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We study mesoscopic signatures of the topological Anderson transitions in topological disordered
chains. To this end we introduce an integer-valued sample-specific definition of the topological
index in finite size systems. Its phase diagram exhibits a fascinating structure of intermittent
topological phases, dubbed topological islands. Their existence is rooted in the real zeros of the
underlying random polynomial. Their statistics exhibits finite-size scaling, pointing to the location
of the bulk topological Anderson transition. While the average theories in AIII and BDI symmetry
classes are rather similar, the corresponding patterns of topological islands and their statistics are
qualitatively different. We also discuss observable signatures of sharp topological transitions in
mesoscopic systems, such as persistent currents and entanglement spectra.

An interplay between topology and disorder plays an
essential role in our understanding of topological materi-
als [1–6]. Most notably it leads to a concept of topolog-
ical Anderson insulators [7–45], where the robustness of
the topological index is protected by the localized nature
of wave-functions, rather than a band gap in the energy
spectrum. Phase diagrams of topological Anderson in-
sulators generically exhibit transitions between localized
phases with distinct topological indexes. Remarkably,
localization length diverges at such transitions [11, 20],
indicating the presence of extended states. This happens
even in 1d, where the ensemble averaged theory in the
thermodynamic limit is understood in terms of a two pa-
rameters scaling [8, 9], similar to 2d integer quantum Hall
effect [46].

Although conceptually appealing, the average the-
ory misses a trove of interesting information regarding
sample-specific properties of disordered systems. The
main goal of this paper is to uncover a fascinating hid-
den structure of intermittent topological phases, dubbed
topological islands. Both the number of such islands and
their locations on the phase diagram are determined by
the real zeros of the underlying random polynomial and
are completely lost in any ensemble averaged treatment.
A key step in this direction is a physically meaningful
definition of an integer-valued topological index, which
does not rely on the ensemble averaging, nor on the ther-
modynamic limit, cf. [10, 11, 18, 20].

We show that the finite-size scaling of the number of
topological islands is a sensitive tool to reveal locations
of the bulk topological Anderson transitions. Moreover,
such finite-size scaling looks qualitatively distinct in dif-
ferent symmetry classes, eg., AIII vs. BDI, while their
ensemble-average descriptions [9] are very much alike.

Our results are important for ongoing experimental
efforts to detect 1D topological phase transitions and
localization-delocalization phenomena. In many real ex-
periments, such as recent topological Anderson insulator
observations[12], the system size is typically not large.
As a result, self-averaged theories are less suitable for

analysis. However, our results demonstrates what fea-
tures one may expect in a real experiment setup, even
when dealing with smaller systems. In the end, we dis-
cuss observable manifestations of topological transitions
in mesoscopic size disordered samples[12, 47] on persis-
tent currents as well as entanglement spectra.
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FIG. 1: Average topological index on the (W,m) phase
diagram for N = 10. To emphasize fluctuations, each
point is averaged using a small sample size of 20. The
red lines are the phase boundaries of the corresponding

infinite systems. (a) Class BDI. (b) Class AIII.

To illustrate the idea, let’s consider a finite size disor-
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dered system defined on a ring,

H =
N∑

j=1

tjc
†
j,Acj,B + t′jc

†
j,Bcj+1,A + h.c., (1)

where cN+1,A = c1,A. Here A,B label two sub-lattices
and tj , t

′
j are hopping strengths within the unit cell and

between nearest unit cells, respectively. The chiral sym-
metry preserving disorder is introduced as,

tj = m+Wwj ; t′j = 1 +W ′w′
j , (2)

where m is a uniform staggering, W,W ′ are the disorder
strengths and wj , w

′
j are independent random variables

uniformly drawn from the box [−1/2, 1/2]. In all sub-
sequent examples W ′ = 1

2W . The system possesses the
chiral symmetry,

τzHτz = −H, (3)

where τz is the Pauli matrix acting in the sub-lattices
space. In the time reversal symmetric BDI class [6, 48]
all the parameters are real, while generalization to the
AIII class is discussed below.

The usual topological index in the k space cannot be
defined in a finite-size and translationally non-invariant
system. To overcome it we introduce a flux, threading
the ring [8, 49], through the substitution

tNc†N,Bc1,A → tNeiϕc†N,Bc1,A. (4)

The energy spectrum consists of 2N particle-hole sym-
metric “bands” as functions of flux ϕ ∈ [0, 2π]. One can
now introduce the index by using the Hamiltonian in a
chiral basis

H(m,ϕ) =

(
0 Q(m,ϕ)

Q†(m,ϕ) 0

)
, (5)

and defining

ν =
1

2πi

∫ 2π

0

dϕ ∂ϕ log detQ(m,ϕ) (6)

Since this is a winding number of the ϕ 7→ detQ(m,ϕ)
map, the index is integer-valued.

A transition point, m = mc, is marked by the gap
at zero energy closing for some ϕ = ϕmc

. At this in-
stance there are two zero energy eigenvalues which im-
plies detH = −| detQ|2 = 0. This means that, as ϕ
goes from 0 to 2π, detQ(mc, ϕ) draws a closed loop in
the complex plane which passes through the origin. Its
winding number is thus undefined, while for m ̸= mc it
is an integer, which jumps by one over the transition.
For the BDI class, ϕmc is either 0 or π due to the time
reversal symmetry.

Figure 1 shows the topological index for N=10, aver-
aged over 20 disorder realizations, on the phase plane of
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FIG. 2: (a) The distribution over 105 realisations of the
transition points near m = 1 for W = 1; N = 6 and
N = 60 are shown in blue and orange along with the
Gaussian fits. (b) Topological index for a system with
N = 6,W = 4 and a fixed disorder realization. Notice
five intermittent topological phases, dubbed topological

islands.

(W,m). The red line is the topological phase boundary
of the corresponding infinite system, which is calculated
using the method of Ref. [11]. The enhanced fluctuations
can be seen around the boundary. Notice that, in a cer-
tain region, they extend far beyond the bulk boundary
to a very strong disorder.
In the weak disorder region, each realization exhibits

two transition points located near m ≈ ±1. The sample-
to-sample fluctuations of each of these transition points,
Fig. 2(a), are well fitted by the Gaussian distribution. Its
center follows the red boundary, while the width shrinks
as N → ∞. This marks a self-averaging transition.
However, when the disorder is strong, the fluctuations

persist even in theN → ∞ limit. This is attributed to the
hidden structure of topological islands – the intermittent
topological phases. Figure. 2(b) shows a sample-specific
topological index as a function of m for W = 4. The
number of topological islands can be as large as N . They
do not disappear in the N → ∞ limit but their width and
relative area scales to zero.
For a better view of topological islands, the phase dia-

grams for fixed disorder realizations are shown in Fig. 3.
The disorder realizations are fixed except the overall am-
plitude, W . The green region is topological, while the
blue one is trivial. The red lines are the phase boundary
of the corresponding infinite systems. The bulk topolog-
ical region of the BDI model grows into N topological
islands. These islands extend to an arbitrarily strong
disorder. Towards a weaker disorder they thicken and
coalesce, ultimately forming the bulk topological region.
The presence of topological islands is a general feature,

not restricted to the particular model we examined. They
are determined by the real zeros of the random polyno-
mial

p(m,ϕ) = detQ(m,ϕ), (7)

Here, ϕ takes all possible values. Those zeros are the
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FIG. 3: Phase diagrams of fixed disorder realizations. The green region is ν = 1, while the blue region is ν = 0. The
red lines are the phase boundaries of the corresponding infinite systems [11]. (a), (b) Class BDI with N = 8,

N = 16. (c), (d) Class AIII with N = 8, N = 16.

boundaries of the islands and can be used to determine
the number and locations of them. Topological islands
exists as long as there are many real zeros of p(m,ϕ).
Let’s consider a general random BDI model with all
ranges of longer hopping. We first introduce the con-
trol parameter m as the hopping within the unit cell and
thus m is the diagonal element of Q. Then we introduce
random hopping between different sites while respecting
the chiral symmetry. Q may be modeled as mI + R,
where I is the identity matrix and R is a random matrix.
Real zeros of p(m,ϕ) are thus the same as real eigenval-
ues of R (up to a minus sign). There are around

√
N

real eigenvalues of R, where N is the number of unit
cells.[50] For class BDI, ϕ takes 0 and π, which leads to
2
√
N transitions. Hence, we expect there are roughly√

N topological islands for a generic BDI model.

For the specific model we consider, real zeros can be
found by requiring the product of the absolute value of
all intra unit cell hopping strength equals that of inter

unit cell hopping strength
N∏
j=1

|tj | =
N∏
j=1

∣∣t′j
∣∣ . In the bulk

of ν = 0 (blue) region,
∏

j |tj | >
∏

j

∣∣t′j
∣∣. The radiating

shape of topological islands can be understood by looking
at the special points where the chain is accidentally cut

in two, given that one of tj = 0,

m+Wwj = 0. (8)

Real zeros of the random polynomial are usually near
them for large W . These straight lines on the (W,m)
plane, with a set of random slopes −wj , mark the centers
of the islands. The width of ν = 1 (green) region around
each such a line may be estimated for W ≫ 1 as [51],

∆mj = Ww′
j

(
1

2

)N−1 N∏

i̸=j

(
w′

i

wi − wj

)
. (9)

Thus the angular width of the island, ∆mj/W , is a fixed
number for a given realization. It decreases exponentially
with N → ∞.

To further understand the anatomy of the topological
islands, we look at the number of islands [52] across all
m’s for a fixed W , Fig. 4(a). A convenient way to rep-
resent data is to plot Nislands−1

N−1 , vs. W . As N increases
it approaches a limiting function, smoothly interpolating
between zero and one. To detect the exact location of
the transition we look for the variance of the number of
islands (divided by N − 1), see the inset. It shows that
as N increases, the variance peak become more narrow
and centered at Wc = 4. This illustrates that the bulk
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FIG. 4: The average number of islands versus the disorder strength W for systems with different system sizes N . (a)
Class BDI, the convenient quantity is Nislands−1

N−1 . Inset shows its variance, which peaks at Wc = 4 as N → ∞. (b)
Class AIII, the graphs shows a crossing point at Wc = 4/ log(2).

transition point for m = 0 may be identified as the max-
imum of the variance of the number of islands in a finite
size simulation.

We turn now to the AIII symmetry class with the
broken time-reversal symmetry. To this end we use
Hamiltonian Eq. 1 with the complex hopping amplitudes.
Namely, the absolute values and phases of wj and w′

j are
now uniformly drawn from (0, 1/2) and (−π, π) respec-
tively. Figure 1(b) shows the average phase diagram of
class AIII. It is similar to that of BDI class and so is
the average theory of the corresponding bulk topological
Anderson transition [8, 9, 11, 20]. The latter takes place
along the red line, where the localization length diverges.

However, the sample-specific fluctuations of the topo-
logical index behaves in a way, which is very different
from the BDI class. Indeed, the topological islands now
have a finite extent and are limited to a relatively weak
disorder part of the phase diagram, Fig.3(c)(d). More-
over, there are only few islands and their number does
not increase with N . This is due to complex random
hopping amplitudes which statistically exclude instances
of a cut chain (real and imaginary parts do not vanish at
the same W ). The average number of islands across all
m’s is plotted in Fig. 4(b) for different system sizes N . It
shows a well-defined crossing point at Wc = 4/ log(2), in
agreement with the bulk transition point at m = 0 [11].
As N grows the number of islands approaches one and
zero for W < Wc and W > Wc, correspondingly.

We have shown that mesoscopic sample-to-sample fluc-
tuations manifest themselves in the formation of topolog-
ical islands. Their number, shape and statistics are qual-
itatively different between BDI and AIII classes. How-
ever, in both cases their finite size scaling provides the
exact location of the corresponding bulk topological An-
derson transition.

Before concluding we discuss observable signatures of

the sharp topological transitions in finite size systems.
First, consider a mesoscopic persistent current, given

by [53–56]

I(m,ϕ) = −∂ϕE(m,ϕ), (10)

where E(m,ϕ) is the ground state energy of the half-filled
system. It is a periodic function ϕ, which exhibits a maxi-
mum at a certain ϕ, Imax(m) = maxϕ I(m,ϕ). It appears
that this maximal value exhibits a non-analytic maxi-
mum at the topological transition critical mc, Fig. 5(a),

Imax ∝ −|m−mc|α, (11)

where α is the critical exponent that may have depen-
dence on system parameters.
In simple models with nearest neighbor hopping, there

are zero energy states located close to weak links in topo-
logical phases and they resemble the edge states while in
more general models, their localization can’t be tight to
any visible edge.
The transitions also have implications in entanglement

spectra [10, 57]. We divide the chain into two equal parts
A and B (do not confuse with the sub-lattices) and calcu-
late the trace over the B part. The corresponding reduced
density matrix of A takes the form

ρA =
∑

nB

⟨nB |ρ|nB⟩ ∝ e−
∑

i ϵia
†
iai , (12)

where |nB⟩ are basis vectors of the B part and ai are nor-
mal modes. The second equality is a property of Gaus-
sian (i.e. non-interacting) models [58]. Here ϵi is the en-
tanglement spectrum, which may be expressed through
the eigenvalues ξi of the one-particle covariance matrix
Cjj′ = ⟨c†jcj′⟩ [58] as

ϵi =
1

2
log

(
1− ξi
ξi

)
, (13)
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FIG. 5: (a) Sample-specific maximum value of the
persistent current, Imax, (blue dots) and the topological
index, ν, (orange dots) as functions of m. Imax peaks at
the two transition points with a power law singularities.
(b) The entanglement spectrum of a BDI realization

with N = 6 and W = 1. The blue dots are ξi, which are
related to the entanglement energies through Eq.(13).

The orange dots are the topological index. The
entanglement spectrum has discontinuities at

transitions. In the topological phase, there are two ξi
around 0.5 (and thus ϵi around 0).

where j and j′ label the lattice sites of the A part and
⟨. . .⟩ denote ground state averaging. The entanglement
spectrum exhibits discontinuities at topological transi-
tions, see Fig. 5(b). For a weak disorder, the spectrum
also exhibits nearly zero entanglement energies within the
topological phase. It can thus be considered as a means
to identify the sharp topological transitions in mesoscopic
systems.
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WIDTH OF BDI TOPOLOGICAL ISLANDS

In this section, the width of an isolated topological
island, ∆mj , is estimated for a given disorder strength
W ≫ 1. For a topological island associated with a link
with the hopping amplitude m + Wωj ≈ 0, the middle
point is mj = −Wωj , as argued in the main text. Two
boundary points m±

j are the transition points, which sat-

isfy detQ(m±
j , ϕ) = 0. Thus, taking ϕ to be 0 and π, it

becomes
∏

i

(m±
j +Wwi) = ±

∏

i

(1 +W ′w′
i). (1)

Assuming |m±
j −mj | ≪ |mj |, ignoring higher order terms

in m±
j −mj , Eq. (1) becomes

m±
j −mj = ±

∏
i(1 +W ′w′

i)∏
i̸=j(Wwi −Wwj)

. (2)

Thusm±
j −mj = ± 1

2∆mj , where ∆mj = m+
j −m−

j . Since

W ′ = 1
2W and W ≫ 1, ignoring higher order terms in

1/W , Eq. (2) can be simplified as,

1

2
∆mj = W

∏
i(

1
2w

′
i)∏

i̸=j(wi − wj)
. (3)

Thus, the width ∆mj can be estimated as,

∆mj = Ww′
j

(
1

2

)N−1 N∏

i̸=j

(
w′

i

wi − wj

)
. (4)

TRANSITION POINTS IN BDI

As said in the main text, the positions and the number
of topological islands are determined by transition points,
which are the real zeros of the polynomial

p(m,ϕ) = detQ(m,ϕ). (5)

Here ϕ takes all possible values. For class BDI, ϕ is taken
to be 0 or π. Thus we need to numerically find all the
zeros of p(m, 0) and p(m,π). This is a challenge task
since the order of the polynomial is equal to the system
size N .
To efficiently calculate the zeros, we can transform the

zeros problem into the eigenvalue problem, which can be
solved easily. Let’s introduce the q matrix,

q(ϕ) = Q(m,ϕ)−mI, (6)

where I is the identity matrix. Note that q has no de-
pendence on m. Since

detQ(m,ϕ) = 0 =⇒ det(q(ϕ)− (−m)I) = 0, (7)

all zeros of p(m,ϕ) corresponds the eigenvalues of q(ϕ)
up to a minus sign. Thus the real eigenvalues of q(0) and
q(π) are all the transition points.
The number of topological islands Nislands is given by

the half of the number of those real eigenvalues.

Nislands =
1

2
(Nq(0) +Nq(π)), (8)

where Nq(0) and Nq(π) are numbers of real eigen-
values of q(0) and q(π) respectively. Note that there
are even number of real eigenvalues 2N0 since they are
real zeros of an even degree real coefficients polynomial
detQ(m, 0) detQ(m,π) = 0. Let’s denote all those real
eigenvalues in ascending order as mi (i = 1, 2, 3, ..., 2N0).
Since the index could only be 0 or 1 for the model consid-
ered here, the phases are alternating between the trivial
phase and the topological phase along the m axis. To de-
termine the leftmost and rightmost phase, let’s consider
the limit of m → ±∞. To this end notice that

detQ(m,ϕ)=
∏

i

(m+Wwi)−
∏

i

(1 +W ′w′
i)e

iϕ

≡ f(m)− geiϕ. (9)

Thus detQ as a function of ϕ is a circle on the complex
plane, where f(m) determines the centre and g – the
radius. When m → ±∞, |f(m)| → ±∞. Thus the circle
is far away from the origin and the winding number must
be 0. Therefore the system is trivial when m → ±∞.
Thus the topological phases are between m2i−1 and m2i.
Therefore, the number of topological phases are indeed
equal to half of the number of mi. Thus Eq. (8) is proved.

TRANSITION POINTS IN AIII

To find transition points in class AIII the formalism of
q matrix should be somewhat modified. Note that this
time the transitions may not occur at ϕ = 0 or ϕ = π
but at a generic ϕ.
To solve for detQ = 0, f(m) and g exp(iϕ) should have

the same phase, thus ϕ should be ϕm or ϕm + π, where

ϕm = Arg(f(m))−Arg(g). (10)
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FIG. 1: Phase diagrams of model with longer ranges of hopping. The green region is ν = 1, while the blue region is
ν = 0. The presence of topological islands illustrates its generality.

Thus,

f(m)− geiϕm= 0 (11)

f(m) + geiϕm= 0 (12)

Taking the complex conjugate of the second equation and
multiplying the first equation,

f(m)f∗(m)− gg∗ = 0 (13)

A 2N ×2N matrix P needs to be constructed, where the
diagonal items areWwi andW ′w′∗

i , the sub-diagonal and
the upper right corner items are 1+W ′w′

i and 1+W ′w′∗
i .

In this way,

det(P − (−m)I) = f(m)f∗(m)− gg∗ = 0. (14)

Thus all the transition points are real eigenvalues of P .
This allows one to easily find all the transition points.
Note that when there are few transition points, one

can directly solve zeros of log(|f (m)|/|g|) since at the
transitions, |f(m)| = |g|.

MODEL WITH LONGER RANGES OF HOPPING

Topological islands is a general feature in topologi-
cal disordered systems. It is not limited to the specific

model discussed in the main text. They are formed due
to the properties of real zeros of the random polyno-
mial p(m,ϕ) = detQ(m,ϕ), demonstrating its generality
across various topological disordered systems. Topologi-
cal islands exists as long as there are many real zeros.

To illustrate the generality of the topological islands,
we consider here adding longer hopping terms

N∑

j=1

t′jc
†
j,Bcj+2,A + h.c. (15)

to the model discussed in the main text. Here

t′j = 1 +W ′w
′′
j , (16)

where W ′ is the hopping strength and w
′′
j is random vari-

ables uniformly drawn from the box [−1/2, 1/2].

Four typical phase diagrams are shown here, see Fig. 1,
illustrating the generality of topological islands.
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