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Higher-order topological band theory has transformed the landscape of topological phases in quantum
and classical systems. Here, we experimentally demonstrate a two-dimensional higher-order topological
phase, referred to as the multiple chiral topological phase, which is protected by a multipole chiral number
(MCN). Our realization differs from previous higher-order topological phases in that it possesses a larger-
than-unity MCN, which arises when the nearest-neighbor couplings are weaker than long-range couplings.
Our phase has an MCN of 4, protecting the existence of 4 midgap topological corner modes at each corner.
The multiple topological corner modes demonstrated here could lead to enhanced quantum-inspired
devices for sensing and computing. Our study also highlights the rich and untapped potential of long-range
coupling manipulation for future research in topological phases.
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Recent theoretical advancements in higher-order topo-
logical phases (HOTPs) [1-8] have substantially expanded
the scope of the bulk-boundary correspondence, leading to
the observation of topological corner modes (TCMs) [9-18]
and topological defect modes [19-23]. TCMs are zero-
dimensional bound states localized at the corners of a HOTP
specimen, which have inspired novel applications such as
topological lasers [24], thermal engineering [25], and
quantum optics [26]. In 2D, one can obtain HOTPs by
either engineering the Wannier center configuration of the
lattice or the existence of boundary-localized mass domains.
Both approaches give rise to only one TCM at each corner.
Yet, the presence of multiple TCMs at a single corner confers
several advantages, notably including the possibility of
realizing multimode topological lasers. Furthermore, the
existence of multiple degenerate or nearly degenerate TCMs
holds the potential for investigating the dynamics of non-
Abelian characteristics [27,28]. As a result, the pursuit of an
efficient method to create the desired quantity of in-gap
TCMs remains a highly coveted objective.

The band topology of a standard one-dimensional Su-
Schrieffer-Heeger model can be characterized by a winding
number that is either zero or one [29]. However, by the
introduction of proper long-range couplings, the winding
number can be increased. Such systems, therefore, belong to
a Z-classified topological phase (see Ref. [30] for more
details). In fact, topological phases that protect multiple
states at each 0D boundary exist in odd-dimensional chiral-
symmetric systems, protected by the winding number of
their Bloch Hamiltonians across the Brillouin zone. A recent
theoretical study found a Z-classification of 2 HOTPs in
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class AIll by an unconventional generalization of the
“winding number” to higher dimensions [31,35-37]. The
topological invariants are referred to as the “multipole chiral
numbers” (MCN)), as they are built from sublattice multipole
moment operators. A lattice with MCNs greater than one can
safeguard multiple zero-energy states per corner, all of
which are pinned at midgap (zero energy) due to chiral
symmetry. This phenomenon manifests itself in a tight-
binding model wherein the long-range couplings (LRCs) are
greater than nearest-neighbor couplings (NNCs) in magni-
tude. This condition, which we call “coupling inversion,” is
hard to obtain in natural materials because it goes against the
general decay rule of bound electronic wave functions.
Thus, the experimental realization of chiral-symmetric
HOTPs with MCN > 1 is unlikely in condensed matter
systems.

We thus turn our attention to classical-wave systems,
which have become versatile testbeds for topological models
[38-40]. For example, acoustic crystals built from coupled
acoustic cavities offer a powerful platform for studying
HOTPs with advanced designs [10,11,16,17,22,41]. In
addition, it has been systematically established that chiral
symmetry can be precisely emulated in such systems [41],
which makes it possible to realize topological modes pinned
at zero energy.

In this Letter, we leverage the salient features of coupled
acoustic cavities to experimentally realize a chiral-symmetric
acoustic MCTP with an MCN of 4. By using judiciously
designed space-coiling channels, we show that NNC and
LRC coefficients are precisely implemented while preserv-
ing chiral symmetry. More importantly, the lattice features
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coupling inversion by having LRCs stronger than NNCs. Our
work demonstrates experimentally the existence of a chiral-
symmetric HOTP with MCN > 1 for the first time and
highlights the important role of LRCs in realizing novel
topological phases; it also exemplifies the great potential of
acoustic platforms for studying novel topological models.

The system of interest is a square lattice of 4-site unit
cells, described by the tight-binding Hamiltonian

hokb b gakb
Hakp % N

h'okbp g'dkb 0

where
up ve ik« —u - veky
hokb % —u - velky  —u - velk
1 we 2k _ywe-2ik

ok e b

with u, v, being the magnitudes of the intracell and intercell
nearest-neighbor couplings, respectively, and w being the
magnitude of the LRCs in x and y directions. Omitting the
matrix gdkP momentarily, the Hamiltonian describes a
quadrupole topological insulator when v > u, which is
characterized by a nontrivial quadrupole moment qy, % 21
[1,3]. Because of its chiral symmetry, it also possesses
an MCN. In 2D, the MCN is defined as N,, %
01=2nipTr log Q4 QY , where Q4, and Q3 are multi-
pole moment operators for sublattices A and B [31]. The
MCN is N,, % 1 in this case, resulting in one zero-energy
topological midgap state per corner of a finite-size rec-
tangular lattice.

Reintroducing gdkp, which contains only LRCs, the
lattice takes the form shown in Fig. 1(a). The LRCs are
arranged in a way that an additional synthetic magnetic field
with nt-flux threads each plaquette in the lattice. The system
becomes an MCTP with an MCN of N,, % 4 when
coupling inversion occurs, i.e., when w > v (see Supple-
mental Material [30] for further analysis). Figure 1(b) shows
the spectrum of a 16 X 16-site square lattice. A bulk gap is
opened near the zero energy, wherein 16 near-degenerate in-
gap modes are observed. These are bound states localized
around the four corners (four per corner), as shown in
Fig. 1(c). These are the TCMs protected by the non-zero
MCN. Because of the presence of the LRCs, some TCMs
are localized several sites away from the extreme corner. We
note that the energies of the TCMs are not exactly
degenerate but remain symmetric about zero energy, which
is due to the finite-size effect. The TCMs are robust against
reasonable disorders (see Ref. [30] for details), providing
tolerance for fabrication and experiment errors. Finally, the
phase diagram of the MCTP is plotted and can be found
in [30].
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FIG. 1. A schematic and the corresponding theoretical results
regarding the topological corner modes (TCMs) obtained from
the tight-binding model. (a) The schematic shows the lattice
model and the configuration near a corner. The solid (dashed)
lines represent positive (negative) couplings, and their thickness
indicates the coupling strength. Colors are also used to denote
different couplings, including intracell NNCs (green), intercell
NNC:s (blue), and LRCs (orange). Not all the LRCs are shown for
the sake of clarity. (b) Sixteen midgap TCMs. (¢) The wave
function amplitudes of the four TCMs in one of the four corners
(bottom left corner) of the lattice. Here, u;v;w % 1;2;3.

Next, we design an acoustic crystal to realize the model
[Eq. (1)]. Our starting point is a 2D array of coupled acoustic
cavities [31]. The cavities are identical air-filled cuboids
with a square cross section (in the xy plane) and a relatively
large height (along the z axis). The cavity mode of interest is
the first-order resonance mode, whose natural frequency is
fo %4 0cq=2LypP % 2858 Hz, and corresponds to a modal
profile POx;y; zP % Py cosd2nz=Lyp, where ¢, % 343 m=s
is the speed of sound in air, P, is the pressure amplitude, and
Lo % 60 mm is the cavity height. The coupling among
cavities is facilitated using air channels, which are acoustic
waveguides with subwavelength cross-sectional areas. A
two-cavity setup is used to identify the conditions needed to
build the model [Fig. 2(a)], which is described by a two-state
Hamiltonian H, % 62?0 ant, P where t @R is the coupling
term. This Hamiltonian possesses an even mode and an odd
mode, with eigenfrequencies 2nf, and 2nf,, respectively.
Theirnormalized splitting, defined as Af % %of, - f,p=f,,
indicates the coupling strength and coupling sign. From the
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FIG.2. (a) The eigenmodes of the two acoustic cavities coupled
with an air channel. The normalized eigenvalue mean f (b) and
eigenvalue splitting Af (c) as functions of L. and z., and for
different D.. The diamonds and stars mark the geometric values
chosen for our acoustic HOTP design.

parity of the modes, it is straightforward that sgndtb %
sgndAfp. On the other hand, when the channel produces no
perturbation to the natural frequency of the cavities, chiral
symmetry is respected, and f, and f, are symmetric about
fo. This fy is regarded as the “zero energy.” We use the
normalized eigenvalue mean, f % %of. p fop=2f,, to
quantify the breaking of chiral symmetry. Chiral symmetry
is strictly respected when f % 1. We compute Af and f
using COMSOL Multiphysics. The tuned parameters are
channel length L., width D, and connecting position z. on
the cavity. The results are shown in Figs. 2(b) and 2(c).
According to the configuration of the unit cell [Fig. 1], we
need six different coupling coefficients, four for NNCs, and
two for LRCs (see Supplemental Material [30] for details of
coupling channel design). The chosen parameters are
correspondingly indicated by colored markers (diamonds
and stars) in Figs. 2(b) and 2(c).

Using these geometric parameters, the acoustic crystal
design is shown in Fig. 3(a). The key requirement, coupling
inversion, is achieved by using LRC channels connected at
the top and bottom of the cavities where the pressure
amplitude (and therefore the coupling) is maximum, while
their NNC counterparts are connected at % height of the
cavities (leading to weaker coupling). The lengths of the
LRC channels are ®2.5L, and ®3.5L, for negative and
positive coupling, respectively, which are longer than the
spatial separation of the relevant cavities. The coupling
channels are essentially 1D acoustic waveguides with
subwavelength cross-sectional dimensions. Space-coiling
design [34,42], which is widely used in acoustic metama-
terials and metasurfaces [43,44], is employed to bend the
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FIG. 3. (a) The schematic drawing of the acoustic lattice design.
The colors of the air channels are in one-to-one correspondence
with those in Fig. 1. (b) The simulated eigenfrequencies of the
acoustic lattice. (c) Sixteen midgap TCMs are identified. They are
separated into four groups based on their spatial profiles.

waveguides into meandering shapes so that the coupling
channels can fit the cavity array. The detailed geometric
parameters are presented in [30]. We then perform finite-
element simulations on the design, and the results are
shown in Figs. 3(b) and 3(c), which can be directly
compared with the theoretical results shown in Figs. 1(b)
and I(c). Sixteen midgap TCMs can be identified, all of
which localize at corners, which is compatible with a
crystal in the MCN % 4 phase. In addition, both the bulk
bands and the TCMs are nearly symmetric about 2858 Hz,
and the TCMs are safely separated from the bulk bands.
The splitting of the TCMs away from midgap is attributed
to hybridization due to mode overlap across opposite
corners and intrinsic deviations away from perfect chiral
symmetry. For the practical purposes of topological pro-
tection, all the TCMs are robustly protected by approximate
chiral symmetry. Furthermore, since the hybridization due
to mode overlap is a finite-size effect, it will decrease with
increasing system size.

The fabricated acoustic crystal is shown in Fig. 4. It is
composed of two aluminum blocks and two cover plates
[Fig. 4(a)]. The lattice has 16 x 16 cavities, and the air
channels are etched on different surfaces of the aluminum
blocks using CNC machining [Figs. 4(b)—4(d)]. Holes are
opened on the top cover plates for excitation and meas-
urement. They are sealed with silastic plugs when not in
use. For the acoustic measurement, a short pulse covering
2200-3500 Hz is sent using a 16-channel sound card
(MOTU 16A) through a power amplifier to drive a
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FIG. 4. The fabricated acoustic lattice used in our experiments.
(a) A schematic showing the design. Different sets of air channels
are machined on three different sides, as shown in (b),(c),(d),
respectively.
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FIG. 5. Experimental results. (a) Response spectra of the bulk
modes (gray curves, denoted B in the legends) and TCMs
(colored curves) marked with numbers 1-16, corresponding to
different excitation positions shown by the arrows in (b).
Responses of the TCMs are presented in four subfigures on
the right, each representing a specific category of TCMs
determined by their positions relative to the exact corner site
(e.g., exactly at the corner, two sites away from the corner on the
x axis, etc.). (b) The spatial response profiles with excitation and
measurement positions at the corners (marked by the red arrows).
The blue arrows and circles (right next to the blue arrows) mark
the excitation and probing points for the bulk spectra in (a).

loudspeaker placed at the positions illustrated in Fig. 5(b)
for the excitation of the bulk mode and TCMs. The
response signals are detected by 16 identical microphones
and recorded by the sound card. The results are shown in
Figs. 5(a) and 5(b). A bulk gap is clearly observed in the
frequency range of 2800-2900 Hz. When the loudspeakers
are placed at the designated positions around the corners
[indicated by the red arrows in Fig. 5(b)], 16 response peaks
are observed in the bulk gap (near center frequency
f, % 2858 Hz) when excited at different positions marked
1@ 16 as shown in Fig. 5(b). We note that the responses
peak at slightly different frequencies. This is attributed to
fabrication and experiment error, yet the MCTP is robust
against such disorders as mentioned in previous sections.
The spatial profiles of these responses are mapped out
across the entire lattice, as shown in Fig. 5(b). They are in
good agreement with the numerically obtained eigenfunc-
tions of TCMs [Fig. 3(c)]. The slight deviations in peak
frequencies of the TCM responses are attributed to fab-
rication errors. The maximum deviation is 16 Hz, which is
about 0.56% for a base frequency of 2858 Hz. Overall, the
successful realization of MCTP is collectively demon-
strated by the observation of a total of 16 TCMs in the
experiment, and the fact that, not only the number of the
TCMs, but also their eigenfunctions are in excellent
agreement with the predictions made by numerical simu-
lations based on the same acoustic crystal. Discussion and
results on the effect of thermoviscous losses are included
in [30].

In conclusion, we have experimentally demonstrated a
coupling-inverted acoustic crystal possessing MCTP that is
characterized by a Z topological invariant, the MCN, which
is greater than 1. Unlike most topological models, the
existence of MCTP explicitly requires the presence of
LRCs. Our work provides strong evidence that the manipu-
lation of LRCs can be a fruitful route for accessing new
topological phases. Because of the difficulty in finding
LRC in natural materials, classical-wave platforms such as
acoustic crystals may play an increasingly important role in
future studies of topological phases, particularly in those
that additionally require chiral symmetry. Meanwhile, it
would be interesting to expand MCTP into other systems,
such as photonic crystals and topoelectrical circuits, though
it remains unclear whether chiral symmetry can be achieved
in photonic crystals (periodic arrays of coupled waveguides
do possess chiral symmetry [14]). Having spatial and
spectral coexistence of multiple TCMs, our MCTP may
be beneficial for applications such as spatially multiplexed
energy confinement [45] and multimode corner-emitting
topological lasers [24] and may open a route for the non-
Abelian manipulation of TCMs [46—48].

Y. J. thanks the NSF for support through CMMI-
2039463. W. A.B. acknowledges the support from the
startup fund at Emory University. G. M. is supported by
the Hong Kong Research Grants Council (RFS2223-2S01,

157201-4



PHYSICAL REVIEW LETTERS 131, 157201 (2023)

12301822, 12302420) and the National Key R&D Program
of China (2022YFA1404400). D. W. thanks Wei Wang and
Tong Liu for discussions on theoretical parts, and thanks
Xulong Wang for assisting with the experiment.

"D.W. and Y. D. contributed equally to this work.
Corresponding author: benalcazar@emory.edu
tCorresponding author: phgecma@hkbu.edu.hk

§Corresponding author: yqj5201@psu.edu

[1] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quan-
tized electric multipole insulators, Science 357, 61 (2017).

[2] Z. Song, Z. Fang, and C. Fang, (D - 2)-Dimensional Edge
States of Rotation Symmetry Protected Topological States,
Phys. Rev. Lett. 119, 246402 (2017).

[3] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Elec-
tric multipole moments, topological multipole moment
pumping, and chiral hinge states in crystalline insulators,
Phys. Rev. B 96, 245115 (2017).

[4] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.
Parkin, B. A. Bernevig, and T. Neupert, Higher-order
topological insulators, Sci. Adv. 4, eaat0346 (2018).

[5] C. W. Peterson, T. Li, W. A. Benalcazar, T. L. Hughes, and
G. Bahl, A fractional corner anomaly reveals higher-order
topology, Science 368, 1114 (2020).

[6] B. Xie, H.-X. Wang, X. Zhang, P. Zhan, J.-H. Jiang, M. Lu,
and Y. Chen, Higher-order band topology, Nat. Rev. Phys. 3,
520 (2021).

[7]1 T. Li, P. Zhu, W. A. Benalcazar, and T. L. Hughes, Frac-
tional disclination charge in two-dimensional C,-symmetric
topological crystalline insulators, Phys. Rev. B 101, 115115
(2020).

[8] Y. Ran, Y. Zhang, and A. Vishwanath, One-dimensional
topologically protected modes in topological insulators with
lattice dislocations, Nat. Phys. 5, 298 (2009).

[9] M. Serra-Garcia, V. Peri, R. Siisstrunk, O.R. Bilal, T.
Larsen, L. G. Villanueva, and S.D. Huber, Observation
of a phononic quadrupole topological insulator, Nature
(London) 555, 342 (2018).

[10] H. Xue, Y. Yang, F. Gao, Y. Chong, and B. Zhang, Acoustic
higher-order topological insulator on a kagome lattice, Nat.
Mater. 18, 108 (2019).

[11] X. Ni, M. Weiner, A. Alu, and A. B. Khanikaev, Observa-
tion of higher-order topological acoustic states protected by
generalized chiral symmetry, Nat. Mater. 18, 113 (2019).

[12] C. W. Peterson, W. A. Benalcazar, T.L. Hughes, and G.
Bahl, A quantized microwave quadrupole insulator with
topologically protected corner states, Nature (London) 555,
346 (2018).

[13] S. Imhof et al., Topolectrical-circuit realization of topologi-
cal corner modes, Nat. Phys. 14, 925 (2018).

[14] J. Noh, W. A. Benalcazar, S. Huang, M. J. Collins, K. P.
Chen, T.L. Hughes, and M. C. Rechtsman, Topological
protection of photonic mid-gap defect modes, Nat. Photon-
ics 12, 408 (2018).

[15] X. Zhang, H.-X. Wang, Z.-K. Lin, Y. Tian, B. Xie, M.-H.
Lu, Y.-F. Chen, and J.-H. Jiang, Second-order topology and
multidimensional topological transitions in sonic crystals,
Nat. Phys. 15, 582 (2019).

[16] Y. Qi, C. Qiu, M. Xiao, H. He, M. Ke, and Z. Liu, Acoustic
Realization of Quadrupole Topological Insulators, Phys.
Rev. Lett. 124, 206601 (2020).

[17] Z.-G. Chen, W. Zhu, Y. Tan, L. Wang, and G. Ma, Acoustic
Realization of a Four-Dimensional Higher-Order Chern
Insulator and Boundary-Modes Engineering, Phys. Rev.
X 11, 011016 (2021).

[18] W. Wang, Z.-G. Chen, and G. Ma, Synthetic Three-
Dimensional Z x Z 2 Topological Insulator in an Elastic
Metacrystal, Phys. Rev. Lett. 127, 214302 (2021).

[19] Y. Liu, S. Leung, F.-F. Li, Z.-K. Lin, X. Tao, Y. Poo, and
J.-H. Jiang, Bulk—disclination correspondence in topologi-
cal crystalline insulators, Nature (London) 589, 381 (2021).

[20] C. W. Peterson, T. Li, W. Jiang, T. L. Hughes, and G. Bahl,
Trapped fractional charges at bulk defects in topological
insulators, Nature (London) 589, 376 (2021).

[21] Y. Deng, W. A. Benalcazar, Z.-G. Chen, M. Oudich, G. Ma,
and Y. Jing, Observation of Degenerate Zero-Energy Topo-
logical States at Disclinations in an Acoustic Lattice, Phys.
Rev. Lett. 128, 174301 (2022).

[22] Z.-K. Lin, Y. Wu, B. Jiang, Y. Liu, S.-Q. Wu, F. Li, and J.-H.
Jiang, Topological Wannier cycles induced by sub-unit-cell
artificial gauge flux in a sonic crystal, Nat. Mater. 21, 430
(2022).

[23] L. Ye, C. Qiu, M. Xiao, T. Li, J. Du, M. Ke, and
Z. Liu, Topological dislocation modes in three-dimensional
acoustic topological insulators, Nat. Commun. 13, 508
(2022).

[24] W. Zhang et al.,, Low-threshold topological nanolasers
based on the second-order corner state, Light Sci. Appl.
9, 109 (2020).

[25] G. Xu, X. Zhou, S. Yang, J. Wu, and C.-W. Qiu, Obser-
vation of bulk quadrupole in topological heat transport, Nat.
Commun. 14, 3252 (2023).

[26] C. Li, M. Li, L. Yan, S. Ye, X. Hu, Q. Gong, and Y. Li,
Higher-order topological biphoton corner states in two-
dimensional photonic lattices, Phys. Rev. Res. 4, 023049
(2022).

[27] P. Boross, J. K. Asboth, G. Széchenyi, L. Oroszlany, and A.
Palyi, Poor man’s topological quantum gate based on the
Su-Schrieffer-Heeger model, Phys. Rev. B 100, 045414
(2019).

[28] Y. Wu, H. Jiang, J. Liu, H. Liu, and X. C. Xie, Non-Abelian
Braiding of Dirac Fermionic Modes Using Topological
Corner States in Higher-Order Topological Insulator, Phys.
Rev. Lett. 125, 036801 (2020).

[29] J. K. Asboth, L. Oroszlany, and A. Palyi, A Short Course on
Topological Insulators (Springer International Publishing,
Cham, 2016), Vol. 919.

[30] See  Supplemental ~Material at  http://link.aps.org/
supplemental/10.1103/PhysRevLett.131.157201 for phase
diagram and further analysis of the MCTP, design of the
coupling channels, and evaluations on robustness against
disorder and effect of loss, which Includes Refs. [16,31-34].

[31] W. A. Benalcazar and A. Cerjan, Chiral-Symmetric Higher-
Order Topological Phases of Matter, Phys. Rev. Lett. 128,
127601 (2022).

[32] W. Zhu and G. Ma, Distinguishing topological corner
modes in higher-order topological insulators of finite size,
Phys. Rev. B 101, 161301(R) (2020).

157201-5


https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/science.aba7604
https://doi.org/10.1038/s42254-021-00323-4
https://doi.org/10.1038/s42254-021-00323-4
https://doi.org/10.1103/PhysRevB.101.115115
https://doi.org/10.1103/PhysRevB.101.115115
https://doi.org/10.1038/nphys1220
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1038/s41563-018-0252-9
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/s41566-018-0179-3
https://doi.org/10.1038/s41566-018-0179-3
https://doi.org/10.1038/s41567-019-0472-1
https://doi.org/10.1103/PhysRevLett.124.206601
https://doi.org/10.1103/PhysRevLett.124.206601
https://doi.org/10.1103/PhysRevX.11.011016
https://doi.org/10.1103/PhysRevX.11.011016
https://doi.org/10.1103/PhysRevLett.127.214302
https://doi.org/10.1038/s41586-020-03125-3
https://doi.org/10.1038/s41586-020-03117-3
https://doi.org/10.1103/PhysRevLett.128.174301
https://doi.org/10.1103/PhysRevLett.128.174301
https://doi.org/10.1038/s41563-022-01200-w
https://doi.org/10.1038/s41563-022-01200-w
https://doi.org/10.1038/s41467-022-28182-2
https://doi.org/10.1038/s41467-022-28182-2
https://doi.org/10.1038/s41377-020-00352-1
https://doi.org/10.1038/s41377-020-00352-1
https://doi.org/10.1038/s41467-023-39117-w
https://doi.org/10.1038/s41467-023-39117-w
https://doi.org/10.1103/PhysRevResearch.4.023049
https://doi.org/10.1103/PhysRevResearch.4.023049
https://doi.org/10.1103/PhysRevB.100.045414
https://doi.org/10.1103/PhysRevB.100.045414
https://doi.org/10.1103/PhysRevLett.125.036801
https://doi.org/10.1103/PhysRevLett.125.036801
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.157201
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.157201
https://doi.org/10.1103/PhysRevLett.128.127601
https://doi.org/10.1103/PhysRevLett.128.127601
https://doi.org/10.1103/PhysRevB.101.161301

PHYSICAL REVIEW LETTERS 131, 157201 (2023)

[33] X. Li, S. Wu, G. Zhang, W. Cai, J. Ng, and G. Ma,
Measurement of corner-mode coupling in acoustic higher-
order topological insulators, Front. Phys. 9, 770589 (2021).

[34] Z. Liang and J. Li, Extreme Acoustic Metamaterial by
Coiling Up Space, Phys. Rev. Lett. 108, 114301 (2012).

[35] A.Kitaev, V. Lebedev, and M. Feigel’'man, Periodic table for
topological insulators and superconductors, in AIP
Conference Proceedings (AIP, Chernogolokova (Russia),
2009), pp. 22-30.

[36] S. Ryu, A.P. Schnyder, A. Furusaki, and A. W. W. Ludwig,
Topological insulators and superconductors: Tenfold way and
dimensional hierarchy, New J. Phys. 12, 065010 (2010).

[37] C.-K. Chiu, J.C.Y. Teo, A.P. Schnyder, and S. Ryu,
Classification of topological quantum matter with sym-
metries, Rev. Mod. Phys. 88, 035005 (2016).

[38] T. Ozawa et al., Topological photonics, Rev. Mod. Phys. 91,
015006 (2019).

[39] G. Ma, M. Xiao, and C.T. Chan, Topological phases in
acoustic and mechanical systems, Nat. Rev. Phys. 1, 281
(2019).

[40] H. Xue, Y. Yang, and B. Zhang, Topological acoustics, Nat.
Rev. Mater. 7, 974 (2022).

[41] Z.-G.Chen, L. Wang, G. Zhang, and G. Ma, Chiral Symmetry
Breaking of Tight-Binding Models in Coupled Acoustic-
Cavity Systems, Phys. Rev. Appl. 14, 024023 (2020).

[42] Y. Xie, B.-I. Popa, L. Zigoneanu, and S.A. Cummer,
Measurement of a Broadband Negative Index with
Space-Coiling Acoustic Metamaterials, Phys. Rev. Lett.
110, 175501 (2013).

[43] Y. Xie, W. Wang, H. Chen, A. Konneker, B.-I. Popa, and
S. A. Cummer, Wavefront modulation and subwavelength
diffractive acoustics with an acoustic metasurface, Nat.
Commun. 5, 5553 (2014).

[44] Y. Li, X. Jiang, R. Q. Li, B. Liang, X. Y. Zou, L. L. Yin, and
J. C. Cheng, Experimental Realization of Full Control of
Reflected Waves with Subwavelength Acoustic Meta-
surfaces, Phys. Rev. Appl. 2, 064002 (2014).

[45] Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi,
Y. Arakawa, and S. Iwamoto, Photonic crystal nanocavity
based on a topological corner state, Optica 6, 786
(2019).

[46] Z.-G. Chen, R.-Y. Zhang, C. T. Chan, and G. Ma, Classical
non-Abelian braiding of acoustic modes, Nat. Phys. 18, 179
(2022).

[47] X.-L. Zhang, F. Yu, Z.-G. Chen, Z.-N. Tian, Q.-D. Chen,
H.-B. Sun, and G. Ma, Non-Abelian braiding on photonic
chips, Nat. Photonics 16, 390 (2022).

[48] Y.-K. Sun, X.-L. Zhang, F. Yu, Z.-N. Tian, Q.-D. Chen, and
H.-B. Sun, Non-Abelian thouless pumping in photonic
waveguides, Nat. Phys. 18, 1080 (2022).

157201-6


https://doi.org/10.3389/fphy.2021.770589
https://doi.org/10.1103/PhysRevLett.108.114301
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1038/s42254-019-0030-x
https://doi.org/10.1038/s42254-019-0030-x
https://doi.org/10.1038/s41578-022-00465-6
https://doi.org/10.1038/s41578-022-00465-6
https://doi.org/10.1103/PhysRevApplied.14.024023
https://doi.org/10.1103/PhysRevLett.110.175501
https://doi.org/10.1103/PhysRevLett.110.175501
https://doi.org/10.1038/ncomms6553
https://doi.org/10.1038/ncomms6553
https://doi.org/10.1103/PhysRevApplied.2.064002
https://doi.org/10.1364/OPTICA.6.000786
https://doi.org/10.1364/OPTICA.6.000786
https://doi.org/10.1038/s41567-021-01431-9
https://doi.org/10.1038/s41567-021-01431-9
https://doi.org/10.1038/s41566-022-00976-2
https://doi.org/10.1038/s41567-022-01669-x

