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Abstract— This paper considers the design of a multi-output
high gain observer for a vehicle trajectory tracking application.
The high gain observer approach offers the advantages of
guaranteed feasibility and global stability with just one constant
observer gain for this application. The challenges of
transforming the vehicle dynamic model into the required
companion form for applying the high gain observer technique
are addressed. Transforming a traditional kinematic model to
companion form is found to result in an increased number of
states. Instead, a coordinate transformation that allows for
varying velocity and varying slip angle is shown to be
appropriate. The high gain observer methodology for a dynamic
system with multiple outputs is presented and the calculation of
the Lipschitz constant for the vehicle tracking application is
discussed.

1. INTRODUCTION

A. Challenges with High-Gain Observer Design

LMI (Linear Matrix Inequality) based nonlinear observers
[1, 2] are powerful tools in state estimation as they come with
proof of stability and are relatively easy to implement in real-
world applications. The observer gain matrix needs to be
found by solving a LMI problem. If found, the LMI problem
is said to be feasible and the observer dynamics will then be
stable. However, there is no guarantee that a solution to the
LMI problem can be found for a specific application.
Therefore, one of the main challenges of designing these
observers is the unknown feasibility of the LMI problem: the
existence of stable observer gains is not guaranteed.

A different kind of estimator is the high-gain observer [3].
For nonlinear systems in (transpose) companion form, stable
high-gain observers are guaranteed to exist, if the involved
nonlinear functions are Lipschitz [3, 4]. Thus, the high-gain
observer always has a feasible solution, while the LMI-based
observers in general do not. With all the benefits of using
high-gain observers, very few real-world applications of these
observers can be found in the literature as the transformation
of the nonlinear systems into the required companion form is
non-trivial. Also, multi-output applications of high-gain
observers have been seldom (if at all) utilized in the literature.
In this paper, we show how to design a high gain observer for
a vehicle system that is originally not in the companion form
and has multiple outputs. The design process can be inspiring
for other systems and might help lead to more practical
applications of high- gain observers in the future.
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B. Vehicle Tracking Problem

Tracking surrounding vehicles is critical in many
applications such as collision avoidance and autonomous
driving [2]. By tracking the trajectories of other vehicles on
the road, essential variables in collision prediction (e. g. time-
to-collision) can be calculated using estimates of the vehicles’
position, velocity, and orientation [5]. Hence, designing
observers to accurately estimate surrounding vehicles’ states
is valuable. However, vehicle motion typically involves
nonlinear dynamic models. Some of the previous works
addressed this problem by turning the original nonlinear
model into multiple linear models typically including a
“straight line driving” and a “constant turn rate driving”
model [6, 7]. Using these linear models, they utilize
Interacting Multiple Model (IMM) filters (e. g. IMM Kalman
Filters) for state estimation [6, 7]. These papers based on
linearization lack a proof of global stability and do not cover
all possible vehicle maneuvers. Also, implementing IMM
filters is more computationally demanding as they require
real-time evaluation of each model’s probability.

Recently, a few papers have investigated the use of LMI-
based nonlinear observers for vehicle state estimation. They
are obtained based on a single nonlinear model and include
constant observer gains. Thus, they are easy to implement.
However, they have some shortcomings including limited
stability regions and the use of simplifying assumptions in the
model (e.g. assumption of constant velocity). The designed
observers are guaranteed to be stable only for a small region
of steering angle and a limited range of vehicle direction angle
due to the non-monotonic nonlinear functions involved in the
model. Therefore, switched gain observers with different
gains in different piecewise regions were required to cover the
entire operating range. Also, these observers assume constant
velocity and are not able to accurately estimate the states of
vehicles with variable velocities. Hence, this paper will
explore the design of high-gain observers allowing for
variable velocity, guaranteed stability, and guaranteed
feasibility.

The outline of the paper is as follows. Section II describes
the design of a high-gain observer for multi-output
applications. Section III discusses two different approaches
for transformation of a kinematic vehicle model into the
companion form to be used in high-gain observer design.
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Section IV describes the calculation of the observer gain
matrix. Section V contains the conclusions.

II. MULTI- OUTPUT HIGH- GAIN OBSERVER DESIGN

While the single output high-gain observer design is well-
developed in the literature, the multi-output version is less
well-known and is not available in a standard system result
format. In this section, a high-gain observer is designed for a
multi-output companion form system. Consider the following
two-output system which is in companion form:

z=Fz+Gf(2), y=Hz )
where
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and f(z) is the nonlinear function in the model. Assume the
observer dynamics are:

2=F2+Gf(2)+L(y—H2) 3)

where L is the constant observer gain matrix. The observer
error dynamics Z is derived based on (1) and (3):
i=2-%
=Fz+Gf(z)— F2—Gf(2)—L(y—HZ2) C))
= (F-LH)2+Gf(z2)
where Z = z — Zand f = f(2) — f(2). Here, we assume that
the nonlinear process equations are Lipschitz. In other words:

”fl”z < nlizllz, ”/Ez”2 < y.lZll, )

Define the following transformation for the error variables:

e=T"1(0)z2 (6)
and
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Finding the transformed error variable dynamics by
implementing the transformation (6) on (4) yields:

T(0)é = (F — LH)Te + Gf(z,2) (8)
or
é= (T 'FT —KHT)e + T7'Gf(z,2) )
where K is the transformed observer gain matrix:
K=T"1L (10)

Note that:
T~1FT = 6F (11)
and
HT = 6H (12)
Then, (9) is simplified as:
é=0(F—KH)e+T'Gf(z2) (13)

Based on (5), we assume that there exists k¢ such that:
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Theorem 1. If there exists P > 0,1 >0, L, and & > 1 such
that:

FTP+PF—HTQ — QTH < —Al (15)
and
2k ¢ Amax (P
0> 0, = Lmex 2 ";“"( ) (16)

in which A,,,,(.) is the maximum eigenvalue, then the
estimation error Z is exponentially stable by using the
observer gain:
K =P1QT (17)
Proof. Consider the following Lyapunov function candidate:
V =eTPe, P>0 (18)
and P is symmetric. Taking derivative of this Lyapunov
function:
V =¢éTPe +e"Pé
and replacing (13) in (19):
V =6e"[(F—KH)P+ P(F — KH)]e
+fT(GTT*P)e + " (PT'G)f
Exploiting inner product notation, equation (20) can be
modified:
V =0e"[FTP + PF — H"K"P — PKH]e

19

(20)

+2(T71Gf). (Pe) h
Using the Cauchy-Schwarz inequality:
V < 0eT[FTP + PF — H"K"P — PKH]e
+2[[ 7726, 1PN, el (22)
For the positive definite Hermitian matrix P:
IPIlz; = omax(P) = IA(P)lmax = Amax(P) ~ (23)

Use (14), (17), and (23) in (22):
V <el[0(FTP + PF — H'Q — QTH) + 2k Amax(P)I]e (24)

Based on (15), (16), and (24):
V < eT[-A0] + 2k Apmax(P)]e
- (25)
= (=20 + 2kf/1max(P)) eTe <0

V < 0 and the proof is complete. m



III. VEHICLE MODEL TRANSFORMATION

In this section, we investigate the transformation of a
vehicle model to the companion form needed for the high-
gain observer design. A standard transformation of the
original vehicle model comes with significant disadvantages.
A modified model, on the other hand, is much more effective
for transformation into the companion form.

A. Original Vehicle Model

Fig. 1 shows a vehicle with velocity V, orientation (yaw)
angle i, slip angle [, and steering angle &p. The original
vehicle (bicycle) model considered in this paper is [5]:

X =Vcos(y +B) (26)
Y =Vsin(y + B) 27

Y = V(cos B) tan 8y /1 (28)
8- =0 (29)

where A is the vehicle’s acceleration and the parameter [ is
the wheelbase length of the vehicle:

l=1l+1, (30)
Parameters [¢ and [, are shown in Fig. 1. We use the following
relationship between the slip and steering angles [5]:

8 = tan1 ({’r tan(8f))

31
o+ 2, @)

This model was previously used for vehicle tracking in [2].

B. Transformation of the Simplified Vehicle Model

We started by transforming the above simplified model to
companion form with the following states and output vectors:

x=[X Y ¥ &Ty=[x vI" (32)
The assumptions in the simplified model are:
A~0, V=V, (known), B=0 (33)

leading to the following vehicle model (based on equations
(26)- (33)):
[X] [ Vacosw)

i= Y1 _ | vysin(@)
|| |vitanée /1
I 0

The companion form requires using the two outputs and
their derivatives as the states. To transform the model into
companion form, define:

(34)

wy=y; =X, Wy =y, =Y (35)
Take derivative and use (34) and (35):
Wy =w; =X =V, cos(y)) (36)

W, =w, = Y = V; sin(y)

(37

Fig. 1. Motion schematic and model variables for a Vehicle

The dynamic of v is not captured yet and another
derivative is required. Finding derivatives of (36) and (37):

Wy, =Wy =ws =X =—V2tan8esin(y) /I  (38)
W, =W, =wg =Y =VZtandgcos(¥) /L  (39)

Note that w; and W, cannot be written in terms of wy, w,,
w3, and w,. Therefore using (33), (34) and that 6 = § = 0:

W, = ws = X = =V tan? 8z cos(y) /12 (40)
W, = Wwg = Y = =V tan? 8 sin(yp) /12 41)
. . Vi tanép .
Considering (36)- (41), s related to the transformed
states:
(Wews — wsw,)/V{ =V, tan &g /1 (42)
Replacing (36), (37), and (42) in (40) and (41):
2
WeWs — WsW,
We = —wy (%) (43)
Vl
WeWsz — WsW,
W6=—W4<6 3 > 5 4) (44)
Vl
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and
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(W6W3 - W5W4)
—wy [ =2
2
4
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A |

While the model (34) had four states, the transformed
system (45) has six states. The redundancy of model (45) can
be explained by two constraints.

The first constraint is V = V; from (33). Note that we have
ws = X and w, = Y from (36) and (37). The first constraint
can be written as:

o = [¥] = (46)

wi +wi =V? 47)

The second constraint comes from the constant velocity or
V = A ~ 0 based on (33). From (45) we have Ww; = ws and
W, = wg. Therefore, taking derivative from (47) will give the
second constraint:

W3Ws + WyWg = 0 (48)

A 4% order system has been translated to a 6™ order system
plus two constraints. To design a high-gain observer only
model (45) must be utilized. The constraints (47) and (48)
must be ignored, since algebraic constraints cannot really be
a part of the model utilized in the high gain observer.

C. Transformation of a Modified Vehicle Model

By removing some of the assumptions in (33), we
improved the previous model and solved the issue with the
disadvantages of increase in system order. Instead of constant
velocity, we assume constant acceleration so that the observer
will have much better performance when the velocity is
changing. The states and output vectors for the improved
model are:

x=[X Y v A ¢ BlNy=1[x YI" (49

Thus, two new states V and A have been added. Further, the
slip angle f5 is used as the state instead of steering angle. The
new assumptions are:

A=0, & =0 (50)
Note that by rewriting (31) as:
tan g _ tan(5;) (51)
L, l
and replacing it in (28), we obtain:
Y =VsinpB /L, (52)
Also, from (50) and (51):
[; =0 (53)

The improved vehicle model based on assumptions (50) is:

Vcos(y + B)
Vsin(y + B)
A

0 (54)

A
¥ Vsing /L,
g 0

The model presented in (54) is already in 6™ order form but
not in the companion form and it cannot directly be used for
high-gain observer design. Now consider the following
transformed states and output vectors:

z=[x x X v v vI"y=1[x YI" (55

The transformed vehicle model can be written as:
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We need to calculate f(z) in equation (56):

_ X _[h@
ra=[l=E-lal o
The first step is to calculate the acceleration:
o _diD)
T odt
= d—cos(1l} +p)— (l,b T '8) Vsin(y + ) (58)
= ij)
(39)
sm(z/) +p)+——= (1/) B) Veos(y +B)
Use (54) in (58) and (59):
§=z,= Acosh + )~ Lsingp + ) (60)
. . V2sinp
Y =2z, =Asin(y + ) + ; cos(@+pB) (61)
or
*sinf
Acos(p + ) =z3 + sin(y + B) (62)
_ Zsinp
Asin(p + ) = zg — ; cos(P + B) (63)

Rewriting equations (60) and (61) in the following forms:



V2sinf | )
(— sin(y + B)) sin(y + ) (64)
= (z3 — Acos(y + B)) sin(y + )
V2sinp
( L cos(y + [)’)) cos(P + ) (65)
= (26 — Asin(y + B)) cos(¥ + B)
Subtract (64) from (65):
V2sinp .
= Zecos(P +p) —zzsin(® +5)  (66)
Note that from (54) and (55):
cos(P + pB) = 272 (67)
. Zg
sin(y + B) = v (68)

and velocity is assumed to be non-zero. Using (67) and (68),
(66) is written as:
Vsinf zgzy — 2325
I, V2
The second step is to calculate jerk from (60) and (61) by
considering (50):

- d(X) dA
X———Ecos(lp+ﬁ)

dt
—Asin(y + B) —d(ll’d:' A

dVsinf sin(W + )

VT
d@ +p)
dt

2 .
L (costp + £3)

(69)

(70)

o dY) dA
Y ———Esm(¢+ﬁ)

dt
+Acos(y + B) w

dVsinf cos(p + B)

T
a@ + p)
dt

2 .
PP (sincy + £))

(71)

Implementing (50) and (54) on (70) and (71):
Vsing .
sin(y + B)
") (72)
) cosw+ )

X=-34

Vsi
—V( sinf
I,

Vsinp

Y =34
L

cos(y + B) (73)
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Use (62) and (63) in (72) and (73):

V sin V sin B\
X = -3z k + ZV( ﬁ) cos(+p) (74)
L L
V sin V sin B\
Y =3z f + ZV( B) sin(+pB) (75
L, L,
Use (67), (68), and (69) on (74) and (75):
ZgZy — Z3Zs ZZy — Z3Z5\ 2
X = -3z % +22, (%) (76)
ZgZy — Z3Z5 ZoZy — Z3Z5\ >
y=3z3%+225 (%) 77
From (67) and (68):
V2 =122+z2 (78)
Implement (78) on (76) and (77):
2
ees Z6ZZ - Z3Zs Z622 - Z3Zs
X=-3z <2 > == =2 79
% 7% + 272 2( 72 + 72 ) (79)

2

ZgZy — Z3Z ZeZy — Z3Z

V=3z"5—— 325+2z5<—6§ 325> (80)
z5 +zg z5 + zg

Summarizing, the transformed model in companion form
can be described as follows:

z=Fz+Gf(2), y=Hz (81)
where
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Now that the transformed model in (81 - 83) is in
companion form, it can be used for high-gain observer design
and is compatible with the design procedure presented in
section II.



IV. FINDING THE OBSERVER GAIN FOR VEHICLE MODEL

In this section, the observer gain L is obtained by solving
LMI (15) for A = 10, using the SEDUMI solver in MATLAB
software. We also added the constraint P < 30 I4y¢ to limit
the A4, (P) and the resulting 0 from (16). The results are:
11.73 20.25 -7.3 0 0 0 ]
-7.3

0 0 0 11.73 20.25 (84)

<

Amax(P) = 26.5 (85)

Parameter kf in (17) depends on the Lipschitz constants of
the complex nonlinear functions of the process dynamics (1).
Finding these constants on the R® space is challenging. For
simplicity, the constants are calculated for 1) = ¢ hyperplanes
(constant 1). From (54), (69), and (78):

Therefore (83) can be simplified as:
16 = @
And by assuming ¥ = ¢ < 1 rad/s one can take:
Y1=7v2=3c (8%)

By taking k; = 1.25, we are assuming a maximum vehicle
yaw angle rate of 0.3 rad/s. The observer gain obtained from
these assumptions is:

6720 0
8231 0
28185 0
L=1" 67.20 (89)
[ 0 823.1J
0 28185

V. CONCLUSIONS

In this paper, a multi-output high gain nonlinear observer
was designed for a vehicle trajectory tracking application. The
high gain observer approach has the advantages of guaranteed
feasibility and global stability with one constant observer gain
for all ranges of motion. The challenges of transforming the
vehicle dynamic model into the companion form needed for
applying the high gain observer technique were addressed. A
coordinate transformation that allows for varying velocity and
varying slip angle was shown to be appropriate. The high gain
observer methodology for a dynamic system with multiple
outputs was presented. Finally, the calculation of the
Lipschitz constant for the vehicle tracking application was
discussed, and the observer gain matrix for this application
was determined.

REFERENCES

A. Zemouche, R. Rajamani, G. Phanomchoeng, B. Boulkroune, H.
Rafaralahy, and M. Zasadzinski, 2017. “Circle criterion-based o
observer design for Lipschitz and monotonic nonlinear systems—
Enhanced LMI conditions and constructive discussions.” in
Automatica, 85, pp.412-425.

R. Rajamani, W. Jeon, H. Movahedi, and A. Zemouche, 2020. “On the
need for switched-gain observers for non-monotonic nonlinear
systems.” in Automatica, 114, p.108814.

H. K. Khalil, 2015. “Nonlinear control” (Vol. 406). New York: Pearson.
N. Boizot, E. Busvelle, and J. P. Gauthier, 2010. “An adaptive high-
gain observer for nonlinear systems.” in Automatica, 46(9), pp.1483-
1488.

R. Rajamani, 2011. “Vehicle dynamics and control.” Springer Science
& Business Media.

Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with
Applications to Tracking and Navigation: Theory Algorithms and
Software. Hoboken, NJ, USA: Wiley, 2004.

Xu, P, Xiong, L., Zeng, D., Deng, Z. et al., "IMM-KF Algorithm for
Multitarget Tracking of On-Road Vehicle," SAE Technical Paper 2020-
01-0117, 2020, https://doi.org/10.4271/2020-01-0117.



