8×E8 or SO(32). As a result eim⃗.Y⃗ with m⃗.m⃗ = 4 gives us a total of 480 operators.
So all total we have 496 operators which is exactly equal to the number of generators
of E8×E8 or SO(32) symmetry group.

This specifies the field content of the heterotic strings and in turn fixes the partition function.

2.4 Vertical integration procedure

Unlike the case in bosonic string theory, an additional subtlety that one has to take into
account while computing amplitudes in superstring theory is the presence of spurious poles
(i.e. divergences occurring even when no two external vertices are coming close to each
other) which can occur in the following cases:

• The PCOs colliding with the vertex operators.

• Two or more PCOs colliding with each other.

• In case of higher genus surfaces there some special points where the theta functions
vanish even if no operators collide with each other. For example, in equation (2.10)
the ϑ[δ] has a divisor of g zeros due to the Riemann vanishing theorem so whenever
the denominator vanishes we get a spurious pole.

– 9 –
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Figure 4. Vertical integration procedure to avoid spurious poles lying on a co-dimension 2 subspace
(blue line).

In the language of super-moduli space the source of these poles are the breakdown of
supersymmetry gauge choices in different regions of the moduli space. The remedy then, is
to make different gauge choice in different patches and appropriate matching at the boundary.

However there exists a more practical approach to avoid the spurious poles by moving
the PCOs as described in [52]. It is this approach we are going to follow for our computation
and here we summarise the main results. The starting point is to consider the PCO locations
as fibre directions over the moduli space on top of the choice local coordinates and transition
functions. So the choice of section now includes the PCO locations as well. Whenever we
are near a spurious pole during the integration over a section, we move along the fibre
directions specifying the PCO locations i.e. we move the PCO from its current location (y0)
to some other point (y′) keeping everything else fixed (see figure 4).

So the final result is obtained by integrating over S̃ ∪C ∪ S̃′. Suppose now that we are
moving a single PCO and t parametrises the fibre direction of the PCO location then the
integration over the cylinder C yields,

Nπ

∫ 6g−6+2n−1∏
m=1

(∧dt̃m) ∧
∫
dt
〈 6g−6+2n−1∏

m=1
Bm Bt

∏
α

χ(yα) V1 . . . Vn
〉
, (2.28)

where Nπ = (−2πi)−(3g−3+n) and Bt is given by,

Bt =
∑

s

∮
Cs

∂Fs

∂t
b(σs)dσs +

∑
s

∮
Cs

∂F̄s

∂t
b̄(σ̄s)dσ̄s −

1
χ(y)

∂y

∂t
∂ξ(y(t)) = − 1

χ(y)
∂y

∂t
∂ξ(y(t))

since none of the transition functions Fs, F̄s depend on t. As result, using the fact that ∂ξ

– 10 –
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2 )

(y(3)
1 , y

(2)
2 )

(y(3)
1 , y

(3)
2 )(y(1)

1 , y
(3)
2 )

Figure 5. Vertical hole over a point in the moduli space.

is a total derivative of the field ξ in the large Hilbert space we get,

Nπ

∫ 6g−6+2n−1∏
m=1

(∧dt̃m)
〈

(ξ(y0) − ξ(y′))
6g−6+2n−1∏

m=1
Bm

∏
α

χ(yα) V1 . . . Vn

〉
. (2.29)

When we have to move more than one PCO, we move them one at a time but since
changing the order in which we move them results in different paths (figure 5). As a result
we have a hole over a point in the moduli space which we need to fill. We give here the
result of moving two PCOs, for moving more number of PCOs the result easily generalises.
Following the case of moving one PCO we now have for moving two PCOs,

Nπ

∫ 6g−6+2n−1∏
m=1

(∧dt̃m) ∧
∫
dt1 ∧ dt2

〈 6g−6+2n−1∏
m=1

Bm Bt1Bt2

∏
α

χ(yα) V1 . . . Vn
〉

(2.30)

where t1 and t2 parametrise the direction of the two PCO location y1 and y2, and Bt1 , Bt2

are given by,

Bt1 = − 1
χ(y1)

∂y1
∂t1

∂ξ(y1(t1)) ; Bt2 = − 1
χ(y2)

∂y2
∂t2

∂ξ(y2(t2)) .

The final result after filling this 2d vertical hole we have,

∫ 6g−6+2n−1∏
m=1

(∧dt̃m)
∫

A+B
dy1 ∧ dy2

〈
∂ξ(y1)∂ξ(y2) . . .

〉
=

〈{(
ξ(y(3)

1 ) − ξ(y(1)
1 )

)(
ξ(y(3)

2 ) − ξ(y(2)
2 )

)
+
(
ξ(y(2)

1 ) − ξ(y(1)
1 )

)(
ξ(y(2)

2 ) − ξ(y(1)
2 )

)}
. . .

〉
(2.31)

3 NS 1 point function on genus 2 Riemann surface

To carry out this computation,
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Figure 6. Pair of pants decomposition for genus 2 with 1 puncture.

• we first make a choice of local coordinates on the 1 punctured Riemann surface of
genus 2.

• Then we write the amplitude with the Beltrami differentials and appropriate number
of PCOs, and show that it is a total derivative on the Moduli space and hence gets
contribution only from the boundary.

• Finally we calculate the possible contributions from the boundary.

This technique of computing closely follows [21].

3.1 Choice of local coordinates

We know that the genus two Riemann surface with 1 NS punctures can be thought of as a
union of n = 1 Disk around the puncture, 2g − 2 + n = 3 spheres with 3 holes each, joined
at 3g − 3 + 2n = 5 circles (As in figure 6). We also have,

Moduli space M2,1,0 := 6g − 6 + 2n = 8 real i.e. 4 complex dimensions, (3.1)
Required no. of PCOs := 2g − 2 + n = 3 . (3.2)

We call the coordinate on S1 as z1, on S2 as z2 and on S3 as z′1. The coordinate on the disk
D1 around the first puncture is w1 such that the location of the puncture in this coordinate
is w1 = 0. We depict these choice of coordinates on the bottom part in figure 6.
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With this choice of local coordinates we write down the transition functions as,

z1 = w1 + ζ1 on C1, (3.3)
z1 = z2 on C3, (3.4)

z2 = − q

z′1
on C5, (3.5)

z1 = z2 − τ1 on C4, (3.6)
z′1 = z′1 − τ2 on C2 . (3.7)

Here τ1, τ2, ζ1, q are 4 complex parameters accounting for the 4 complex moduli that are
required. Let us remark here once more that the fibre directions over the base moduli
space also contain the locations of the PCOs. The violet points denote the locations of
the 3 PCOs at y1, y2 and y3. In our computation we will take y1 → p1 and y2 → p2 at
the very end, for the reason mentioned in the introduction. One can check easily that the
above choice of local coordinates around the punctures along with the transition functions
is manifestly gluing compatible.

3.2 The 1-point function as a total derivative using vertical integration proce-
dure

In accordance with [21] we do our computation in the large Hilbert space which means we
include ξ field at some arbitrary point z0 to soak up the ξ zero mode.

To get an invariant measure for integrating over this section we need the so called
Beltrami differentials Bm for each moduli variable t̃m. For the superstring case they are
defined as

Bm =
∑

s

∮
Cs

∂Fs

∂t̃m
b(σs)dσs +

∑
s

∮
Cs

∂F̄s

∂t̃m
b̄(σ̄s)dσ̄s −

1
χ(y)

∂y

∂t̃m
∂ξ(y(t̃m)), (3.8)

where σs = Fs(τs) defines the transition function between the coordinate patches σs and τs

on the circle Cs. For our choice of local coordinates and transition functions (3.3)–(3.7) the
Beltrami differentials are given by (the PCO locations being independent of the moduli
parameters),

Bτ1 = −
∮

C4
b(z1)dz1, Bτ̄1 = −

∮
C4
b̄(z̄1)dz̄1 (3.9)

Bτ2 = −
∮

C2
b(z′1)dz′1, Bτ̄2 = −

∮
C2
b̄(z̄′1)dz̄′1 (3.10)

Bζ1 =
∮

C1
b(w1)dw1, Bζ̄1

=
∮

C1
b̄(w̄1)dw̄1 (3.11)

Bq =
∮

C5
q−1z2b(z2)dz2, Bq̄ =

∮
C5
q̄−1z̄2b̄(z̄2)dz̄2 (3.12)

Now we are ready to write the 2 loop 1 point amplitude A(g=2)
1 . Most of the treatment that

we will follow in the rest of this subsection closely resembles [21].
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First we will write the general form of the amplitude for on-shell external states (i.e. the
vertex, V1, is a super-conformal primary of dimension (0,0) along with L−

0 |Vi⟩ = b−0 |Vi⟩ =
0, ∀ i = 1, 2) in the NS sector (i.e. -1 picture number).

V1(z, z̄) = εa
µc̄ce

−ϕψµ(z)J̄a(z̄)eik.X(z,z̄) , with k2 = 0 and εa
µk

µ = 0. (3.13)

The 2 loop 1 point function is given by,

A
(2)
1 =(−2πi)−4g3

s

∫
dτ1 ∧ dτ̄1 ∧ dτ2 ∧ dτ̄2 ∧ dζ1 ∧ dζ̄1 ∧ dq ∧ dq̄〈
Bτ1Bτ̄1Bτ2Bτ̄2Bζ1Bζ̄1

BqBq̄ ξ(z0)
3∏

α=1
χ(yα)f1 ◦ V1(0)

〉 (3.14)

We first bring the PCO at y3 on top of V1 to make it a 0-picture vertex,

eϕTF (z)V1(w, w̄) ∼ i
√

2εa
µc̄c(z − w)

(
∂Xµ(w)
2(z − w) − ik.ψ

2(z − w)ψ
µ(w)

)
J̄a(w̄)eik.X(w,w̄)

⇒ V
(0)

1 (w, w̄) = i√
2
εa

µc̄c (∂Xµ(w) − i(k.ψ)ψµ(w)) J̄a(w̄)eik.X(w,w̄) .

(3.15)

Finally we write the 0-picture vertex as spacetime super current acting on a 1/2-picture
vertex as in [21]. We have,

⟨V (0)
1 (k,ζ1, ζ̄1)⟩= ⟨

∮
ζ1

dx

2πiJ (x)V ( 1
2 )

1 (k,ζ1, ζ̄1)⟩

with 10d super current J (x) = e−
ϕ
2 uβ(0)Sβ(x) and ,

V
( 1

2 )
1 (k,ζ1, ζ̄1) = ϵav

α(k)c̄c
{
e

ϕ
2

[
∂Xµ− 1

4 i(k.ψ)ψµ
]
(γµ)αα′Sα′ + 1

2e
3ϕ/2ηbSα

}
(ζ1)J̄a(ζ̄1)eik.X .

(3.16)
Notice that the super current has no anti-holomorphic piece since we are working with
heterotic strings. Also the term containing e3ϕ/2 in V ( 1

2 )
1 does not contribute to the amplitude

due to ϕ charge conservation. The above result is illustrated in [53].6 So finally we have
the integrand in (3.14) given by,〈

Bτ1Bτ̄1Bτ2Bτ̄2Bζ1Bζ̄1
BqBq̄ ξ(z0)

2∏
α=1

χ(yα)
∮

ζ1

dx

2πiJ (x)V ( 1
2 )

1 (k, ζ1, ζ̄1)
〉

(3.17)

The x contour can now be pulled out and closed to some point away from ζ1 since the
surface is a closed one. In this process we pickup the residues from different spurious
poles in the x plane whose location (rl say) are a function of y1, y2 and ζ1. Now if the
PCO at y1 is moved to some other point ỹ1 such that the new pole locations are away
from rl then the contour integration simply vanishes. So we can rewrite (3.17) using
χ(y1) − χ(ỹ1) = {QB, ξ(y1) − ξ(ỹ1)} as,∑

rl

∮
rl

dx

〈
Bτ1Bτ̄1Bτ2Bτ̄2Bζ1Bζ̄1

BqBq̄ ξ(z0)QB(ξ(y1) − ξ(ỹ1))χ(y2)J (x)V ( 1
2 )

1 (k, ζ1, ζ̄1)
〉

(3.18)
6In our case we have set the momentum of the -1/2 picture vertex to 0 to get the 10d spacetime

super current.
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We now use the following well known identity to move the BRST operator on the other
operators.

Ω(g,n)
p (QBV1, V2, . . . , Vn) + (−1)V1Ω(g,n)

p (V1, QBV2, . . . , Vn) + . . .

· · · + (−1)V1+V2+...+Vn−1Ω(g,n)
p (V1, V2, . . . , QBVn) = (−1)pdΩ(g,n)

p−1 (V1, V2, . . . , Vn) .
(3.19)

This identity uses the fact that {QB, b(z)} = T (z). Here Ωg,n
p describes a p-form on a

section of the fibre directions over the moduli space of genus g and n-punctures. In our
case we have, as mentioned Ω(2,1)

8 (χ1, χ2, χ3, V1), but note the following points.

• Since we are working with on-shell external states we have by definition QBV1 = 0.

• Also for the PCO’s we have QBχ = 0 since we know that Q2
B = 0.

• Since (ξ(y1) − ξ(ỹ1)) is in the small Hilbert space the term ⟨. . . QBξ(z0)(ξ(y1) −
ξ(ỹ1))χ(y2) . . . ⟩ vanishes due to the fact that there is no field to soak up the ξ

zero mode.

As result our integrand turns out to be a total derivative on the moduli space. Follow-
ing [21] we know that the boundary is a real co-dimension 2 surface (q = 0) and hence the
boundary contribution vanishes unless the integrand becomes singular. Near the boundary
q → 0 we have,

lim
a→0

∫
|q|≥a

dq ∧ dq̄ ∂

∂q
(F (q, q̄)) = lim

a→0

∫ 2π

0
dθ (q̄F (q, q̄))|r=a . (3.20)

Here we have used the parametrization

q = reiθ, ⇒ q̄ = re−iθ ,

and the only assumption is that F (q, q̄) is analytic in θ. From (3.20) we see that as a→ 0,
non zero contribution comes from the 1/q̄ divergence piece of F (q, q̄) in the q → 0 limit.

For the current case at hand we put z0 = y1 to get,

F (q, q̄) =(−2πi)−4g3
s

∫
dτ1 ∧ dτ̄1 ∧ dτ2 ∧ dτ̄2 ∧ dζ1 ∧ dζ̄1∑

rl

∮
rl

dx

2πi

〈
Bτ1Bτ̄1Bτ2Bτ̄2Bζ1Bζ̄1

Bq̄ ξ(ỹ1)ξ(y1)χ(y2)J (x)V ( 1
2 )

1 (k, ζ1, ζ̄1)
〉 (3.21)

3.3 Contribution due to the ξ, η, ϕ system

In (3.18) most contributions vanish due to ϕ charge conservation (for genus 2 surface) i.e.∑
q ̸= 2. The only non vanishing contribution is given by,

F (q, q̄) =−1
4(−2πi)−4g3

s lim
y2→y′

2

∫
dτ1∧dτ̄1∧dτ2∧dτ̄2∧dζ1∧dζ̄1

(
2 ∂

∂y2
+ ∂

∂y′2

)
G(y2,y

′
2)

(3.22)
with,

G(y2,y
′
2) =

∑
rl

∮
rl

dx

2πi

〈
Bτ1Bτ̄1Bτ2Bτ̄2Bζ1Bζ̄1

Bq̄ ξ(ỹ1)ξ(y1)η(y2)e2ϕ(y′
2)b(y′2)J (x)V ( 1

2 )
1 (k,ζ1, ζ̄1)

〉
(3.23)
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The superghost part of the correlation function is given by,〈
ξ(ỹ1)ξ(y1)η(y2)e2ϕ(y′

2)e−
ϕ(x)

2 e
ϕ(ζ1)

2

〉

= (Z1)
1
2

ϑ[δ]
(
⃗̃y1+y⃗1−2y⃗2+2y⃗ ′

2 − x⃗
2 + ζ⃗1

2 −2∆⃗
)

ϑ[δ]
(
y⃗1−y⃗2+2y⃗ ′

2 − x⃗
2 + ζ⃗1

2 −2∆⃗
)
ϑ[δ]

(
⃗̃y1−y⃗2+2y⃗ ′

2 − x⃗
2 + ζ⃗1

2 −2∆⃗
)

E(ỹ1,y1)E(x,y′2)(E(x,ζ1)) 1
4

E(ζ1,y′2)E(ỹ1,y2)E(y1,y2)
σ(x)

σ(ζ1)(σ(y′2))4 .

(3.24)

Here we have used (2.10). Now we have to take the limit q → 0 to see what is the
contribution at the boundary. The results that we will be using exhaustively from here
on are given in the appendix of [21] which we present in the appendix A for the sake
of completeness.

Let us first note that the spurious poles of the above function comes from the zero
of ϑ[δ]

(
y⃗1 − y⃗2 + 2y⃗ ′

2 − x⃗
2 + ζ⃗1

2 − 2∆⃗
)

in the x plane. There are a total of 22g−2g = 8
spurious poles for genus g = 2 surface. In the limit q → 0 we take y1 and ζ1 on the torus
T1 with modular parameter τ1 and ỹ1, y2 and y′2 are on the other torus T2 with modular
parameter τ2. Of course ζ1 is integrated over so we need to also consider the case when
ζ1 lies on T2 but that we will look into later, for now keep ζ1 on T1. Now let us see what
happens when,

1. x lies on T1: in this case we get for q → 0,

ϑ[δ]
(
y⃗1 − y⃗2 + 2y⃗ ′

2 − x⃗

2 + ζ⃗1
2 − 2∆⃗

)

→ ϑ

[
a1
b1

](
y1 −

x

2 + ζ1
2 − p1|τ1

)
ϑ

[
a2
b2

] (
2y′2 − y2 − p2|τ2

)
.

(3.25)

For a given spin structure (a1, b1) the theta function vanishes at,7

−x2 = p1 − y1 −
ζ1
2 + â1τ1 + b̂1

with four different spin structures (a2, b2), which accounts for 4 out of 8 spurious
poles. One can check that in (3.24) the residue at these poles contain,

ϑ[δ]
(
⃗̃y1 + y⃗1 − 2y⃗2 + 2y⃗ ′

2 − x⃗

2 + ζ⃗1
2 − 2∆⃗

)

→ ϑ

[
a1
b1

](
y1 −

x

2 + ζ1
2 − p1|τ1

)
ϑ

[
a2
b2

] (
⃗̃y1 + 2y′2 − 2y2 − p2|τ2

)
,

(3.26)

which vanishes exactly at the points where the poles are situated. So contribution
from these 4 poles lying on T1 simply vanish.

7Note that for T1, â1, b̂1 ∈ {0, 1
2} s.t. ϑ

[
a1

b1

] (
z − â1τ1 − b̂1|τ1

)
∼ ϑ

[
1/2
1/2

]
(z|τ1) upto some phase factor.

Similarly for T2, â2, b̂2 ∈ {0, 1
2}.
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2. x lies on T2: in the q → 0 limit we get,

ϑ[δ]
(
y⃗1 − y⃗2 + 2y⃗ ′

2 − x⃗

2 + ζ⃗1
2 − 2∆⃗

)

→ ϑ

[
a1
b1

](
y1 + ζ1

2 − 3p1
2 |τ1

)
ϑ

[
a2
b2

](
2y′2 − y2 −

x

2 − p2
2 |τ2

)
.

(3.27)

This time for a specific (a2, b2) the above function vanishes at
x

2 = 2y′2 − y2 −
p2
2 + â2τ2 + b̂2

with four different spin structures (a1, b1) which accounts for the left over 4 poles.
Below, we just write down the final result for the residues at these poles. This can be
easily checked using appendix A.

In the limit q → 0 we get,

q3/8ηd(τ1)ηd(τ2) ϑ1(3y′2 − 2y2 − p2|τ2) [ϑ1(4y′2 − 2y2 − 2p2|τ2)ϑ1(ζ1 − p1|τ1)]1/4

ϑa1b1

(
ζ1
2 − p1

2 |τ1
)
ϑ1 (4y′2 − 2y2 − 2p2|τ2) [ϑ′1(0|τ1)]1/4 [ϑ′1(0|τ2)]9/4 ,

(3.28)
upto some overall phase. Here ηd denotes the Dedekind eta function and we have
introduced the following notations for the sake of brevity,

ϑab(z|τ) ≡ ϑ

[
a

b

]
(z|τ) , ϑ1(z|τ) ≡ ϑ

[
1/2
1/2

]
(z|τ) ,

⇒ ϑ1(0|τ) = 0 , ϑ′1(0|τ) =
(
∂

∂z
ϑ1(z|τ)

) ∣∣∣∣
z=0

3.4 Contribution due to b, c ghost and the matter sector

For this case we need to first note that Bζ1Bζ̄1
acts on the c̄(ζ̄1)c(ζ1) to give 1/|w − ζ1|2 so

that the contour integral on w and w̄ gives identity and we are left with the following b, c
correlation function,

⟨Bτ1Bτ̄1Bτ2Bτ̄2Bq̄ b(y′2)⟩ = q̄−2

q
|ηd(τ1)|4|ηd(τ2)|4

(
ϑ′1(0|τ2)

ϑ1(y′2 − p2|τ2)

)2
. (3.29)

Thus, so far we have,

G(y2, y
′
2) =q−5/8q̄−2ηd(τ1)3ηd(τ2)3η̄d(τ̄1)2η̄d(τ̄2)2

(
ϑ′1(0|τ2)

ϑ1(y′2 − p2|τ2)

)2 〈
matter

〉
ϑ1(3y′2 − 2y2 − p2|τ2) [ϑ1(4y′2 − 2y2 − 2p2|τ2)ϑ1(ζ1 − p1|τ1)]1/4

ϑa1b1

(
ζ1
2 − p1

2 |τ1
)
ϑ1 (4y′2 − 2y2 − 2p2|τ2) [ϑ′1(0|τ1)]1/4 [ϑ′1(0|τ2)]9/4 .

(3.30)

The above expression implies that we need only compute the contribution from the
matter sector which is proportional to q5/8q̄ so that we get the 1/q̄ piece of F (q, q̄). The
matter part of the correlation function is,

uαvα′
(γµ)βα′ϵa

〈
Sα(x)Sβ(ζ1)

(
∂Xµ− 1

4 i(k.ψ)ψµ

)
J̄a(ζ̄1)eik.X

〉
∼ (2π)10δ10(k)(ūγµv)ϵa⟨. . .⟩.

(3.31)
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Due to the overall momentum conserving delta function we can put k = 0 and drop the term
(k.ψ)ψµ. For definiteness we take, ⟨Sα(x)Sβ(ζ1) . . . ⟩ ∼ δ β

α ⟨S1+..S5+(x)S −
1 ..S −

5 (ζ1) . . . ⟩.
Now from the factorization theorem [59, 60], we know that

⟨A1(z1)A2(z2)⟩ ∼
∑
φ

⟨A1(z1)φ(p1)⟩T1⟨φ†(p2)A2(z2)⟩T2q
hφ q̄h̄φ . (3.32)

In the current scenario we have A1(z1) ≡ S −
1 (ζ1)S −

2 (ζ1)S −
3 (ζ1)S −

4 (ζ1)S −
5 (ζ1) and

A2(z2) ≡ S1+(x)S2+(x)S3+(x)S4+(x)S5+(x).
The operator with conformal dimension

(
1, 5

8

)
that contributes to the sum on the r.h.s.

above is,

φ(p1) ≡ S1+(p1)S2+(p1)S3+(p1)S4+(p1)S5+(p1)J̄b(p1)

⇒ φ†(p2) ≡ S −
1 (p2)S −

2 (p2)S −
3 (p2)S −

4 (p2)S −
5 (p2)J̄b(p2)

For uncompactified theories this is the only possibility although for compactified theories
one may construct other type of operators, for more details see [21].

So the relevant contribution to matter correlation function is given by,8

(ūγµv)ϵaq5/8q̄⟨∂Xµ(ζ1)J̄a(ζ̄1)⟩T1

⟨S −
1 (p2)S −

2 (p2)S −
3 (p2)S −

4 (p2)S −
5 (p2)J̄b(p2)S1+(x)S2+(x)S3+(x)S4+(x)S5+(x)⟩a2b2

⟨S1+(p1)S2+(p1)S3+(p1)S4+(p1)S5+(p1)J̄b(p1)S −
1 (ζ1)S −

2 (ζ1)S −
3 (ζ1)S −

4 (ζ1)S −
5 (ζ1)⟩a1b1 .

(3.33)
The result of this correlation function in our case i.e. the uncompactified theory is,

(ūγµv)ϵaq5/8q̄⟨∂Xµ(ζ1)J̄a(ζ̄1)⟩

K̃(τ1)K̃(τ2)(ηd(τ1)ηd(τ2))−3(η̄d(τ̄1)η̄d(τ̄2))−2ε(a1, b1)ε(a2, b2)
[
ϑa1b1

(
ζ1
2 − p1

2 |τ1

)]5

[
ϑa2b2

(
p2
2 − x

2 |τ2

)]5
[ϑ1 (ζ1 − p1|τ1)]−

5
4 [ϑ1 (p2 − x|τ1)]−

5
4
[
ϑ′1 (0|τ1)ϑ′1 (0|τ2)

] 5
4

(3.34)
Notice that we need to sum over the spin structure (a1, b1) of T1,9 whereas as for T2 the
spin structure is a fixed one for which the poles are situated at,

x

2 = 2y′2 − y2 −
p2
2 + â2τ2 + b̂2

and we are computing the residues at these poles. Putting (3.30) and (3.34) together and
carrying out the sum over (a1, b1) we get,

∑
a1,b1

ε(a1, b1)
[
ϑa1b1

(
ζ1
2 − p1

2 |τ1

)]4
× (. . . ) = 0, (3.35)

8The suffix on the correlator denotes on which torus we should compute each part of the correlation
function.

9ε(a1, b1) = 1 for (a1, b1) = (1/2, 1/2), (0, 0) and ε(a1, b1) = −1 for (a1, b1) = (1/2, 0), (0, 1/2).
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where the (. . . ) denote all the other pieces and they are independent of (a1, b1). This sum
vanishes due to the Riemann theta function identity,∑

δ

ε(δ)ϑ[δ](z1)ϑ[δ](z2)ϑ[δ](z3)ϑ[δ](z4) = 2(ϑ1(z1 + z2 + z3 + z4)ϑ1(z1 + z2 − z3 − z4)

ϑ1(z1 − z2 − z3 + z4)ϑ1(z1 − z2 + z3 − z4))
(3.36)

So we see that the integrand vanishes in the region of integration when ζ1 lies on T1.
Let us now consider the remaining region of integration where ζ1 lies on T2. One can easily
see that when x lies on T1, the residues at the 4 poles lying on T1 simply vanishes. For a
given spin structure (a1, b1) location of these poles are given by,

x

2 = y1 −
p1
2 + â1τ1 + b̂1 , for 4 different spin structures (a2, b2).

Thus let us consider the case when x lies on T2. For a given spin structure (a2, b2) the
location of 4 poles on T2 are given by,

x

2 = 2y′2 − y2 + ζ1
2 − p2 + â2τ2 + b̂2 , for 4 different spin structures (a1, b1).

We can now follow the same steps described previously in this section to get the full
contribution from the residues at the poles on T2. Notice that the contribution from the
superghost and the conformal b, c ghost part goes as,

∼ q−1q̄−2 1
ϑa1b1(0|τ1) × (. . . ) , (3.37)

where the (. . . ) denotes the total contribution independent of q, q̄ and (a1, b1). Finally, we
turn to the matter contribution and note that the factorization theorem (3.32) now applies to
the case A2(z2) ≡ S −

1 (ζ1)S −
2 (ζ1)S −

3 (ζ1)S −
4 (ζ1)S −

5 (ζ1)S1+(x)S2+(x)S3+(x)S4+(x)S5+(x)
and A1(z1) ≡ 1. Also notice that now the relevant piece must contain the operator with
conformal dimension (1, 1) so that we get the 1/q̄ contribution to F (q, q̄). Although there
are more than one such operator present in the theory, the relevant one is,10

φ(p1) = Ψ̄i(p1)Ψi(p1)J̄b(p1)

φ†(p2) = Ψ̄i(p2)Ψi(p2)J̄b(p2)
where i = 1, .., 5 and Ψ denotes a world-sheet complex fermion built from a pair of Majorana
fermions. As a result the full correlation function (ghost and matter) on T1 from all the
holomorphic fermions is simply,

1
q̄

∑
a1,b1

ε(a1, b1)ϑa1b1(0|τ1)4 × (. . . ) = 0 using (3.36).

Again (. . . ) being the contribution independent of (a1, b1). This implies that,

G(y2, y
′
2) = 0 , ⇒ F (q, q̄) = 0 , ⇒ A

(2)
1 = 0 (3.38)

identically and thus they remain zero even as we take y1 → p1 and y2 → p2. Hence, the
1-point function of the massless field vanishes at two loop order as expected.

10The operator of the form φ = ∂XJb does not contribute since k = 0 for the one point function and
hence δ10(k)⟨∂X(p2)eik.X(ζ1,ζ̄1)⟩ = 0.
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Figure 7. Pair of pants decomposition for genus 2 with 1 puncture.

4 Renormalised mass at 2 loop order

In the previous section we computed the full 1 point function but now we want to compute
only a part of the 2 point function that constitutes the 1PI subspace of the amplitude. The
basic procedure follows the previous section closely i.e. first we write the full amplitude
as a total derivative on the moduli space using the vertical integration procedure. This
implies that the contribution comes from the boundary and we figure out this contribution
from different regions of integration of the vertex location separately. It is in this second
step where we have to carefully identify and drop the regions of integration that constitute
the 1PR subspace. This will leave us with the desired 1PI subspace and our result will
give the renormalised mass. As will be clear from the treatment below that the full ghost
contribution to the renormalised mass is independent of whether we consider the massless
or massive vertex operators.

4.1 Choice of local coordinates

We now have a genus two Riemann surface with 2 NS punctures which is a union of n = 2
Disks, 2g − 2 + n = 4 spheres with three holes each, joined at 3g − 3 + 2n = 7 circles
(figure 7).

Moduli space M2,2,0 := 6g − 6 + 2n = 10 real i.e. 5 complex dimensions, (4.1)
Required no. of PCOs := 2g − 2 + n = 4 . (4.2)
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We call the coordinate on S1 as z1, on S2 as z2, on S3 as z′2 and on S4 as z′1. The coordinate
on the disk D1 around the first puncture is w1 such that the location of the puncture in this
coordinate is w1 = 0. Similarly, the coordinate on the disk D2 around the second puncture
is w2 with the location of the puncture at w2 = 0. We depict these choice of coordinates on
the right in figure 7.

With this choice of local coordinates we write down the transition functions as,

z1 = w1 + ζ1 on C1, (4.3)
z1 = z2 on C3, (4.4)

z2 = − q

z′2
on C5 (with |q| ≥ 1), (4.5)

z′2 = z′1 on C6, (4.6)

z′1 = w2 + ζ2 on C2, (4.7)
z1 = z2 − τ1 on C4, (4.8)
z′2 = z′1 − τ2 on C7 . (4.9)

Here τ1, τ2, ζ1, ζ2, q are 5 complex parameters accounting for the 5 complex moduli that
are required. Let us remark here once more that the fibre directions over the base moduli
space also contain the locations of the PCOs. The violet points denote the locations of the
4 PCOs at y1, y2, y3 and y4. As in the 1 point case we take y1 → p1 and y2 → p2 at the
very end.

4.2 The 2 point function as a total derivative

The Beltrami differentials in this case are,

Bτ1 = −
∮

C4
b(z1)dz1, Bτ̄1 = −

∮
C4
b̄(z̄1)dz̄1 (4.10)

Bτ2 = −
∮

C7
b(z′2)dz′2, Bτ̄2 = −

∮
C7
b̄(z̄′2)dz̄′2 (4.11)

Bζ1 =
∮

C1
b(w1)dw1, Bζ̄1

=
∮

C1
b̄(w̄1)dw̄1 (4.12)

Bζ2 =
∮

C2
b(w2)dw2, Bζ̄2

=
∮

C2
b̄(w̄2)dw̄2 (4.13)

Bq =
∮

C5
q−1z2b(z2)dz2, Bq̄ =

∮
C5
q̄−1z̄2b̄(z̄2)dz̄2 (4.14)

We can now write down the 2 point function on genus 2 Riemann surface with two on-shell
external -1 picture vertex which will be our starting point.

A
(2)
2 = (−2πi)−5g4

s

∫
dτ1 ∧ dτ̄1 ∧ dτ2 ∧ dτ̄2 ∧ dζ1 ∧ dζ̄1 ∧ dζ2 ∧ dζ̄2 ∧ dq ∧ dq̄〈

Bτ1Bτ̄1Bτ2Bτ̄2Bζ1Bζ̄1
Bζ2Bζ̄2

BqBq̄ ξ(z0)
4∏

α=1
χ(yα)f1 ◦ V1(0)f2 ◦ V2(0)

〉
.

(4.15)

Now we will put one PCO on top of the -1 picture vertex V1 to convert it to a 0 picture
vertex and keep the other one as it is. The reason for this is we want to pick up the residue
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for all the spurious poles i.e. even the ones which may depend on ζ2. Following the previous
section we then write the 0 picture vertex as,

V
(0)

1 (ζ1) =
∮

ζ1
dxJ (x)V ( 1

2 )
1 (ζ1)

where the 10d spacetime supercurrent J (x) is already defined in the previous section.
Again we pull the x contour out and close it at some other point away from ζ1 and ζ2

picking up the contributions from the 8 spurious poles r′l in the process. So we have,

A
(2)
2 = (−2πi)−5g4

s

∫
dτ1∧dτ̄1∧dτ2∧dτ̄2∧dζ1∧dζ̄1∧dζ2∧dζ̄2∧dq∧dq̄

∑
r′

l

∮
r′

l

dx

2πi

〈
Bτ1Bτ̄1Bτ2Bτ̄2Bζ1Bζ̄1

Bζ2Bζ̄2
BqBq̄ ξ(z0)

3∏
α=1

χ(yα)J (x)V ( 1
2 )

1 (ζ1, ζ̄1)V2(ζ2, ζ̄2)
〉
.

(4.16)
We can see clearly that the location of the spurious poles depend on y1, y2, y3, ζ1 and ζ2. By
moving the PCO at y1 to a suitable location ỹ1 we can ensure that none of the new poles
coincide with r′l any longer. As a result the contour integrals around r′l with the PCO at ỹ1
simply vanishes and thus we can rewrite the integrand as,∑

r′
l

∮
r′

l

dx

2πi

〈
Bτ1 . . . Bq̄ ξ(z0){QB, (ξ(y1) − ξ(ỹ1))}

3∏
α=2

χ(yα)J (x)V ( 1
2 )

1 (ζ1, ζ̄1)V2(ζ2, ζ̄2)
〉
.

(4.17)
Since the external states are on-shell and ξ(y1) − ξ(ỹ1) is an operator in the small Hilbert
space, we can use (3.19) once again to write this integrand as a total derivative and thus
represent it as a boundary term, viz.

lim
a→0

∫ 2π

0
dθ (q̄F ′(q, q̄))|r=a .

Taking z0 = ỹ1, the quantity F ′(q, q̄) is given by,

F ′(q, q̄) =

(−2πi)−5g4
s

∫
dτ1∧dτ̄1∧dτ2∧dτ̄2∧dζ1∧dζ̄1∧dζ2∧dζ̄2

∑
r′

l

∮
r′

l

dx

2πi

〈
Bτ1Bτ̄1Bτ2Bτ̄2Bζ1Bζ̄1

Bζ2Bζ̄2
Bq̄ ξ(ỹ1)ξ(y1)

3∏
α=2

χ(yα)J (x)V ( 1
2 )

1 (ζ1, ζ̄1)V2(ζ2, ζ̄2)
〉
.

(4.18)

4.3 Contribution due to the ξ, η, ϕ and the b, c ghost

As described in the case of 1 point function most of the contributions vanish due to ϕ charge
conservation. The only non vanishing piece is,
F ′(q, q̄) =

− g4
s

4 (−2πi)−5
[

lim
y2→y′

2

∫
dτ1∧dτ̄1∧dτ2∧dτ̄2∧dζ1∧dζ̄1∧dζ2∧dζ̄2

(
2 ∂

∂y2
+ ∂

∂y′2

)
G′(y2,y

′
2)

+ lim
y3→y′

3

∫
dτ1∧dτ̄1∧dτ2∧dτ̄2∧dζ1∧dζ̄1∧dζ2∧dζ̄2

(
2 ∂

∂y3
+ ∂

∂y′3

)
G′(y3,y

′
3)
]

(4.19)
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where,

G′(y2, y
′
2) =

∑
r′

l

∮
r′

l

dx

2πi

〈
Bτ1Bτ̄1Bτ2Bτ̄2Bζ1Bζ̄1

Bζ2Bζ̄2
Bq̄

ξ(ỹ1)ξ(y1)η(y2)e2ϕ(y′
2)b(y′2)eϕ(y3)TF (y3)J (x)V ( 1

2 )
1 (ζ1, ζ̄1)V2(ζ2, ζ̄2)

〉
(4.20)

and

G′(y3, y
′
3) =

∑
r′

l

∮
r′

l

dx

2πi

〈
Bτ1Bτ̄1Bτ2Bτ̄2Bζ1Bζ̄1

Bζ2Bζ̄2
Bq̄

ξ(ỹ1)ξ(y1)eϕ(y2)TF (y2)η(y3)e2ϕ(y′
3)b(y′3)J (x)V ( 1

2 )
1 (ζ1, ζ̄1)V2(ζ2, ζ̄2)

〉
.

(4.21)
We will focus on the details while computing G′(y2, y

′
2) and write down the result for

G′(y3, y
′
3) directly since the steps followed are similar.

The superghost part of the correlation function (4.20) is given by,〈
ξ(ỹ1)ξ(y1)η(y2)e2ϕ(y′

2)eϕ(y3)e−
ϕ(x)

2 e
ϕ(ζ1)

2 e−ϕ(ζ2)
〉

=

(Z1) 1
2 ϑ[δ]

(
⃗̃y1+y⃗1−2y⃗2+2y⃗ ′

2 − x⃗
2 + ζ⃗1

2 +y⃗3−ζ⃗2−2∆⃗
)

ϑ[δ]
(
y⃗1−y⃗2+2y⃗ ′

2 − x⃗
2 + ζ⃗1

2 +y⃗3−ζ⃗2−2∆⃗
)
ϑ[δ]

(
⃗̃y1−y⃗2+2y⃗ ′

2 − x⃗
2 + ζ⃗1

2 +y⃗3−ζ⃗2−2∆⃗
)

E(ỹ1,y1)E(x,y′2)(E(x,ζ1)) 1
4 (E(x,y3)) 1

2 (E(y′2, ζ2))2E(y3, ζ2)
E(y′2, ζ1)E(ỹ1,y2)E(y1,y2)(E(y′2,y3))2(E(x,ζ2)) 1

2

σ(x)(σ(ζ2))2

σ(ζ1)(σ(y′2))4(σ(y3))2 .

(4.22)

Similarly, from (4.21) we get,〈
ξ(ỹ1)ξ(y1)η(y3)eϕ(y2)e2ϕ(y′

3)e−
ϕ(x)

2 e
ϕ(ζ1)

2 e−ϕ(ζ2)
〉

=

(Z1) 1
2 ϑ[δ]

(
⃗̃y1+y⃗1−2y⃗3+2y⃗ ′

3 − x⃗
2 + ζ⃗1

2 +y⃗2−ζ⃗2−2∆⃗
)

ϑ[δ]
(
y⃗1−y⃗3+2y⃗ ′

3 − x⃗
2 + ζ⃗1

2 +y⃗2−ζ⃗2−2∆⃗
)
ϑ[δ]

(
⃗̃y1−y⃗3+2y⃗ ′

3 − x⃗
2 + ζ⃗1

2 +y⃗2−ζ⃗2−2∆⃗
)

E(ỹ1,y1)E(x,y′3)(E(x,ζ1)) 1
4 (E(x,y2)) 1

2 (E(y′3, ζ2))2E(y2, ζ2)
E(y′3, ζ1)E(ỹ1,y3)E(y1,y3)(E(y′3,y2))2(E(x,ζ2)) 1

2

σ(x)(σ(ζ2))2

σ(ζ1)(σ(y′3))4(σ(y2))2 .

(4.23)

4.3.1 Identifying the 1PI subspace
Let us now first put y1, y3 on T1 while ỹ1, y2, y

′
2 are put on T2. Of course ζ1 and ζ2 are

integrated over so we have to consider different configuration in which they lie on different
tori.

But here we keep in mind that all the regions of integration where ζ1 and ζ2 lie on
different tori are part of the 1PR subspace i.e. these contributions come from the diagrams of
type shown in figure 3 and thus we drop these contributions in computing the renormalised
mass. So the regions of integration relevant for our calculation are either both ζ1 and ζ2
lying on T1 or both lying on T2. We will work with both cases separately.
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Both ζ1 and ζ2 lying on T1. For G′(y2, y
′
2) we get,

1. When x lies on T1: for q → 0,

ϑ[δ]
(
y⃗1 − y⃗2 + 2y⃗ ′

2 − x⃗

2 + ζ⃗1
2 + y⃗3 − ζ⃗2 − 2∆⃗

)

→ ϑ

[
a1
b1

](
y1 −

x

2 + ζ1
2 + y3 − ζ2 − p1|τ1

)
ϑ

[
a2
b2

] (
2y′2 − y2 − p2|τ2

)
.

(4.24)

For a given spin structure (a1, b1) the above function vanishes for,

x

2 = y1 + ζ1
2 + y3 − ζ2 − p1 + â1τ1 + b̂1

with four different spin structures (a2, b2). The residues at these four poles contain
the factor,

ϑ[δ]
(
⃗̃y1 + y⃗1 − 2y⃗2 + 2y⃗ ′

2 − x⃗

2 + ζ⃗1
2 + y⃗3 − ζ⃗2 − 2∆⃗

)

→ ϑ

[
a1
b1

](
y1 −

x

2 + ζ1
2 + y3 − ζ2 − p1|τ1

)
ϑ

[
a2
b2

] (
ỹ1 + 2y′2 − 2y2 − p2|τ2

)
.

(4.25)

which vanish exactly at the locations of the poles written above. As a result the
contribution from the residues at these four poles vanish.

2. When x lies on T2: for q → 0 we find,

ϑ[δ]
(
y⃗1 − y⃗2 + 2y⃗ ′

2 − x⃗

2 + ζ⃗1
2 + y⃗3 − ζ⃗2 − 2∆⃗

)

→ ϑ

[
a1
b1

](
y1 + ζ1

2 + y3 − ζ2 −
3p1
2 |τ1

)
ϑ

[
a2
b2

](
2y′2 − y2 −

x

2 − p2
2 |τ2

)
.

(4.26)

This function vanishes for a given spin structure (a2, b2) at,

x

2 = 2y′2 − y2 −
p2
2 + â2τ2 + b̂2 .

For 4 different spin structures (a1, b1) this accounts for the remaining 4 poles that
lie on T2. The superghost contribution to the residues at these poles upto an overall
phase are given by,

q3/8ηd(τ1)ηd(τ2) (ϑ′1 (0|τ1))− 5
4 (ϑ′1 (0|τ2))− 9

4

ϑa1b1

(
ζ1
2 + y3 − ζ2 − p1

2 |τ1
)

× ϑ1 (x− y′2|τ2) (ϑ1 (ζ1 − p1|τ1)) 1
4 (ϑ1 (y3 − p1|τ1)) 1

2 (ϑ1 (p2 − y′2|τ2))3ϑ1(y3 − ζ2|τ1)
(ϑ1 (p2 − x|τ2)) 3

4 (ϑ1 (ζ2 − p1|τ1)) 1
2ϑ1 (p2 − y2|τ2)

.

(4.27)
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Now consider the contribution due to b, c ghost correlation function which is exactly
the as in the 1 point function i.e.,

⟨Bτ1Bτ̄1Bτ2Bτ̄2Bq̄ b(y′2)⟩ = 1
q̄2q

|ηd(τ1)|4|ηd(τ2)|4
(

ϑ′1(0|τ2)
ϑ1(y′2 − p2|τ2)

)2
. (4.28)

Putting (4.27) and (4.28) together, we get the full ghost contribution to the residues to be,

1
q5/8q̄2 (ηd(τ1)ηd(τ2))3(η̄d(τ̄1)η̄d(τ̄2))2 (ϑ′1 (0|τ1))− 5

4 (ϑ′1 (0|τ2))− 1
4

ϑa1b1

(
ζ1
2 +y3−ζ2− p1

2 |τ1
)

×ϑ1 (3y′2−2y2−p2|τ2)(ϑ1 (ζ1−p1|τ1)) 1
4 (ϑ1 (y3−p1|τ1)) 1

2ϑ1 (y′2−p2|τ2)ϑ1(y3−ζ2|τ1)
(ϑ1 (2p2+2y2−4y′2|τ2)) 3

4 (ϑ1 (ζ2−p1|τ1)) 1
2ϑ1 (y2−p2|τ2)

.

(4.29)
Following similar arguments and steps we can get the non vanishing contributions for
G′(y3, y

′
3) from (4.23). The b, c ghost contribution in this case is,

⟨Bτ1Bτ̄1Bτ2Bτ̄2Bq̄ b(y′3)⟩ = 1
q̄2q

|ηd(τ1)|4|ηd(τ2)|4
(

ϑ′1(0|τ1)
ϑ1(y′3 − p1|τ1)

)2
. (4.30)

It is easy to check that the expression (4.23) will have contributions from poles on both tori
T1 and T2. The residues at the 4 poles on T1 (x

2 = y1 − y3 + 2y′3 + ζ1
2 − ζ2 − p1 + â1τ1 + b̂1)

due to both superghost and b, c ghost comes out to be,

1
q3/4q̄2 (ηd(τ1)ηd(τ2))3(η̄d(τ̄1)η̄d(τ̄2))2 (ϑ′

1 (0|τ1))− 1
4 (ϑ′

1 (0|τ2))− 3
2 ϑ1 (3y′3−2y3+2y1+ζ1−2ζ2−2p1|τ1)

ϑa2b2 (y2−p2|τ2)(ϑ1 (4y′3−2y3+2y1−3ζ2+ζ1−2p1|τ1)) 1
2

× (ϑ1 (4y′3−2y3+2y1−2ζ2−2p1|τ1)) 1
4 (ϑ1 (p2−y2|τ2)) 3

2 ϑ1 (ζ1−p1|τ1)(ϑ1 (y′3−ζ2|τ1))2

ϑ1 (y′3−ζ1|τ1)ϑ1 (y1−y3|τ1)(ϑ1 (4y′3−2y3+2y1−2ζ2+ζ1−3p1|τ1)) 1
2 ϑ1 (ζ2−p1|τ1)

.

(4.31)
The residues for the other 4 poles i.e. those on T2 contains a factor of ϑ1(y1 − p1|τ1) in

the numerator and hence this will vanish when we take y1 → p1 at end of our computation.

Both ζ1 and ζ2 lying on T2. It should be clear by now that beginning our analysis
from (4.22) and (4.23) we take different configurations of the location of the vertices and
x to figure out the relevant contributions to G(y2, y

′
2) and G(y3, y

′
3) respectively. The

procedure remains exactly same as in the previous case so we directly write down the final
result for the full ghost contributions.

For G(y2, y
′
2) we get,

1
q3/4q̄2 (ηd(τ1)ηd(τ2))3(η̄d(τ̄1)η̄d(τ̄2))2 (ϑ′

1 (0|τ1))− 3
2 (ϑ′

1 (0|τ2))− 1
4 ϑ1 (3y′2−2y2+ζ1−2ζ2|τ2)

ϑa1b1 (y3−p1|τ1)(ϑ1 (4y′2−2y2−3ζ2+ζ1−2p1|τ1)) 1
2

× (ϑ1 (4y′2−2y2−2ζ2|τ1)) 1
4 (ϑ1 (y3−p1|τ1)) 3

2 ϑ1 (ζ1−p2|τ2)(ϑ1 (y′2−ζ2|τ2))2

ϑ1 (y′2−ζ1|τ2)ϑ1 (y2−p2|τ2)(ϑ1 (p2−4y′2+2y2+2ζ2−ζ1|τ2)) 1
2 ϑ1 (ζ2−p2|τ2)

.

(4.32)

For G(y3, y
′
3) we get (dropping the piece proportional to ϑ1(y1 − p1|τ1)),

1
q5/8q̄2 (ηd(τ1)ηd(τ2))3(η̄d(τ̄1)η̄d(τ̄2))2 (ϑ′

1 (0|τ1))− 1
4 (ϑ′

1 (0|τ2))− 5
4

ϑa2b2

(
ζ1
2 +y2−ζ2− p2

2 |τ2
)

× ϑ1 (3y′3−2y3+2y1−3p1|τ1)(ϑ1 (p2−ζ1|τ2)) 1
4 (ϑ1 (p2−y2|τ2)) 1

2 ϑ1 (y′3−p1|τ1)ϑ1(ζ2−y2|τ2)
(ϑ1 (4y′3−2y3+2y1−4p1|τ1)) 3

4 (ϑ1 (p2−ζ2|τ2)) 1
2 ϑ1 (y1−y3|τ1)

.

(4.33)
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With the ghost contribution fully determined we can now turn our attention to the matter
sector. We first consider the massless states to show that the renormalised mass vanishes
as expected from the non renormalisation theorems and then focus on the massive states
whose renormalised mass at this loop order is the new result that we set out to determine.

4.4 The massless states

The vertex operator in different picture for the massless states are already provided in the
previous section so we proceed with those expressions to write the correlation function
relevant for the current scenario.

Both ζ1 and ζ2 lying on T1. The matter sector for G′(y2, y
′
2) is,

uα(k1)vα′(k2)(γµ)βα′ϵaϵ̃νb

〈
ψρ(y3)∂Xρ(y3)Sα(x)Sβ(ζ1)

(
∂Xµ − 1

4 i(k1.ψ)ψµ
)

(ζ1)

J̄a(ζ̄1)ψν(ζ2)J̄b(ζ̄2)eik1.X(ζ1,ζ̄1)eik2.X(ζ2,ζ̄2)
〉
∼ (2π)10δ10(k1 + k2)(ūγµv)⟨. . . ⟩.

(4.34)
We will focus on the fermionic part first. To get the fermionic contribution for,〈

ψρ(y3)ψν(ζ2)Sα(x)Sβ(ζ1)∂Xρ(y3)∂Xµ(ζ1)J̄a(ζ̄1)J̄b(ζ̄2)eik1.X(ζ1,ζ̄1)e−ik1.X(ζ2,ζ̄2)
〉

we need,
⟨ψρ(y3)ψν(ζ2) . . . ⟩ = ±η

ρν

2 ⟨(Ψj ± Ψ̄j)(y3)(Ψj ± Ψ̄j)(ζ2) . . . ⟩

= ±η
ρν

2 ⟨(Ψj(y3)Ψ̄j(ζ2) + Ψ̄j(y3)Ψj(ζ2)) . . . ⟩ .
(4.35)

One can check that the contribution from the other two terms simply vanish due to fermionic
charge conservation. Also note that the + sign is for ρ = σ = 1, . . . , 5, while − sign is for
ρ = σ = 6, . . . , 10. As in the 1 point case we now set,

SαS
β ≡ δ β

α S1−(x) . . . S5−(x)S +
1 (ζ1) . . . S +

5 (ζ1)

for the first term in (4.35) and

SαS
β ≡ δ β

α S1+(x) . . . S5+(x)S −
1 (ζ1) . . . S −

5 (ζ1)

for the second term in (4.35). We then apply the factorisation theorem (3.32) in each case
and pick up the piece relevant to get the 1/q̄ divergent piece for F ′(q, q̄). For the current
case, the relevant operators must have conformal dimension (1, 5

8) i.e.,

φ(p1) ≡ S1−(p1)S2−(p1)S3−(p1)S4−(p1)S5−(p1)J̄b(p1) ,

⇒ φ†(p2) ≡ S +
1 (p2)S +

2 (p2)S +
3 (p2)S +

4 (p2)S +
5 (p2)J̄b(p2) ,

for the first and

φ(p1) ≡ S1+(p1)S2+(p1)S3+(p1)S4+(p1)S5+(p1)J̄b(p1) ,
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⇒ φ†(p2) ≡ S −
1 (p2)S −

2 (p2)S −
3 (p2)S −

4 (p2)S −
5 (p2)J̄b(p2) ,

for the second term respectively. So, finally we get,∑
c

±η
νρ

2 q5/8q̄
〈
∂Xρ(y3)∂Xµ(ζ1)J̄a(ζ̄1)J̄b(ζ̄2)J̄c(p1)eik1.X(ζ1,ζ̄1)e−ik1.X(ζ2,ζ̄2)

〉
T1

⟨J̄c(p2)⟩T2[
⟨Ψj(y3)Ψ̄j(ζ2)S +

1 (ζ1)S +
2 (ζ1)S +

3 (ζ1)S +
4 (ζ1)S +

5 (ζ1)S1−(p1)S2−(p1)S3−(p1)S4−(p1)S5−(p1)⟩a1b1

⟨S1−(x)S2−(x)S3−(x)S4−(x)S5−(x)S +
1 (p2)S +

2 (p2)S +
3 (p2)S +

4 (p2)S +
5 (p2)⟩a2b2

+⟨Ψ̄j(y3)Ψj(ζ2)S −
1 (ζ1)S −

2 (ζ1)S −
3 (ζ1)S −

4 (ζ1)S −
5 (ζ1)S1+(p1)S2+(p1)S3+(p1)S4+(p1)S5+(p1)⟩a1b1

⟨S1+(x)S2+(x)S3+(x)S4+(x)S5+(x)S −
1 (p2)S −

2 (p2)S −
3 (p2)S −

4 (p2)S −
5 (p2)⟩a2b2

]
.

(4.36)
Summing over the spin structures for the fermionic correlator on T1 after putting it together
with the ghost contribution (4.29) we get,11

1
q̄

∑
a1,b1

ε(a1, b1)
[(ϑa1b1

(
ζ1
2 − p1

2 |τ1
))4

ϑa1b1

(
ζ1
2 + y3 − ζ2 − p1

2 |τ1
)

ϑa1b1

(
ζ1
2 + y3 − ζ2 − p1

2 |τ1
) (. . . )

+ (−1)4a1b1

(
ϑa1b1

(
p1
2 − ζ1

2 |τ1
))4

ϑa1b1

(
ζ1
2 + y3 − ζ2 − p1

2 |τ1
)

ϑa1b1

(
ζ1
2 + y3 − ζ2 − p1

2 |τ1
) (. . . )

]
= 0 ,

(4.37)

by using (3.36). The (. . . ) denotes the rest of the pices and they are independent of (a1, b1)
Next we have,

− i

4k1σ

〈
ψρ(y3)ψσ(ζ1)ψµ(ζ1)ψν(ζ2)Sα(x)Sβ(ζ1)∂Xρ(y3)J̄a(ζ̄1)J̄b(ζ̄2)eik1.X(ζ1,ζ̄1)e−ik1.X(ζ2,ζ̄2)

〉
.

To compute the fermionic part in this case let us first determine the possible tensor
structures,

⟨ψρ(y3)ψσ(ζ1)ψµ(ζ1)ψν(ζ2) . . . ⟩ = A1(ζ1, ζ2, y3)ηρσηµν +A2(ζ1, ζ2, y3)ηρµησν

+A3(ζ1, ζ2, y3)ηρνηµσ +A4(ζ1, ζ2, y3)ηρνΣµσ
(4.38)

while from the bosonic part we have,〈
∂Xρ(y3)eik1.X(ζ1,ζ̄1)e−ik1.X(ζ2,ζ̄2) . . .

〉
∼ ik1ρ

( 1
2E(y3, ζ2) − 1

2E(y3, ζ1)

)
. (4.39)

Now it is easy to check that all the terms in (4.38) simply vanishes due to the on-shell
conditions,

k2
1 = 0 , /k1v = 0 , and kν

1 ϵ̃νb = −kν
2 ϵ̃νb = 0 . (4.40)

In a similar fashion one can check that for the matter sector of G′(y3, y
′
3),

uα(k1)vα′(k2)(γµ)βα′ϵaϵ̃νb

〈
ψρ(y2)∂Xρ(y2)Sα(x)Sβ(ζ1)

(
∂Xµ− 1

4 i(k1.ψ)ψµ
)

(ζ1)

J̄a(ζ̄1)ψν(ζ2)J̄b(ζ̄2)eik1.X(ζ1,ζ̄1)eik2.X(ζ2,ζ̄2)
〉
∼ (2π)10δ10(k1+k2)(ūγµv)⟨. . .⟩ ,

(4.41)

11The factor (−1)4a1b1 occurs due to the reason that ϑa1b1 (−z|τ) = (−1)4a1b1ϑa1b1 (z|τ) which takes care
of the fact that the theta function is odd for (a1, b1) = (1/2, 1/2) and even otherwise.
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the term with four fermions vanishes due to the on-shell conditions (4.40). For the term with
two fermions it is a bit more subtle. The operators which are relevant in the factorisation
for this case must have conformal weight (1, 3

4). The fact that we need the fermion charge
to be conserved to get a non zero result leads to the fact that among all operators of weight
(1, 3

4) the only ones we should focus on are,

ϕ(p1) = S +
j (p1)Sj−(p1)Ψj(p1)J̄b(p1) , S +

j (p1)Sj−(p1)Ψ̄j(p1)J̄b(p1) ,
⇒ ϕ†(p2) = Sj−(p2)S +

j (p2)Ψ̄j(p2)J̄b(p2) , Sj−(p2)S +
j (p2)Ψj(p2)J̄b(p2) .

As a result we end up with,∑
c

±η
νρ

2 q3/4q̄
〈
∂Xµ(ζ1)J̄a(ζ̄1)J̄b(ζ̄2)J̄c(p1)eik1.X(ζ1,ζ̄1)e−ik1.X(ζ2,ζ̄2)

〉
T1

⟨∂Xρ(y2)J̄c(p2)⟩T2[
⟨Ψj(y2)Ψ̄j(p2)Sj−(p2)S +

j (p2)⟩a2b2⟨Ψ̄j(ζ2)Ψj(p1)S +
j (p1)Sj−(p1)

S +
1 (ζ1)S +

2 (ζ1)S +
3 (ζ1)S +

4 (ζ1)S +
5 (ζ1)S1−(x)S2−(x)S3−(x)S4−(x)S5−(x)⟩a1b1

+⟨Ψ̄j(y2)Ψj(p2)Sj−(p2)S +
j (p2)⟩a2b2⟨Ψj(ζ2)Ψ̄j(p1)S +

j (p1)Sj−(p1)

S +
1 (ζ1)S +

2 (ζ1)S +
3 (ζ1)S +

4 (ζ1)S +
5 (ζ1)S1−(x)S2−(x)S3−(x)S4−(x)S5−(x)⟩a1b1

]
.

(4.42)
After putting this together with (4.31), taking contribution from all the fermions and
summing over the spin structures on T2 we get,

1
q̄

∑
a2,b2

ε(a2, b2)
[(
ϑa2b2 (0|τ2)

)4
ϑa2b2 (y2 − p2|τ2)

ϑa2b2 (y2 − p2|τ2) (. . . )

+ (−1)4a2b2

(
ϑa2b2 (0|τ2)

)4
ϑa2b2 (y2 − p2|τ2)

ϑa2b2 (y2 − p2|τ2) (. . . )
]

= 0 ,

(4.43)

by using (3.36). The (. . . ) denotes the rest of the pices which are independent of (a2, b2).

Both ζ1 and ζ2 lying on T2. The analysis in this case is exactly the same. The only
thing to note is that the expressions for G′(y2, y

′
2) and G′(y3, y

′
3) get interchanged and

the ghost parts relevant in this case are respectively (4.32) and (4.33). So G′(y2, y
′
2) and

G′(y3, y
′
3) vanish in this case as well. Of course at the end we have to take y1 → p1 as well

as y2 → p2. As a result the terms proportional to ϑ1(y1 − p1|τ1) and ϑ1(y1 − p1|τ1) goes to
zero like we mentioned earlier. So finally we have,

G′(y2, y
′
2) = G′(y3, y

′
3) = 0 , ⇒ F ′(q, q̄) = 0

inside the regions of integration where both ζ1 and ζ2 lie on T1 and where both lie on T2 i.e.
the 1PI subspace. So the renormalised mass of the massless string states vanish at two loop
as expected.

4.5 The massive states

Let us first write down the vertex operators for a state at first massive level in −1 and 1/2
picture since these are the ones we will need for our computation. Since, this is a massive
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state we can work in the rest frame of the string i.e. kµ ≡ (k0, 0, 0, . . . ) so that in the α′ = 1
unit we have,

(mass)2 = −k2 = (k0)2 = 4

the vertex operators in this frame are given by,

-1 picture : Vj(z, z̄) = ϵabcc̄e
−ϕ(z)ψ1ψ2ψ3(z)J̄aJ̄b(z̄)eikj0X0(z,z̄) (4.44)

1/2 picture : V
( 1

2 )
j (z, z̄) = i√

2
ϵabv

αeikj0X0(z,z̄)J̄aJ̄b(z̄)
{
e

ϕ(z)
2
(
ψ1ψ2∂X3

+ψ2ψ3∂X1+ψ3ψ1∂X2−ikj0ψ
1ψ2ψ3ψ0

)
(γ123)βαS

β(z)+. . .
}
.

(4.45)

The . . . piece will not be needed for the computation since we only need the single pole
contribution when acted on by J (x), but we know that this piece has ϕ charge 3/2.

Both ζ1 and ζ2 lying on T1. With the above vertex operators we now note first that
G′(y2, y

′
2) has two types of terms viz.,

− uα(k10)vα′(k20)(γ123)βα′ϵabϵ̃cd

〈
ψρ(y3)ψ1(ζ1)ψ2(ζ1)ψ1(ζ2)ψ2(ζ2)ψ3(ζ2)Sα(x)Sβ(ζ1)

∂Xρ(y3)∂X3(ζ1)J̄a(ζ̄1)J̄b(ζ̄1)J̄c(ζ̄2)J̄d(ζ̄2)eik10X0(ζ1,ζ̄1)eik20X0(ζ2,ζ̄2)
〉

∼ 2πδ(k10 + k20)(ūγ123v)ϵabϵ̃cd⟨. . . ⟩ ,
(4.46)

and,

ik10u
α(k10)vα′(k20)(γ123)βα′ϵabϵ̃cd

〈
ψρ(y3)ψ1(ζ1)ψ2(ζ1)ψ3(ζ1)ψ0(ζ1)ψ1(ζ2)ψ2(ζ2)ψ3(ζ2)

Sα(x)Sβ(ζ1)∂Xρ(y3)J̄a(ζ̄1)J̄b(ζ̄1)J̄c(ζ̄2)J̄d(ζ̄2)eik10X0(ζ1,ζ̄1)eik20X0(ζ2,ζ̄2)
〉

∼ 2πδ(k10 + k20)(ūγ123v)ϵabϵ̃cd⟨. . . ⟩ .
(4.47)

Of course there are three terms of the first type obtained by cyclically permuting 1,2 and
3. Owing to the factorisation theorem (3.32) we see that just like in the massless case the
relevant operators for these correlation functions must have conformal weight (1, 5

8) and
hence should be of the form,

φ(p1) ≡ S1±(p1)S2±(p1)S3±(p1)S4±(p1)S5±(p1)J̄b(p1) ,

⇒ φ†(p2) ≡ S ±
1 (p2)S ±

2 (p2)S ±
3 (p2)S ±

4 (p2)S ±
5 (p2)J̄b(p2) ,

Let us first analyse the type (4.46). From the bosonic part we can see that the index ρ
can be either 3 or 0. The readers can convince themselves that when ρ = 0 (using ψ0 = iψ10)
the fermionic correlation becomes such that if we try to conserve the fermion charge on T1
the fermion charge of T2 gets violated and vice versa. As a result the contribution for ρ = 0
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must vanish. So we are left with ρ = 3 and this implies that,

⟨ψ3(y3)ψ1(ζ1)ψ2(ζ1)ψ1(ζ2)ψ2(ζ2)ψ3(ζ2)..⟩=−⟨ψ1(ζ1)ψ1(ζ2)ψ2(ζ1)ψ2(ζ2)ψ3(y3)ψ3(ζ2)..⟩

=−1
8

(
⟨Ψ1(ζ1)Ψ̄1(ζ2)Ψ2(ζ1)Ψ̄2(ζ2)Ψ3(y3)Ψ̄3(ζ2)..⟩

+⟨Ψ̄1(ζ1)Ψ1(ζ2)Ψ2(ζ1)Ψ̄2(ζ2)Ψ3(y3)Ψ̄3(ζ2)..⟩
+⟨Ψ1(ζ1)Ψ̄1(ζ2)Ψ̄2(ζ1)Ψ2(ζ2)Ψ3(y3)Ψ̄3(ζ2)..⟩

+· · ·+⟨Ψ̄1(ζ1)Ψ1(ζ2)Ψ̄2(ζ1)Ψ2(ζ2)Ψ̄3(y3)Ψ3(ζ2)..⟩
)

(4.48)
where the . . . denote 4 more terms. Now, we have ⟨..Ψ3(y3)Ψ̄3(ζ2)..⟩ for four of these terms
for which we set,

Sα(x)Sβ(ζ1) ≡ δ β
α S1−(x)S2−(x)S3−(x)S4−(x)S5−(x)S+

1 (ζ1)S+
2 (ζ1)S+

3 (ζ1)S+
4 (ζ1)S+

5 (ζ1),

while for the other four terms with ⟨..Ψ̄3(y3)Ψ3(ζ2)..⟩, we set,

Sα(x)Sβ(ζ1) ≡ δ β
α S1−(x)S2−(x)S3+(x)S4−(x)S5−(x)S+

1 (ζ1)S+
2 (ζ1)S−

3 (ζ1)S+
4 (ζ1)S+

5 (ζ1),

The operators of conformal weight (1, 5
8) relevant in these cases are respectively,

φ(p1) ≡ S1−(p1)S2−(p1)S3−(p1)S4−(p1)S5−(p1)J̄e(p1) ,

⇒ φ†(p2) ≡ S+
1 (p2)S+

2 (p2)S+
3 (p2)S+

4 (p2)S+
5 (p2)J̄e(p2)

and

φ(p1) ≡ S1−(p1)S2−(p1)S3+(p1)S4−(p1)S5−(p1)J̄e(p1) ,

⇒ φ†(p2) ≡ S+
1 (p2)S+

2 (p2)S−
3 (p2)S+

4 (p2)S+
5 (p2)J̄e(p2) .

For both these cases we focus only on the fermionic part of the correlation function. For
the first case there are 4 terms of which we illustrate the first one only. For the rest we will
write the final result which can be easily checked.

q5/8q̄⟨Ψ1(ζ1)Ψ̄1(ζ2)Ψ2(ζ1)Ψ̄2(ζ2)Ψ3(y3)Ψ̄3(ζ2)S+
1 (ζ1)S+

2 (ζ1)S+
3 (ζ1)S+

4 (ζ1)S+
5 (ζ1)

S1−(p1)S2−(p1)S3−(p1)S4−(p1)S5−(p1)⟩a1b1

⟨S1−(x)S2−(x)S3−(x)S4−(x)S5−(x)S+
1 (p2)S+

2 (p2)S+
3 (p2)S+

4 (p2)S+
5 (p2)⟩a2b2

(4.49)

The J̄e fields are omitted from the expression since they contribute to the bosonic part.
Putting the ghost contribution (4.29) with this, the correlation function on T1 yields,

1
q̄

∑
a1,b1

ε(a1, b1)ϑa1b1

(3ζ1
2 − ζ2 −

p1
2 |τ1

)2
ϑa1b1

(
ζ1
2 − p1

2 |τ1

)2
(. . . ) = 0 (4.50)

using (3.36). It is easy to see that if we have Ψ̄1(ζ1)Ψ1(ζ2) instead (keeping everything else
unchanged) we end up with,

1
q̄

∑
a1,b1

ε(a1, b1)ϑa1b1

(
−ζ1

2 +ζ2−
p1
2 |τ1

)
ϑa1b1

(3ζ1
2 −ζ2−

p1
2 |τ1

)
ϑa1b1

(
ζ1
2 − p1

2 |τ1

)2
(. . .) = 0

(4.51)
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again by the use of (3.36). The readers can now convince themselves that all the other
terms also vanish and in exactly the same way the 4 terms of the other case (Ψ̄3(y3)Ψ3(ζ2))
vanishes as well by repeated use of (3.36). Of course in that case there will be an overall
factor of (−1)4a1b1 but it doesn’t matter since the result vanishes anyway.

Let us now focus on the type (4.47). We set,

Sα(x)Sβ(ζ1) ≡ δβ
αS1−(x)S2−(x)S3−(x)S4−(x)S5−(x)S+

1 (ζ1)S+
2 (ζ1)S+

3 (ζ1)S+
4 (ζ1)S+

5 (ζ1)

and thus the relevant operator of weight (1, 5
8) is,

φ(p1) ≡ S1−(p1)S2−(p1)S3−(p1)S4−(p1)S5−(p1)J̄e(p1) ,

⇒ φ†(p2) ≡ S+
1 (p2)S+

2 (p2)S+
3 (p2)S+

4 (p2)S+
5 (p2)J̄e(p2).

With this let us first evaluate the bosonic part of the correlation function.∑
e

〈
∂Xρ(y3)J̄a(ζ̄1)J̄b(ζ̄1)J̄c(ζ̄2)J̄d(ζ̄2)J̄e(p1)eik10X0(ζ1,ζ̄1)e−ik10X0(ζ2,ζ̄2)

〉
T1

〈
J̄e(p2)

〉
T2

=− ik10δ 0
ρ C(τ1)
2

(
ϑ′

1(0|τ1)
ϑ1(y3−ζ1|τ1)−

ϑ′
1(0|τ1)

ϑ1(y3−ζ2|τ1)

)[
e

{
−2π(k10)2 (Im(ζ1−ζ2))2

Imτ1

}∣∣∣∣ϑ1(ζ1−ζ2|τ1)
ϑ′

1(0|τ1)

∣∣∣∣2(k10)2]
[

(δbc⟨J̄d(p1)⟩+δbd⟨J̄c(p1)⟩)⟨J̄a(p2)⟩+(δac⟨J̄d(p1)⟩+δad⟨J̄c(p1)⟩)⟨J̄b(p2)⟩
(ϑ̄1(ζ̄1−ζ̄2|τ̄1))2(ϑ̄1(ζ̄1−p1|τ̄1))2

+ (δad⟨J̄b(p1)⟩+δbd⟨J̄a(p1)⟩)⟨J̄c(p2)⟩+(δac⟨J̄b(p1)⟩+δbc⟨J̄a(p1)⟩)⟨J̄d(p2)⟩
(ϑ̄1(ζ̄1−ζ̄2|τ̄1))2(ϑ̄1(ζ̄2−p1|τ̄1))2

]
(∑

e

(δacδbd+δadδbc)⟨J̄e(p1)⟩⟨J̄e(p2)⟩
(ϑ̄1(ζ̄1−ζ̄2|τ̄1))4

)
.

(4.52)
Due to the δ 0

ρ in the bosonic piece it should suffice to take the ρ = 0 contribution for
fermionic correlator and thus we get,

⟨ψ0(y3)ψ1(ζ1)ψ2(ζ1)ψ3(ζ1)ψ0(ζ1)ψ1(ζ2)ψ2(ζ2)ψ3(ζ2) . . . ⟩
= ⟨ψ0(y3)ψ0(ζ1)ψ1(ζ1)ψ1(ζ2)ψ2(ζ1)ψ2(ζ2)ψ3(ζ1)ψ3(ζ2) . . . ⟩
= −⟨ψ10(y3)ψ10(ζ1)ψ1(ζ1)ψ1(ζ2)ψ2(ζ1)ψ2(ζ2)ψ3(ζ1)ψ3(ζ2) . . . ⟩

= 1
16

(
⟨Ψ5(y3)Ψ̄5(ζ1)Ψ1(ζ1)Ψ̄1(ζ2)Ψ2(ζ1)Ψ̄2(ζ2)Ψ3(ζ1)Ψ̄3(ζ2) . . . ⟩

+ ⟨Ψ5(y3)Ψ̄5(ζ1)Ψ̄1(ζ1)Ψ1(ζ2)Ψ2(ζ1)Ψ̄2(ζ2)Ψ3(ζ1)Ψ̄3(ζ2) . . . ⟩

+ · · · + ⟨Ψ̄5(y3)Ψ5(ζ1)Ψ̄1(ζ1)Ψ1(ζ2)Ψ̄2(ζ1)Ψ2(ζ2)Ψ̄3(ζ1)Ψ3(ζ2) . . . ⟩
)
.

(4.53)

So we see that we need the contribution from 16 terms of which let us evaluate the correlation
function for the first one in detail. The others can be written down in a similar fashion.

q5/8q̄

16 ⟨Ψ5(y3)Ψ̄5(ζ1)Ψ1(ζ1)Ψ̄1(ζ2)Ψ2(ζ1)Ψ̄2(ζ2)Ψ3(ζ1)Ψ̄3(ζ2)S+
1 (ζ1)S+

2 (ζ1)S+
3 (ζ1)S+

4 (ζ1)S+
5 (ζ1)

S1−(p1)S2−(p1)S3−(p1)S4−(p1)S5−(p1)⟩a1b1

⟨S1−(x)S2−(x)S3−(x)S4−(x)S5−(x)S+
1 (p2)S+

2 (p2)S+
3 (p2)S+

4 (p2)S+
5 (p2)⟩a2b2
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=q5/8q̄

16
K̃(τ1)K̃(τ2)

(ηd(τ1)ηd(τ2))5

[
(ϑ′1(0|τ1)) 21

4

(ϑ1(ζ1 − p1|τ1)) 5
4 (ϑ1(ζ1 − ζ2|τ1)) 3

2 (ϑ1(y3 − ζ1|τ1)) 1
2

]

ε(a1, b1)ϑa1b1

(3ζ1
2 − ζ2 −

p1
2 |τ1

)3
ϑa1b1

(
ζ1
2 − p1

2 |τ1

)
ϑa1b1

(
y3 −

ζ1
2 − p1

2 |τ1

)

×
(
ϑ1
(
p2 + y2 − 2y′2|τ2

))5 ( ϑ′1(0|τ2)
ϑ1(2p2 + 2y2 − 4y′2|τ2)

) 5
4
.

(4.54)

Here we have used the fact that in this case the poles in x plane for G′(y2, y
′
2) occurs

at x
2 = 2y′2 − y2 − p2

2 + â2τ2 + b̂2. We have to now put together the parts (4.29), (4.52)
and (4.54) and then sum over the spin structures (a1, b1). Doing this we get some non-zero
result. But now we have to evaluate,

lim
y′

2→y2

(
2 ∂

∂y2
+ ∂

∂y′2

)
G′(y2, y

′
2), and then take y1 → p1 and y2 → p2.

From the y2, y
′
2 dependent part we get,[
ϑ(p2 + y2 − 2y′2|τ2)5

ϑ1(2p2 + 2y2 − 4y′2|τ2)2ϑ1(y2 − p2|τ2)

(
− ϑ′1(3y′2 − 2y2 − p2|τ2)ϑ1(y′2 − p2|τ2)

+ ϑ1(3y′2 − 2y2 − p2|τ2)ϑ′1(y′2 − p2|τ2)
)

− 2ϑ′1(y2 − p2|τ2)ϑ1(p2 + y2 − 2y′2|τ2)5ϑ1(3y′2 − 2y2 − p2|τ2)ϑ1(y′2 − p2|τ2)
ϑ1(2p2 + 2y2 − 4y′2|τ2)2ϑ1(y2 − p2|τ2)2

]
.

(4.55)

In the limit y′2 → y2 the first term i.e. the first two lines above vanishes and we are left with,

−2ϑ′1(y2 − p2|τ2) ϑ1(p2 − y2|τ2)5

ϑ1(2p2 − 2y2|τ2)2

for which,

lim
y2→p2

−2ϑ′1(y2 − p2|τ2) (p2 − y2)5(ϑ′1(0|τ2) + (p2 − y2)ϑ′′1(0|τ2)/2 + . . . )5

4(p2 − y2)2(ϑ′1(0|τ2) + (2p2 − 2y2)ϑ′′1(0|τ2)/2 + . . . )2 = 0

While computing G′(y3, y
′
3), we can simply follow the analysis of the massless case and

argue that due to the sum over the spin structures (a2, b2) on T2 the contribution in this
case vanishes. Since both ζ1 and ζ2 are on T1, the correlation function on T2 in this case
remains the same as in the massless case.

Both ζ1 and ζ2 lying on T2. The analysis for G′(y2, y
′
2) mirrors the one for G′(y3, y

′
3)

in the previous case and the same argument shows that this contribution vanishes when we
sum over the spin structures (a1, b1). As for G′(y3, y

′
3) one can check that we immediately

get the matter correlation result by interchanging y2 ↔ y3, p1 ↔ p2, τ1 ↔ τ2 and taking
y′2 → y′3 and the poles in x plane to be at x

2 = y1 + 2y′3 − y3 − 3p1
2 + â1τ1 + b̂1. This implies

that the ϑ1(p2 − y2|τ2) 1
2 piece in the numerator (4.33) does not cancel and hence in the

limit y2 → p2 this contribution will also vanish.
Although it seems from the above computation that the mass renormalisation i.e.

δmR for the massive states also vanish, but note that we have considered the 10d critical
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Figure 8. Canonical homology cycles.

string theory in the flat background which is a free theory hence the above result is not in
contradiction. When we consider interacting cases i.e. compactified theories as in [21] we
will get something non-zero.

4.6 The range of integration for the modular parameters τ1 and τ2

4.6.1 The Mapping Class Group on genus 2 Riemann surface

In this section we discuss the action of the Mapping Class Group(MCG) on the genus 2
Teichmuller space. We follow the notation and conventions of [19] for this purpose. The
MCG for the genus 2 Riemann surface is given by Sp(4,Z). Let us introduce the canonical
homology cycles (a1, b1) and (a2, b2) (figure 8) and the normalised abelian differentials ω1
and ω2 such that, ∫

ai

ωj = δij ,

∫
bi

ωj = Ωij i, j = 1, 2 (4.56)

where Ω11 = τ1, Ω22 = τ2 and Ω12 = Ω21 = q. As in [19] we consider the following generators
of Sp(4,Z),

Da1 =


1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

 , Db1 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

Da2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

 , Db1 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1



Da−1
1 a2

=


1 0 0 0
0 1 0 0

−1 1 1 0
1 −1 0 1

 .

(4.57)

The generators have the form of

T =
(
D C

B A

)
∈ Sp(4,Z), ⇒ ATD − CTB = 12×2 .

Under these transformations the abelian differentials transform in the following way to keep
the normalisation condition (4.56) invariant.

ω̃i = ωj(CΩ +D)−1
ji . (4.58)
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As a result the period matrix Ω transforms as,

Ω → Ω̃ = (AΩ +B)(CΩ +D)−1, where Ω̃ij =
∫

bi

ω̃j (4.59)

4.6.2 A subgroup of the full MCG

In the course of our calculation we have established that the two loop amplitudes can
be written as a total derivative on the moduli space. As a result the full contribution is
basically a boundary term, so it suffices to get the range of integration of the modular
parameters at the boundary of the moduli space. The boundary of the moduli space of the
genus 2 surface is obtained by setting Ω12 = Ω21 = q = 0. Thus we have at the boundary

Ω =
(
τ1 0
0 τ2

)
.

One can easily check that the 4 generators Da1 , Da2 , Db1 , Db2 keep the point q = 0 un-
changed since,

under Da1 : Ω → Ω′ =
(
τ1 + 1 0

0 τ2

)
, under Da2 : Ω → Ω′ =

(
τ1 0
0 τ2 + 1

)

under Db1 : Ω → Ω′ =
(

τ1
τ1+1 0

0 τ2

)
, under Db2 : Ω → Ω′ =

(
τ1 0
0 τ2

τ2+1

)
. (4.60)

Hence these 4 generators form a subgroup of Sp(4,Z). From the transformations above we
can conclude that the parameters τ1 and τ2 are those of the two tori T1 and T2 respectively.
As in the case of torus we can check that the following boundaries,(

|Re(τ1)| = 1
2 , |τ1| = 1 , |Re(τ2)| = 1

2 , |τ2| = 1
)

(4.61)

are mapped to each other under Da1 , Da2 , Db1 , Db2 . This implies that they constitute the
boundaries of fundamental region of integration for the boundary(q = 0) of the moduli
space of genus 2 Riemann surface. Hence we have range of integration for the parameters
τ1 and τ2 given by,

F (2)
q=0 :=

{(
|Re(τ1)| ≤ 1

2 , |τ1| ≥ 1
)
∪
(
|Re(τ2)| ≤ 1

2 , |τ2| ≥ 1
)}

. (4.62)

5 Discussion

In this work we have provided the relevant integrands and the regions of integration which
determines the renormalised mass at two loop order. Of course the expressions for the
integrands does depend on the theory under consideration but it differs for the matter
sector only. The superghost and the conformal ghost contributions determined in this work
remains the same for all theories. It should also be emphasised that the result for massless
1 point and 2 point functions are well known in the literature [20] and we have reproduced
those results from the computation method used in [21]. So they serve as a check of our
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calculation before we use it to obtain the renormalised mass for the massive states. In this
paper we use string theory in 10d flat background which is basically a free theory so we see
no renormalised mass for the massive states in this case but we note that the result does
not vanish identically. As a result of having a free theory they vanish only at the end when
the marked point on the tori T1 and T2 approach two of the PCO locations (one on each
torus). For interacting i.e. compactified theories the result approaches a finite non zero
answer which depend on the details of the theory. Before ending this article let us mention
two points which we were unable to address in more detail. The first is that we work with
the same assumption made in [21] regarding the absence of global obstructions to writing
the amplitudes as a total derivative on the moduli space without further inspection. The
second is that due to the theta function expression appearing in the spin structure sum for
the renormalised mass for the massive states, we were unable to argue that the result is
independent of the PCO location y3. This is important since it is part of the spurious data
and should not appear for observables with on-shell states.
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A Theta function relations

A.1 Transformation rules

There are theta functions corresponding to four different spin structures on the torus. They
are given by,

ϑ1(z|τ) = −ϑ 1
2

1
2
(z|τ) = −i

∑
k∈Z

(−1)kq(k+ 1
2 )2
eπi(2k+1)z , (A.1)

ϑ2(z|τ) = ϑ 1
2 0(z|τ) =

∑
k∈Z

q(k+ 1
2 )2
eπi(2k+1)z , (A.2)

ϑ3(z|τ) = ϑ00(z|τ) =
∑
k∈Z

qk2
e2πikz , (A.3)

ϑ4(z|τ) = ϑ0 1
2
(z|τ) =

∑
k∈Z

(−1)kqk2
e2πikz , (A.4)

where q := eiπτ , |q| < 1. The first one is an odd function of z, while the other three are
even. The transformation rules under shift by the periods are as follows (m,n ∈ Z),

ϑ1(z +m+ nτ |τ) = (−1)m+ne−nπi(2z+τ)ϑ1(z|τ) , (A.5)
ϑ2(z +m+ nτ |τ) = (−1)me−nπi(2z+τ)ϑ2(z|τ) , (A.6)
ϑ3(z +m+ nτ |τ) = e−nπi(2z+τ)ϑ3(z|τ) , (A.7)
ϑ4(z +m+ nτ |τ) = (−1)ne−nπi(2z+τ)ϑ4(z|τ) , (A.8)
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whereas shift by half periods are,

ϑ1

(
z + 1

2 |τ
)

= ϑ2 (z|τ) , ϑ1

(
z + τ

2 |τ
)

= ie−πi(z+τ/4)ϑ4 (z|τ) , (A.9)

ϑ2

(
z + 1

2 |τ
)

= −ϑ1 (z|τ) , ϑ2

(
z + τ

2 |τ
)

= e−πi(z+τ/4)ϑ3 (z|τ) , (A.10)

ϑ3

(
z + 1

2 |τ
)

= ϑ4 (z|τ) , ϑ3

(
z + τ

2 |τ
)

= e−πi(z+τ/4)ϑ2 (z|τ) , (A.11)

ϑ4

(
z + 1

2 |τ
)

= ϑ3 (z|τ) , ϑ4

(
z + τ

2 |τ
)

= ie−πi(z+τ/4)ϑ1 (z|τ) . (A.12)

A.2 In the degeneration limit

For this purpose let us first define the theta function on the genus two surface with spin
structure

δ =
(
a1 a2
b1 b2

)
≡
(
a⃗

b⃗

)
, where ai ∈

{
0, 1

2

}
and bi ∈

{
0, 1

2

}
, ∀i = 1, 2,

as,

ϑ

[
a⃗

b⃗

]
(z⃗|Ω) =

∑
n⃗∈Z2

exp
(
iπ(n⃗+ a⃗)T .Ω.(n⃗+ a⃗) + 2πi(n⃗+ a⃗)T .(z⃗ + b⃗)

)
. (A.13)

With this definition one also has the prime form as defined in (2.18). In the degeneration
limit i.e. q → 0, we have the following results as was given in the appendix of [21]. For
x1 ∈ T1 and x2 ∈ T2,

E(x1,x2)→ q−
1
2

(
ϑ1(x1−p1|τ1)
ϑ′1(0|τ1)

)(
ϑ1(p2−x2|τ2)
ϑ′1(0|τ0)

)
(A.14)

E(xi,x
′
i)→

(
ϑ1(xi−x′i|τi)
ϑ′1(0|τi)

)
(A.15)

[δ]≡
[
a1 a2
b1 b2

]
→
[
a1
b1

]
+
[
a2
b2

]
(A.16)

ϑ[δ]

 m∑
i=1

x⃗i−
n∑

j=1
y⃗j +(m−n)∆⃗|Ω


→ϑ

[
a1
b1

](
m∑

i=1
x⃗i−mp1−

1
2(m−n)(1+τ1)|τ1

)
ϑ

[
a2
b2

]np2−
n∑

j=1
y⃗j−

1
2(m−n)(1+τ2)|τ2


(A.17)

σ(xi)→
ϑ′1(0|τi)

ϑ1(xi−pi|τi)
(A.18)

Z
1
2
1 → ηd(τ1)ηd(τ2) (A.19)

ω1(z|q)→

1+O(q) , z ∈T1

O(q) , z ∈T2
(A.20)
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ω2(z|q)→
{

O(q) , z ∈T1
1+O(q) , z ∈T2

. (A.21)

Here p1 and p2 are nodes on T1 and T2 respectively, ωi are the abelian differentials and
ηd(τ) is the Dedekind eta function. In the above degeneration limit result for the theta
function, there seems to be an ambiguity on the right hand side in defining the argument of
the theta functions since they can be shifted by integral multiples of 1 and τ1 (or 1 and τ2).
This reflects the ambiguity in the choice of path from the base point in defining x⃗ =

∫ P
P0
ω⃗.
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any medium, provided the original author(s) and source are credited.

References

[1] P.C. Nelson, Covariant Insertion of General Vertex Operators, Phys. Rev. Lett. 62 (1989) 993
[INSPIRE].

[2] C. Vafa, Operator Formulation on Riemann Surfaces, Phys. Lett. B 190 (1987) 47 [INSPIRE].

[3] C. Vafa, Conformal Theories and Punctured Surfaces, Phys. Lett. B 199 (1987) 195 [INSPIRE].

[4] A.G. Cohen, G.W. Moore, P.C. Nelson and J. Polchinski, An Off-Shell Propagator for String
Theory, Nucl. Phys. B 267 (1986) 143 [INSPIRE].

[5] A.G. Cohen, G.W. Moore, P.C. Nelson and J. Polchinski, Semi Off-shell String Am- plitudes,
Nucl. Phys. B 281 (1987) 127 [INSPIRE].

[6] L. Alvarez-Gaume, C. Gomez, G.W. Moore and C. Vafa, Strings in the Operator Formalism,
Nucl. Phys. B 303 (1988) 455 [INSPIRE].

[7] L. Alvarez-Gaume et al., Fermionic Strings in the Operator Formalism, Nucl. Phys. B 311
(1988) 333 [INSPIRE].

[8] J. Polchinski, Factorization of Bosonic String Amplitudes, Nucl. Phys. B 307 (1988) 61
[INSPIRE].

[9] R. Pius, A. Rudra and A. Sen, Mass Renormalization in String Theory: Special States, JHEP
07 (2014) 058 [arXiv:1311.1257] [INSPIRE].

[10] R. Pius, A. Rudra and A. Sen, Mass Renormalization in String Theory: General States, JHEP
07 (2014) 062 [arXiv:1401.7014] [INSPIRE].

[11] E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268 (1986) 253
[INSPIRE].

[12] B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl.
Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].

[13] L. Rastelli and B. Zwiebach, The Off-shell Veneziano amplitude in Schnabl gauge, JHEP 01
(2008) 018 [arXiv:0708.2591] [INSPIRE].

[14] A. Sen, BV Master Action for Heterotic and Type II String Field Theories, JHEP 02 (2016)
087 [arXiv:1508.05387] [INSPIRE].

[15] J. Polchinski, Evaluation of the One Loop String Path Integral, Commun. Math. Phys. 104
(1986) 37 [INSPIRE].

– 37 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.62.993
https://inspirehep.net/literature/266677
https://doi.org/10.1016/0370-2693(87)90838-0
https://inspirehep.net/literature/244922
https://doi.org/10.1016/0370-2693(87)91358-X
https://inspirehep.net/literature/249365
https://doi.org/10.1016/0550-3213(86)90148-3
https://inspirehep.net/literature/216609
https://doi.org/10.1016/0550-3213(87)90250-1
https://inspirehep.net/literature/228335
https://doi.org/10.1016/0550-3213(88)90391-4
https://inspirehep.net/literature/22921
https://doi.org/10.1016/0550-3213(88)90065-X
https://doi.org/10.1016/0550-3213(88)90065-X
https://inspirehep.net/literature/261791
https://doi.org/10.1016/0550-3213(88)90522-6
https://inspirehep.net/literature/23080
https://doi.org/10.1007/JHEP07(2014)058
https://doi.org/10.1007/JHEP07(2014)058
https://arxiv.org/abs/1311.1257
https://inspirehep.net/literature/1263514
https://doi.org/10.1007/JHEP07(2014)062
https://doi.org/10.1007/JHEP07(2014)062
https://arxiv.org/abs/1401.7014
https://inspirehep.net/literature/1279000
https://doi.org/10.1016/0550-3213(86)90155-0
https://inspirehep.net/literature/220076
https://doi.org/10.1016/0550-3213(93)90388-6
https://doi.org/10.1016/0550-3213(93)90388-6
https://arxiv.org/abs/hep-th/9206084
https://inspirehep.net/literature/335613
https://doi.org/10.1088/1126-6708/2008/01/018
https://doi.org/10.1088/1126-6708/2008/01/018
https://arxiv.org/abs/0708.2591
https://inspirehep.net/literature/758613
https://doi.org/10.1007/JHEP02(2016)087
https://doi.org/10.1007/JHEP02(2016)087
https://arxiv.org/abs/1508.05387
https://inspirehep.net/literature/1389200
https://doi.org/10.1007/BF01210791
https://doi.org/10.1007/BF01210791
https://inspirehep.net/literature/16850


J
H
E
P
1
1
(
2
0
2
3
)
0
5
2

[16] J.A. Shapiro, Loop graph in the dual tube model, Phys. Rev. D 5 (1972) 1945 [INSPIRE].

[17] R. Rohm, Spontaneous Supersymmetry Breaking in Supersymmetric String Theories, Nucl.
Phys. B 237 (1984) 553 [INSPIRE].

[18] E. Witten, Interacting Field Theory of Open Superstrings, Nucl. Phys. B 276 (1986) 291
[INSPIRE].

[19] L. Alvarez-Gaume, G.W. Moore and C. Vafa, Theta Functions, Modular Invariance and
Strings, Commun. Math. Phys. 106 (1986) 1 [INSPIRE].

[20] J.J. Atick and A. Sen, Spin Field Correlators on an Arbitrary Genus Riemann Surface and
Nonrenormalization Theorems in String Theories, Phys. Lett. B 186 (1987) 339 [INSPIRE].

[21] J.J. Atick and A. Sen, Two Loop Dilaton Tadpole Induced by Fayet-iliopoulos D Terms in
Compactified Heterotic String Theories, Nucl. Phys. B 296 (1988) 157 [INSPIRE].

[22] R. Saroja and A. Sen, Picture changing operators in closed fermionic string field theory, Phys.
Lett. B 286 (1992) 256 [hep-th/9202087] [INSPIRE].

[23] N. Berkovits, SuperPoincare invariant superstring field theory, Nucl. Phys. B 450 (1995) 90
[hep-th/9503099] [INSPIRE].

[24] N. Berkovits, The Ramond sector of open superstring field theory, JHEP 11 (2001) 047
[hep-th/0109100] [INSPIRE].

[25] Y. Okawa and B. Zwiebach, Heterotic string field theory, JHEP 07 (2004) 042
[hep-th/0406212] [INSPIRE].

[26] N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory,
JHEP 11 (2004) 038 [hep-th/0409018] [INSPIRE].

[27] M. Kroyter et al., Open superstring field theory I: gauge fixing, ghost structure, and propagator,
JHEP 03 (2012) 030 [arXiv:1201.1761] [INSPIRE].

[28] B. Jurco and K. Muenster, Type II Superstring Field Theory: Geometric Approach and
Operadic Description, JHEP 04 (2013) 126 [arXiv:1303.2323] [INSPIRE].

[29] Y. Iimori, T. Noumi, Y. Okawa and S. Torii, From the Berkovits formulation to the Witten
formulation in open superstring field theory, JHEP 03 (2014) 044 [arXiv:1312.1677]
[INSPIRE].

[30] T. Erler, S. Konopka and I. Sachs, Resolving Witten‘s superstring field theory, JHEP 04 (2014)
150 [arXiv:1312.2948] [INSPIRE].

[31] T. Erler, S. Konopka and I. Sachs, NS-NS Sector of Closed Superstring Field Theory, JHEP
08 (2014) 158 [arXiv:1403.0940] [INSPIRE].

[32] H. Kunitomo, The Ramond Sector of Heterotic String Field Theory, PTEP 2014 (2014)
043B01 [arXiv:1312.7197] [INSPIRE].

[33] H. Kunitomo and Y. Okawa, Complete action for open superstring field theory, PTEP 2016
(2016) 023B01 [arXiv:1508.00366] [INSPIRE].

[34] C. de Lacroix et al., Closed Superstring Field Theory and its Applications, Int. J. Mod. Phys.
A 32 (2017) 1730021 [arXiv:1703.06410] [INSPIRE].

[35] S. Faroogh Moosavian, A. Sen and M. Verma, Superstring Field Theory with Open and Closed
Strings, JHEP 01 (2020) 183 [arXiv:1907.10632] [INSPIRE].

[36] E. Witten, Superstring Perturbation Theory Revisited, arXiv:1209.5461 [INSPIRE].

– 38 –

https://doi.org/10.1103/PhysRevD.5.1945
https://inspirehep.net/literature/73633
https://doi.org/10.1016/0550-3213(84)90007-5
https://doi.org/10.1016/0550-3213(84)90007-5
https://inspirehep.net/literature/14086
https://doi.org/10.1016/0550-3213(86)90298-1
https://inspirehep.net/literature/228073
https://doi.org/10.1007/BF01210925
https://inspirehep.net/literature/227978
https://doi.org/10.1016/0370-2693(87)90304-2
https://inspirehep.net/literature/234694
https://doi.org/10.1016/0550-3213(88)90385-9
https://inspirehep.net/literature/245655
https://doi.org/10.1016/0370-2693(92)91772-2
https://doi.org/10.1016/0370-2693(92)91772-2
https://arxiv.org/abs/hep-th/9202087
https://inspirehep.net/literature/332748
https://doi.org/10.1016/0550-3213(95)00259-U
https://arxiv.org/abs/hep-th/9503099
https://inspirehep.net/literature/393487
https://doi.org/10.1088/1126-6708/2001/11/047
https://arxiv.org/abs/hep-th/0109100
https://inspirehep.net/literature/562676
https://doi.org/10.1088/1126-6708/2004/07/042
https://arxiv.org/abs/hep-th/0406212
https://inspirehep.net/literature/653006
https://doi.org/10.1088/1126-6708/2004/11/038
https://arxiv.org/abs/hep-th/0409018
https://inspirehep.net/literature/658193
https://doi.org/10.1007/JHEP03(2012)030
https://arxiv.org/abs/1201.1761
https://inspirehep.net/literature/1083839
https://doi.org/10.1007/JHEP04(2013)126
https://arxiv.org/abs/1303.2323
https://inspirehep.net/literature/1223342
https://doi.org/10.1007/JHEP03(2014)044
https://arxiv.org/abs/1312.1677
https://inspirehep.net/literature/1267692
https://doi.org/10.1007/JHEP04(2014)150
https://doi.org/10.1007/JHEP04(2014)150
https://arxiv.org/abs/1312.2948
https://inspirehep.net/literature/1268693
https://doi.org/10.1007/JHEP08(2014)158
https://doi.org/10.1007/JHEP08(2014)158
https://arxiv.org/abs/1403.0940
https://inspirehep.net/literature/1283754
https://doi.org/10.1093/ptep/ptu032
https://doi.org/10.1093/ptep/ptu032
https://arxiv.org/abs/1312.7197
https://inspirehep.net/literature/1275364
https://doi.org/10.1093/ptep/ptv189
https://doi.org/10.1093/ptep/ptv189
https://arxiv.org/abs/1508.00366
https://inspirehep.net/literature/1386288
https://doi.org/10.1142/S0217751X17300216
https://doi.org/10.1142/S0217751X17300216
https://arxiv.org/abs/1703.06410
https://inspirehep.net/literature/1518427
https://doi.org/10.1007/JHEP01(2020)183
https://arxiv.org/abs/1907.10632
https://inspirehep.net/literature/1746293
https://arxiv.org/abs/1209.5461
https://inspirehep.net/literature/1188034


J
H
E
P
1
1
(
2
0
2
3
)
0
5
2

[37] A. Belopolsky, De Rham cohomology of the supermanifolds and superstring BRST cohomology,
Phys. Lett. B 403 (1997) 47 [hep-th/9609220] [INSPIRE].

[38] A. Belopolsky, New geometrical approach to superstrings, hep-th/9703183 [INSPIRE].

[39] A. Belopolsky, Picture changing operators in supergeometry and superstring theory,
hep-th/9706033 [INSPIRE].

[40] E. D’Hoker and D.H. Phong, Two loop superstrings: I. Main formulas, Phys. Lett. B 529
(2002) 241 [hep-th/0110247] [INSPIRE].

[41] E. D’Hoker and D.H. Phong, Two loop superstrings: II. The Chiral measure on moduli space,
Nucl. Phys. B 636 (2002) 3 [hep-th/0110283] [INSPIRE].

[42] E. D’Hoker and D.H. Phong, Two loop superstrings: III. Slice independence and absence of
ambiguities, Nucl. Phys. B 636 (2002) 61 [hep-th/0111016] [INSPIRE].

[43] E. D’Hoker and D.H. Phong, Two loop superstrings: IV. The Cosmological constant and
modular forms, Nucl. Phys. B 639 (2002) 129 [hep-th/0111040] [INSPIRE].

[44] E. D’Hoker and D.H. Phong, Two-loop superstrings: V. Gauge slice independence of the
N-point function, Nucl. Phys. B 715 (2005) 91 [hep-th/0501196] [INSPIRE].

[45] E. D’Hoker and D.H. Phong, Two-loop superstrings: VI. Non-renormalization theorems and
the 4-point function, Nucl. Phys. B 715 (2005) 3 [hep-th/0501197] [INSPIRE].

[46] E. D’Hoker and D.H. Phong, Two-Loop Superstrings: VII. Cohomology of Chiral Amplitudes,
Nucl. Phys. B 804 (2008) 421 [arXiv:0711.4314] [INSPIRE].

[47] E. Witten, Notes On Supermanifolds and Integration, Pure Appl. Math. Quart. 15 (2019) 3
[arXiv:1209.2199] [INSPIRE].

[48] E. Witten, Notes On Super Riemann Surfaces And Their Moduli, Pure Appl. Math. Quart. 15
(2019) 57 [arXiv:1209.2459] [INSPIRE].

[49] E. Witten, Notes On Holomorphic String And Superstring Theory Measures Of Low Genus,
arXiv:1306.3621 [INSPIRE].

[50] R. Donagi and E. Witten, Supermoduli Space Is Not Projected, Proc. Symp. Pure Math. 90
(2015) 19 [arXiv:1304.7798] [INSPIRE].

[51] R. Donagi and E. Witten, Super Atiyah classes and obstructions to splitting of supermoduli
space, Pure Appl. Math. Quart. 09 (2013) 739 [arXiv:1404.6257] [INSPIRE].

[52] A. Sen, Off-shell Amplitudes in Superstring Theory, Fortsch. Phys. 63 (2015) 149
[arXiv:1408.0571] [INSPIRE].

[53] D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String
Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].

[54] E.P. Verlinde and H.L. Verlinde, Multiloop Calculations in Covariant Superstring Theory,
Phys. Lett. B 192 (1987) 95 [INSPIRE].

[55] A. Sen, S-duality Improved Superstring Perturbation Theory, JHEP 11 (2013) 029
[arXiv:1304.0458] [INSPIRE].

[56] A. Sen, One Loop Mass Renormalization of Unstable Particles in Superstring Theory, JHEP
11 (2016) 050 [arXiv:1607.06500] [INSPIRE].

[57] E.P. Verlinde and H.L. Verlinde, Chiral Bosonization, Determinants and the String Partition
Function, Nucl. Phys. B 288 (1987) 357 [INSPIRE].

– 39 –

https://doi.org/10.1016/S0370-2693(97)00445-0
https://arxiv.org/abs/hep-th/9609220
https://inspirehep.net/literature/423910
https://arxiv.org/abs/hep-th/9703183
https://inspirehep.net/literature/441588
https://arxiv.org/abs/hep-th/9706033
https://inspirehep.net/literature/443943
https://doi.org/10.1016/S0370-2693(02)01255-8
https://doi.org/10.1016/S0370-2693(02)01255-8
https://arxiv.org/abs/hep-th/0110247
https://inspirehep.net/literature/565003
https://doi.org/10.1016/S0550-3213(02)00431-5
https://arxiv.org/abs/hep-th/0110283
https://inspirehep.net/literature/565261
https://doi.org/10.1016/S0550-3213(02)00432-7
https://arxiv.org/abs/hep-th/0111016
https://inspirehep.net/literature/565395
https://doi.org/10.1016/S0550-3213(02)00516-3
https://arxiv.org/abs/hep-th/0111040
https://inspirehep.net/literature/565739
https://doi.org/10.1016/j.nuclphysb.2005.02.042
https://arxiv.org/abs/hep-th/0501196
https://inspirehep.net/literature/675558
https://doi.org/10.1016/j.nuclphysb.2005.02.043
https://arxiv.org/abs/hep-th/0501197
https://inspirehep.net/literature/675559
https://doi.org/10.1016/j.nuclphysb.2008.04.030
https://arxiv.org/abs/0711.4314
https://inspirehep.net/literature/768696
https://doi.org/10.4310/PAMQ.2019.v15.n1.a1
https://arxiv.org/abs/1209.2199
https://inspirehep.net/literature/1185124
https://doi.org/10.4310/PAMQ.2019.v15.n1.a2
https://doi.org/10.4310/PAMQ.2019.v15.n1.a2
https://arxiv.org/abs/1209.2459
https://inspirehep.net/literature/1185284
https://arxiv.org/abs/1306.3621
https://inspirehep.net/literature/1238841
https://arxiv.org/abs/1304.7798
https://inspirehep.net/literature/1231519
https://doi.org/10.4310/PAMQ.2013.v9.n4.a5
https://arxiv.org/abs/1404.6257
https://inspirehep.net/literature/1292493
https://doi.org/10.1002/prop.201500002
https://arxiv.org/abs/1408.0571
https://inspirehep.net/literature/1309635
https://doi.org/10.1016/0550-3213(86)90356-1
https://inspirehep.net/literature/219787
https://doi.org/10.1016/0370-2693(87)91148-8
https://inspirehep.net/literature/244737
https://doi.org/10.1007/JHEP11(2013)029
https://arxiv.org/abs/1304.0458
https://inspirehep.net/literature/1226252
https://doi.org/10.1007/JHEP11(2016)050
https://doi.org/10.1007/JHEP11(2016)050
https://arxiv.org/abs/1607.06500
https://inspirehep.net/literature/1477605
https://doi.org/10.1016/0550-3213(87)90219-7
https://inspirehep.net/literature/235236


J
H
E
P
1
1
(
2
0
2
3
)
0
5
2

[58] J.J. Atick and A. Sen, Covariant One Loop Fermion Emission Amplitudes in Closed String
Theories, Nucl. Phys. B 293 (1987) 317 [INSPIRE].

[59] D. Friedan and S.H. Shenker, The Analytic Geometry of Two-Dimensional Conformal Field
Theory, Nucl. Phys. B 281 (1987) 509 [INSPIRE].

[60] D. Friedan and S.H. Shenker, The Integrable Analytic Geometry of Quantum String, Phys.
Lett. B 175 (1986) 287 [INSPIRE].

[61] J. Polchinski, String theory. Volume 1: An introduction to bosonic string, Cambridge
University Press (2007) [DOI:10.1017/CBO9780511816079] [INSPIRE].

[62] J. Polchinski, String theory. Volume 2: Superstring theory and beyond, Cambridge University
Press (2007) [DOI:10.1017/CBO9780511618123] [INSPIRE].

[63] A. Sen, Superstring Perturbation Theory, lectures at LACES 2021, GGI Florence Italy,
November 29–December 17
[https://www.youtube.com/playlist?list=PLbcx3dKCUhgZv6nW1OiritN2rhfHoVXS4].

[64] A. Sen, Superstring Perturbation Theory, lectures at ICTS Bangalore 22, February, 2022
[https://www.youtube.com/watch?v=tQguOOdsVHo].

[65] Jun-Ichi Igusa, On Siegel Modular Forms of Genus Two, Am. J. Math. 1 (1962) 175.

– 40 –

https://doi.org/10.1016/0550-3213(87)90075-7
https://inspirehep.net/literature/237040
https://doi.org/10.1016/0550-3213(87)90418-4
https://inspirehep.net/literature/230038
https://doi.org/10.1016/0370-2693(86)90858-0
https://doi.org/10.1016/0370-2693(86)90858-0
https://inspirehep.net/literature/228962
https://doi.org/10.1017/CBO9780511816079
https://inspirehep.net/literature/487240
https://doi.org/10.1017/CBO9780511618123
https://inspirehep.net/literature/487241
https://www.youtube.com/playlist?list=PLbcx3dKCUhgZv6nW1OiritN2rhfHoVXS4
https://www.youtube.com/watch?v=tQguOOdsVHo
https://doi.org/10.2307/2372812

	Introduction and summary
	Conventions and necessary results
	Ghost CFT
	Matter CFT
	Vertex operators for the heterotic string
	Vertical integration procedure

	NS 1 point function on genus 2 Riemann surface
	Choice of local coordinates
	The 1-point function as a total derivative using vertical integration procedure
	Contribution due to the xi, eta, phi system
	Contribution due to b,c ghost and the matter sector

	Renormalised mass at 2 loop order
	Choice of local coordinates
	The 2 point function as a total derivative
	Contribution due to the xi,eta,phi and the b,c ghost
	Identifying the 1PI subspace

	The massless states
	The massive states
	The range of integration for the modular parameters tau(1) and tau(2)
	The Mapping Class Group on genus 2 Riemann surface
	A subgroup of the full MCG


	Discussion
	Theta function relations
	Transformation rules
	In the degeneration limit


