
  

  

Abstract— This paper considers the design of a multi-output 

high gain observer for a vehicle trajectory tracking application. 

The high gain observer approach offers the advantages of 

guaranteed feasibility and global stability with just one constant 

observer gain for this application. The challenges of 

transforming the vehicle dynamic model into the required 

companion form for applying the high gain observer technique 

are addressed. Transforming a traditional kinematic model to 

companion form is found to result in an increased number of 

states. Instead, a coordinate transformation that allows for 

varying velocity and varying slip angle is shown to be 

appropriate. The high gain observer methodology for a dynamic 

system with multiple outputs is presented and the calculation of 

the Lipschitz constant for the vehicle tracking application is 

discussed. 

I. INTRODUCTION 

A. Challenges with High-Gain Observer Design 

LMI (Linear Matrix Inequality) based nonlinear observers 

[1, 2] are powerful tools in state estimation as they come with 

proof of stability and are relatively easy to implement in real-

world applications. The observer gain matrix needs to be 

found by solving a LMI problem. If found, the LMI problem 

is said to be feasible and the observer dynamics will then be 

stable. However, there is no guarantee that a solution to the 

LMI problem can be found for a specific application. 

Therefore, one of the main challenges of designing these 

observers is the unknown feasibility of the LMI problem: the 

existence of stable observer gains is not guaranteed. 

A different kind of estimator is the high-gain observer [3]. 

For nonlinear systems in (transpose) companion form, stable 

high-gain observers are guaranteed to exist, if the involved 

nonlinear functions are Lipschitz [3, 4]. Thus, the high-gain 

observer always has a feasible solution, while the LMI-based 

observers in general do not. With all the benefits of using 

high-gain observers, very few real-world applications of these 

observers can be found in the literature as the transformation 

of the nonlinear systems into the required companion form is 

non-trivial. Also, multi-output applications of high-gain 

observers have been seldom (if at all) utilized in the literature. 

In this paper, we show how to design a high gain observer for 

a vehicle system that is originally not in the companion form 

and has multiple outputs. The design process can be inspiring 

for other systems and might help lead to more practical 

applications of high- gain observers in the future. 
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B. Vehicle Tracking Problem 

Tracking surrounding vehicles is critical in many 

applications such as collision avoidance and autonomous 

driving [2]. By tracking the trajectories of other vehicles on 

the road, essential variables in collision prediction (e. g. time-

to-collision) can be calculated using estimates of the vehicles’ 

position, velocity, and orientation [5]. Hence, designing 

observers to accurately estimate surrounding vehicles’ states 

is valuable. However, vehicle motion typically involves 

nonlinear dynamic models. Some of the previous works 

addressed this problem by turning the original nonlinear 

model into multiple linear models typically including a 

“straight line driving” and a “constant turn rate driving” 

model [6, 7]. Using these linear models, they utilize 

Interacting Multiple Model (IMM) filters (e. g. IMM Kalman 

Filters) for state estimation [6, 7]. These papers based on 

linearization lack a proof of global stability and do not cover 

all possible vehicle maneuvers. Also, implementing IMM 

filters is more computationally demanding as they require 

real-time evaluation of each model’s probability. 

Recently, a few papers have investigated the use of LMI-

based nonlinear observers for vehicle state estimation. They 

are obtained based on a single nonlinear model and include 

constant observer gains. Thus, they are easy to implement. 

However, they have some shortcomings including limited 

stability regions and the use of simplifying assumptions in the 

model (e.g. assumption of constant velocity). The designed 

observers are guaranteed to be stable only for a small region 

of steering angle and a limited range of vehicle direction angle 

due to the non-monotonic nonlinear functions involved in the 

model. Therefore, switched gain observers with different 

gains in different piecewise regions were required to cover the 

entire operating range. Also, these observers assume constant 

velocity and are not able to accurately estimate the states of 

vehicles with variable velocities. Hence, this paper will 

explore the design of high-gain observers allowing for 

variable velocity, guaranteed stability, and guaranteed 

feasibility. 
The outline of the paper is as follows. Section II describes 

the design of a high-gain observer for multi-output 
applications.  Section III discusses two different approaches 
for transformation of a kinematic vehicle model into the 
companion form to be used in high-gain observer design. 
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Section IV describes the calculation of the observer gain 
matrix. Section V contains the conclusions. 

II. MULTI- OUTPUT HIGH- GAIN OBSERVER DESIGN 

While the single output high-gain observer design is well-

developed in the literature, the multi-output version is less 

well-known and is not available in a standard system result 

format. In this section, a high-gain observer is designed for a 

multi-output companion form system. Consider the following 

two-output system which is in companion form: 

 𝑧̇ = 𝐹𝑧 + 𝐺𝑓(𝑧), 𝑦 = 𝐻𝑧 (1) 

 

where 

 

𝐹 =  

[
 
 
 
 
 
0
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0
0
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, 𝐺 =

[
 
 
 
 
 
0
0
1
0
0
0

0
0
0
0
0
1]
 
 
 
 
 

, 

 

  𝐻 = [
1 0 0 0 0 0
0 0 0 1 0 0

] 

(2) 

and 𝑓(𝑧) is the nonlinear function in the model. Assume the 

observer dynamics are: 

 𝑧̇̂ = 𝐹𝑧̂ + 𝐺𝑓(𝑧̂) + 𝐿(𝑦 − 𝐻𝑧̂) (3) 

 

where 𝐿 is the constant observer gain matrix. The observer 

error dynamics 𝑧̃ is derived based on (1) and (3): 

𝑧̇̃ = 𝑧̇ − 𝑧̇̂ 

 = 𝐹𝑧 + 𝐺𝑓(𝑧) −  𝐹𝑧̂ − 𝐺𝑓(𝑧̂) − 𝐿(𝑦 − 𝐻𝑧̂) (4) 

= (𝐹 − 𝐿𝐻)𝑧̃ + 𝐺𝑓(𝑧, 𝑧̂) 

where 𝑧̃ = 𝑧 − 𝑧̂ and 𝑓 = 𝑓(𝑧) − 𝑓(𝑧̂). Here, we assume that 

the nonlinear process equations are Lipschitz. In other words: 

 ‖𝑓1‖2
≤ 𝛾1‖𝑧̃‖2, ‖𝑓2‖2

≤ 𝛾2‖𝑧̃‖2 (5) 

 

Define the following transformation for the error variables: 

 𝑒 = 𝑇−1(𝜃)𝑧̃ (6) 

and 

 

𝑇(𝜃) =

[
 
 
 
 
 
𝜃 0 0

0 𝜃2 0

0 0 𝜃3

0 0   0
0  0   0
0  0   0

0  0   0
0  0   0
0  0   0

𝜃 0 0

0 𝜃2 0

0 0 𝜃3]
 
 
 
 
 

, 𝜃 > 1 (7) 

Finding the transformed error variable dynamics by 

implementing the transformation (6) on (4) yields: 

 𝑇(𝜃)𝑒̇ = (𝐹 − 𝐿𝐻)𝑇𝑒 + 𝐺𝑓(𝑧, 𝑧̂) (8) 

 

or 

 𝑒̇ = (𝑇−1𝐹𝑇 − 𝐾𝐻𝑇)𝑒 + 𝑇−1𝐺𝑓(𝑧, 𝑧̂) (9) 

where 𝐾 is the transformed observer gain matrix: 

 𝐾 = 𝑇−1𝐿 (10) 

 

Note that: 

 𝑇−1𝐹𝑇 = 𝜃𝐹 (11) 

and 

 𝐻𝑇 = 𝜃𝐻 (12) 

Then, (9) is simplified as: 

 𝑒̇ = 𝜃(𝐹 − 𝐾𝐻)𝑒 + 𝑇−1𝐺𝑓(𝑧, 𝑧̂) (13) 

 

Based on (5), we assume that there exists 𝑘𝑓 such that: 

 ‖𝑇−1𝐺𝑓(𝑧, 𝑧̂)‖
2

≤ 𝑘𝑓‖𝑒‖2 (14) 

   

Theorem 1. If there exists 𝑃 > 0, 𝜆 > 0, 𝐿, and 𝜃 > 1 such 

that: 

 𝐹𝑇𝑃 + 𝑃𝐹 − 𝐻𝑇𝑄 − 𝑄𝑇𝐻 < −𝜆𝐼 (15) 

and 

 
𝜃 > 𝜃0 =

2𝑘𝑓𝜆𝑚𝑎𝑥(𝑃)

𝜆
 (16) 

in which 𝜆𝑚𝑎𝑥(. ) is the maximum eigenvalue, then the 

estimation error 𝑧̃ is exponentially stable by using the 

observer gain: 

 𝐾 = 𝑃−1𝑄𝑇 (17) 

 

Proof. Consider the following Lyapunov function candidate: 

 𝑉 = 𝑒𝑇𝑃𝑒, 𝑃 > 0 (18) 

and 𝑃 is symmetric. Taking derivative of this Lyapunov 

function: 

 𝑉̇ = 𝑒̇𝑇𝑃𝑒 + 𝑒𝑇𝑃𝑒̇ (19) 

and replacing (13) in (19): 

 𝑉̇ = 𝜃𝑒𝑇[(𝐹 − 𝐾𝐻)𝑇𝑃 + 𝑃(𝐹 − 𝐾𝐻)]𝑒 

+𝑓𝑇(𝐺𝑇𝑇−1𝑃)𝑒 + 𝑒𝑇(𝑃𝑇−1𝐺)𝑓 
(20) 

Exploiting inner product notation, equation (20) can be 

modified:  

 𝑉̇ = 𝜃𝑒𝑇[𝐹𝑇𝑃 + 𝑃𝐹 − 𝐻𝑇𝐾𝑇𝑃 − 𝑃𝐾𝐻]𝑒 

+2(𝑇−1𝐺𝑓). (𝑃𝑒) 
(21) 

Using the Cauchy-Schwarz inequality: 

 𝑉̇ ≤ 𝜃𝑒𝑇[𝐹𝑇𝑃 + 𝑃𝐹 − 𝐻𝑇𝐾𝑇𝑃 − 𝑃𝐾𝐻]𝑒 

+2‖𝑇−1𝐺𝑓‖
2
‖𝑃‖2‖𝑒‖2 

(22) 

For the positive definite Hermitian matrix 𝑃: 

 ‖𝑃‖2 = 𝜎𝑚𝑎𝑥(𝑃) = |𝜆(𝑃)|𝑚𝑎𝑥 = 𝜆𝑚𝑎𝑥(𝑃) (23) 

 

Use (14), (17), and (23) in (22): 

 𝑉̇ ≤ 𝑒𝑇[𝜃(𝐹𝑇𝑃 + 𝑃𝐹 − 𝐻𝑇𝑄 − 𝑄𝑇𝐻) + 2𝑘𝑓𝜆𝑚𝑎𝑥(𝑃)𝐼]𝑒 (24) 

   

Based on (15), (16), and (24): 

 𝑉̇ ≤ 𝑒𝑇[−𝜆𝜃𝐼 + 2𝑘𝑓𝜆𝑚𝑎𝑥(𝑃)𝐼]𝑒

= (−𝜆𝜃 + 2𝑘𝑓𝜆𝑚𝑎𝑥(𝑃)) 𝑒𝑇𝑒 < 0 
(25) 

 

𝑉̇ < 0 and the proof is complete. ∎ 



  

 

III. VEHICLE MODEL TRANSFORMATION 

In this section, we investigate the transformation of a 

vehicle model to the companion form needed for the high-

gain observer design. A standard transformation of the 

original vehicle model comes with significant disadvantages. 

A modified model, on the other hand, is much more effective 

for transformation into the companion form. 

A. Original Vehicle Model 

Fig. 1 shows a vehicle with velocity 𝑉, orientation (yaw) 

angle 𝜓, slip angle 𝛽, and steering angle 𝛿𝐹. The original 

vehicle (bicycle) model considered in this paper is [5]: 

 𝑋̇ = 𝑉 cos(𝜓 + 𝛽) (26) 

 

  𝑌̇ = 𝑉 sin(𝜓 + 𝛽) (27) 

  

 𝜓̇ = 𝑉(cos𝛽) tan 𝛿𝐹 /𝑙 (28) 

 

 𝛿̇𝐹 = 0 (29) 

where 𝐴 is the vehicle’s acceleration and the parameter 𝑙 is 

the wheelbase length of the vehicle: 

 𝑙 = 𝑙𝑓 + 𝑙𝑟 (30) 

Parameters 𝑙𝑓 and 𝑙𝑟 are shown in Fig. 1. We use the following 

relationship between the slip and steering angles [5]: 

 
𝛽 = tan−1 (

ℓ𝑟 tan(𝛿𝑓)

ℓ𝑓 + ℓ𝑟
) (31) 

This model was previously used for vehicle tracking in [2]. 

B. Transformation of the Simplified Vehicle Model 

We started by transforming the above simplified model to 

companion form with the following states and output vectors: 

 𝑥 = [𝑋 𝑌 𝜓 𝛿𝑓]𝑇 , 𝑦 =  [𝑋 𝑌]𝑇  (32) 

 

The assumptions in the simplified model are: 

   𝐴 ≈ 0, 𝑉 = 𝑉1 (𝑘𝑛𝑜𝑤𝑛), 𝛽̇ = 0 (33) 

leading to the following vehicle model (based on equations 

(26)- (33)): 

 

𝑥̇ =

[
 
 
 
𝑋̇
𝑌̇
𝜓̇

𝛽̇]
 
 
 

= [

𝑉1 cos(𝜓)
𝑉1 sin(𝜓)

𝑉1 tan 𝛿𝐹 /𝑙
0

]  (34) 

The companion form requires using the two outputs and 

their derivatives as the states. To transform the model into 

companion form, define: 

 𝑤1 = 𝑦1 = 𝑋, 𝑤2 = 𝑦2 = 𝑌 (35) 

 

Take derivative and use (34) and (35): 

 𝑤̇1 = 𝑤3 = 𝑋̇ = 𝑉1 cos(𝜓) (36) 

 

 𝑤̇2 = 𝑤4 = 𝑌̇ = 𝑉1 sin(𝜓) (37) 

 
 

Fig. 1. Motion schematic and model variables for a Vehicle 

 

The dynamic of 𝜓̇ is not captured yet and another 

derivative is required. Finding derivatives of (36) and (37): 

 𝑤̈1 = 𝑤̇3 = 𝑤5 = 𝑋̈ = −𝑉1
2 tan 𝛿𝐹 sin(𝜓) /𝑙 (38) 

 

 𝑤̈2 = 𝑤̇4 = 𝑤6 = 𝑌̈ = 𝑉1
2 tan 𝛿𝐹 cos(𝜓) /𝑙 (39) 

 

Note that 𝑤̈1 and 𝑤̈2 cannot be written in terms of 𝑤1, 𝑤2, 

𝑤3, and 𝑤4. Therefore using (33), (34) and that 𝛿𝐹̇ = 𝛽̇ = 0: 

 𝑤⃛1 = 𝑤̇5 = 𝑋 = −𝑉1
3 tan2 𝛿𝐹 cos(𝜓) /𝑙2 (40) 

 

 𝑤⃛2 = 𝑤̇6 = 𝑌 = −𝑉1
3 tan2 𝛿𝐹 sin(𝜓) /𝑙2 (41) 

 

Considering (36)- (41), 
𝑉1 tan𝛿𝐹

𝑙
 is related to the transformed 

states: 

 (𝑤6𝑤3 − 𝑤5𝑤4)/𝑉1
2  = 𝑉1 tan 𝛿𝐹 /𝑙 (42) 

 

Replacing (36), (37), and (42) in (40) and (41): 

 
𝑤̇5 = −𝑤3 (

𝑤6𝑤3 − 𝑤5𝑤4

𝑉1
2 )

2

 (43) 

 

 
𝑤̇6 = −𝑤4 (

𝑤6𝑤3 − 𝑤5𝑤4

𝑉1
2 )

2

 (44) 

 

In summary, the transformed model in companion form is: 

 

𝑤̇ =

[
 
 
 
 
 
𝑤1̇

𝑤̇3

𝑤̇5

𝑤̇2

𝑤̇4

𝑤̇6]
 
 
 
 
 

=

[
 
 
 
 
 
0
0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0
0
0
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0]
 
 
 
 
 

𝑤 +

[
 
 
 
 
 
0
0
1
0
0
0

0
0
0
0
0
1]
 
 
 
 
 

𝑓(𝑤)  (45) 



  

 

and 

 

𝑓(𝑤) = [
𝑤̇5

𝑤̇6
] =

[
 
 
 
 −𝑤3 (

𝑤6𝑤3 − 𝑤5𝑤4

𝑉1
2 )

2

−𝑤4 (
𝑤6𝑤3 − 𝑤5𝑤4

𝑉1
2 )

2

]
 
 
 
 

 (46) 

 

While the model (34) had four states, the transformed 

system (45) has six states. The redundancy of model (45) can 

be explained by two constraints.  

The first constraint is 𝑉 = 𝑉1 from (33). Note that we have 

𝑤3 = 𝑋̇ and 𝑤4 = 𝑌̇ from (36) and (37). The first constraint 

can be written as: 

 𝑤3
2 + 𝑤4

2 = 𝑉1
2 (47) 

 

The second constraint comes from the constant velocity or 

𝑉̇ = 𝐴 ≈ 0 based on (33). From (45) we have 𝑤̇3 = 𝑤5 and 

𝑤̇4 = 𝑤6. Therefore, taking derivative from (47) will give the 

second constraint: 

 𝑤3𝑤5 + 𝑤4𝑤6 = 0 (48) 

   

A 4th order system has been translated to a 6th order system 

plus two constraints. To design a high-gain observer only 

model (45) must be utilized. The constraints (47) and (48) 

must be ignored, since algebraic constraints cannot really be 

a part of the model utilized in the high gain observer. 

C.  Transformation of a Modified Vehicle Model 

By removing some of the assumptions in (33), we 

improved the previous model and solved the issue with the 

disadvantages of increase in system order. Instead of constant 

velocity, we assume constant acceleration so that the observer 

will have much better performance when the velocity is 

changing. The states and output vectors for the improved 

model are: 

 𝑥 = [𝑋 𝑌 𝑉 𝐴 𝜓 𝛽]𝑇, 𝑦 =  [𝑋 𝑌]𝑇  (49) 

   

Thus, two new states 𝑉 and 𝐴 have been added. Further, the 

slip angle 𝛽 is used as the state instead of steering angle. The 

new assumptions are: 

 𝐴̇ ≈ 0, 𝛿̇𝑓 ≈ 0 (50) 

 

Note that by rewriting (31) as: 

 tan𝛽

𝑙𝑟
=

tan(𝛿𝑓)

𝑙
 (51) 

and replacing it in (28), we obtain: 

 𝜓̇ = 𝑉 sin 𝛽 /𝑙𝑟 (52) 

 

Also, from (50) and (51): 

 𝛽̇ ≈ 0 (53) 

   

The improved vehicle model based on assumptions (50) is: 

 

𝑥̇ =

[
 
 
 
 
 
 
𝑋̇
𝑌̇
𝑉̇
𝐴̇
𝜓̇

𝛽̇]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝑉 cos(𝜓 + 𝛽)
𝑉 sin(𝜓 + 𝛽)

𝐴
0

𝑉 sin 𝛽 /𝑙𝑟
0 ]

 
 
 
 
 

  (54) 

The model presented in (54) is already in 6th order form but 

not in the companion form and it cannot directly be used for 

high-gain observer design. Now consider the following 

transformed states and output vectors: 

 𝑧 = [𝑋 𝑋̇ 𝑋̈ 𝑌 𝑌̇ 𝑌̈]𝑇, 𝑦 =  [𝑋 𝑌]𝑇  (55) 

 

The transformed vehicle model can be written as: 

 

𝑧̇ =

[
 
 
 
 
 
𝑋̇
𝑋̈
𝑋
𝑌̇
𝑌̈
𝑌]
 
 
 
 
 

=

[
 
 
 
 
 
0
0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0
0
0
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0]
 
 
 
 
 

𝑧 +

[
 
 
 
 
 
0
0
1
0
0
0

0
0
0
0
0
1]
 
 
 
 
 

𝑓(𝑧)  (56) 

 

We need to calculate 𝑓(𝑧) in equation (56): 

 
𝑓(𝑧) = [

𝑧̇3

𝑧̇6
] = [𝑋

𝑌
] = [

𝑓1(𝑧)
𝑓2(𝑧)

] (57) 

 

The first step is to calculate the acceleration: 

𝑋̈ =
𝑑(𝑋̇)

𝑑𝑡
 

 
=

𝑑𝑉

𝑑𝑡
cos(𝜓 + 𝛽) −

𝑑(𝜓 + 𝛽)

𝑑𝑡
𝑉 sin(𝜓 + 𝛽) (58) 

 

 
𝑌̈ =

𝑑(𝑌̇)

𝑑𝑡
 

=
𝑑𝑉

𝑑𝑡
sin(𝜓 + 𝛽) +

𝑑(𝜓 + 𝛽)

𝑑𝑡
𝑉 cos(𝜓 + 𝛽) 

(59) 

 

Use (54) in (58) and (59): 

 
𝑋̈ = 𝑧3 = 𝐴 cos(𝜓 + 𝛽) −

𝑉2 sin𝛽

𝑙𝑟
sin(𝜓 + 𝛽) (60) 

 

 
𝑌̈ = 𝑧6 = 𝐴 sin(𝜓 + 𝛽) +

𝑉2 sin 𝛽

𝑙𝑟
cos(𝜓 + 𝛽) (61) 

 

or 

 
𝐴 cos(𝜓 + 𝛽) = 𝑧3 +

𝑉2 sin 𝛽

𝑙𝑟
sin(𝜓 + 𝛽) (62) 

 

 
𝐴 sin(𝜓 + 𝛽) = 𝑧6 −

𝑉2 sin𝛽

𝑙𝑟
cos(𝜓 + 𝛽) (63) 

 

Rewriting equations (60) and (61) in the following forms: 



  

 
(−

𝑉2 sin𝛽

𝑙𝑟
sin(𝜓 + 𝛽)) sin(𝜓 + 𝛽)

= (𝑧3 − 𝐴 cos(𝜓 + 𝛽)) sin(𝜓 + 𝛽) 

(64) 

 

 
(
𝑉2 sin 𝛽

𝑙𝑟
cos(𝜓 + 𝛽)) cos(𝜓 + 𝛽)

= (𝑧6 − 𝐴 sin(𝜓 + 𝛽)) cos(𝜓 + 𝛽) 

(65) 

 

Subtract (64) from (65): 

 𝑉2 sin𝛽

𝑙𝑟
= 𝑧6 cos(𝜓 + 𝛽) − 𝑧3 sin(𝜓 + 𝛽) (66) 

 

Note that from (54) and (55): 

 cos(𝜓 + 𝛽) =
𝑧2

𝑉
 (67) 

 

 sin(𝜓 + 𝛽) =
𝑧5

𝑉
 (68) 

 

and velocity is assumed to be non-zero. Using (67) and (68), 

(66) is written as: 

 𝑉 sin 𝛽

𝑙𝑟
=

𝑧6𝑧2 − 𝑧3𝑧5

𝑉2
 (69) 

The second step is to calculate jerk from (60) and (61) by 

considering (50): 

 
𝑋 =

𝑑(𝑋̈)

𝑑𝑡
=

𝑑𝐴

𝑑𝑡
cos(𝜓 + 𝛽) 

−𝐴 sin(𝜓 + 𝛽)
𝑑(𝜓 + 𝛽)

𝑑𝑡
 

−2𝑉
𝑑𝑉

𝑑𝑡

sin𝛽

𝑙𝑟
sin(𝜓 + 𝛽) 

−
𝑉2 sin 𝛽

𝑙𝑟
(cos(𝜓 + 𝛽))

𝑑(𝜓 + 𝛽)

𝑑𝑡
 

(70) 

 

 
𝑌 =

𝑑(𝑌̈)

𝑑𝑡
=

𝑑𝐴

𝑑𝑡
sin(𝜓 + 𝛽) 

+𝐴cos(𝜓 + 𝛽)
𝑑(𝜓 + 𝛽)

𝑑𝑡
 

+2𝑉
𝑑𝑉

𝑑𝑡

sin 𝛽

𝑙𝑟
cos(𝜓 + 𝛽) 

−
𝑉2 sin 𝛽

𝑙𝑟
(sin(𝜓 + 𝛽))

𝑑(𝜓 + 𝛽)

𝑑𝑡
 

(71) 

 

Implementing (50) and (54) on (70) and (71): 

 
𝑋 = −3𝐴

𝑉 sin 𝛽

𝑙𝑟
sin(𝜓 + 𝛽) 

−𝑉 (
𝑉 sin𝛽

𝑙𝑟
)

2

cos(𝜓 + 𝛽) 

(72) 

 

 
𝑌 = 3𝐴

𝑉 sin 𝛽

𝑙𝑟
cos(𝜓 + 𝛽) (73) 

−𝑉 (
𝑉 sin 𝛽

𝑙𝑟
)

2

sin(𝜓 + 𝛽) 

 

Use (62) and (63) in (72) and (73): 

 
𝑋 = −3𝑧6

𝑉 sin 𝛽

𝑙𝑟
+ 2𝑉 (

𝑉 sin 𝛽

𝑙𝑟
)

2

cos(𝜓 + 𝛽) (74) 

 

 
𝑌 = 3𝑧3

𝑉 sin𝛽

𝑙𝑟
+ 2𝑉 (

𝑉 sin 𝛽

𝑙𝑟
)

2

sin(𝜓 + 𝛽) (75) 

 

Use (67), (68), and (69) on (74) and (75): 

 
𝑋 = −3𝑧6

𝑧6𝑧2 − 𝑧3𝑧5

𝑉2
+ 2𝑧2 (

𝑧6𝑧2 − 𝑧3𝑧5

𝑉2
)
2

 (76) 

 

 
𝑌 = 3𝑧3

𝑧6𝑧2 − 𝑧3𝑧5

𝑉2
+ 2𝑧5 (

𝑧6𝑧2 − 𝑧3𝑧5

𝑉2
)
2

 (77) 

 

From (67) and (68): 

 𝑉2 = 𝑧2
2 + 𝑧5

2 (78) 

 

Implement (78) on (76) and (77): 

 
𝑋 = −3𝑧6

𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 + 2𝑧2 (
𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 )

2

 (79) 

 

 
𝑌 = 3𝑧3

𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 + 2𝑧5 (
𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 )

2

 (80) 

 

Summarizing, the transformed model in companion form 

can be described as follows: 

 𝑧̇ = 𝐹𝑧 + 𝐺𝑓(𝑧), 𝑦 = 𝐻𝑧 (81) 

 

where 

 

𝐹 =  

[
 
 
 
 
 
0
0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0
0
0
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0]
 
 
 
 
 

, 𝐺 =

[
 
 
 
 
 
0
0
1
0
0
0

0
0
0
0
0
1]
 
 
 
 
 

, 

 

  𝐻 = [
1 0 0 0 0 0
0 0 0 1 0 0

] 

(82) 

and 

 

𝑓(𝑧) =

[
 
 
 
 −3𝑧6

𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 + 2𝑧2 (
𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 )

2

3𝑧3

𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 + 2𝑧5 (
𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 )

2

]
 
 
 
 

 (83) 

 

Now that the transformed model in (81 - 83) is in 

companion form, it can be used for high-gain observer design 

and is compatible with the design procedure presented in 

section II. 



  

IV. FINDING THE OBSERVER GAIN FOR VEHICLE MODEL 

In this section, the observer gain 𝐿 is obtained by solving 

LMI (15) for 𝜆 = 10, using the SEDUMI solver in MATLAB 

software. We also added the constraint 𝑃 < 30 𝐼6×6 to limit 

the 𝜆𝑚𝑎𝑥(𝑃) and the resulting 𝜃 from (16). The results are: 

 

𝐾 = [
11.73

0
20.25

0
−7.3

0
0

11.73
0

20.25
0

−7.3
] (84) 

 

 𝜆𝑚𝑎𝑥(𝑃) = 26.5 (85) 

 

Parameter 𝑘𝑓 in (17) depends on the Lipschitz constants of 

the complex nonlinear functions of the process dynamics (1). 

Finding these constants on the ℝ6 space is challenging. For 

simplicity, the constants are calculated for 𝜓̇ = 𝑐 hyperplanes 

(constant 𝜓̇). From (54), (69), and (78): 

 𝜓̇ =
𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 = 𝑐 (86) 

 

Therefore (83) can be simplified as: 

 
𝑓(𝑧) ≈ [

−3𝑐𝑧6 + 2𝑐2𝑧2

3𝑐𝑧3 + 2𝑐2𝑧5

] (87) 

 

And by assuming 𝜓̇ = 𝑐 < 1 rad/s one can take:  

 𝛾1 = 𝛾2 ≈ 3𝑐 (88) 

 

By taking 𝑘𝑓 = 1.25, we are assuming a maximum vehicle 

yaw angle rate of 0.3 rad/s. The observer gain obtained from 

these assumptions is: 

 

𝐿 =

[
 
 
 
 
67.20
823.1
2818.5

0
0
0

0
0
0

67.20
823.1
2818.5]

 
 
 
 

 (89) 

  

V.  CONCLUSIONS 

In this paper, a multi-output high gain nonlinear observer 

was designed for a vehicle trajectory tracking application. The 

high gain observer approach has the advantages of guaranteed 

feasibility and global stability with one constant observer gain 

for all ranges of motion. The challenges of transforming the 

vehicle dynamic model into the companion form needed for 

applying the high gain observer technique were addressed. A 

coordinate transformation that allows for varying velocity and 

varying slip angle was shown to be appropriate. The high gain 

observer methodology for a dynamic system with multiple 

outputs was presented. Finally, the calculation of the 

Lipschitz constant for the vehicle tracking application was 

discussed, and the observer gain matrix for this application 

was determined.  
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