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Introduction

Cognitive processes engage multiple interacting brain regions. To study these
interactions, researchers analyze neural data with “connectivity” methods, that capture
the temporal co-variation between the fluctuations in the responses at different locations
in the brain. The responses at any given location can depend jointly on the responses at
multiple other locations. Despite this, a vast majority of connectivity studies only focus
on univariate interactions, either between one voxel and another, or between the average
response in one region and the average response in another. By neglecting multivariate
signals, univariate approaches to connectivity lead to inevitable information loss. In
addition, to the extent that information is encoded by multivariate patterns of response,
multivariate connectivity could provide more than just increased sensitivity, offering
a qualitatively different understanding of the transformations of information between
brain regions (Anzellotti and Coutanche, 2018; Basti et al., 2020).

In order to leverage multivariate information in the study of interactions between
brain regions, several new techniques have emerged over the past decade. While in this
article we focus on applications to fMRI, these techniques can be applied to a variety
of data modalities (e.g., EEG, MEG, multi-site electrophysiology). Current techniques
mainly differ in two aspects: (1) whether they are applied directly to BOLD responses
or to derivative measures (e.g., decoding accuracy), and (2) how they model statistical
dependence between regions. Some approaches are applied directly to BOLD responses.
For example, a recent technique (Geerligs and Henson, 2016) estimates the statistical
dependence between two regions by computing the multivariate distance correlation
between their response patterns over time. This measure takes into account the BOLD
signal across multiple voxels within each region, thus avoiding the information loss
that would have occurred if those voxels had been averaged. Another technique uses
transfer entropy (Lizier et al., 2011) as a measure of multivariate statistical dependence.
Computing transfer entropy for high-dimensional patterns is computationally costly,
therefore this technique is typically applied on small numbers of voxels or using
approximations (see Bossomaier et al., 2016). Transfer entropy has the advantage that
it can capture linear as well as nonlinear interactions. Another method that can capture
both linear and nonlinear interactions—multivariate pattern dependence (MVPD)
(Anzellotti et al., 2017; Fang et al., 2022)—trains a predictive model of the relationship
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between multivariate responses in different regions using part
of the data (either directly or using principal components), and
then tests the model’s accuracy on the left-out data, using it as
a measure of statistical dependence. Note that if a nonlinear
relationship between two brain regions has a linear component,
it can also be detected by linear methods.

Some techniques compute multivariate dependence and
then apply additional analysis steps. Multivariate integration
(Sasai et al, 2016) uses multivariate responses at a given
timepoint to predict responses in future timepoints, and then
compares the performance achieved by combining multiple
predictor regions to that achieved with individual predictor
regions in isolation to capture the interactions between multiple
brain areas. Multi-Connection Pattern Analysis (MCPA, Liet al.,
2017) characterizes the relationship between two brain regions
during two different tasks using two separate models. Then, it
tests whether the relationship is task-sensitive by comparing the
model’s predictive accuracy when trained during that same task
than that during the other task.

Certain approaches compute the statistical dependence
between measures derived from multivariate responses—such
as the accuracy of a classifier. This strategy is adopted by
informational connectivity (Coutanche and Thompson-Schill,
2013), which trains a multivariate classifier, and then tests
the correlation between classification accuracies across multiple
trials (or fluctuations in trials’ similarity with prototypical
patterns for the conditions). This offers the opportunity to
evaluate multivariate dependence along specific dimensions
of interest to the experimenter. Derivative measures are also
used in representational connectivity (Kriegeskorte et al., 2008;
Henriksson et al., 2015), which tests the similarity between
representational dissimilarity matrices (RDMs) computed for
different regions. A recent study extended this approach
using Riemannian distance (Shahbazi et al, 2021), which
can potentially capture nonlinear interactions. The features of
different multivariate connectivity methods are summarized in
Table 1. Comprehensive reviews of multivariate connectivity
methods can be found elsewhere (Anzellotti and Coutanche,
2018; Basti et al., 2020), here we focus on selected examples to
illustrate the variety of their possible applications.

Examples of applications

Since multivariate connectivity methods have been
introduced, they have yielded a variety of results across different
areas of Cognitive Neuroscience. In one application, they have
been used to show that representations of the same stimuli vary
across different trials in a coordinated fashion across multiple
brain regions (Henriksson et al., 2015). The authors compared
RDMs across visual areas either during the same trial, or across
different trials (Henriksson et al, 2015), and reported that

RDMs were more similar when they were compared within the
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same trial, providing evidence for trial-by-trial fluctuations in
the regions’ response patterns.

studied what kinds of
transformations occur between brain regions. Basti et al
(2019) used multivariate linear models to predict response
patterns in a target region based on response patterns in
a predictor region, and computed three distinct metrics to

Recent  work information

characterize each interaction: goodness-of-fit, sparsity, and
pattern deformation. Thanks to this approach, they observed
that different dimensions of the responses in the predictor
region are affected differentially (e.g., amplified or dampened)
by the transformation that maps them onto responses in the
target region.

Other studies used multivariate connectivity to investigate
how information is combined across multiple brain regions.
In a pioneering study, Coutanche and Thompson-Schill (2015)
analyzed the convergence of shape and color information in
the anterior temporal lobe (ATL). They showed participants
images of visual noise and instructed them to look for objects
varying in color and shape, and found that across trials,
the accuracy of decoding objects from response patterns in
ATL could be predicted by jointly analyzing the accuracy of
decoding color from response patterns in area V4 and shape
from patterns in lateral occipital cortex. A related approach—
“feature specific informational connectivity”—has been used to
investigate episodic memory representations (Bone et al., 2020).

More recently, Fang et al. (2019) used an extension of
MVPD based on artificial neural networks to show that the
angular gyrus is characterized by joint statistical dependence
with multiple category-selective regions, suggesting that it might
play a role in combining information about different kinds of
objects. MVPD has also been used to study the multivariate
dependence between fMRI responses across participants (Li
etal., 2019).

Direct comparisons between multivariate and univariate
connectivity methods indicate that multivariate methods are
more sensitive (Coutanche and Thompson-Schill, 2013; Geerligs
and Henson, 2016; Anzellotti et al., 2017). In addition, these
methods have the potential to uncover not only whether but
also how brain regions interact. In an elegant example (Basti
etal, 2019), estimating explicitly a linear transformation matrix
made it possible to determine not just the presence but the
type of interactions between brain regions. These advantages
come at a cost: the implementation of multivariate connectivity
methods is more complex, hindering their broader adoption
in the research community. To address this issue, a growing
number of toolboxes have been recently developed.

Available toolboxes

toolboxes—the  Informational

(https://Irdc.pitt.edu/coutanche/

the  first
Toolbox

One of
Connectivity
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TABLE 1 Summary of different multivariate connectivity methods.

10.3389/fnins.2022.1082120

Method Measurement of Can be applied Captures Predicts
neural responses to resting state nonlinearities timeseries in
data independent
data
Multivariate distance Response patterns Yes Yes No
correlation
Multivariate transfer Response patterns Yes Yes No
entropy
MVPD Response patterns Yes Yes (selecting a Yes
nonlinear mapping)
Multivariate integration Response patterns Yes Potentially No
MCPA Response patterns No Yes Yes
Informational connectivity Decoding accuracy or No Potentially No
correlations to mean
responses
Representational RDMs Yes Potentially No
connectivity

Under the heading “Captures nonlinearities”, the entry “Potentially” indicates that the method can be extended in a straightforward manner to a version that captures nonlinearities.

informationalconnectivity)—provides a collection of MATLAB
scripts to run informational connectivity analysis. More
recently, a toolbox for multidimensional connectivity
implemented in MATLAB has been made available with
the article “Multi-dimensional connectivity: a conceptual and
mathematical review” (Basti et al., 2020). This toolbox (https://
github.com/RikHenson/MultivarCon) has been developed to
be flexibly applicable to both fMRI and EEG. Another recently
introduced toolbox developed in Python, PyMVPD (Fang
et al., 2022, https://github.com/sccnlab/PyMVPD), implements
MVPD. This toolbox enables users to train multivariate
models of the interactions between brain regions, and to
test their accuracy on left-out data. PyMVPD offers linear
regression models as well as artificial neural networks, and it
is designed to enable users to customize their own models and
evaluation metrics to suit specific research needs. Thanks to this
functionality, PYMVPD makes it possible to compute linear as
well as nonlinear multivariate statistical dependence.

When it comes to measures of transfer entropy, a fully
multivariate approach that preserves the information in
all voxels is computationally intractable. Various toolboxes
help researchers compute multivariate transfer entropy
with suitable approximation techniques. For example, the
Java Information Dynamics Toolkit (JIDT) (Lizier, 2014)
is a Google code project which provides open-source
code for multiple information-theoretic measures. It offers
classic information-theoretic measures as well as higher-
level measures of information dynamics. MuTE (Montalto
et al, 2014) is a MATLAB toolbox that implements three
estimators of multivariate transfer entropy (i.e., linear
estimator, binning estimator, nearest neighbor estimator) under
cither the classical uniform embedding or the non-uniform
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embedding. Finally, the Information Dynamics Toolkit
(IDTxl) (Wollstadt et al., 2019; https://github.com/pwollstadt/
IDTxl) is a Python toolbox that implements multivariate
transfer entropy estimation for the effective inference of
network dynamics.

The puzzle of nonlinearity

As discussed in previous sections, an important way that
multivariate techniques can offer novel insight into complex
neural dynamics is by examining the type of interactions
between brain regions, not just their presence. A key goal of
connectivity is to study how information is transformed from
brain region to brain region. A growing body of research has
demonstrated that at a cellular level, information is nonlinearly
transformed (Xu et al., 2012; Tran-Van-Minh et al., 2015; Gidon
et al,, 2020; Beniaguev et al., 2021; Lafourcade et al., 2022). For
example, the input/output function of a single pyramidal neuron
can be best approximated by a deep nonlinear neural network
(Beniaguev et al, 2021). Nonlinearities are also observed at
the level of local field potentials (Sotero et al., 2010; but see
Ito et al, 2017). Therefore, it is important for connectivity
methods to be able to capture nonlinear interactions between
regions. As an additional argument, high-performing models
of perception heavily rely on nonlinearities (Khaligh-Razavi
and Kriegeskorte, 2014; Yamins et al., 2014; Balestriero and
Baraniuk, 2018), suggesting that they are an essential part
of neural computation. Therefore, if connectivity measures
aim to elucidate the transformations of representations that
underlie cognition, they need to also capture nonlinear statistical
dependence. On these grounds, recent work has called into
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question whether linear models of neural activity are sufficient
to fully understand the relationship between the activity in
regions across the brain (Anzellotti et al., 2017): models of the
transformation of information across the cortex should offer the
flexibility needed to capture nonlinearities.

To avoid confusion, we need to note that even though
the mapping between the spiking activity of neurons and the
observed BOLD response is also nonlinear, here we focus
instead on nonlinear relationships between the responses in
one region and those in another region. Several methods have
the potential to capture such nonlinear interactions, including
transfer entropy, multivariate distance correlation, MVPD,
and functional coordinates (Lizier et al, 2011; Geerligs and
Henson, 2016; Anzellotti et al., 2017; Poskanzer and Anzellotti,
2022). Informational connectivity (Coutanche and Thompson-
Schill, 2013), if paired with nonlinear decoding techniques,
could also detect nonlinear interactions, and multivariate
integration (Sasai et al., 2016) can also be extended naturally
to capture nonlinearities. Nonlinear methods have the flexibility
to capture a broader variety of interactions between regions
(since typically they can also capture linear interactions), and
the input-output relationships in individual neurons are better
captured by nonlinear functions (e.g., Hodgkin-Huxley models
for individual neurons, or sigmoid models for mean-field
activation). Therefore, the most biologically plausible nonlinear
models of neural interactions are likely to be more biologically
plausible than the most biologically plausible linear models.

While linear models of connectivity are most commonly
used to characterize regional interactions, several studies have
reported evidence of significant nonlinear relationships between
brain areas (Friston et al., 1994; Stephan et al., 2008; Marinazzo
et al., 2011; Poskanzer et al., 2022). Despite nonlinear dynamics
having been found across the brain, however, linear models
remain popular due to sufficient performance and enhanced
interpretability. To add to the interpretability of nonlinear
models, we recently developed a method using a basis set of
Hermite polynomials to estimate the functional relationship
between brain regions (Poskanzer et al, 2022)—it is our
hope that the ability to explicitly define the function that
relates the activity between two brain regions will provide
increased transparency to the future evidence of nonlinear
cortical interactions.

Although there is a strong theoretical grounding for
the study of nonlinear statistical dependence between brain
regions, fMRI evidence is still limited (Cox and Savoy, 2003;
Hlinka et al, 2011; Poskanzer et al., 2022). If nonlinear
interactions should be widespread in theory, why are they
difficult to identify? There are several obstacles to identifying
these types of interregional interactions. For example, fMRI
responses are subject to hemodynamic filtering (De Zwart
et al, 2009), affecting the latency of the BOLD signal. In
addition, fMRI signal is noisy—this noise could overshadow
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nonlinear dependencies. Finally, fMRI has limited temporal
and spatial resolution. In particular, the averaging of the signal
across thousands of neurons within each voxel can conceal
the presence of nonlinearities. This problem is compounded
by connectivity methods that investigate univariate dependence
between brain regions by averaging across multiple voxels.
Although multivariate methods cannot overcome the difficulties
inherent to fMRI as an imaging technique, by using multivoxel
patterns of response instead of averaging across voxels to
obtain a univariate timecourse we can avoid compounding the
spatial smoothing.

Discussion

A growing body of multivariate and nonlinear methods
for examining connectivity provide a promising starting point
for future work. However, capturing nonlinear relationships
between the representations encoded in different brain regions
will require additional steps. First, noise could obfuscate such
relationships. While popular denoising techniques have been
shown to remove some spurious nonlinear interactions between
brain areas (Poskanzer et al., 2022), improvements in denoising
could reveal previously hidden nonlinear interactions. When
applying denoising, it will be important to proceed with
caution and to include control analyses to ensure that the
denoising is not introducing artifactual nonlinear relationships.
Second, nonlinear models tend to have more parameters
than linear models. Hlinka et al. (2011) reported finding
evidence of subtle nonlinear interactions when using large
amounts of data; experiments including larger amounts of
data for cach participant (e.g., Allen et al, 2022) could
help improve the parameter estimates, making it easier
to detect nonlinearities. Finally, applying multivariate and
nonlinear connectivity methods to data with higher spatial
and temporal resolution, such as multi-site electrophysiology,
could overcome the limitations due to the limited spatial and
temporal resolution of fMRI. FMRI responses correlate with
local field potentials and with spatial averages of single unit
measurements (Issa et al., 2013), thus studying connectivity
through multi-site single unit recordings (Bosman et al., 2012;
Hart and Huk, 2020; Fernandez-Ruiz et al, 2021) could
potentially help to understand where the nonlinear interactions
are lost in the steps from single unit recordings to fMRI,
and to evaluate whether it is possible to recover them with
adequate analyses.

Understanding the nonlinear transformation of information
across the brain is a fundamental topic in the study of
brain connectivity. By leveraging a wide array of multivariate
analyses to study rich, high dimensional neural data, researchers
can improve upon their ability to map the computational
topography of the brain.
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